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Abstract. One of the objects of experiments in which a fluorochrome is added to 
suspensions of cell membranes is to determine the parameters n and K D, the 
capacity of unit mass of protein to bind fluorochrome and the dissociation con- 
stant, respectively. Currently, these are estimated from Scatchard plots, con- 
struction of which first requires that observed fluorescence intensity be con- 
verted to moles of bound fluorochrome. This in turn is said to be possible by 
analysis of the intercept of a plot of reciprocal fluorescence intensity against 
reciprocal protein concentration. However, analysis of the classical mass action 
equilibrium equation, upon which the foregoing procedures are said to be based, 
reveals that the intercept of the double-reciprocal plot always underestimates the 
desired value. The error is formalized and shown to increase without bound with 
fluorochrome concentration. The error in turn leads to erroneous assessment of 
n and KD. Alternative methods for calculating the desired parameters are pro- 
posed, based on direct plots of fluorescence intensity. 

Key words: Binding -- Fluorescent probes - Membrane protein - Scatchard 
plots. 

In the course of studying binding of the fluorescent probe, 8-anilino-1-naphthalene- 
sulfonic acid (ANS), to suspensions of sarcolemmal vesicles we plotted the recipro- 
cal of the intensity of fluorescence of membrane-bound ANS against the reciprocal 
of the protein concentration of the suspension, at constant total ANS concentration. 
The relationship was always linear, with regression coefficients usually > 0.99 and 
never < 0.98. 

The intercept of the best fitted line upon the reciprocal intensity axis is inter- 
preted as the reciprocal of the intensity of membrane-bound ANS at infinite mem- 
brane protein concentration; hence it is held to represent the intensity given by 
binding of all the ANS. This value for intensity of total ANS is then used in con- 
struction of Scatchard plots from data in which, at constant membrane protein 
concentration, the concentration of ANS is varied. 
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It is not clear when this sort of procedure was first used, nor why, but it has been 
used for some time. Scatchard [1] in 1949, in his classic work on attractions of 
proteins for small molecules and ions, in which the equation is given for the plot that 
now bears his name, stated (p. 669): "Recent usage has been to invert the law of 
mass action solved for b to give 

- -  - [ -  - - ,  

n c 

to plot 1/b against 1/c, to draw the best straight line and call its intercept 1/n and its 
slope 1/kn. This has the disadvantage of concealing deviations from ideal laws, and 
of attempting straight lines where there should be curvature". In Scatchard's nota- 
tion, b is the average number of sites occupied by the small molecule or ion per 
molecule of protein, n is the maximum possible number of such sites available ini- 
tially per molecule of protein, kn is the classical association constant for the equi- 
librium, e is not defined explicitly in Scatchard's paper, but it seems to be the con- 
centration of unbound small molecule or ion. b can be considered also as the concen- 
tration of bound small molecule or ion per unit concentration of protein. 

Earlier, Klotz [2], in 1946, used the expression 

1 1 K 1 
- -  . q -  - -  - -  

r n n ( A ) '  

where, in his notation, r is the concentration of bound ion per unit concentration of 
protein, K is the dissociation constant, and (A) is the concentration of unbound ion. 
Klotz's formulation can be rearranged to yield the relationship we use as spring- 
board for analysis in this paper, Equation (4). 

We were struck initially by two features. First, We found in the literature on 
binding of fluorescent probes no occasion in which the investigator exploited the 
information that must reside in the slope of the double-reciprocal plot (as used 
recently, not as described by Scatchard), nor any mention of the interpretation of 
that slope in terms of parameters of the system. Second, we could establish experi- 
mental conditions in which, reproducibly, we obtained intercepts significantly less 
than zero. Such intercepts cannot have the physical meaning attributed to the inter- 
cept, for there cannot be a negative total ANS concentration. 

It seemed advisable to examine more fully the implications of the double-recipro- 
cal plot. 

We begin with recognition of the empirical relation, 

1/1 = ao + al(1/[Pr]), (1) 

where I is intensity of fluorescence of membrane-bound ANS, [Pr] is concentration 
of membrane protein in the suspension, and a0 and al are empirical constants. 

Implications in the literature are that Equation (1) derives from the classical 
equilibrium mass action equation, 

( n -  b) [Pr] [A]r = KDb[Pr] = KD[A]n, (2) 

where [,4] is concentration of ANS or other small molecule or ion, subscripts F and 
B refer to free and bound fractions, respectively, b is the average number of ANS 
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molecules bound per unit mass of membrane protein, n is the total possible number 
of ANS binding sites per unit mass of membrane protein, and K D is an equilibrium 
constant for dissociation. This formulation is equivalent to that given by Klotz [2] in 
1946 in his assessment of multiple binding sites. 

We will make use of the relationship, total [.4] is 

[A] = [A]e + [A]B. (3) 

From Equations (2) and (3) we obtain the double-reciprocal form 

1 1 ( Kv ) ) 1  (4a) 
[A]s --  [A] + [A] (n - -  ~; [Pr] " 

An alternative form of Equation (4a) is 

1 1 [Ko + [A]r ~ 1 (4b) 
[A]s -- [AI + ~ [A] n ) [Pr] " 

In both Equations (4), the modifier o f ( 1 / [ P r ] )  is not constant, but is explicit either in 
the variable ~ or in the variable [.4] r. 

If the experimental range of fluorochrome concentration is constrained so that 
intensity of fluorescence is proportional to concentration, then 

I = rn[A]s ,  (5a) 

where m is constant. For ANS, at least, owing to differences in quantum yield of 
100-fold, fluorescence of [A]p is undetected in the presence of [.4] B. 

When all the fluorochrome in the system is membrane-bound, there is maximum 
intensity of fluorescence, 

Ioo = m [ A ] .  (5b) 

With Equation (5), Equation (4) is recast in terms of measured fluorescence 
intensity, 

1 1 ( / ~ _ ~ )  1 
- + �9 ( 6 )  I I~  [Pr] 

It is the purpose of the double-reciprocal plot to obtain the intercept, purported 
to be 1/loo, as indicated in Equation (6). From this calculated value of Ioo and the 
known value of [A], the coefficient m is determined (Eq. 5b). From this value of m 
and the various values of L the concentration of bound fluorochrome [A]B, is deter- 
mined (Eq. 5a). 

Then, in experiments at constant [Pr] and variable [A], the Scatchard plot is 
drafted; [A]s/([A]F[Pr] ) is plotted against [A]s/[Pr].  The object of the Scatchard plot 
is determination of the parameters n and K o. Rearrangement of Equation (2) gives 
the Scatchard formulation, 

[A ]n/[Pr] n 1 
t A l ~ -  K~ K~ [AlB/[er]. (7) 

The slope is - 1 / K  o, the intercept on the X-axis is n, and the intercept on the Y-axis 
is n / K  o. 
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We now ask how well the double-reciprocal plot 1/1 against 1/[Pr], yields an 
estimate of 1/loo. 

Compare the empirical relationship (1) with Equation (6). It appears off-hand 
that the empirical constant a0 is 1/loo, in keeping with the conventional interpretation 
of the intercept. But it also appears that the empirical constant al is the expression in 
parentheses, modifying 1/[Pr] in Equation (6). But this expression is a function of b 
which is not a constant; b is an implicit function of L Therefore, it cannot be true 
that the empirical intercept a 0 is identical to 1/loo. We will develop an analytical 
expression for the difference between a0 and 1/Ioo, but first we will analyze the 
function 1/I  of Equation (6). 

The first derivative, 

d(1//) nm2KD[Pr] z 
d(1/[Pr]) -- Lo(mn[Pr] -- 1)2 + mKo/2 (8) 

is always greater than zero. As [Pr] grows large without bound, I increases toward 
/co, and the limit of the first derivative is KD/(nLO, which, from Equation (6), is the 
limit expected for b negligible compared to n; that is, for very large protein concen- 
tration with relatively small initial concentration ofA. Thus, the slope of the double- 
reciprocal plot is the conventional K J ( n L o )  only at the intercept on the (1//)-axis, 
and exceeds that value for all other values of 1/[Pr]. As [Pr] grows small 1/[Pr] 
grows large and the slope approaches a constant, (inK D + Io~)/rnnloo. 

The second derivative is 

d(1/[Pr]) 2 
- -  -- 2 N[Pr]I(mn[Pr] -- 1) (Ioo(mn[Pr] -- 1) -- mKlfl)2/D a , (9) 

where N and D are the numerator and the denominator, respectively, on the right- 
hand side of Equation (8). Since all terms are greater than zero, the second derivative 
is always positive. 

Hence, (1/1) is a monotone, non-decreasing function of (1/[Pr]), concave up- 
ward. The best linear fit to such a curve must yield an intercept which falls below the 
true value of (1/1) for zero (1/[Pr]); that is, the estimated intercept is less than 
(I/Io0. 

It is important to note that this error exists even if, empirically, the plot of (I/IoO 
against (I /[Pr]) fits a straight line excellently, with a regression coefficient close to 
unity. Real data cover only a finite range, a small segment of the set of possible 
values of (i/[Pr]).  Excellent linear fits to small segments are possible. If the fit is 
good enough, the slope of that best linear fit must always be greater than (Kz)/IoO, 
since the slope equals (KD/IoO only at infinite [Pr]. Hence, backward extrapolation 
of this line to intersect the (I/1) axis must always yield an intercept less than (1/Io0. 
The closer the values of (I/[Pr]) are to  zero, the better the intercept estimates 
I/Ioo. 

These points are illustrated in Figures 1 and 2, which were constructed as fol- 
lows: 

From the classical equilibrium mass action Equation (2), with the substitution of 
I / m  for [A]B (Eq. 5a) and (Ioo--1)/m for [Air, 

I = Yz(b -- V ~ ,  (1 O) 
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Fig. 1. Double-reciproc~f/ plot, t/I against 1/[Pr], generated from classical equilibrium mass action 
equation with the parameters set as follows: m = 1 fluorescence intensity unit per nmole of fluoro- 
chrome, n = 1 nmole fluorochrome per mg protein, K D = 10 -6 M. Fluorochrome concentration [A] = 
5 x 10 -6 M. Protein concentration varied independently from 1--100 mg/ml. The curve is non-linear in 
its entirety. The true intercept on the 1/I axis is 0.2�9 Linear extrapolation of any portion of the curve 
underestimates the intercept. Linear extrapolation froth data indicated by circles (the uppermost points) 
yields the lowest intercept (bottom arrow), although the regression coefficient is 1 (to 5 decimal places). 
Linear extrapolation from data indicated by triangles (the intermediate points) leads to the intermediate 
intercept. Linear extrapolation of the lowest points (and most curved portion) intercepts at the highest 
arrow, although still below the true intercept. The errors of the intercept are, respectively 325, 72, and 
2% 

Fig. 2. The slope of the double-reciprocal plot against 1/[Pr], generated from the same data used to 
construct Figure I. The slope is not constant, contrary to expectations from its current use. It ap- 
proaches a constant mad maximum at high values of 1/[Pr]. As 1/[Pr] tends to zero the slope tends to 
become a linear function of 1/[Pr]; that is, the second derivative of 1/1 with respect to 1/[Pr] tends to 
become constant, and the slope is maximum at zero 1/[Pr]. See text for analysis 

where  b = mn[Pr] + mKD + too, and R = b 2 -- 4 mnl~[Pr]�9 Values for the pa rame-  
ters m, n, and  KD were set. Then  a value for [.4] = loo/m was selected, and  a family  of  
values  for I was de te rmined  over  a range  of  the i ndependen t  variable,  [Pr]. 

Figure  1 i l lustrates the results applied to a double-reciprocal  plot, 1/I agains t  
1/[Pr], over a 100-fold range  of  values  for [Pr]. Over  the range  f rom 0.6 _< [Pr] < 
1 m l / m g  (the open  circles in Fig. 1), the relat ionship is exquisitely l inear  (regression 
c o e ~ c i e n t s  > 0.999),  b u t  ex t rapola t ion  to the 1/I  axis intercepts  at 0.047 (the lower 
b roken  line in Fig. 1), well below the true value of  1/IoD, 0.2. The error  yields a 325% 
over-es t imate  of/co. [Not  shown in F igure  1 are results of  extension over the range  
1.0 < 1/[Pr] < 10, (0.1 < [Pr] < 1 mg/ml) .  The  l inear re la t ionship con t inued  over 
this range,  with an  in tercept  at 0.0368,  yielding a 440% over-est imate of  I~] .  Over  
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the range from 0.1 _< 1/[Pr] < 0.5 ml/mg (the triangles in Fig. 1), the relationship 
becomes curved, concave upward. The linear regression still gives a reasonably good 
fit (r -- 0.997), but the intercept (the upper broken line in Fig. 1) is still less than the 
true intercept, and Ioo is over-estimated by 72%. Over the range 0.01 < 1/[Pr] < 
0.1 ml/mg (10 < [Pr] < 100 mg/ml) the double-reciprocal plot has greater curva- 
ture. It is in fact headed toward the true intercept, 0.2, but linear regression analysis 
(r = 0.992) still yields a falsely low intercept, although the error is small; Ioo is over- 
estimated by only 2%. 

Figure 1, of course, is only illustrative, although, no matter what values of m, n, 
and K D are selected, for any given value of [A] the double-reciprocal plot will always 
have the shape illustrated in Figure 1 if it is examined over a sufficiently wide range 
of protein concentration. Over a range of values of [Pr] sufficiently small, the dou- 
ble-reciprocal plot will always overestimate 1~. Indeed when [A] is selected suffi- 
ciently large compared to n[Pr] the intercept becomes less than zero, giving an 
absurd answer to the estimate of Ioo. On the other hand, as n[Pr] grows large 
compared to [A], the intercept obtained by linear regression analysis of the double- 
reciprocal plot approaches the true value of 1/loo. 

There may, of course, be practical problems with working with the very large 
concentrations of protein that may be required in any given circumstance to obtain 
an acceptable estimate of 1/loo from the double-reciprocal plot. In a later section of 
this analysis we shall consider alternative approaches. 

Figure 2 is a plot of the slopes of the curve shown in Figure 1 against reciprocal 
protein concentration; that is, it is a plot of the left-hand member of Equation (8) 
against 1/[Pr]. The function rises nearly linearly from some positive value at zero 
1/[Pr], is monotone concave downward, and continues toward a plateau at high 
1/[Pr]. The region of plateau (= constant slope) corresponds to the linear region of 
the double-reciprocal plot. As we shall see later, this constant slope, S~o in Figure 2, 
is always (KD + [A])/(mn[A]). The initial value of the function, So in Figure 2, at 
zero 1/[Pr] is always KJ(mn[A]) .  

Notice that K o can be calculated from the two slopes, So and Soo. The equations 
for the slopes are a pair of simultaneous equations in Ko and mn. Their solution 
yields K D = So[A]/(Soo - So). This is not likely to be a useful method for obtaining 
K D since it requires measurement over two ranges of values of [Pr]. More useful 
solutions are given later. 

Clearly, as conditions become such that So and S~ approach one another, the 
double-reciprocal plot tends to become linear over its entirety. From the equations 
for these two limiting slopes, it is evident that the slope of the double-reciprocal plot 
tends to become constant as K o ~ (K D + [A]), that is, as [A] tends to become negligi- 
ble compared to K D. For example, for K o = 60 x 10 -6 M, at [A] = 10 -6 M the dou- 
ble-reciprocal plot is nearly linear over its entire length. In this condition the inter- 
cept of the linear extrapolation of the double-reciprocal plot is within 2% of the 
correct intercept. 

However, it is emphasized that linearity of the double-reciprocal plot is not of 
itself an adequate test of the validity of the extrapolated intercept because, as illus- 
trated in Figure 1, no matter what the relation between K D and [A], the double- 
reciprocal plot becomes linear as 1/[Pr] grows large. Thus, there is a broad range of 
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values for [Pr] over which the dobule-reciprocal plot is linear, and f rom which linear 
extrapolation to the intercept gives an unbounded error of  estimate of  loo. 

We turn now to obtain an analytic expression for the error of  the estimate of/co 
f rom the intercept of  a double-reciprocal plot. 

Designate the linear function obtained empirically, previously defined in Equa- 
tion (1), by the new function 

Y = a o + al([Pr]), 

to distinguish it f rom the true function (1//), defined in Equation (6). We seek an 
expression for (1/Io0 - a0. 

The sum of  squares of  the differences between Y and (1//), over the range from 
1/[Pr] = ~ to 1/[Pr] =/3, is 

f ( Y -  (1//)) 2 d(1/[Pr]). 

Conventionally, the constants a 0 and al  are determined by differentiating this inte- 
gral with respect to a 0 and, separately, with respect to ax, setting the two derivatives 
each equal to zero, to obtain the minimum sum, and solving the pair of  simultaneous 
linear equations. 

The result is that  

a o = f (c~ , /3 )  2(/3 2 - o~ 2) )- d - 3(/3 3 - ce 3) , ~ d , (11) 

where 

f ( , , / 3 )  = 2(/3 - ce)/(4(fi 2 - ce z) - 3(/3 2 - ct/3 + ce2)). 

I f  the total binding capacity of  the system, n[Pr], is very large compared  to the 
initial concentration of  ANS,  or other bindable molecule, then 1is  always equal to or 
nearly equal to I~ ,  and a 0 = 1/Ioo. For  all other cases a 0 < 1/I~. 

The error of  the estimate is 

= (1/Ioo) - a 0 , (12) 

where a0 is given in Equation (11). 
a 0 is a function of the limits a and/3,  over which i/[Pr] is permitted to range 

experimentally, and a function of  1/1. Since I is an impficit function of m, n, and KD, 
these parameters  must  also influence the magnitude of  the error. The influence of 
these parameters  can be estimated by re-writing Equation (12) explicitly in these 
parameters  and then differentiating partially with respect to each of  them. Of  more 
interest are those variables over which the investigator exerts control, [A] and 
[Pr]. 

It is evident f rom inspection of  Equation (11), for a 0, and from Figure 1 that  the 
closer the observed points are to the i/1 axis the smaller the error of  estimate of  the 
intercept. Hence, the larger [Pr] and the smaller [A], the less the error. The critical 
requirement is that  b/n, the fraction of  association sites actually occupied, must  
remain nearly zero over the range of values of  [Pr] at the given [A]. Achievement of  
this condition m a y  be practical under some circumstances and impractical under 
others. It  m a y  be impractical if such small values of  [.4] are required that  the instru- 
mental  sensing system is unreliable, or if such larges values of  [Pr] are required that  
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Fig. 3. Influence on the Scatchard plot of the 
error of intercept of double-reciprocal plots. 
See text for details. Parameters: m = 30 
intensity units per nmo!e fluorochrome, n = 
50 nmoles per mg protein, KD = 10 -~ M, [Pr] 
= 0.1 mg/ml, 1 < [A] < 64 x 10 -6 M. The 
straight line was constructed by use of the 
correct parameters. The heavy curve was 
constructed by use of the erroneous estimates 
of m, each point (A) calculated on the basis of 
the individual erroneous m derived from a 
double-reciprocal plot at the corresponding 
value of [A]. See text for analysis 

undesirable effects occur, such as extensive light scattering in the case of  pro- 
tein. 

Before we consider alternative possibilities for estimation of  m, n, and Ko, let us 
look into the effects of  the error on the construction of  Scatchard plots. 

Figure 3 illustrates a Scatchard plot constructed on the basis of  the erroneous 
estimates of/0o and of  m. A family of  double-reciprocal plots were constructed from 
simulated data, using Equation (10), I =  ( b -  VR)/2, assumed values for m, n, and 
K D. [.4] was varied from 1 - 6 4  ~M, and the range of  [Pr] was selected to yield a 
reasonably long segment of  the "linear" portion of the double-reciprocal plot (see 
Fig. I). As [,4] increased, the over-estimate of  I ~  and of m grew larger. F rom the 
sets of  data  for I as a function of [Pr] at constant  [A] a single value of [Pr] was 
selected, and I was made a function of  [A] at constant [Pr]. 

The Scatchard plot is, in the notation of this communication,  a plot of  
(I/[er])/(Lo- 1) against (I/m)/[Pr], where (I/m)/[er] = b, and (I/[Pr])/(Ioo- 1) = 
b/[A]e. From the double-reciprocal plot I ~  was taken as 1/ao and m as 1/(ao[A]). In 
Figure 3 the Scatchard plot constructed f rom the estimates of  a0 and the erroneous 
estimate of  m is non-linear, compared  to the linear plot made from correct values for 
Ioo and m. The two plots are headed toward the same intercept on the Y-axis, 
yielding similar estimates of  that  intercept, n/K o. However,  they are headed toward 
quite different intercepts on the X-axis. The correct X-axis intercept is n. In the 
illustration, n is 50. The erroneous data, as plotted, are headed toward an apparent  
intercept at 12, giving estimates of  n and KD that  are only about 25% of the correct 
values. An investigator confronted with data plotted as the curve in Figure 3 might 
be tempted to suggest that something was wrong with the lowest datum, and, ignor- 
ing that  point he might draw a straight line through only the first four points. These 
data do fit a straight line reasonably well. Such a line in this illustration extrapolates 
to intercept the X-axis at a value about  one-third of  the value of the correct inter- 
cept. The slope of that  line is about three times the correct slope. Since the true slope 
equals --1/KD, the false slope gives a value only one third the true value. Not  plotted 
in this illustration are data at higher values of  [A]. For  those values of  [A] the 
estimate of  m was so falsely high that  I did not grow as rapidly as m, and (I/[Pr])/m 
actually decreased as [A] increased. Thus the curve bent back upon itself and moved 
toward the Y-axis as [A] increased. 
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Faced with a cmTee of the kind illustrated in Figure 3 the investigator might be 
tempted to suppose that the Scatchard plot suggests cooperativity, and he might 
construct a Hill plot, the logarithm of the ratio of the bound to free binding sites 
against the logarithm of free figand. If he did, he would find the slope greater than 
unity, and he might be tempted to conclude that there was cooperativity. 

The classical equilibrium mass action Equation (2) can be rearranged to give the 
concentration of bound fluorochrome, [.4] n, as an explicit function of the two inde- 
pendent variables, the ligand [Pr] and the total fluorochrome [A]. The solution is a 
quadratic: 

[,4] s = 1/2{(n[Pr] + K o + [.4]) -- ((n[Pr] + KD + [A]) 2 - 4n[A][Pr] )m} .  (13) 

As was pointed out with reference to Equation (10), the coordinate solution, 
which is the sum of the two terms on the right-hand side of Equation (13), is inad- 
missible, owing to the restriction that [A]B < [A]. 

We also defined the linear relation between fluorescence intensity and concentra- 
tion of bound fluorochrome, 

I = m[A] s . (14) 

Thus the solution for fluorescence intensity, L from Equations (13) and (14) is a 
function of two independent variables, [Pr] and [A ], and of three parameters, m, n, 
and KD. The object of experiment is realization of the parameters n and KD, and this 
cannot be accomplished unless m is also known. 

Customarily we carry out two types of experiments. In one [A] is held constant 
and [Pr] is the sole independent variable. In the other [Pr] is held constant and [A] is 
the sole independent variable. Hence, I becomes a function of either the variable [Pr] 
or the variable [,4]. Plots of these two functions of L computed with the aid of 
Equations (13) and (14) are illustrated for the full range of the appropriate inde- 
pendent variable in Figures 4 and 5. 

In both cases, I rises to a maximum where it remains independent of further 
increases with independent variable. In both cases the limiting value of I is use- 
ful. 

For I as a function of [Pr] at constant [,41, 

limit I([Pr]) =- I ~  = m [ A ] ,  (15) 
[Pr] -~oo 

whence the value of the parameter m becomes known. 
For I as a function of [A] at constant [Pr], 

limit /([.4]) = m n [ P r ] ,  (16) 
[ .4 ]  ~ oo  

whence the value of the product of parameters, rnn, becomes known. 
Combination of the two types of experiments yields the value of the parameter n. 
With m and n'computed, with [.4] and [Pr] set by the investigator, and with 1 

determined by fluorimetry, K D can then be computed from the mass action equation, 
rearranged for explicit solution: 

n[Pr]([A] - [A]n) 
K o  = [,~]. - [ a ] .  ( ] 7 )  
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Fig. 4. Relative fluorescence intensity as a function of protein concentration, [Pr], at constant fluoroch- 
rome concentration. [Pr] is plotted on a logarithmic scale in order to display the full range of values of 
[Pr]. I([Pr]) was generated from the equilibrium mass action equation. Parameters were: m = 1 inten- 
sity unit per nmole fluorochrome, n = 200 nmoles fluorochrome per mg protein, K D = 60 x 10 -6 M. 
The parameters were selected to correspond to those reported for a system of ANS and mitochondrial 
membrane by Azzi et al. [3]. Fluorochrome concentration: [A] = 10 -6 M. Notice the high protein 
concentration required to achieve plateau, at which all fluorochrome is bound. At plateau I([Pr]) = Ioo 
= m[A], from which m is calculated. Note that a plot of/against [Pr], rather than against log [Pr], 
does not have a flexure; the second derivative is always negative 

Fig. 5. Relative fluorescence intensity as a function of fluorochrome concentration at constant protein 
concentration, [Pr] = 0.1 mg/ml. Fluorochrome concentration plotted on a logarithmic scale to display 
the full range of values of [A]. Notice the extraordinarily high values of [A] required to saturate the 
protein. When it is saturated, maximum I[A] = mn[Pr]. Note also that a plot of I against [A] rather 
than against log [A], does not have a flexure 

The computa t ion  can be checked by  carrying it out  at several values of  I([Pr]) and of  
/([.4]). 

It  is worth emphasizing here that  if it is not  possible to car ry  out experiments 
incorporat ing a range of  independent variables that  gives plateau values o f / ,  there is no 
point  in constructing a double-reciprocal  plot, 1~1against 1/[Pr], because the extrapo- 
lated intercept of  the double-reciprocal  plot gives the correct  value of  1/Ioo, hence of  m, 
only when plateau values of  I([Pr]) have been attained. The direct plot o f / a g a i n s t  [Pr] 
has the advantage  of  letting the investigator see whether I has indeed reached its 
maximum,  hence that  the experiments have been conducted over the intended useful 
range. There is no such internal check in the case of  the double-reciprocal  plots. 

Figures 4 and 5 were constructed from data  for n a n d K  D reported by  Azzi  et al. [ 3 ]. In 
this case, a t ta inment  of  plateau values of  I([Pr]) requires a much larger concentrat ion of  
Pr  than it is generally pract ical  to use in such experiments,  and at tainment of  plateau 
values of  I([A]) requires larger concentrat ions of  A than practical.  

There are circumstances in which experiments cannot  be conducted at sufficiently 
high concentrat ions of  [A] or of  [Pr] to obtain the desired maximum values ofI([A ]) and 
I([Pr]). In this case the investigator may  be able to exploit certain propert ies  of  the system 
in which at constant  [A ] useful information is obtained as [Pr] --) 0 and at constant  [Pr] as 
[,4] ~ 0. This useful information lies in the derivatives of  the function I([A]) and 
I([Pr]). 
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Fig. 6A. Relative fluorescence intensity as a function of protein concentration, at low protein concen- 
tration. Same parameters as in Figure 4. Note that, unlike Figure 4, [Pr] is plotted on a linear scale and 
[Pr] is in units ~g/ml, rather than mg/ml. Over this range of [Pr], the function is nearly linear. The best 
linear fit to the whole body of data plotted from 1 _< [Pr] < 30 ~g/ml has a slope not substantially 
different from the true initial slope 

Fig. 6B. Slope of fluorescence intensity, (DI/D[Pr])tA ], at constant [A], against [Pr]. Data are from those 
forI([Pr]) at 10 -6 M [A], illustrated in Figure 4, and for 10 -5 M [A]. Data  are true derivatives [see text 
Equation (18)]. True initial slopes St~ ], indicated by arrows on vertical axis. Note that scale for 
OI/~[Pr] with [.4] = 10 -~ M must be multiplied by 10. Values of initial slopes and [A]'s are inserted into 
Equation (26) and solved for K s. In this case the solution is Ko = 59.8 x 10 -6 M. Actual value o f K  o 
used in construction of Figures 4 and 5 was 60 x 10 -6 M 

32 

In experiments in which [A] is constant and [Pr] is varied, the slope of the plot o f /  
against [Pr] is the partial derivative of/with respect to [Pr], which from Equations (13) 
and (14) is 

~(~r]) mn{ n[Pr]+ Ks-[A] /. (18) 
ta= ~ -  1 -- ((n[Pr] + K s + ~ - - - 4  n[Pr][A]'/2j 

We investigate this slope as we let [Pr] tend to zero. With terms in [Pr] removed from 
Equation (18), 

O(~Pr]) rnn[Al limit -- = S[A ] . (19) 
[Prl --' o [a] Ks + [A] 

Figure 6 illustrates the function (OI/O[Pr])tAl over the full range of [Pr]. The curve 
was computed from Equation (18), using the data forI([Pr]) illustrated in Figure 4. The 
initial slope has the numerical value mn[A]/(K, + [A]). It contains the unknown 
parameters K o and the product mn. 

Designate this initial slope S[a I. 
We now conduct experiments in which [Pr] is constant and [A] is the independent 

variable. The partial derivative of ! with respect to [A l, from Equations (13) and (14) 
is 

( L ) t e d  m {1 - -  [A  l_+ K D - - n [ e r ]  

5 (([A] + K s + n[Pr]) z - 4 n[er]tA]) m J" (20 )  



286 K. Zierler 

>-  
I-- 

Z 
I.d 
I- 
Z 

W 
cj 
Z 
I,fl 

n,- 

o 

J 
u .  

tlJ 
> 

w 
n., 

A 

0.30 

0 . 2 5 -  

0.20 - 

0.15 

0.10 

0.05 

0 
o ~ ~ ~ ~ 1'o 

[A],  FLUOROCHROME CONCN.,IO-BM 

>.- 0.:55 
i -  

T 
w aJ 0 . 3 0  

~ ~ o.as- 
~~ rt-  

g o O.20- 
LL 

O 

,,3~ o.15 
o 

W ~ 
_> ~ 0.10 

J 
U.J rr 0.05" 

~ 0 
o 

B 

. . . .  True IhlYtol s lope  

~ r ~ ]  = ~2 O! mg/ml 

~ 01 mg/ml 

O l m g / m l  

s [ P r ]  = 0.1 m g / r n l  

[A], FLUOROCHROME CONCN.,IO-6M 

Fig. 7A. Relative fluorescence intensity as a function of fluorochrome concentration, at low fluoro- 
chrome concentrations. Same parameters as in Figure 5. The best linear fit to the whole body of data in 
this figure has a slope not substantially different from the true initial slope. 

Fig. 7B. Slope of fluorescence intensity (OI/a[A])ter ], at constant [Pr], against [A]. Data are those for 
I([A]) at 0.01 mg/ml [Pr], illustrated in Figure 5, and at 0.1 mg/ml [Pr]. Data are true derivatives [see 
Equation (20)]. True initial slope indicated by arrows on vertical axis. Note that scale for OI/a[A] with 
[Pr] = 0.1 mg/ml must be multiplied by 10. Values of initial slope, St~rl, together with those for StA], 
[A], and the solution for K~, from Figure 6B, are inserted into Equation (27) and solved for n. In this 
case the solution is n = 199.3 nmoles/mg protein. Actual value of n used in construction of Figures 4 
and 5 was 200 nmoles/mg 

As [A] tends to zero, terms in [A] tend to disappear and 

limit ~(-~) _ _mn[Pr] _ 
[AI -~ o LP,I - -  Ko + n[Pr] = StPrl" ( 2 1 )  

Figure 7 illustrate the function (al/a[A])lprl over the full range of [,4] computed 
from Equation (20) and the data for I([A]) plotted previously in Figure 5. The initial 
slope, which we designate Stp~], has the numerical value of mn[Pr]/(K o + n[Pr]). It 
contains the unknown parameters KD, n, and the product mn. 

Suppose we carry out two experiments at constant [A ] and at varying [Pr]. In one of 
these [A] = [A]I; in the other [A] = [,412 we also carry out two experiments at constant 
[Pr] and at varying [A]. In one [Pr] = [Pr] 6 in the other [Pr] = [Pr] 2. From these w e  
generate four equations of the type of Equations (19) and (21): 

Sial, = mn[A]l/(KD + [A]I) 

Sul2 = mn[A]2/(Ko + [A]z) 

Stp,ll = mn[Pr]l/(KD + [Pr]l) 

Stprl2 = mn[Pr]J(K n + [Pr]2) 

(22) 

(23) 
(24) 

(25) 
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Thus we have four equations for the three unknown parameters,K/) m, and n. There is 
one redundant equation. We require only any three of the four equations for the solution. 
These three may be two at constant [.4 ], Equations (22) and (23) and one at constant [Pr], 
either Equation (24) or (25), or either one at constant [A] and two at constant [Pr]. 

If we use the former set, from Equations (22), (23), and either (24), or (25), 

KD = S~A]2 - StAll (26) 
stAl~/[A]O - (st~lJ[ah) ' 

and 

SIAl1 1 (StA~I St,r,] K o ,  (27) n =  + - -  
Ster I Stprl \[A] 1 [Pr]] 

where absence of subscript notation means that either of the pair of equations may be 
used, as long as the same one is used throughout. 

Note that n and K1) are determined without the need to determine m, contrary to 
methods presently in use. If it is desired to determine m, it is computed from any of 
Equations (22) through (25) by insertion of the numerical values for K o and n. 

If we use the set of equations at two values of[Pr] and one at [A ], from Equations (22), 
(24), and (25), 

[Xl[Pr]l[er]2 StA ] (Sic m - Stp m) 

KD = [A] Sterj ~ Stem ([Prlx - [Pr]z) - [Pr]~[Pr]2 SIAl(Sip,.11 -- Stmz)' (28) 

and 
([Pr]1 S[ Pr l  2 - [Pr] a S[erll) K D 

n = (29) 
[Pr]1[Pr]: (SEer]l -- Slpm) 

AS in the previous case, it is not necessary to solve for m to obtain K D and n, but m can 
be computed if desired by insertion of the values for KD and n into any of Equations (22) 
through (25). 

Fortunately, practical estimates of the initial slopes are simple. Figures 6B and 7B 
show that the slopes decrease nearly linearly and slowly from initial values. Little error is 
made by use of real values near the intercept, which may be obtained by finite differences: 
AI( [Pr] ) /A  [Pr], and AI( [A] ) /A  [A], for smallvalues of [Pr] and [A], respectively. Closer 
estimate is obtained by linear extrapolation of these finite differences to the intercept, 
indicated in Figures 6B and 7B. Note that each of these finite differences underestimates 
the true initial slope, but these errors tend to caned out when one uses two sets of slopes, 
for example, for calculation o f K  o illustrated in Figure 6B. 

Finally, the initial slope can be estimated sufficiently well for practical purposes by 
conventional linear regression analysis of the plot ofI([Pr] ) and of/( [A ]). As illustrated in 
Figures 6A and 7A, these plots are nearly straight lines over a broad range of low 
concentrations of [Pr] and of [A], respectively. The slopes of these regression lines are 
acceptably close to the true initial slopes. 

For those who prefer graphic solutions, the following is a graphic solution of one set of 
simultaneous linear equations. Consider the set of experiments for which Equations (22), 
(23), and (24) apply. Solve Equations (22) and (23) explicitly for K o. 

[All [A]: 
KD = -  [All + - - - - m n ,  K D = -  [.412 + - - m n .  

Sial1 SiAl2 
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Fig. 8. Graphic determinations of parameters K D, n, and mn. The vertical scale has dimensions of ~M 
and is determined by the intercept - [A] .  The slope of the line is L4]/StA r Data from Figure 6 are used 
to construct two such lines. Their intersection is at K D on the vertical axis and m n  on the horizontal 
axis. The second plot, projected toward the reader perpendicular to the plane of the paper, adds a scale 
in dimensions of nmoles/mg protein, determined by the intercept - K J [ P r ] ,  where K D is the value 
yielded by the intersection above. The slope 1/Sterj  is from Figure 7. Intersection of this line with mn 
gives the value of n 

Both K o and mn are unknown. We wish to solve for K o. A plot o f K  D against any 
arbitrary variable, x, yields a straight line, 

~ = - [.4] § ([a]/sr, 0 x ,  

with intercept - [A]  and slope [A]/SIA. Both intercept and slope are known experi- 
mentally. Set one intercept at - [A]I  and from it construct a line with slope [A]JStA]v 
Set the other intercept at-[ .4]2 and from it construct another line with slope [A]JStA]2. 
The intersection of the two lines gives the value of K D. 

Equation (24) solved explicitly for n is 

K ,  1 
FI - -  + - -  m ? l .  

[Pr] Siprl 

Plot n on the vertical axis against the same arbitrary variable x, and on the same 
horizontal scale. The intercept on the n-axis is - K J [ P r ] ,  which is known since K D has 
been determined. From the intercept construct a line with slope l/SEpt]" The intersection 
of this line with the perpendicular from the X-axis at the point at which KD w as determined 
gives the value of n. The perpendicular itself intersects the X-axis at mn. 
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Note that the X-axis may be any arbitrary linear scale, and the K D scale and n scale 
need have no predetermined relation to one another. Correctness of the Ko and n scales is 
achieved by placement of the intercepts. 

The graphic solution is illustrated in Figure 8, based on the data displayed in 
Figures 6 and 7. 

Summary 

Investigators use fluorescent dye to investigate the capacity of a system to associate with 
the fluorochrome and the affinity of  the system for dye. The parameters to be determined 
are n and Kz~. It has been the custom to estimate numerical values of these parameters by 
means of Scatchard plots. To do so, however, it has been necessary first to relate 
fluorescence intensity to concentration of bound dye, through a coefficient designated m 
in this analysis. It has been the custom to estimate m from manipulations of calculations 
from a double-reciprocal plot 1/I against 1/[Pr]. This method is based on an erroneous 
interpretation of the formal expression for the double-reciprocal plot. The error always 
over-estimates m, and the over-estimate can be unbounded. This error leads to curvature 
of the, now erroneous, Scatchard plot and to erroneous estimate of n and K D. 

It is shown that the desired parameters, n andKD, can be obtained from direct plots of 
I against [Pr] at constant concentration of fluorochrome, [A], and o f / aga ins t  [A] at 
constant [Pr]. Two types of limiting conditions are analyzed. In one the behavior o f l i s  
examined as [Pr] and [,4 ] growlarge. In the other the behavior of the slopes of the I -  [Pr] 
and 1 -  [.4] plots are examined as [Pr] and [A] tend toward zero. Both of these extremes 
yield equations from which n and K D can be computed. Hence, the investigator has a 
choice of  conditions, election of which depends upon the experimental system. 
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