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1. Introduction 

Komlds [11] proved the following. Suppose {Xi} is a sequence of r.v.'s such that 
sup E [Xz] < oe' then there exists a r.v. ~ and an increasing sequence of integers {n~} 
such that 

N 
N-  I ~ xm-+o~ a.s .  

1 

Chatterji [3] has formulated the following heuristic principle. Given a limit 
theorem for i.i.d.r.v.'s under certain moment conditions, there exists an analogous 
theorem such that an arbitrarily-dependent sequence (under the same moment 
conditions) always contains a subsequence satisfying this analogous theorem. 

The result of Komlds may be regarded as the precise form of Chatterji's 
principle for the strong law of large numbers. The principle has been verified for 
several other classical theorems ([-1, 3, 4, 8]) by purely ad hoc arguments. Theorem 3 
of this paper implies the truth of the principle for any a.s. limit theorem, and 
Theorem 6 for any weak limit (conVergence in distribution) theorem; subject only 
to mild technical conditions on the nature of the theorem. 

To describe the technique used, define an exchangeable sequence of r.v.'s to be a 
mixture of i.i.d, sequences. Obviously exchangeable sequences satisfy theorems 
analogous to those for i.i.d, sequences. Given an arbitrarily-dependent sequence 
{Xi}, assuming only that the distributions are tight, we will (Proposition 11) extract 
a certain subsequence { Y~} = {X,,}, and associate with it an exchangeable sequence 
{Zi}. We then show (Proposition 13) that certain types of property of {Zi} are 
shared by suitable subsequences of { Y~}. 

This technique also proves (Theorem9) an assertion of R6v6sz concerning 
unconditionally a.s. convergent subsequences. These results will be stated properly 
in Section 3. 

* This research was supported by a S.R.C. Studentship 
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2. Notation and Definitions 

Let S be a separable metrisable space. Topological spaces wilt always be equipped 
with the a-field generated by the open sets, and product spaces will be given product 
topology and product o-field. 

Let C(S) (resp. D~ be the set of continuous (resp. measurable) bounded real- 
valued functions on S. Let ~(S) be the space of probability measures on S, equipped 
with the weak topology 

2~ ~ 2 if and only if ~fcl2,--*~fd2 for each f~  C(S). 

Recall ([13], Theorem6.2) that ~(S) is itself a separable metrisable space. For 
measurable A c IR, the map 2 ~ 2(A) from NOR) to IR is measurable. Conversely [9], 
if IRo is a dense subset of IR then the collection of maps 

2-- , , t ( ( -  o% x]); x~lR o (2.1) 

generate the a-field on NOR). 
Let (t2, N, P) be a probability space. A measurable function T: ~?--,S will be 

called a random measure when S = ~(IR); a random vector when S=IR ~176 ; a random 
variable (r.v) when S=IR; and in general a random map. Let 5e(T) denote the 
distribution of T. Write T , - , ~ T  for 5e(T,) ~ 5f(T). Write N(T) for the o-field 
generated by Z Write I(A) for the indicator function of A. For s~S, write 6 s for the 
measure CSs(A)= I (seA). 

Suppose No is a sub-o-field of N. A random map re:f2 ~ N(S) is called a regular 
conditional distribution (r.c.d.) for T given No if, for each measurable A c S, 

7~(co, A) = E(I (T~A) I N0)(co) a.s. (2.2) 

Here we have written re(co, A) for (rc(co))(A), though the author prefers to regard z~ as 
random map rather than as a kernel function. An earlier draft of this paper was full 
of r.c.d.'s, but these have been largely eliminated for the reasons of [7, page viii]. 
However, frequient use is made of the following Lemma, which enables versions of 
conditional expectations to be computed. 

Lemma 1. Let X, Y be random maps into spaces S t ,S  2. Let h:S~ xS2.--+]R be a 
measurable function such that EIh(X, Y)I < co. Let X be No-measurable. Suppose rc is 
a r.c.d, for Y given N o. Then 

.(h(X(co), y) n(co, dy) = E(h(X, Y){No)(co ) a.s. (2.3) 
Sa 

For 2~( IR) ,  let 2 * ~ ( I R  ~) be the product measure 2 x 2 x ..-. For a random 
measure #, let #* be the random map into ~(IR ~) such that #*(co)=#(co)x #(c0) 
X ' ' ' .  

It is often convenient to  regard a sequence {X~} of random variables as a 
random vector X. For example, the assertion ~(X) = 2* is a concise way of saying 
that {Xi} is an independent identically distributed (i.i.d.) sequence of r.v.'s. Because 
this paper concerns subsequences, it is worth introducing special notation for these. 
Write n =  {n~} and m =  {m~} to denote strictly increasing sequences of positive 
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integers (constants, not random variables). Write m c n  to mean that {m~} is a 
subsequence of {hi}. Write X, for the random vector {X,~,X,~ . . . .  }. For 
typographical convenience, we often write X,,~ for X , .  

Definition. A random vector Z = {Zi} is exchangeable if there exists a random 
measure/~ such that 

#* is a r.c.d, for Z given ~(#) .  (2,4) 

Following Kallenberg [10], call # the canonical random measure for Z. For  the 
purposes of this paper, "exchangeable" is merely a name for sequences which are 
mixtures of i.i.d, sequences in the sense of (2.4). However, the reader may recall the 
usual definition: 

• ( Z , ,  ..., Z j) = 5f (Zi,, ..., Z 0 (2.5) 

for each je2g + and each permutation (i> ..., is) of( l ,  ...,j). That  (2.4) implies (2.5) is 
straightforward. The converse, loosely known as de Finetti's theorem, is non-trivial 
(see [10]) but will not be needed, though Proposition 11 uses an extension of some 
of the ideas in its proof. 

Definition. X i -+ X a(L 1, L ~ ) means 

E(X~IB)~E(XIB)  for each BeN,  P(B)>0.  (2.6) 

It is well known ([12], T 23) that for {Xi} to be a(L 1, L ~) relatively sequentially 
compact it is necessary and sufficient that {Xi} be uniformly integrable, and in 
particular it is sufficient that {X~} be/~-bounded for some p > 1. 

Definition. For 2E~(IR), write 

t2Ip=S [xlp2(dx), 0 < p <  co. (2.7) 

Also, write ]211 for the mean and [)~12 for the variance of 2. For  definiteness, write [2]1 
= oo if [2[ 1 = 0% and write 1212 = oo if I,~l 2 = oo. 

3. Statement and Discussion of Results 

Let X =  {X~} be a random vector such that 

{ 2g(Xi) } is tight. (3.1) 

In Section 4 we shall construct a random measure # associated with X. The details 
of the construction need not concern us now, except for the following technical 
result to be proved in Section 5. 

Lemma 2. El#(co)I '<limsup EIXi] ~, 0 < p <  oe. 
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Define c~(co) =1#(co)11, and fl(co)=l#(co)[ 2. Then 

supElXil<oo implies c~(co)<oo a.s., (3.2) 

supElXil2<oo implies fl(~o)<oo a.s. (3.3) 

Our results are stated in this Section in terms of (X, #). When these results are 
applied to specific theorems, e and fi play the role played by the mean and variance 
in the i.i.d, case. 

In our main results the only assumption on X is (3.1), which will not be 
mentioned again. In order to motivate the form of these results, however, consider 
the following special property ~ which X might possess. 

There exists an exchangeable random vector Z such that 

(i) # is the canonical random measure for Z; 
oo 

(ii) ~ IXm, i -Zi l  < oo a.s., for some m. 
1 

Our results will be formulated so as to be almost obvious if X satisfies ~.  An 
example in Section 7 will show that in general ~ is not satisfied. 

It is now necessary to say precisely what we mean by an a.s. limit theorem for 
i.i.d, random variables. Define a statute A to be a measurable subset of ~(IR) x IR ~ 
such that, for each 2 ~ ( N ) ,  

(2,V(co))~A a.s. when &~ (3.4) 

Equivalently, (3.4) can be written as 

)~* {x~IR~176 : (,~, x ) 6 A }  = 1, (3.5) 

or, writing (3.4) out fully, as 

P((2, Vl(CO), V2(co), ...)6A) = 1 (3.6) 

when { Vi} is an i.i.d, sequence with distribution 2. 

Let us give examples of the statutes representing some well-known theorems. 

A I =  (2, x): l i m N  -1 xi--lAI1 u{(2, x):1211-= oo}. 
N ~ o o  

{ } A ; =  (2,x): l imsup xi-Xl;~ll  /(2NloglogN) 1/2 =l;~h 

w {(;~, x): I'~h = ~ } .  

A~= (2, x): N-1Z(~m ~ 2 as N ~ c ~  . 
1 
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Let us also give two examples of statutes representing trivial theorems. 

A~= U {(2, x):x/Esupport(2) for all i>k}. 
k 

A5={ ('~'X): ")~Aa' N~oolim ~ a lx /exis t s} l  

u (2, x)" 2r lim ~ aix i does not exist , 
N~co 1 

where a f t 0  is a fixed sequence of reals and 

{ 2 ~ ( I R ) :  ~176 } A , =  ~ a i V  / converges a.s. for 5P(V)=2* . 
1 

Call A a limit statute if the following additional condition is satisfied. 

If (2,x)~A and ~lx'i-xi[<oo then (2,x')eA. (3.7) 

It is easily seen that this condition is satisfied by the above examples, except for A 4. 

Now suppose # happens to be the canonical random measure for an 
exchangeable vector Z. Then for any statute A, 

(#(co), Z(co))EA a.s. (3.8) 

Because by Lemma 1 and (2.4) 

E(I((#, Z)~A)[#)(co) =#*(co)({x: (#(o~), x) eA}) a.s. 

=1 a.s. by (3.5). 

So (3.8) shows that classical a.s. theorems for i.i.d.r.v.'s extend immediately to 
exchangeable r.v.'s: of course this idea is well known. However, (3.8) provides the 
motivation for our first result, which is immediate if X has property ~3. 

Theorem 3. Let A be any limit statute. Then there exists m such that, for each n ~ m ,  

(#(co), X,(co))eA a.s. (3.9) 

Let us write out in detail one special case. Consider the statute A 1 defined above, 
representing the strong law of large numbers. Suppose {Xi} is such that 
supE]Xi]<oo" then certainly (3.1) holds. Then (3.9) asserts that, on a set of 
probability 1, either t#(co)l I = oo or 

N 

N-1 ~ Xn, i(CO)--+ [ # ( ~ ) l l  �9 
1 

But from (3.2), ~(~o)=]#(~o)t1<oo a.s., and so we have obtained the result of 
Koml6s [11] mentioned earlier, in the following form. 
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Corollary 4. Suppose sup E IXil < co. Then there exists m such that, for each n ~ m, 

N 

N - I ~ X , , i ~ o ~  a.s. (3.10) 
1 

Similarly, applying Theorem 3 to statute A 2 gives the following result of Chatterji 
[-3] and Gaposhkin [8]. 

Corollary 5. Suppose sup E X  { < oe. Then there exists m such that, for each n ~ m, 

l imsup ( ~  X n ' i -  NcO/(2N l~176 a.s. 

Here/3 is as in (3.3). The analogous result for Strassen's functional law of the iterated 
logarithm (Berkes [1]) follows equally easily from Theorem 3. It should be clear 
how to apply Theorem 3 to any a.s. limit theorem, subject only to the technical 
condition (3.7), concerning which we make the following remark. It might seem 
more natural to express the idea of a limit theorem by the weaker condition: the set 
{x: (2, x)eA} is in the tail o--field of IR ~ for each ) ~ ( I R ) .  However, this latter 
condition is satisfied by statute A 4 above, but Theorem 3 fails for A~. For  suppose 
X i = 2- ~ a.s.: then by Lemma 1, #(co) = ~5 0 a.s. and assertion (3.9) fails. Fortunately, 
condition (3.7) seems to be satisfied by the statutes representing most non-trivial 
theorems. 

The paper of Berkes [-1] exemplifies the technique previously used to prove the 
special cases mentioned. Briefly, the idea was to reduce from general X to the case 
where X is a martingale difference sequence (m.d.s.); then to show that the 
particular theorem under consideration has a version for m.d.s.'s; and finally to 
show that an arbitrary m.d.s, has a subsequence satisfying these conditions. This is a 
non-trivial task, and clearly requires more work than the original proof of the 
theorem for i.i.d.r.v.'s. On the other hand, to apply Theorem 3 we need know only 
the statement of the result for i.i.d.r.v.'s. Clearly Theorem 3 cannot be proved by the 
above technique. 

The assertions of(3.8) and Theorem 3 may be informally stated as follows. Given 
any a.s. limit theorem for i.i.d.r.v.'s, there is an analogous theorem satisfied by 
exchangeable sequences and by all sub-subsequences of some subsequence of an 
arbitrarily-dependent sequence ofr.v.'s. The same result for weak limit theorems is 
given in (3.17) and Theorem 6, but in a somewhat less concise manner. 

Let ~o(lR), S, {hk}, ~b be such that 

~o(1R) is a measurable subset of ~ ( ~ ) ;  (3.11) 

S is a separable metrisable space; (3.12) 

hk:No(lR ) x 1R~ ~ S  is continuous, for each k; (3.13) 

~b: ~o(lR) ~ ( S )  is measurable; (3.14) 

if 2C~o(1R ) and ~(V)  =)~* then S(hk(,~, V)) ~ 4~(2). (3.15 a) 
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The last condition conveys the essential idea of a weak limit theorem: examples will 
be given after the statement of Theorem 6. ForfeL~(S) and ~be~(S), write 

(f ,  ~} =[fdr 

Then (3.15 a) is equivalent to: 

~f(hk(2, x)) 2* (dx) ~ ( f, ~(,~)} (3.15 b) 

for each 2e~o(N ) and each f e  C(S). Suppose, as in the discussion before Theorem 3, 
that # happens to be the canonical random measure for an exchangeable random 
vector Z. Standard arguments show the existence of an element E ~(N of ~(S) such 
that 

( f  E~(#)} = E ( f  ~(/~)) for each feL~(S). (3.16) 

We assert that, provided #(e))eNo(lR ) a.s., 

Sr ~ E ~ ( # ) .  (3.17) 

To prove this, consider f e  C(S). By (2.4) and Lemma 1, 

E (f(hk (~, Z))I #)(co) = [.f(hk(,u(co), x)) ~*(co, d x) a.s. 

~ ( f ,  qS(#((o))} a.s. by (3.15b) 

and so, using (3.16), 

Ef(h k (#, Z)) ~ ( f  E q~(#)}. 

This establishes (3.17). In order to extend this to subsequences we will make use of 
the following, somewhat arbitrary, technical condition. 

There exist constants {Ck,~} and a metric d generating the topology on S such 
that 

oo 

t X !  . d(hk(x), hk(X ))__< ~ % i lxi -- i I, (3.18) 
1 

O<Ck, i <= 1 (3.19) 

lira % ~ = 0 for each i. (3.20) 
k - ~ o o  

In fact these conditions can be weakened, their purpose only being to ensure that, 
for large k, hk(X ) does not depend much on the first few coordinates of x. The 
following result is easy if X happens to satisfy ~3. 

Theorem 6. Suppose that (3.11)-(3.15) and (3.18)-(3.20) hold. Suppose also that 
/~(co)e~o(]R) a.s. Then there exists m such that, Jor each n c m ,  

5r X,)) ~ E~(#). (3.21.) 
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Theorem 6 has been formulated so as to be applicable to Donsker's theorem 
(see [2] for background). Let 

~o0R)={2:  t21z<oo and 1211=0}; 

S=D[0 ,  1] with the Skorokhod J~ topology; 
[kt] 

hk(2,x ) be the function taking the value k - 1 / z ~  xl at t; 
i 

�9 (2) = ~(I212- W), where W is a random map into D [0, 1] distributed as Wiener 
measure. 

Applying Theorem 6 gives the following result (recall that/3(09)= I#(co)12). 

Corollary 7. Suppose sup EX~ < co, and X i ~ Oa(L 1, L~176 Then there exists an m such 
that, for each n c m, 

[kt] 

k -~/2 ~ X , , i ~ P ' W  
1 

where W is taken independent of ft. 

This perhaps requires a few words of proof. Conditions (3.11)-(3.14) are 
straightforward, and (3.15) is Donsker's theorem. To verify (3.18)-(3.20), note that 
the J~ metric may be taken smaller then the uniform metric d o which satisfies 

k 

do(hk(2 , x), hk(2 , x')) < k -  i/2 ~ ix i _ x,i" 
1 

To verify that #(co)eNo(N) a.s., it is necessary to show that ~(co) = 0 and/?(co) < oe a.s. 
The latter follows from (3.3): for the former, observe that X i -~ X ~  a(L 1, L ~176 implies 
X~o=c~ a.s., by (3.11). Finally, it follows from (3.16) that E~(#) is indeed the 
distribution of/?.  W. 

Let us remark that the hypothesis Xg ~0~r(L l, L ~176 is no real restriction. The L 2- 
boundedness implies that X'~ =Xq, i - X ~  --*Oa(L 1, L ~ for some q, X~ and so the 
Corollary may be applied to this sequence. The same remark holds for Theorem 9. 

From Corollary 7 we may deduce in the usual manner analogues for sub- 
sequences of the classical convergence in distribution theorems, in particular the 
central limit theorem due to Chatterji [4], Gaposhkin [8]. 

Theorem 6 has also a somewhat different application. 

Corollary 8. Suppose # is the canonical random measure for an exchangeable vector Z. 
Then there exists m such that, for each n ~ m, 

~(#,X,o~,X,,~+a . . . .  ) ~ 5r as i-~ov. (3.22) 

This follows by considering 

~o(~)  = ~ ( ~ ) ;  
S=N| 
h~(2, xl,  x2,...) =(2, xk+ 1, xk+ 2, ""); 

~(2) = 2*; 

d(x, x') = ~ 2-i  min(1, Ix~- x'il). 
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The conditions are easily verified. It is possible to prove Corollary 8 directly. 
Indeed, the slightly weaker result in which # is omitted in (3.22) is known, being 
implicit in Dacunha-Castelle [6], and Kingman has an unpublished proof. Now 
(3.22) expresses a weak sense in which X, has similar properties to Z, but this does 
not seem strong enough to be used to prove the more general results. 

Theorems 3 and 6 show that most "deep" results for i.i.d.r.v.'s have analogues 
for subsequences. Paradoxically, analogues are harder to find for certain rather 
superficial results. Let us give one positive result and mention an open problem. Let 

If ]211 =0,  1212 < 00 and • (V)=2*,  it is well known that 

a z V i converges a.s., for each a e :  z. (3.23) 

Now suppose # is the canonical random measure for the exchangeable vector Z, 
and that c~(co) = 0 and/?(~o) < oe a.s. From (2.4) and Lemma 1, 

azZ i converges a.s., for each a~4. (3.24) 

Let ~ denote the set of permutations a = {a(i)} of 2g +. Then (2.5) extends (3.24) to 

E aa(i)Za(i) converges a.s., for each ae6 ,  a~5 a. (3.25) 

Thus the following result is trivial if X happens to satisfy ~. 

Theorem 9. Suppose sup E X 2 < oo and X i --* 0 a(L 1, L~ Then there exists m such that, 
for each a~:2 and each a E Y ,  

%(0 Xm, ~(i) converges a.s. (3.26) 

This is the assertion of Rhv6sz [14] Theorem 5.1.1, but the proof given there is 
fallacious, as observed in [8]. 

To state the open problem, write 

d = { a ~ l R ~ :  ai-*O}, 

~(V) = {as~r ~ a i V i converges a.s.}. 

For exchangeable Z it is clear that cg(Zn)= cg(Z) for all n. So ifX happens to satisfy 
~3, then there exists m such that 

cg(X~)=~(Xm) for each n ~ m .  (3.27) 

But it is not known whether this holds in general. A partial result can be obtained 
from Theorem 3. Fix a s d ,  and consider the statute A 5 defined earlier. Theorem 3 
asserts: there exists m such that, for each n ~ m, 

P(#(co) E A~, ~ a i X, , i  converges) + P(#(co)d: A, ,  ~ a i Xn, i does not converge) = 1. 

Hence ~a iX~ ,  i converges a.s. if and only if #(co)~A~ a.s. In other words, 

for a prescribed a ~ d ,  there exists m such that 

cg(X~)c~ {a} =cg(Xm)c~ {a} for each n ~ m .  
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Because a countable intersection of statutes is a statute, this extends to a prescribed 
countable subset ag o of ag. However, for the general case it is necessary to consider 
an uncountable number of conditions, and this would require the type of uniformity 
arguments which are to be used in the proof of Theorem 9. 

To end this Section, let us discuss property ~. Since the probabilistic properties 
of a random sequence V = { Vii} depend only on s it is natural to extend ~3 as 
follows. 

Definition. Say random vectors V and Y are asymptotically equivalent if there exist, 
on some probability space, random vectors V', Y' such that 

s ~(Y')=SP(Y),  ~IVz'-Y~'I<ov a.s. (3.28) 

The reader may easily verify: 

asymptotic equivalence is an equivalence relation. (3.29) 

Definition. Say X has property ~ '  if there exist m and an exchangeable Z such that 
X m is asymptotically equivalent to Z. 

We have remarked that all our results, as well as (3.27), are easy for X satisfying 
~3, and that in Section 7 an example of X not satisfying ~3 will be given: replacing 
by ~3' involves no essential change in the arguments. This suggests two questions. Is 
there a simple property which holds for all X and is strong enough to imply the 
results of this paper? Such a property would have to be intermediate between ~3' 
and (3.22). And can one give sufficient conditions on X for ~3' to hold? A partial 
answer to the latter is given below. 

Definition. X i T v (mixing) if P(Xi < x [B) --+ v ( ( -  c~, x]) for each continuity point 
x of v and each measurable B, P(B)> O. 

Theorem 10. Suppose X i ~ v (mixing). Then there exist m and V such that X m is 
asymptotically equivalent to V, and 5r v*. 

It is well known ([5], page 354) that if og~ ~ v and {Xi} has trivial tail a- 
field, then X i ~ v  (mixing). It easily follows from Theorem 10 that if {Xi} has 
purely atomic tail a-field then {X~} satisfies ~3'. The author knows no more general 
sufficient condition. 

Finally, let us say that although the results have been stated and will be proved 
for real-valued r.v.'s, Theorems 3 and 6 hold mutatis mutandis for sequences of 
separable metric space valued maps. But in general there are no interesting results 
to which they may be applied. 

4. Construction of p 

The first step in the proof of the results is the construction of the random measure #. 
This is somewhat similar to a construction in R6v6sz [14] Theorem 6.1.1, but 
Proposition 11 below carries some additional information. 
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We are given a sequence X = {Xi} whose distributions are tight. So no generality 
is lost in Proposition 11 by assuming 

~(Xi)  ~ v. (4.1) 

Let Doo be a countable dense set of continuity points ofv. For  each k, choose a finite 
set Dg = {Xk, iJi=~qk+11 such that 

Xk, i<Xk, i+l <Xk, i_}_ 2 k; i<qk , k ~ Z  +. (4.2) 

P(Xk, i <XnKXk,qk)>=l--2-k; k, n e ~  +. (4.3) 

DkCDk+ 1 for each k. (4.4) 

Do~ = U Dk" (4.5) 
k 

Let Jk be the set of intervals (--oO, Xk, 1], (Xk, a,Xk, 2], ... (Xk, qk,00), and let J 
= U J k "  Define p k : l R ~ D k  by 

k 

pk(x)=inf{xk,  i~Dk:Xk, i>X} for X<=Xk, q~ 
= Xk, q~ + 1 otherwise. (4.6) 

So Pk is constant on each J~Jk" For future reference, note that (4.2) and (4.3) imply 

P(]pk(X,)--X.[> 2 -k )<2-k ;  k, ne7Z + 

and moreover, for any V such that 5r v, 

n(]pk(V)--V]>=2-k)<2--k; k ~  +. 

(4.7) 

(4.8) 

Proposition 11. There exists a subsequence Y =X.  and a random measure t2 such that, 
for each J ~ J ,  

E(I(YkeJ)I~.~_ 1)(o)) --, 12(Co, J) a.s. 

where 

~ - 1  = g ( p l ( Y 1 ) ,  .. . ,  pk_ l(Y~_ 1)). 

Proof For each x~D~,  the random variables {I (X i<x)} are uniformly bounded 
and hence a(L 1, L ~) sequentially compact. Using the diagonal argument, we may 
assume without loss of generality that for each xEDo~, 

I ( X  i ~ X) ~ Gxa(L 1, L ~~ ) (4.9) 

for some random variables G x. Suppose, inductively, that 1 = n I < . . .  < n k_ ~ have 
been defined. It follows from (4.9) that 

E(I(X,  < x)IA) ~ E(G x I A) 
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for each x~D k and each A ~  k_ 1. But D k and ~k-1 are finite, and so n k may be 
chosen sufficiently large that, putting Yk = X,~, 

IE(I(Yk <x)lA)-E(GxlA)[  <2 k (4.10) 

for each x~D k and each A ~  k_ 1 with P(A)>0.  
Having thus constructed n and Y, let ~- = ~/Yk. Consider some fixed xeDoo : 

k 
then xeD k for large k. Then for such k, (4.10) shows that 

IE(I(~<-_x)l gk- 1)(O)) --g(Gxl~k-1)(O))1 ~ 2.k a.s. 

But 

E(Gxl Y k -  1)(co) --' E(Gx I~)(co) a.s. 

So to finish the proof of the Proposition it is necessary only to construct # such that, 
for each x~Do~, 

#(co,(-  oo, x l )=  E(a~lY)(co) a.s. (4.11) 

This is quite straightforward. From (4.9) we see that xl,xzEOoo and x 1 < x ;  
imply that G~,<Gx2 a.s. and E(Gxz-Gxt)=v((xl ,x2]) .  So, as in R6v6sz 1-14] 
Lemma 6.1.4, we can construct versions 2~ of E(GxI~-) such that, for each fixed co, 
the function 2x(co) extends to a distribution function. Let #(co) be the corresponding 
measure. Then (4.11) is satisfied, and the measurability of # (considered as a random 
map into ~(P,.)) follows from (2.1). 

Remarks. Let O k be a r.c.d, for Yk given ~'~k- 1' It follows easily from Proposition 11 
that Ok(co) ~ #(co) a.s. This suggests, informally, that a sample path { Yk(co)} should 
look asymptotically like a typical sample path from an i.i.d, sequence with 
distribution #(co). The main line of argument continues in the next Section by 
constructing an exchangeable sequence Z whose canonical random measure is #, 
and comparing properties of Y and Z. But we now digress to prove Theorem 10. 

Proof of Theorem 10. Let {T/} be an independent sequence of r.v.'s distributed 
uniformly on [0, 1] and defined on some space ((2',~',P'). For  2E~(IR), let F~ -1 
denote the inverse distribution function 

F ; - l ( t ) = i n f { x : 2 ( - o o ,  x ] > t }  for 0 < t < l  

= 0, say, otherwise. (4.12) 

It is well known t h a t S ( F Z l ( T O ) = 2  and 

2j ~ 2 if and only if F ~ I ( T 1 ) ~ F ~ I ( T O  a.s. (4.13) 

The proof of Theorem 10 depends on the following construction, which does not 
seem helpful in the general case. We define inductively random measures 0~ on ~, 
and random measures q5 i and r.v.'s W i on g2'. Let 01 and q51 be identically ~q~ Let 
W 1 = F f  1(T1). Now suppose i>1.  For  each atom G={p l (Y1)=x l ,  ...,Pi_I(Y/_I) 
= xi- 1} of ~ _  1, let G'= {P l(W1) = x 1,..., Pi- l(Wi- 1)= xi- 1} be the corresponding 
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atom of Y/;  1 = ~ - ( p l ( W 1 )  . . . . .  19i- I ( W / -  1)), for coeG and co'eG' let Oi(co ) and q~i(co') 
be the conditional distribution of Y~ given G (or 5o, say, ifP(G) = 0). Let W/= F f  l(Ti)" 

It should be clear from the construction that 

~({p~(W3} ~) = ~({pi(~)} ~); 

~(W~)=~(Y~) for each i; 

~(Oi)  = ~(~bl) for each i. 

(4.14) 

(4.15) 

(4.16) 

Now by (4.7) and the Borel-Cantelli Lemma, Y is asymptotically equivalent to 
{pi(Y~)} in the sense of (3.28); and similarly for W, by (4.15). So it follows from (4.14) 
and (3.29) that 

W is asymptotically equivalent to Y. (4.17) 

Recall that the hypothesis of Theorem 10 is that ~(Xi)  ~ v (mixing). So in (4.9) we 
may take G x to be identically v((-o% x]). And in (4.11) we may take #(co) to be 
identically v. Proposition 11 shows that for each J e J ,  

Oi(co)(J ) = E(I (YieY)  I ~/_ 1)(co) ~ v(J) a.s. 

and so from [2] Theorem 2.2 

Oi(co ) ~ v a.s. (4.18) 

Consider the metric on ~(IR) given by 

d(2, 2')= E rain (1, IFZ 1(T1)-Fz I(T1)I). 

Using (4.13), we see that d generates the weak topology. Now 

E(min(1,lF~ I(Ti)-F~- 1 (Ti)[) [ ~ '_  0(co')= d(~bi(co'), v) a.s. 

because qS~ is ~ ;  1-measurable and T~ is independent o f ~ "  1. So from the definition 
of Wl, 

E min (1, [W~ - F~- 1 (T~)I) = Ed((o~, v) 

= Ed(Oi, v) by (4.16) 

~ 0  by (4.18). 

So W~-F~-I(T~)--,0 in probability, and so for some n, 

F tW,,,-v;-I(T,,~)I<oo. 

Hence W, is asymptotically equivalent to the random vector {F,-I(T,,I)} whose 
distribution is v*. Theorem 10 now follows from (4.17) and (3.29). 

Remark.  The hypothesis of mixing is used only to show that # is essentially constant. 
A modification of the argument shows that if# is essentially eountably-valued, then 
X satisfies ~3'. 
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5. The Fundamental Result 

We may now restrict attention to the sequence Y produced in Proposition 11. 
Recall that y is @-measurable, where 

g -  V g k c  ~(Y).  (5.1) 
k 

Let Z be a random vector such that 

#* is a r.c.d, for Z given ~(Y,#) .  (5.2) 

To be more precise, let Y', #', Z' be the natural maps on the canonical space f2' = IR ~ 
x~(1R) x lR~ by a standard construction (Meyer [12] T. 14) there exists a 

probability measure P' on f2' under which ~(#' ,  Y')= Y(#, Y) and #'* is a r.c.d, for 
Z' given F(Y', #'). But the results to be proved depend only on the distribution 
2 a (#, Y), and so we may suppose f2' to be the original space and drop the prime. 

Note that (5.2) is equivalent, because of (5.1), to 

#* is a r.c.d, for Z given ~(Y)  (5.3) 

and implies that #* is a r.c.d, for Z given Y(#), so that # is the canonical random 
measure for the exchangeable vector Z. 

Lemma 12. Let V be an ~ (Y)-measurable random map into some separable metrisable 
space S. Let js28 +. Then 

(i) (~ Ym)~(~Zj)as m-~oo. 

Moreover, suppose f ~ L ~ (S x IR) is such that, for each s, 

(ii) f (s , ' )  is constant on each J ~ .  

Then Ef(V, Ym)~ E f  (V,Z~) as m~oo .  

Proof Let J ~ J  and let A be a measurable subset of S. We shall prove 

P(V~A, Y,~J) ~ P(V~A, ZjeJ).  (5.4) 

Then case (i) will follow from [2] Theorem2.2, and case (ii) will follow by 
approximating f by simple functions. 

To prove (5.4), define random variables 

Km = E(I( Ym~J) " E(I (V~A) I~m- 1)I~-m-- 1) 

K'm = E(I ( Ym~J) . E(I (V~A) I~)  ['~m- 1) 

K(co) = #(co, J) . E(I (V6A) I o~) (co). 

Because Y,, is ~-measurable,  

P(V~A, #mE J) = EKe. (5.5) 

And 

K,~=E(I(YmEJ)I~m 1)" E(I(V~A)[Ym- 1) 

~ K  a.s. 



Limit Theorems for Subsequences 73 

by Proposition 11 and the martingale limit theorem. As everything is bounded, 

E K  m ~ E K .  (5.6) 

Using the martingale limit theorem again, 

E IKm - K'ml ~ E [E(I(V~A) I~m_ 1) - E( I (VEA)  IY)[  -* O. (5.7) 

Finally, because V is ff(Y)-measurabte, 

E ( I ( Z ) e J ,  I~A) I Y) = E ( t ( Z j s  J) IY).  I (V~A)  

=#(co, J ) . I ( V ~ A )  by (5.3) 

where we omit the a.s. in equalities between conditional expectations. Now because 
/~ is ~-measurable,  

E ( I ( Z j ~ J ,  V~A)]~) = K 

and so 

P ( Z j ~ J ,  V~A) = EK.  (5.8) 

The relations (5.5)-(5.8) imply (5.4) and thence the Lemma. 

Remark. The reader familiar with conditional independence will see that V and Z 
are conditionally independent given ~'. 

In particular, Lemma 12 implies that Ym T Z j, and so from (4.1) 

~ ( Z j )  = v for each j. (5.9) 

Hence for 0 < p < oe 

E [Z 1 [P < lim infElYmlP < lim sup E [XilP. 

But from (5.3) and Lemma 1, 

E(IZllPlY)(o~) = I~(co) l  p a . s .  

in the notation of (2.7): this proves Lemma 2. 
We are almost ready for the fundamental result of the paper, from which the 

results stated in Section 3 will be deduced in the next Section. Consider a function 
g:~(IR)xlR~176 We would like to use the "asymptotic conditional inde- 
pendence" property given by Lemma 12 to show that E g(#, Y,) is close to E g(#, Z) 
whenever n = {nl} increases rapidly. The situation is simplest when g is continuous, 
but the alternative conditions below will sometimes be needed. 

For each x ~ , . %  yelR ~ and 2 ~ ( I R ) :  

g(2, x) < lira inf g(2, x I . . . . .  xl, Yi + 1, Y~ + 2 . . . .  ); (5.10) 

if p~(xi) = p~(y~) for each i then g(2, x) = g(), y), (5.11) 

where p~ is as defined in (4.6). 
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One final definition is needed. Let (2 denote an assertion applicable to 
increasing sequences n of positive integers, and let (2' denote the set ofn for which (2 
is true. If there exists a function L: {finite sequences in 2~ +} ~ Z  + such that 

if ni>L(nl,  . . . ,n i_ i) for each i then n =  {ni}~(2' (5.12) 

then we will say that (2 holds for all n increasing sufficiently rapidly. For example, 
suppose ~--.0 in probability. Then we can say that ~ V,,,i converges a.s. for all n 
increasing sufficiently rapidly, because (5.12) is satisfied by the function 

L(nl, ..., n~_ 1) =min  {m>ni_ 1: P(IVq[ > 2 - i ) < 2  -~ for all q>m}. 

Proposition 13. Let ~o(lR) be a measurable subset of ~(IR) such that 

p(~o) e~o(lR ) a.s. (5.13) 

Let ~o(1R) be equipped with a separable metrisabte topology z such that 

21--T-~'2 implies 2 i ~ 2; (5.14) 

"c and the weak topology generate the same a-field. (5.15) 

Let e > 0  be given. Let g:~o(lR)x]R~--*lR satisfy either (i) g is bounded and 
continuous, or (ii) g is bounded, measurable and satisfies (5.10) and (5.11). Then 

Eg(p, Y,) < Eg(p, Z) + e 

for all n increasing sufficiently rapidly. 
Moreover, suppose {gO} is a uniformly bounded Jamily of measurable functions 

~ o ( ] R ) x l R ~ N ,  each satisfying (5.10), and such that condition (5.25) below is 
satisfied. Then 

sup (Eg~ Y,) - Eg~ Z)) ~ 
0 

for all n increasing sufficiently rapidly. 

Proof. Suppose g satisfies (i) or (ii). Suppose, inductively, that n~ < . . .  < n k have been 
specified (the first step of the induction is similar to the general step). Define 
random variables 

Oo=g(p,z) 
G~ =g(p, Y,, 1 . . . . .  Y,,~, Z~+ 1, Zi+2, :-3, 

For m > n k define 

fi,, = g(P, Y,,,, 1 . . . .  , Y,,k, Ym, Zk+2, Zk+3, "")" 

We shall prove 

Ef lm~EG k as m ~ m .  

l <i<_k. (5.16) 

(5.17) 
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Let us accept (5.17) for the moment. Then there exists a number L(n 1 . . . . .  rig) such 
that, by choosing n k + i to be any integer larger than L(n l , . . . ,  nk) and defining G k§ 1 
as in (5.16), we obtain 

EGk+ 1 <EGg +e2 -k-  1. 

This shows that 

s u p E G k < E G o + e  = Eg(#, Z )+e  

for all n increasing sufficiently rapidly. But from (5.10), which follows from 
continuity in case (i), 

g(#, Y,)_< lim infG k. 

The Proposition follows from Fatou's Lemma. 
It remains to prove (5.17). Define gi: ~o(IR) x IW~IR by 

gi(2, y 1,..., Yi) = ~ g(2, y 1,..., Y~, x~ + 1, x~ + 2,-..) 2* (d x). (5.18) 

Certainly, gi is bounded and measurable. Define 

v=(#, r.,1 . . . . .  r . ,O. 

By (5.1), V is an ~,~(Y)-measurable random map into .~ ) x ]Rk. For a random 
variable W, we may regard (V, W) as a random map into No(IR)x 1R k+l. Using 
Lemma 1, the definitions of the quantities involved, and (5.3), 

E(GklY)=gk(V)  a.s., (5.19) 

E(fi,,I Y)=gk+1(V, Y.,) a.s., (5.20) 

E(g~ + l(V, Zk + OlY)=  S gk+ l(V,t) p(co, dt) a.s. 

=(Sg(/A Y,,1 . . . .  , Y,,k,t, Xk+ 2, Xk+3, ...) #(co, dt)#*(oo, dx) a.s. 

=gk(V) a.s. (5.21) 

Identities (5.19)-(5.21) show that assertion (5.17) is equivalent to the assertion: 

Egg+x(V, Ym)--+Egk+l(l/;Zk+l) as m--+ oo. (5.22) 

We can prove (5.22) from Lemma 12, considering the cases separately. In case (ii) it 
follows from (5.11) that gk+ 1( 2, Y, . . . .  ,Yk+ i), considered as a function of Yk+a for 
fixed (2, Yl , . . . ,  Yk), is constant on each J e J k +  *, and so (5.22) follows from part (ii) of 
Lemma 12. 

In case (i) it is sufficient to show that gk§ 1 is continuous, for then (5.22) follows 
from part (i) of Lemma 12. Now the definition (5.18) of g k + i may be rewritten, in the 
notation of (4.13), as 

gk+a()~,Yl, . . . ,Yk+l)=Eg(2, Yl . . . .  , Y k + l , . F z l ( T k §  (5.23) 
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So if2q ~ , 2 t h e n 2 q ~ ) . a n d s o  

F~ I(T/) --~ Vz- 1 (T/) a.s. 

Hence the continuity of gk+ 1 follows from that of g. 
We have now established the Proposition for g satisfying (i) or (ii). Consider now 

a uniformly bounded family {gO} of functions, each satisfying (5.10). Define g~ as in 
(5.18). If we can establish, in place of (5.22), 

Eg~ Y,,)---,Eg~ Zk+I) uniformly in 0, (5.24) 

then the desired result follows with only minor changes in the above argument. But 
from part (ii) of Lemma 12, 

(V~ Y m ) ~ ( V ~ Z k +  l). 

Hence ([2] page 17) a sufficient condition for (5.24) is that, for each j, the family {g~} 
be uniformly equicontinuous. To be more definite, we take the following condition 
to be a hypothesis of the Proposition. 

There exists a metric d~ generating the topology z on ~o(~) such that 

J 
[g~(~, Yl,  " " ,  Y j) -- gO( At, Yl, " ' ' ,  Yj)l ~ dz(~, "~t) -~ 2 l Yi - Y'i] (5.25) 

1 

for each O, each jE2g +, each 2, 2 '~0(lR) and each y,y'elR ~ 

Remarks. The separability of z is essential. The Proposition is false for d~(2, 2') 
= sup [2(A)-2'(A)[, because Lemma 12 fails for non-separable-valued V. 

Condition (5.25) can certainly be weakened, but the form given will be sufficient 
for proving Theorem 9. However, it always seems necessary to impose some form of 
equicontinuity on {gO} as a function of A, and this is the difficulty in trying to prove 
(3.27). 

6. Proofs of  the Main Results 

In this Section Theorems 3, 6 and 9 will be deduced from Proposition 13 and the 
following form of the diagonal argument. 

Lemma 14. Let {~j,k}, 1 < k < q j, j~7Z + be a collection of properties, each of which 
holds for all n increasing sufficiently rapidly. Then there exists m satisfying the 
following assertion. 

For each n c m  and each j e Z  +, there exists n i such that: 

n j satisfies properties ~ . k ,  1 < k < q j; (6.1 a) 

n i = n{, for all i >j. (6.1 b) 

Proof. Consider first a single such property !~ and the associated function L of 
(5.12). It is easy to construct inductively a function E such that, for all finite 
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sequences I i c I  2 in ~+,  E(I2)>E(I1)>L(II). Now if m is such that 
mi>E(ml, ...,mi-1) for all i, then each n c m  has property ~.  

To prove the Lemma, we lose no generality in assuming qj = 1 for all j, because 
"~k, 1 and ~k, 2... and "~k,qk denotes a property holding for all n increasing 
sufficiently rapidly. By the remark above, we can choose inductively m ~ c m  j 1 
such that each n c m  j has property ~j,1. Then the diagonal sequence mi=ml 
satisfies the assertion of the Lemma. 

Proof of Theorem 3. Let A be any limit statute, and let A' be the complement of A in 
~(1R) x IR ~176 Clearly A' satisfies (3.7). Accept for the moment the following Lemma. 

Lemma 15. Let j~2g + be given. Then P((#,Y~)~A')<2 - j  for all n increasing 
sufficiently rapidly. 

ApplyingLemmal4,  there exists m satisfying the following assertion. 
For each n c m  and each j~Z  +, there exists n j such that: 

P((#, Y,j) cA') < 2- J; (6.2 a) 

hi-- n~, j for all i>j. (6.2b) 

Fix n ~ m .  By (3.7) and (6.2b), 

P((#, Y,)~A') = P((#, Y,j)~A') for each j. 

So by (6.2a), 

P((#, Y,)r = 0. 

This establishes Theorem 3. 

Proof of Lemma15. We cannot apply Proposition 13 directly to the indicator 
function I(A') because (5.11) is not satisfied, so a more devious approach is required. 

Consider the functions Pi defined in (4.6). It follows from (4.7), (4.8) and (5.9) that 

IZi-pi(Zi)l < oo a.s., 

~lY~,i-pi(Y,,i)[<oo a.s. for each n. 

Define p : l R ~ 1 7 6  ~ by 

p(x) =(p~(x0,p2(x~) . . . .  ). 

Then from (3.7), 

P((#,p(Y,))eA')=P((#,Y,)eA') for each n; (6.3) 

P((#, p (Z))eA') = P((#, Z) sA') 

=0  by (3.8). 

Now a probability measure on a metric space is regular, so there exists an open 
set G ~ A' such that 

P ((#, p (Z) ~ G) < 2-  J- 1. (6.4) 



78 D.J. Aldous 

Let H =  {(2,x):()~,p(x))e6}. Then I (H)  satisfies the hypotheses of part (ii) of 
Proposition 13, where we take No(IR )-- NOR) and z the weak topology: condition 
(5.10) follows from the openness of G. So Proposition 13 and (6.4) show that 

P((#,p(Y,))eG)<=2 - j  

for all n increasing sufficiently rapidly. The Lemma now follows from (6.3), since 
A ' ~ G .  

Proof  o f  Theorem 6. Let No(IR), S, {hk}, 4, {Ck, z} be as in the hypotheses (3.11)-(3.15) 
and (3.18)-(3.20) of the Theorem. The latter technical conditions are needed only to 
establish (6.5) below. For {Xk, i} defined in (4.3), let 

tj = Xj, qj -- xj, 1" 

Then 

P(IY~I- Yj > t j )<2-J+ l ;  il, iz,j62g + . 

Using (3.20), choose rj such that 

Ck, i~(j2t j)- l '~ l<- i<j ,  k>r j .  

Suppose m i = n  i for all i>j .  Then from (3.18) and (3.19), 

n(d (hk (# ,Ym) ,hk (# ,Y , ) )> j -1 )<j2 -J+l ;  k~r j .  (6.5) 

Clearly we may assume that {rj} is strictly increasing. 
Now S is separable, and so by [13] Theorem 6.6 there exists a countable subset 

{fq} of C(S) such that 

q5 k ~ ~b in N(S)if  ~fqdd?k~fqdq5 for each q. (6.6) 

We may assume 

f2q =_f2q- 1, q > 1. (6.7) 

Consider the function fq hk: No(N ) x IR~~ IR. This is bounded and continuous, 
because h k is by hypothesis (3.13) continuous with respect to the weak topology (in 
fact any topology satisfying (5.14) and (5.15) will suffice). Apply Proposition 13. 
We deduce that the property ~i, k, q defined by 

E fq hk( #, Y,) -- E fq hk(#, Z) ~j-1 

holds for all n increasing sufficiently rapidly. Now apply Lemma 14, and deduce 
that there exists m satisfying the following assertion. 

For each n ~ m  and each j~2g + there exists n j such that: 

n j satisfies ~j,k,q, l < q < 2 j ,  r j<k<r~+l;  (6.8a) 

n{=n~, i>j.  (6.8b) 
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Fix n c m .  We must  p rove  (3.21), that  is 

2,g(hk(#, Yn)) ~ E~(#) .  

79 

(6.9) 

Letj(k)  denote  the in teger j  such that  rj < k < rj+ 1. Thenj(k)  ~ oo as k ~ oo. And  (6.7) 
and (6.8) imply, writing n k for n j(k), 

]Efqhk(#, Yn~) - gfqhk(#, Z)[ < 1/j(k); 1 < q < 2j(k). (6.10a) 

n~ = ni, i >j(k). (6.10b) 

Recall  that  (3.17) asserted 

A~ Z)) ~ EeI)(#). 

So by (6.6) and (6.10a), 

~(hk(#,Yn~)) ~ E~(#) .  

But by (6.5) and (6.10b), 

d(hk(#, Yn), hk(#, Ynk)) ~ 0 in probabil i ty.  

N o w  (6.9)follows, using [2] Theorem4.1 .  

Proof of  Theorem 9. Recall  that  ~9 v denotes  the set of  pe rmuta t ions  a o f ~  +. Let  :~ 
= {aEIR~176 ~ ai 2 < 1}. It is clearly sufficient to prove  convergence in (3.26) for a ~ : ~  
only. Fo r  x~lR ~, let or(x) denote  the element  (x~(i)) o f ~  ~ and let a .  x denote  (aixl). 
Define Hk: IR~ ~ IR by 

. Ix)=m n (,,sup 
\ q>k  

Then for any r a n d o m  vector  V, 

V i converges a.s. if and  only if EHk(V)~O.  (6.11) 

Write  0 for a generic e lement  (k, a, o-) of  g + x :s x 5:. Define g~ IR~176 IR by 

g~ = Hk(O-(a �9 x)), 

and observe that  

I g ~ - gO(x,)l < gO(x - x'). (6.12) 

Using (6.11), the assert ion of the Theo rem becomes:  there exists m such that 

l im Eg (k . . . .  )(Ym)=0 for each (a, o-)6:; • ~9 ~ (6.13) 
k~oo 

We shall deduce (6.13) f rom Propos i t ion  13. Let  

~o(~) = {,~: I~l ~ < o% 1211 =0}, 
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As in Corollary 7, the hypotheses ensure that #e~o(lR ) a.s. Define a metric on 
~o(lR), using the notation of (4.12), by 

d(2, ~) = (E IFZ 1(T1) - F~- 1 (T1)12)1/2. (6.14) 

It is easy to see that 

dO, i, 2)--+0 if and only if 12~12~1,t12 and 21~2, 

and thence that (5.14) and (5.15) are satisfied. Also, considering {gO} as functions on 
~o(1R) x IR ~ in the obvious manner, it is easy to check (5.10), but (5.25) requires 
some estimation. 

Fix ~b~0(lR), and let 5f(V)=~b*. Consider the quantity 

h= g~ . . . ,  ...). (6.15) 

From the definitions, 

=k q >J) h < E Sup Ear(i)Y,;(i)I(a(i)<j)+ao(i) Va(i) I (a(i) 
q > k  i 

< laiyi]+ Esup  ao(i) V~(i)I(a(i)>j) 
1 q > k  i 

< ,lyzl+2 g a (i) V~(oI(a(i)>j 
1 i = k  

using a well-known inequality ([5] Theorem 9.5.4); hence 

�9 ( ~  \1/2 
h < ~ ,  lyll + 2  I~bl2 a2(i)) . (6.16) 

1 

In particular we deduce from (5.3) and Lemma 1 that 

( ~  \~/2 
Eg~ a~(o) 

where K = E  [#(o)[2 <(E [/~(co)[2)1/2 < Go by Lemma 2; so 

lim Eg (k . . . .  )(Z) = 0  for each (a, o-)e~ x S. (6.17) 
k~oo 

In fact, (6.11) shows that (6.17) is equivalent to (3.25) and so follows quickly from 
(3.23). However, we do need (6.16) in order to verify condition (5.25) of Proposition 
13. Let fi denote the quantity to be estimated in (5.25). Then by (5.23), 

f l  = ] E g ~  . . . ,  y j ,  .Ef t  l(Zj+ 1 ) , . . . ) - E g ~  . . . ,  Y j ,  Fz 7 I(Tj+ 0,--.)] 

<= Eg~ - Yl, ..., Y./- Yj, FZ l(T2+ 1) - F ;  1(T2+ ~),...) (6.18) 

by (6.12). Put 

Then (6.18) is of the form (6.15), and so by (6.16) 



Limit Theorems for Subsequences 81 

J 
,6 ~ ~ lY , -  Y'iI +21q512 

1 

J 
< ~ [Y~-Y'~I + 2d(2, 2') 

1 

by (6.14). Hence (5.25) holds, and Proposition 13 may be applied to {gO}. We deduce 
that the property ~ j  defined by 

Eg~176 for each 0=(k,a,  rr) 

holds for all n increasing sufficiently rapidly. So from (6.17), the property 9tj defined 
by 

l imsupEg  (k . . . .  )(Yn)_-< 1/j for each (a,a)~t~ x 5  p 
k ~ o o  

holds for all n increasing sufficiently rapidly. Applying Lemma 14, there exists m 
satisfying the following assertion. 

For each j, there exists m J such that: 

m j has property ~ ;  (6.19a) 

m~=m i for all i>j.  (6.19b) 

But now m satisfies (6.13), because for each (a, o-) and each j, 

lim sup Eg (k . . . .  )(Ym) =l im sup Eg (k . . . .  )(Y,,A b y  (6.19b) 
k ~ o o  k ~ o  

< 1/j by (6.19a). 

7. A Counter-Example 

Let fii: (0, 1 )~  {0, 1} denote the i'th term of the nonterminating binary expansion 

Let T be distributed uniformly on (0, 1). Define 

X i = (2fl,(T) - 1) T. (7.1) 

Suppose there exist n and an exchangeable Z such that 

Z ]X,, , i-Zi] < oo a.s. (7.2) 

Then 

X , , i - Z i - - * O  a.s. and in L 1, (7.3) 

the latter because [X~I < 1 and {Zi} is identically distributed. Let p be the canonical 
random measure for Z. Applying statute A 3 of Section 3 to (3.8), 

N 

N -  1 ~ 5z ~ #(co ) a.s. 
1 
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a n d  then  it fo l lows  easi ly f r o m  (7.3) t ha t  

N 
N -1 ~ 6 x . , , ~ # ( c o )  a.s. 

1 

F r o m  (7.1) a n d  the  s t r o n g  law of  l a rge  n u m b e r s  for the  ,.i.d. s e q u e n c e  {/~,(T)} we 
d e d u c e  

#(co) = 1/2 fiT(o) + 1/2 6 V(o)) a.s. (7.4) 

N o w  f r o m  (7.1) a n d  (7.4) we  see t h a t  X ,  is a.s. e q u a l  to  s o m e  m e a s u r a b l e  f u n c t i o n  of  

#. A n d / 2  is a r.c.d, for Z ,  g iven  J "  (#). So by  L e m m a  1, 

E (I X , , i  - Z ,  I I #)(co) = 1/2 1X,,,(co)- T(co) l + 1/2 I X,, ,(co) + T(co) l a.s. 

> T(co) a.s., 

and  so E tX,,, ~ -Z , ]>  E T= 1/2, c o n t r a d i c t i n g  (7.3). Th i s  shows  tha t  {Xi} does  n o t  
sat isfy ~ .  
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Note Added in Proof 
A eharaeterisation of sequences satisfying ~ '  has been obtained by Berkes and Rosenthal, "Almost 
exchangeable sequences of random variables", to appear. 


