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Introduction 

The Boltzmann equation in the kinetic theory of dilute gases is the equation that 
governs the time evolution of the number density u(t,x) given by 

the number of molecules with velocities~dx at time t 
u(t, x) dx  = 

the total number of molecules 

for a gas composed of a very large number of molecules moving in space 
according to the law of classical mechanics and colliding in pairs. Here we 
assume spatial homogeneity. When there is no outside force, the equation is 

Ou 
- - =  ~ (u'u'l-uul)lx-xllrdrdcpdx~, t>_O, x~R 3 
~ t  (0, o~) x (0, 2re) x 113 

where u=u(t,x), ul=u(t, xl) , u'=u(t,x') and u' 1 =u(t,x'l). If we denote by Sx, x~ 
the sphere with center (x+x~)/2 and diameter IX-XaJ, then x' and x' 1 (the 
velocities of molecules after "collision") are always on the sphere S ... .  or more 
precisely S . . . .  =Sx,0~ i according to the conservation laws of momentum and 
energy. We consider a spherical coordinate system with polar axis defined by the 
relative velocity x - x 1 ,  and put 

0 = the  colatitude of x' 

~o = the longitude of x'. 

The Maxwellian gas is the case in which molecules repel each other with a force 
inversely proportional to the fifth power of their distance, and in this case the 
colatitude 0 is determined from the impact parameter r by the following 
relation: 

~r-O P (  dp (0.l) 

1 _ p 2 _  U 
Ix-xll 2 
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where U(p)=const .p -4 and Po is the positive root of 

l _ p 2  4 (p) 
ix_x1[ 2 U =0. 

From the relation (0.1) we have Ix-x1[ r dr = Q~t(O)sin 0 dO with some positive 
decreasing function Q~(O) of 0 such that Q~(O)~ const. 0-s/2 as 0 $ 0. Thus we 
have the following Boltzmann equation of Maxwellian molecules 

0u 
- - =  (u' u' 1 - uu 0 Q(d O),dq) dxt,  (0.2) 
0 t  (0, ~) • (0! 2,/~) x R 3 

where Q(d 0) = Q~(O) sin 0 d 0. For these matters, see Uhlenbeck and Ford [20]. 
The fact that Q(dO) does not involve Ix-xll is a consequence of the inverse 
fifth power force, and in this sense the situation is simplified. But difficulties 

arise from the non-cutoff type Q(dO)= ~ especially when we deal with the 

existence of solution for (0.2), and it seems that rigorous results on the existence 
of (global) solutions to Boltzmann equation have been obtained only for the 
cutoff type ([2, 15, 1]). 

McKean [9] introduced a class of Markov processes associated with certain 
nonlinear parabolic equations. The initial value problem for (0.2) is nearly the 
same as the existence problem of the associated Markov process of the type 
introduced by McKean. In this paper, instead of (0.2) we study its weak version 
by probabilistic methods: 

d 
~ ( u , ~ ) = ( u @ u , K ~ ) ,  ~eC~(R3); (0.3) 

here C~(R 3) is the space of real valued C~176 on R 3 with compact 
support, 

(K~)(x,x~)= ~ {~(x')-~(x)}Q(dO)dcp, (0.4) 
(0, re) x (0, 2r  0 

and (u, ~) denotes the integral of ~ with respect to a probability measure solution u 
=u(t, .) to be sought. 

The main objectives of this paper are the followings: 

(I) The construction of the Markov process associated with (0.3) by solving 
certain stochastic differential equation. 

(II) The trend to the equilibrium for (0.3). 

Chapter I is devoted to the construction of the associated Markov process. A 
part of the present results was summarized in [18]; here we will give full proofs. The 
idea is to use the following stochastic differential equation 

X(t)=X(O)+ ~ a(X(s - ) ,Y(s - ,~) ,O,  qo)g(dsdOd(pd~), (0.5a) 
(O, t l x S  
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or what is the same thing, 

X (t) = X (0) + Y, a (X (s - ), Y(s - ), p (s)); (0.5 b) 
s<=t 

here S =(0, 7 0 x (0, 2re) x (0, 1) and 

(i) {p(t),t>O} is a Poisson point process on S with characteristic measure 
Q (d 0) d (p d c~, and N (ds d 0 d q0 d ~) is the corresponding Poisson random measure 
defined by N ( A ) = ~  ~lA(S,p(s)) 1 for A ~ ( R +  x S), 

(ii) {Y(t, a),t>O} is a right continuous R3-valued stochastic process defined 
on the probability space {(0,1),d~} and is equivalent in law to the solution 
process {X(t), t__> 0}, 

(iii) a(x, xl ,0,  cp )=x ' - x  and a(X(s - ) ,  Y(s-) ,  ~r )=a(X(s - ) ,Y ( s - ,  a), O, (p) 
for a =(0, (p, a)~S. 

Because of the nonlinearity of (0.3), the right hand side of (0.5) involves not 
only the solution X(s) but also its copy Y(s); in this sense the equation (0.5) is 
similar to the one considered by McKean [11] in the diffusion case. It will be 
proved that the equation (0.5) has a solution {X(t)} provided the initial distribu- 
tion has finite expectation, and that the uniqueness in the law sense holds. Also, 
the solutions to (0.5) will give a Markov process associated with (0.3), the precise 
definition of which will be given in w On the other hand, it was proved in [19] 
that path functions of any Markov process associated with (0.3) can be repre- 
sented as solutions to (0.5) after a suitable extension of the basic probability 
space. Thus we shall obtain the existence and the uniqueness of the associated 
Markov process. 

The existence of the associated Markov process implies that of the associated 
nonlinear semigroup. Let {X(t)} be the associated Markov process (solution of 
(0.5)) with initial distribution f satisfying ~ [xlf(dx) < or, and denote by Ttf the 
probability distribution of X(t). Then u(t)= Ttf solves (0.3) and {Tt} becomes a 
nonlinear semigroup. Denote by ~ the space of probability distributions f on 
R 3 satisfying ~]xl2f(dx)<ov. In Chapter II of this paper, we study {T~} on the 
space ~2 by making use of the functional e and the metric p defined on ~2 as 
follows. F o r f l , f 2 ~  2 we put 

e(fa,f2) = inf  ~ [x-ylZF(dxdy) ,  
R 3 x R 3 

P(f~,f2) = el/~l ,f2),  

where the infimum is taken over all probability measures F in R 6 satisfying F(A 
xR3)=f1(A) and F(R 3 •  ) for any AeN(R3). For f ~ 2  satisfying ~lx 
-mlaf(dx)=-3v>O where m is the mean vector o f f ,  we put 

g f ( d x )  = (2~z v)- 3/2 exp { - I x  - rnl2/2 v} dx, 

e ( f )  = e ( f  gr 

It will be seen that p gives a metric in ~2. In the one-dimensional case the 
functional e was introduced in connection with the study of Kac's one-dimen- 

/1 A d e n o t e s  t h e  i n d i c a t o r  f u n c t i o n  o f  A t h r o u g h o u t  
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sional model of Maxwellian molecules by Tanaka [17], and a part of the results 
in [17] (concerning some basic properties of e itself) was then extended to the 
several dimensional case by Murata and Tanaka [12] and to the case of Hilbert 
spaces by Kond6 and Negoro [8]. 

The main results of Chapter II are as follows: 

(A) The nonlinear semigroup {Tt} on ~2 is non-expansive with respect to the 
metric p: 

p(T~fl, TJ2)<=p(fl,f2), t >=O, fl , f2e~2. 

(B) I f  f e ~  2 satisfies ~ Ix-mLZf(dx)=-3 v >0 where m is the mean vector off, then 
e(T~f) decreases to 0 as t T o% and hence in particular Ttf converges to gl as t Toe. 

The (rigorous) entropy arguments in dealing with the trend to equilibrium 
require the existence of initial densities with finite entropy. According to our 
method, though it works only for Maxwellian type, we need less restrictions on 
initial distributions for proving the trend to equilibrium. Also, the result (A) will 
provide a typical example of a semigroup of nonlinear operators which are non- 
expansive with respect to certain metric. 

I wish to thank T. Ueno; I came to be interested in Maxwellian molecules 
through conversations with him. 

Chapter I. Associated Markov Process 

w 1. Definition of Markov Process Associated with (0.3) 

Let us denote by ~ the family of probability distributions f on R 3 satisfying 
(. Ixlf(dx)< ~ ,  and introduce the following 

R 3 

Definition. {e:. (t, x,. ): f e ~ ,  t > 0, xaR 3 } is called a transition function associated 
with (0.3), if the following five conditions are satisfied. 

(e.1) For fixed f E ~ ,  t > 0  and xeR 3, ey(t ,x, ' )  is a probability measure on R 3. 

(e.2) For fixed A eN(R3), es(t ,x,A ) is jointly measurable in ( f , t , x ) ~ l  xR+ 
x R  3, the Borel structure on N1 being the one induced by the usual vague 

topology on ~ .  

(e.3) For each t > 0  and f e ~ ,  there exists a constant c depending only upon t 
and f such that 

S ]yley(s,x, dy)<c(l+lxl),  O<_s<_t, x~R 3. 
R3 

(e.4) If we put 

u(t , -)= S f(dx) ef(t,x, .), 
R3 

(K~(t~{)(x)= 5 (K{)(x, xl)u(t, dXl), 
R3 
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then for ~EC~(R 3) 

t 

<e/(t, x," ), ~) = ~(x) + ~ <el (s, x,. ), Ku(s) ~> ds. 
0 

(e.5) (Kolmogorov-Chapman equation) 

ey(t ,x , . )= ~ ef(s,x, dy)G(s)(t-s,y, .) ,  O<s<_t, 
R 3 

where u is the same as in (e.4). 

(i ) In the cutoff case Q(dO)<oe , solutions to (0.3) can easily be obtained 

from Wild's formula ([21, 10]); a similar formula can also be used to obtain 
ef (t, x,. ) defined for all probability distributions f on R 3. In the non-cutoff case 
with which we are concerned in this paper, the restriction f ~  is imposed in 
the above definition since our present method works only under this restriction. 

To proceed, let ~2 be the space of R3-valued function on R+, and denote by 
Xt(co ) (or X ,  for short) the value co(t) of co(~f2) at t. We put ~ = a { X t : t < o o  } 
and ~t=a{Xs:s<=t}, where a{ } denotes the smallest a-field on g2 that 
makes { } measurable. Now suppose we are given a transition function 
{el (t,x,.)} associated with (0.4). Then there exists a unique family { P f , f ~ }  of 
probability measures on ((2, N) such that for A~.~(R 3) 

Pf(Xo~A } = f(A), 

Pf{Xt~Al~s}=e,(s)( t-s ,  Xs,A), Pf-a.s., O<_s<_t. 

Thus we obtain a (temporally inhomogeneous) Markov process { X t , P f , f e ~ } .  
This is a Markov process which is associated with (0.3). 

In the above we have assumed the existence of {ef(t,x,.)}, but we do not 
know its existence in advance; the analytical proof of the existence seems to be 
difficult. What we are going to do in Chapter I is, as stated in the introduction, 
to employ the method of stochastic differential equations in order to obtain an 
associated Markov process. 

w 2. Preliminaries from Poisson Point Process 

Suppose we are given a complete probability space (f2, o ~, P), a Borel subset S of 
R e and an extra point ~ not belonging to S. An S w{0}-valued process 
{p(t, co),t>O} defined on (~2,Y,,P) is called a point process on S, if i) p(t, co) is 
jointly measurable in (t, co), and ii) the set {t: p(t, co)ES} is countable. 

Given a point process {p(t), t>0}  on S, we put 

N(A)=F, ~(t,p(t)), A~( (O ,  co) • S) 
t 

N~(B)= ~ 1B(p(s)) , B ~ ( S ) ,  t>O; 
O<s<=t 
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N ( ' )  is the associated random measure. Let 2 be a given a-finite Borel measure 
on S. Then, a point process {p(t), t>0}  is called a Poisson point process on S with 
characteristic measure 2, if for any disjoint family {A s .... ,A,} of Borel sets in 
(0, oo)x S such that •(Ak)= ~ d t d 2 <  co (1 < k < n )  we have 

Ak 

r { X ( A k ) = m k ' l - ~  ]{ ~ n} = k=t[~I { e -  z'~{Ak~ (X(Ak)~)rak~mk ! 

for m t, . . . ,m,~N. The following characterization of Poisson point processes is 
well-known. 

Theorem 2.1. Suppose we are given a point process {p(t), t>0}  on S, a a-finite 
Borel measure Z on S and an increasing family {4}  of sub-a-fields of ~ If, for 
each B ~ ( S )  with 2(B)<o% {Nt (B) -Z(B) t , t>O } is an {~t}-martingale, then 
{p(t), t>0}  is a Poisson point process on S with characteristic measure 2. In this 
case, {p(t), t>0}  is said to be {~}-adapted. 

We often deal with integrals of the form 

~, A(s,p(s),co)= ~ A(s,a, co)N(dsda), 
s<=t (0, t lxS 

where {p(t), t>0}  is a given {~}-adapted Poisson point process on S with 
characteristic measure 2 and N(.)  is the associated Poisson random measure. 
When A(t, a, co) is predictable2 satisfying the integrability condition 

E[A(s, ~, co)[ dsX(da) < oo, then 
(0, r] x S 

E{~A(s ,p(s ) ,co)}=E{ ~ A(s,a, co)ds2(da)}, (2.1) 
s<t (O, tl xS 

and if in addition A(s, a, co), r < s < t ,  are g-measurable  in co for some z, then 

E {exp(i~ ~ A(s,p(s),co))[~} 
T<s<_t 

=exp{  ~ (e i~a( . . . . . .  ) - l ) d s 2 ( d a ) } ,  ~cR. (2.2) 
(~,tlxS 

For X( t )=  X(O)+ ~ A (s, p(s), co) and ~ ~ C 1 (R) we have 
s<t 

(X (t)) = ~ (X (0)) + ~ { ~ (X (s - )  + A (s, p (s), co)) - ~ (X (s -))}. (2.3) 
s<t 

The following lemma is also elementary, but we give the proof for complete- 
ness. 

z A real valued function A (t, a, co) on R + x S x f~ is said to be predictable, if it is measurable with 
respect to the predictable a-field; the latter is defined as the smallest a-field on R+ x S x ~ with 
respect to which all real valued functions a(t,a, co) with the following properties (i) and (ii) are 
measurable. 
(i) For each fixed t>  O, a(t, ~r, co) is N(S) |  ~-measurable .  
(ii) For each fixed a and co, a(t, ~r, o~) is left continuous in t. 
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Lemma 2.1. Let A(t, a, co) be real valued and predictable. Let T > 0 and assume 
that there exists A(a, co) such that 

[A(t,(7, co)l<A(cr, co) for 0< t_<  T, 

E {~ A (a, co) 2 (d or)} < oo. (2.4) 
S 

Then, for any e > 0 there exists a partition A of [0, T]  : 

A" O=to <tl  < . . .< t , ,=  T 

such that lA l=max( tk - tk  1 ) < e a n d  

E{  ~ IA(t,a, co)-A(A(t) ,a,  co)ldt2(da)}<e, 
(0, T]xS 

where A (t) is defined by A (0)= 0 and 

A(t)=tk_ 1 for t k _ l < t < t  k ( l < k < n ) .  

Proof For  convenience we redefine A(t, ~, co) for t > T by put t ing A(t, a, co)=0 
there, and then extend it to - oo < t < c~ by put t ing A (t, a, co) = 0 for t < O. Fo r  an 
integer n > 1 we put  

c~,,(t)=k2 -n for k 2 - n < t < ( k + l ) 2  -n ( k = 0 ,  •  . . . .  ). 

Then by (2.4) we have for each t 

1 

lira ~ IA(t + s, a, co)-A(b,( t)  + s, a, co)lds = 0 
n~oO 0 

a lmost  everywhere with respect to 2 | P, and hence 

l im ~ [A(t+s,a, co)-A(b, ( t )+s ,a ,  co)ldsdt2(da)P(dco)=O. 
n ~ c c  (0, 1 ) x R x S x f ~  

Therefore,  there exist se(0, 1) and  n I < n 2 < . - .  such that  

l im ~ IA(t+s,a, co)-A(g),,~(t)+s,a, co)ldt2(da)P(dco)=O, 
k~oo  RxSx~Q 

or equivalently 

lim E{  ~ [A(t,a, co) -A(3nk( t - s )+s ,a ,  co)[dt)c(d~)}=O. 
k~oo  R x S  

But this formula  clearly implies the existence of a par t i t ion A as stated in the 
lemma.  

w 3. Two Lemmas 

We state two lemmas.  The first one is of par t icular  importance.  

3.1. We set 

a(x, x l, 0, cp)= x ' - x ,  
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and as a function of (p we extend it to the periodic function on R with period 2~. 
This function depends upon the choice of the origin ~o=0 in a spherical 
coordinate system on the sphere Sx. ~.  We can easily see that no choices of the 
origin (p=0 imply the smoothness of a(x ,x  l, O, q~) in the variables x and x 1, but 
we can prove that a(x, x~, O, (p) has a sort of Lipschitz continuity which is enough 
for our later developments. 

Lemma 3.1. There exist a constant c and a Borel function qOo(X, x l , y ,  yl)  o n  R 12 

such that 

la(x, x 1 , O, (p) - a(y, y l ,  O, (p + (po(X, x l ,  y, yl))l 

<c{ Ix-y l  + [xl - y l l }  0. 

Proof (i) When x = x 1, we put (p0(x, x, y, Y l )= 0. Since a(x, x, 0, qo)= 0, we have 

la(x, x, O, ~o) - a(y, Yl,  O, (p + ~Oo)1 

= la(y, Yl, O, (P)I <-_IY2Yll 0 

<�89 + Ixl -Yll} 0. 

(ii) When Y=Yl ,  we obtain a similar result with q~o(x, x l , y , y )=O.  

(iii) We assume that x~=x 1 and Y + Y l .  Let I be the straight line which passes 
through the point (X+Xl)/2 and is perpendicular to the plane determined by 
the three points (x + x y 2 ,  x and x*, where 

x * - I x - x l l  Y - Y l  § x + x l  
l y - y l l  2 2 

We denote by p the rotation around l sending x to x*. Also we define the 
transformations z and ~ from R 3 to itself by 

l y - y l l (  x + x l )  x + x a  
~Z=lx_x l l  z -  2 + - - ' 2  

Y+Yl  x + x l  
~z =z-~ 

2 2 

Then we have 

x + x  I Y - Y ~  ~ "~x,=y, 
p x = x * ,  z x * = x , -  2 2 ' 

and ~zp sends the sphere Sx, xl to the sphere Sy, y .  So, if we put 

A(x,  x l ,  O, (p)= a(x, xl ,  0, cp) + x(=x') ,  

z pA (x, x 1, 0, 0) lies on Sy. y l and its longitude is independent of the colatitude 0. 
Therefore, there exists a function qo0(x, xl,  y, Yl) taking values in [0, 2~) such that 

"~zpA(x, x l ,  O, O) =A(y ,  Yl, O, (Po(X, Xl, y, Yl)). 
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We then have the following formula. 

~z p A(x, xl ,  O, (p) -- A (y, Yl, O, q~ + (?o(X, xl,  y, Y l)). 

We now claim that 

Ja(x, x l  , 0, cp)-a(y, Ya, O, cp + q)o(x, xl ,  y, 3q))l 
<(re + ~) {Ix - y l  + IXx -y~l} 0. (3.1) 

To show this, we first notice that 

]a(x, x l, O, ~o) - (p A(x, xl ,  O, cp) - x*)l 

< [a(x, xl ,  O, (P)I x (the rotation angle of p) 

< T l x - x * l  0, (32) 

I(p A(x, xl ,  O, ~o)- x * ) -  ('c p A(x, x~, O, ~o)- zx*)l 

< � 8 9  ]y -  YI[} 0_-<�89 + Ix 1 -Yl} 0, (3.3) 

zpA(x,  xl ,  O, qo)- rx* = ~zpA(x,  x l ,  O, ~o)- ?rx* 

=A(y,  Yl, O, ~o + (Po(X, Xl, y, YI)) - Y  

=a(y, YI, O, qo + po(X, x~, y, Yl)). (3.4) 

From (3.2), (3.3) and (3.4) we then have 

la(x, x~, 0, ~0) - a(y, yl, 0, q~ + ~00(x, x~, y, Y0)[ 

7"C * _ 

< ~ t x - x  l O++{Ix-yl  +Ixt - y i I }  O, 

which combined with the following inequalities proves (3.1): 

Ix-x*l  < t x -y l  + [ y - x , I  + Ix, -x*[  

x + xl ~ " 
< I x - y +  ~ Y+Y12 + 1 IY-Y~I2 

< = l x - y l + l x -  y l + l x l -  y~l. 

3.2. In this paper we often consider stochastic processes having sample paths in 
the following space W: 

W = t h e  space of R3-valued right continuous functions 
on R+ having left limits. 

In W we consider the Skorohod topology. Then it is well known that W is a 
completely metrizable and separable space (see [-7, 14]) and that the topologi- 
cal Borel field ~ w  on W coincides with the usual coordinate a-field. We think 
of the unit interval (0, 1) as a probability space by considering the Lebesgue 
measure (strictly speaking, its restriction to N(0, 1), the a-field of Borel sets in 



76 H. Tanaka 

(0, 1)). A stochastic process defined on this probability space and having sample 
paths in W is called an c~-process for simplicity; similarly a random variable on 
this probability space is called an a-random variable. We sometimes want to 
have c~-processes constructed as in the following way. 

Lemma 3.2. Suppose we are given two processes Xl={Xl(t),t~O } and X 2 
= {X 2 (t), t > 0} defined on a common probability space ((2, ~ P) and having sample 
paths in W Let Y1 ={Y~(t,~), t>0} be an c~-process which is equivalent in law to 
XI .  We assume that there exists an a-random variable ~1 which is independent o f Y  1 
and uniformly distributed on the interval (0, 1). Then we can construct an c~-process 
Y2 = { I12( t, cO, t > 0} in such a way that (i) the joint process (Y1, Y2) is equivalent in 
law to (X1, X2) and (ii) there still exists an c~-random variable which is independent 
of Y2 and uniformly distributed on (0, 1). 

Proof Denote by U the probability measure on W x W induced by the joint 
process (X~,X2) , and by U 1 the one on Winduced by X 1. Since W is a complete 
metric separable space, there exists a transition function P(w, A) of X 2 given X~ 
with the following three properties: 

For each fixed weW,, P(w, .)  is a probability measure on W. (3.5) 

For each fixed A ~ w ,  P( . ,A)  is a Borel function on W (3.6) 

For any A 1 , A 2 ~  w 

U(A~ x A2)= ~ P(w, A2) V,(dw). (3.7) 
A1 

Since any complete metric separable space having the same cardinality as R is 
Borel isomorphic to R (see [14]), there exists a Borel isomorphism q~ from W 
into R. We fix such a �9 and put 

Y(w, c~) = sup {x: P(w, ~b- 1 (( _ o% x])) < c~}, 

Y(w,~)=~-x(y(w,~) ) ,  ~ ( 0 ,  1). 

Then Y (w, ~) is jointly measurable, and for each fixed we W the distribution of 
Y(w,.)  on W is P(w,.).  Taking two (arbitrary) independent c~-random var iab les  
t h and q2 with the uniform distribution on (0, 1), and regarding YI(~)= {Y1 (t, ~), 
t>0} as an element of W; we can define a W-valued c~-random variable Y2 by 
Y2 (c~)=Y(Y1 (~), t/l(r/(c0)). Then the joint process (Y1, Y2) is clearly U-distributed, 
and ~/a (t/(c~)) is a uniformly distributed c~-random variable independent of Y2. 

w 4. Stochastic Differential Equation 

We use the notations introduced in w 3, such as the function a(x,x 1, O, (p), the 
probability space (0, 1) and the space W. In this section the probability space 
(0, 1) is of an auxiliary character, and the basic complete probability space is 
(f2,~..P) which is chosen suitably. Let S=(0,~z) x(0,2~)x(0,1) and 2 be the 
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measure on S defined by d2=Q(dO)dcpdc~, where Q(dO) is a given probability 

measure on (0, ~) satisfying ~ OQ.(dO) < or. 
0 

On a probability space (f2, ~ P) suppose we are given (i) an increasing family 
{~t}ta0 of sub-a-fields of ~,, (ii) an {~t}-adapted Poisson point process 
{p(t),t>0} on S with characteristic measure 2 and (iii) an ~o-measurable R 3- 
valued random variable X. Let N(dsdOd~p d~) be the Poisson random measure 
corresponding to {p(t), t>0}. Then X and {p(t), t>0} (N(dsdOd(oda)) are inde- 
pendent. We now consider the stochastic differential equation 

dX(t) =a(X(t-),  Y(t-) ,  0, (p)dN, X(O) =X, 

whose precise meaning is 

(4.1) 

X(t)=X+ ~ a(X(s-),Y(s-,a),O, cp)N(dsdOd~odcO, a.s., (4.2a) 
(0, t] x S 

or equivalently 

X(t)=X+ ~, a(X(s-), Y(s-),p(s)), a.s., (4.2b) 
s<=t 

where {X(t), t > 0} is to be sought as an {~}-adapted process with sample paths 
in W under the condition that { Y(t, c~), t > 0} is an a-process equivalent in law to 
{X(t),t>O}; the notation a(x, Y,,a) for an RB-valued a-random variable Y is 
defined by 

a(x,Y,,a)=a(x,Y(cO, O,~o) for r = (0, q0, ~.)~S. (4.3) 

In the right hand sides of (4.2a) and (4.2b) we may (and sometimes do) replace 
the left limits X(s - )  and Y(s-)  by X(s) and Y(s), respectively. However, the use 
of the left limits seems to be suited for the intuitive meaning of the motion: a 
particle changes its velocity by the interaction with another similar independent 
particle. 

We use the following notation. For fl,f2 ~ we put 

Pl(fl,f2) =inf S Ix-yIr(dxdy), (4.4) 
FeF R 3 x R 3 

where F = F ( f l , f 2  ) is the class of probability measures F on R 6 satisfying F(A 
xR3)=f l (A)  and F(R a xA)=f2(A ) for any Ae~(R3). Then it is clear that the 

infimum in (4.4) is attained at some F~F(fl,f2 ). Also, it can be proved that p~ 
gives a metric in ~1; in fact the triangle inequality can be proved as follows. 
Given fl,f2,f3~@l, we take FleF(fl,f2) and Fa~F(f2,f3 ) such that 

pl(fl,f2)=yJx-y]Fl(dxdy), pl(f2,f3)=ylx-ylF2(dxdy). 

We can easily construct a probability measure F o n  R 9 satisfying F(A x R 3) 
=FI(A ) and F(R 3 x/I)=Fz(A ) for any d~B(R6), and we have 

D 1 ( f l , f 2 )  AV Pl  ( f 2 - ~ f 3 ) =  ~ I X - -Yl  F(dxdydz)+y ly-z] F (dxdydz) 
>= Y lx-  zlF(dx dydz)>=Pl (fl,f3). 
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The exisfence and uniqueness of the solution to (4.1) are now our objectives. 
We begin with the uniqueness part. Denote by f the probability distribution of 
the initial value X. 

Lemma 4.1. Assume that E{IXI}<~ ,  that is, f ~ l .  Let T be an), positive 
constant, A a partition of the interval [0, T]: 

A : 0 = t o < t I <. . -  < t, = T, (4.5) 

and define a process {X A(t), O<=t < T} by 

x~(o)=x 
XA(t ) =XA(tk)+ ~, a(X~(tk), Yk, p(s)) for tk<t<=tk+ 1 (0_<k_<n-1), (4.6) 

tk < s ~ t  

where Yo .. . . .  Y, 1 are a-random variables defined in each step so that Yk has the 
same probability law as Xzl(tk). Then we have the following assertions. 

(i) The probability law of the process {XA(t), 0 <--_ t <= T} is uniquely determined 
by f (and so does not depend upon the choice of Yo, ..., Y,- 1). 

(ii) Let X ~ be another fro-measurable random variable with probability distri- 
bution f *  in ~1, and define {X ~ (t), 0 <= t <= T} by a rule similar to (4.6) replacing X 
by X* .  Then, enlarging the probability space if necessary, we can construct two 
processes {X(t), O<_t<_T} and {2f(t), O<_t<_T} which are equivalent in law to 
{X~ (t), 0 <_ t <_ T} and {X~ (t), 0 <= t <= T}, respectively, and satisfying 

g l x  ( t ) -  2 (t)] <=e~~ pl ( f , f* )  (4.7) 

with Co=4~c S OQ(dO), where c is the constant appearing in Lemma 3.1. 
0 

Proof. (i) By (2.2) we have 

E {ei~" x~(o] f f  ttk} 

---- exp {i~'X ~(tk) + (t-- tk) S(e i~'aCx~Ctk)' y' 0. ~)_ 1) uk(dY ) Q(dO) d(p} 
s 

tk <t~ tk+ 1, ~eR 3, 

where uk(dy ) is the probability distribution of XA(tk). Then (i) is clear from this 
formula. 

(ii) Enlarging the probability space if necessary, we can assume that there 
exists an f~-distributed random variable 2 such that E IX-J?]  =Pl( f , f~) -  For 
each k (0 < k < n), denote by u k and Uk ~ the probability distributions of X~ (tk) and 
X~ (tk), respectively, and then take ~-random variables Yk_and Yk with distri- 
butions u k and Uk ~, respectively, in such a way that E~IYk--Yk[ = P l  (Uk, U~) holds. 
We now put X ( 0 ) = X  and 2(0)=2, and assume that {X(t)} and {X(t)} are 
defined for O<_t<t k. We first define fi(x, Yk, a) for a=(0,~0,~) by 

~(x, ~ ,  a)=a(x,  ~(~), (p + (Po), 

~Po = ~o0(X (tk), Yk(~), 2 (tk), ~(.)) ,  
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using the function (Po of L e m m a  3.1, and then put  

X( t )=X( tk )+  ~ a(X(tk),Yk, p(s)), 
tk<s<~t 

2(t)=2(ta)+ Z a(2(tk),~,p(s)), 
tk < s < t  

for t k < t < t k + a. By virtue of (2.1) and L e m m a  3.1 we have for t k < t < t k + i 

E Jx (t) - 2 (t)l < E IX (t~) - 2 (tk)l 

+ ci ( t -  t~) {e IX(t~)- 2(t~)l + p, (u~, u~)} 

__< { 1 + 2c I (t - tk) } E [X(tk) -- f((tk)t, (4.8) 

where c 1 = 2 n c  i OQ(dO). N o w  (4.7) follows from (4.8). The p roof  is finished. 
o 

Lemma 4.2. Let T be any positive constant and A a partition of the interval [0, T] 
given by (4.5). Let Yk, O<k <n, be a-random variables with probability distri- 
butions u k in ~t, O<k<n.  Given an fro-measurable random variable X with 
probability distribution f in ~a, we define a process {Xa (t), 0 <_ t <_ T} by 

x~(0)=x 

Xa(t) =XA(tk)+ ~ a(Xa(tk) , Yk,p(s)), tk<t<tk+ 1. (4.9) 
tk<s<=t 

Then we have the following assertions. 

(i) The probability law of {X~(t), O<=t<__ T} is uniquely determined by f and Uk, 
O<k<n. 

(ii) Take another fro-measurable random variable X ~ with probability distribu- 
tion f g  in ~1 and also a-random variables Yk ~, O<_k <n, with probability distri- 
butions u~ in "~1. We define a process {X~ (t), 0 <_ t < T} by a rule similar to (4.9) 
making use of X ~ and Yk ~. Then, enlarging the probability space if necessary, we 
can construct two processes {)((t), O<_t<_T} and {J{*(t), O<<_t<_T} which are 
equivalent in law to the processes {X~(t), O < t < T }  and {Xff(t), 0_< t<T} ,  
respectively, and satisfying 

E F ( ( t )  - f c  ~ (t) l 

__< { 1 + c, (t - tk)} E l 2  (tk) - 2 ~ (tk) l + C 1 ( t  - -  tk) P l (Uk' U~ ) ,  

tk<t<--_tk+ 1 (O=<k<n), (4.10) 

where c I = 2 ~ c  i OQ(dO). In particular, if pl(uk, u~)<e for 0 < k < n ,  then 
0 

E [X( t ) - )~  ~ (t)l <=e~t{p~(ff~)+e}. (4.11) 

The p roof  of this lemma is similar to that of L e m m a  4.1 and so is omitted. 

L e m m a  4.3. Let {X A(t), O<t<_T} be the same as in Lemma 4.1. Then, any finite 
dimensional probability law of {X A(t), O<t<_T} is convergent as [A[~0.  More 
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precisely, /f IN: 0 =s  o <s  1 <--. <s,, = T is another partition of [0, T], then we can 
construct two processes {X(t), 0 < t < T} and {X(t), 0 < t < T} which are equivalent 
in law to {X A (t), 0 <= t < T} and {X D (t), 0 <-t <-T}, respectively, and satisfying 

EIX(t)-X(t)I<c2([A[+[[N]) , O<_t<_T, (4.12) 

where 

} c 2 = 2 ~  o OQ(dO) exp {2re(1 +2c) T! OQ(dO) EIXI. (4.13) 

Proof We may assume that [] is a sub-partition of A without loss of generality. 
First we construct {XA(t), 0--<t--< T} as in (4.6) using auxiliary e-random vari- 
ables u Y~-1, and then put X(t)=XA(t) ,  O<t<--T. Each Yk can be arbitrarily 
chosen under the restriction that it is equivalent in law to X~(tk). Now we 
require, in addition, that each Yk satisfies the following condition: 

There exists an e-random variable which is 

independent of Yk and uniformly distibuted on (0, 1). (4.14) 

The process {J?(t), 0_< t_< T} must be constructed more carefully. We put 

X ( t ) = X +  ~ a(X, Yo,p(s)), O<-t<s a. 
s < t  

Assuming that J~(t) is defined for O<--t<Sk, we define X(t) for sk<t<Sk+ 1 as 
follows. Define k' by t k, = max {t j: tj < Sk}, - and then choose an e-random variable 

so that the joint distribution of (Yk', Yk) coincides with that of (X(tk,),X(Sk)); 
this is possible by virtue of (4.14). Putting 

a(2(sk), ~,  ~)= a(Y:(s~), ~(~), O, ~o + ~Oo), ~ =(0, ~o, ~), 

~o o = ~o o ( x  (t~,), Y~, (~), 2 (s~), ~ (~)), 

we define J?(t) for Sk<t<Sk+ 1 by 

X( t )=X(Sk)+ ~ gZ()~(Sk),~,P(S)). 
Sk <S'<t 

In this way we can construct 2 ( 0  for 0-<t< T, and it is not hard to see that thus 
constructed {2(0, 0 < t < T} is equivalent in law to {Xcz (t), 0 < t < T}. 

We assume that Sk<t<sk+ ~ for a moment. Since 

X( t )=X(sk )+  • a(X(tk,),Yk,,p(s)), 
S k < s ~ t  

using Lemma 3.1 we have 

EIX( t ) -2 ( t ) [  

<=E[X(sk)--X(sk)[+E{ ~ [a(X(tk,), Yk,,~)--~(J~(Sk), ~,~r)lds2(d~)} 
(sk, t] x S 

< E l X ( s k ) -  X(Sk)] +(t--sk)2~C ~ OQ(dO) {EIX(tk, ) --X(Sk) [ +E,[  Yk'- ~l) 
0 

-- E [X (Sk) -- X (Sg)I + Co (t - Sk) E [X (tk, ) -- X (sk)l, (4.15) 
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where Co=4~c ~ OQ(dO). On the other and 
0 

E IX(t)[ = E IX (tk)[ + ( t -  tk) E ~ la(X(tk), Yk, ~)1 ;~(d ~r) 
S 

< E tX (tk)l + (t -- tk) E ~ (IX (tk) - Ykl/2) 02(da) 
S 

~E[X(tk)[+c'(t--tk)E[X(tk)], tk<t<=tk+ 1, 

~z 

where c' = 2 n  ~ OQ(dO), and hence by Gronwall's inequality 
0 

EIX(t)I~EIXI ec't, O ~ t ~ r .  

Therefore 

ElX(sk)-  X(tk,)l ~ c'(s k -  tk, ) E [X(tk,)[ 

<C"(sk--tk,), c"=ElXlc 'e  c'T, 

and hence 

EIX ( t ) -  X (t)I +c"lAI 

__< {E IX(sk) - 2(Sk)l + C" I A I} e c~ 

which implies that 

EIX(t)-2(t)l<c"[Al(e~~ O<_t<_r, 

as was to be proved. 

sk <t<=sk+ l, 

(4.16) 

In what follows, a process {X(t)} is said to be integrable for simplicity, if 
E{ sup [X(s)[}<~ for each t6R+.  

O < _ s ~ t  

Lemma 4.4. Given an ~o-measurable random variable X with E {IX]} < o% we assume 
that there exists an integrable solution {X(t), t>0} of (4.2). Let T be any positive 
constant, A a partition of [0, T] and {X A (t), 0 <= t <= T} a process of Lemma 4.1. Then, 
any finite dimensional probability law of {X~(t), O<_t<_T} converges to the 
corresponding one of {X(t), O<_t<T} as IA[--,0. More precisely, on a suitable 
probability space ((2,~, P) we can construct two processes {J~(t), 0 <_ t <_ T) and 
{J(~(t), O<_t<_T}, which are equivalent in law to {X(t), O<_t<_T} and {X~(t), 
0 <_ t <_ T}, respectively, and satisfying 

EI2(t)-2~(t)l<c21A[, O<_t<_T, (4.17) 

with the constant c 2 given by (4.13). 

Proof Define A (t), 0 < t < T, by 

A(0)=0, A(t)=t  k for tk<t<tk+ ~ (0<k<n) ,  (4.18) 
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and put 

X A (t) = X + ~ a (X  (A (s)), Y(A (s)), p (s)). 
S <=t 

Also, we define {X~(t), 0_<t< T} by 

x~(o)=x, 
X e ( t )  =X~(tk)+ ~ a(Xe(tk) ,  Y(tkl, p(s)) 

~k <s~t 

for t k< t<tk+  1 (0<k<n) ,  (4.19) 

where, in each step, a(X  ~ (tk), Y(tk), a) is defined to be equal to a(X  ~ (tk), Y(t k, cz), a, (p 
+~Oo) for a=(0,  cp, c 0 with q~o=Cpo(X(tg), Y(tk),X*(tg), Y(tk)). Then we have for 
tk<t<=tk+~ 

EIX~(t)-X ~ (t)l 
< E I XA (tk) -- X ~ (tk)[ + c l (t -- tk) E [X(t k) -- X ~ (tk)l 

<{l+c l ( t - - t k ) }E[XA( tk ) - -X*( tk ) [+Cl ( t - - t t )E[X( tg ) - -Xa( tk ) [ ,  (4.20) 

where c 1 is the same as in (4.10). Now, if we put 

e ( A ) = E  S [a(X(t), Y(t), a ) - a ( X ( A ( t ) ) ,  Y(A(t)) ,a)[dt2(da),  
(0, T l x S  

then E I X ( t ) - X ~ ( t ) I  <e(A) for 0-<t< T, and hence (4.20) yields 

E IX ~ (t) - X ~ (t)l _-< e(A)(e cl T_ 1), (4.21) 

E IX (t) - X ~ (t)l =< ~(A) e c~ r. (4.22) 

Since {X ~* (t)} is equivalent in law to {Xff (t)} which is defined by a rule similar to 
(4.19) with q00-0, we can apply Lemma 4.2 to obtain two processes {X(t)} and 
{X~(t)} which are equivalent in law to {XA(t)} and {X#(t)}, respectively, and 
satisfying (4.10). Since u k and u~* are the probability distributions of X (tk) and X (tk), 
the uses of the triangle inequality for p~ and the estimate (4.22) result in 

p,  (uk, u2)  __< E IX (tk) - 2 * (t~)l + E IX ~ (tk) - X (tk)l 

<=ElX (tk)-- 2ff2e (tk)] + z(A)e c~ r. 

Therefore, (4.10) yields 

E 12 (t) - 2 ~ (t)l < { 1 + Co (t - t~)} E [2: (t~) - 2 ~ (t~)l 

+cl ( t - - t k ) e (A)e  c~r, tk<t<=tk+ 1, 

which implies that 

El~( t ) - -2e( t ) [<e(A)e~ir (e~or- -1) ,  O<t<_T. (4.23) 

By virtue of (4.22) and (4.23), on a suitable probability space (~, ~,~ P) we can 
construct two poreesses {)((t), 0 < t = T} and {J~ (t), 0 =< t < T} equivalent in law to 
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{X(t), 0_< t_< T} and {XA(t), 0 <--t ~ T}, respectively, so that they satisfy 

ElX ( t ) -  2 A(t)l < E lX ( t ) -  X~  (t)[ + E l2~ ( t ) -  2 (t)l 

<e(A)e 3c~T, 0 < t < Z  (4.24) 

Now by an application of Lemma 2.1 we can make both e(A) and ]A[ arbitrary small, 
and hence the right hand side of (4.24) tends to 0 as ]A[~ 0 via some subsequence 
{d~}. Combining this fact with Lemma 4.3, especially with the estimate (4.12), we 
can easily prove the assertion of the lemma. The proof is finished. 

Making use of methods similar to those employed in Lemma 4.3 and 4.4, we 
obtain the following lemma in which { Y(t)} is an ~-process given in advance (we do 
not require that it is equivalent in law to the solution process). 

Lemma 4.5. Given an ~o-measurable random variable X with E]X[ < ~ and also an 
integrable ~-process { Y(t)} which is continuous in the mean, we assume that there 
exists an integrable solution {X(t)} of 

x(t) =x+ ~ a(X(s-), Y(s-), p(s)). 
s ~ t  

Let T be any positive constant, A a partition of [0, T] and {X~(t), 0_<t_< T} the 
process obtained by (4.9) with Yk = Y(tk)" Then, any finite dimensional probability law 
o f{X A (t), 0 < t <= T} converges to the corresponding one of{X(t), 0 < t < T} as ]A ] --+ 0. 
More precisely, on a suitable probability space ((2,~,P) we can construct two 
processes {Jr(t), O<t<T}  and {2~(t), O<_t<_T} in such a way that they are 
equivalent in law to {X(t), 0 < t <= T} and {Xa(t), 0 <= t <= T }, respectively, and satisfy 

E]X(t)-XA(t)I<=%IA[+er(A)e ~T, O<t<_T, (4.25) 

where 

c3=~OQ(dO)ex p ~ ( 1 + 2 c ) T  OQ(dO) (EIXI+M), 
0 

M =  sup E~IY(t)], 
0__<t<T 

er(A)= max E~[Y(tk+l)-- Y(tk) [. 
O < k < n  

The following uniqueness theorem follows immediately from Lemma 4.1 and 
4.4. 

Theorem 4.1. The uniqueness in the law sense holds for integrable solutions of(4.1), 
that is, the probability law on W of any integrable solution of (4.1) is uniquely 
determined by its initial distribution f if f ~.~ 1 . More precisely, if {X(t)} and {X ~ (t)} 
are any integrable solutions of (4.1) with initial distributions f and f~(~@l), 
respectively, then on a suitable probability space ((2,~,fi) we can construct two 
processes {)((t)} and {)(~ (t)} in such a way that they are equivalent in law to {X(t)} 
and {X~(t)}, respectively, and satisfy 

E]X( t ) -X*( t ) ]<eC~ ), t>_O. (4.26) 
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Next we deal with the existence theorem concerning (4.1); the precise statement 
of this is given as follows. 

Theorem 4.2. Let f ~ be given. Then, on a suitable probability space {f2, ~, P} with 
an increasing family {J~} of sub-a-fields we can construct an {~}-adapted Poisson 
point process {p(t)} on S with characteristic measure 2 so that (4.1) has an integrable 
solution with initial distribution f 

In order to prove this theorem it is convenient to introduce another stochastic 
differential equation which will turn out to be essentially the same as (4.1). It is 
expressed as 

d X ( t ) = a ( X ( t - ) ,  Y ( t - ) ,  O, cp+q)*)dN, X(0) =X,  (4.1") 

and a solution {X(t)} of this equation should be found as an {~}-adapted process 
with sample paths in Wunder the conditions that { Y(t)} is an a-process equivalent in 
law to {X(t)} and that cp* =(p*(t,a, co) is an {~}-predictable process. Always, (p 
+cp* should be interpreted mod2~z. Now, for cp* appearing in (4.1") we put 

N*(A)= ~ llA(t,O,~o+(o*(t, cqco),cON(dtda), A ~ ( ( 0 ,  oo) x S). 
(0, oo)xS 

Then by Theorem 2.1 {N*(dtda)} is again an {~}-adapted Poisson random 
measure corresponding to 2, and (4.1") is nothing but (4.1) with N replaced by N*. 
Therefore, for the proof of Theorem 4.2 it is enough to prove the following theorem. 

Theorem 4.3. Let {p(t)} be an {~}-adapred Poisson point process on S with 
characteristic measure 2, and {N(dtda)} the associated Poisson random measure. 
Then, for any o~o-measurable RB-valued random variable X with EBXi < 0% there 
exists an integrable solution of (4.1"). 

Proof We prove this by iteration. First we take an or-random variable Y with the 
same distribution as X and also with the property that 

there exists an a-random variable which is independent 

of Y and uniformly distributed on (0.1). (4.27) 

We then define {X 1 (t)} by 

X l ( t ) = X +  ~ a l (Xo(s - ) ,  Yo(s-),p(s)), 
s<_t 

where Xo(s ) - X ,  Yo(s) =- Y, (p* = 0 and a 1 (x, Y, or) = a(x, Y(a), ~o + (p~) ( = a(x, Y, a)) for 
a=(0,  (p,a). Next, assuming that {X k (t)}, 1 < k < n ,  are defined together with 
auxiliary a-processes { Yk(t)} and {Jt}-predictable processes {(p~ (t, ct, co)}, 0 < k < n, 
we choose an a-process { Yn(t)} in such a way that the joint process {(Yn_ l(t), Y.(t))} 
is equivalent in law to {(X,_ ~ (t), X,(t))} and that (4.27) holds with Y replaced by 
{Y,(t)}; this is possible by virtue of Lemma 3.2. Using the function (Po of 
Lemma 3.1, we then put 

~o~* (t, a, co)= ~o~*_ ~(t, a, co) + q~o(X._ l ( t - ) ,  Yo_ ~(t - ) ,x . ( t - ) ,  Y~ (t-)), 
~.  (t, ~, co)), a.+l(X, , ( t -  ), Y.( t--) ,a)=a(X.( t--) ,  Y.(t-,a),O, cp+ * 
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for a=(0,  cp, c~), and define {X,+l(t) } by 

X,+I( t )=X+ ~ a,+l(X,(s-  ), Y,(s-),p(s)). (4.28) 
s<=t 

Thus we obtain a sequence of processes {X,(t)}, n>  1. By Lemma 3.1 we have 

Ia,+l(X,(s-), Y , (s- ) ,a)-a , , (X,- l (s- ) ,  Yn l (s - ) ,a) l  

< c { [ X , ( s - ) - X ,  l ( s - ) l  + IY , ( s - ) -  Y,_ l(s-)l} 0. (4.29) 

and hence 

EIX.+~(t)-X.(t)l 
<=cF~ ~ {rX.(s-)-x._l(s-)l+lYo(s-)-  r._~(s-)lIOas;~(cl~) 

(O, tlxS 

=Co i EIX,(s ) -X,  l(s)I ds. 
0 

Since E IX 1 (t) - XI < Co E IX[ t we have 

ElX.+ l (t)-  X.(t)l < ElXl(Cot)"+ l/(n + 1)! 

and hence 

E{ sup rx.+l(s)-X.(s)l} 
O<s<t  

< E  { y~ la,+ ~ (X~(s- ), Y,(s- ), p(s)) -a , (X ,_  l ( s -  ), Yn-1 (S--), P(S))I} 
s<t  

<=EIXI (Co t)n + 1/(g/-I - 1)!. 

Therefore, X,(t) converges almost surely to some limit X(t) as n --, oo uniformly on 
each finite t-interval, and hence Y,(t) also converges almost surely to some c~-pro- 
cess { Y(t)} which is obviously equivalent in law to {X(t)}. These convergences to- 
gether with the inequality (4.29) imply the almost sure convergence of a, (X,_ ~(t - ) ,  
Y,_ l ( t - ) ,  a) to some {~}-predictable limit a~o(t, a, co). It is then clear that X ( t - )  
+ a~ (t, a, co) lies on the sphere Sx(t_). r(t-) and has the colatitude 0 (almost surely). 
Consequently, there exists an {~}-predictable process (p* =cp*(t, ~,co) such that 
a~(t,a, co)=a(X(t-), Y(t-),O, cp+~o*). Now letting n]'co in (4.28), we see that 
(4.1") is satisfied by the triple (X(t), Y(t), qo*), or equivalently, that {X(t)} is a 
solution of (4.1"). 

As the final task of this section we prove some moment estimates concerning 
solutions of (4.1). 

Theorem 4.4. Let {X(t)} be any integrable solution of (4.1) with initial value X 
satisfying E{]X[ v} < oo for some positive integer v. Then we have 

E{IX(t)I~}~er r~O, (4.30) 
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where c'~=3VvTr i OQ(dO). When v= 1, 2, we have 
0 

E{X( t ) }  =E{X}, t>0,  (4.31) 

E{[X(t)[ 2} = E {IX[2}, t>0.  (4.32) 

Proof. Let {X  A (t), 0 < t < T} be the same as in Lemma 4.1. Then, by Lemma 4.4, in 
order to prove (4.30) it is enough to show 

E{IXA(t)[*}<eC;'E{[X[~}, O<_t<T. (4.33) 

We first notice that E {IX A (t)[ v} is bounded in t~ [0, T]; in fact this follows from the 
fact that the v-th moment of 

[a(XA(rD, Yk, P(S))[, tk<t<=tk+l 
tk <s<=t 

conditioned on the a-field ~ is given by 

j= �9 ... j ~ v l ! . . . v / Z = l  

We next write a k = a (X  ~ (t,), Yk, P(S)), a k = a (X a (tk), Yk, a) and then apply (2.3) to (4.6); 
the result is 

[XA(OI~=IXA(tk)]~+ ~ {[XA(s--)+akI~--IX~(s--)I ~} 
tk <s<=t 

<----IXA(tk)I~+V ~ lak]{]XA(S--)[+]akl} ~-I, tk<t<=tk+ I. 
tk <S<=t 

Therefore, we have for tg < t < t k + 1 

E{]X~(t)[~} <E{[X~(tk)[~}+ vE ~ [fik]{[X~(s)[+[g~g[}~-lds2(da). 
(tk, t] x S 

On the other hand, since lakl { IxAs) l  + lakl} ~- 1 is dominated by 

(0/2) { IX~ (tk)l +[gkl} {IXA (s)l + I Xa (tk)[ +lYk[}'- 1 

< 3 v- 1(0/2) {]X~ (s)] ~ + [XA (tk)l ~ + I ~r},  

we have for t k < t < t k + 

E {IX~(t)l"} 

<=E{]XA(tk)lv}+cv ~ E{lX~(s)l*+lX~(tk)l~+lYkl~}dsd~ 
(tk, t] x (0, 1) 

t 

= {1 +2g,( t - - tk )  } E{IXA(tk)[ ~} +C~ ~ E{[XA(S)[ ~} ds, 
tk 

Cv=3 v-1 v~OQ(dO) .  
0 

Now an application of Gronwall's inequality yields (4.33). 
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When E{[XI 2} < o% we take the expectation in 

IX(t)l 2 = IXl 2 + ~ f i X ( s - ) + a ( X ( s - ) ,  Y(s-), p(s))l 2 - I X ( s - ) l  2} 
s<=t 

to obtain 

E(tX(t)I 2} 

=E{IXl 2} + j" E{IX(s) +a(X(s), g(s), a)t 2 -  tX(s)l 2} ds Z(da) 
(0, 7] x S  

= g  {IXI 2 } + j (Ix'] 2 - Ixl  2) Q (dO) d (#u(s, dx)u(s, dx 0 ds 

= E {IXl 2} + j tx'12 + Ixl 12 - I x l  2 - I x l l  2 Q(d O)dcp u(s, dx) u(s, dxl) ds 
2 

=E{IX[2}, 

proving (4.32), where u(s, .) denotes the probability distribution of X(s) and the last 
two inegrals are performed on (0, 7c) x (0, 2~z) x R 3 x R 3 x (0, t]. The equality (4.31) 
can also be proved by a method similar to the above. The proof is finished. 

w 5. The Transition Function and the Markov Process Associated with (0.3) 

in this section we show that the solutions of (4.1) give rise to a Markov process 
which is associated with (0.3) in the sense ofw 1. As in the preceeding section, {p(t)} 
and {N(dtd~r)} stand for an {~t}-adapted Poisson point process on S with 
characteristic measure 2 and the associated Poisson random measure, respectively. 
By virtue of the uniqueness in the law sense for solutions of(4.1) we may write PI for 
the probability distribution on (14/,, Nw) induced by any integrable solution of (4.1) 
with initial d i s t r i b u t i o n f ~  1 . Given f ~  ~1, we take a Pfdistributed c~-process { Y(t)} 
and consider the stochastic differential equation 

dX(t) =a(X(t-),  Y(t-), O, cp)dN, X(O) =x.  (5.1) 

Although this equation has the same expression as (4.1) (except for the initial value), 
it should be noticed that { Y(t)} of (5.1) is a given a-process and so, of course, is not 
required to be equivalent in law to the solution of (5.1). As in the case of (4.1), the 
stochastic differential equation (5.1) is essentially equivalent to 

dX(t)=a(X(t-),Y(t-),O, cp+cp*)dN, X(O)=x, (5.1") 

in which ~0"= q)*(t, e, co) is an {~t}-predictable process. 
The existence of a solution of (5.1") can be proved by a method of iteration 

similar to that used in solving (4.1"), and from Lemma 4.5 and (i) of Lemma 4.2 it 
follows that the probability distribution on (W, ~w) of any integrable solution of 
(5.1) (or (5.1")) is uniquely determined by f and x; we denote this probability 
distribution on (W, Nw) by P~. Also we denote by Xdw ), or X t for short ,  the value 
w(t) of w~W at time t, and put Nt=o{Xs:s<t }, ~ =  v N~(=Nw). Here the 
notation X t should not be confused with X (t); the former is defined on W while the 
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latter is on s Combining (4.11) with (4.26) and then using Lemma 4.5, we have 
the following assertion: For any x, y~R 3 and f, g ~  we can construct two processes 
{2(0} and {X + (t)} on a suitable probability space (f), ~ /3 )  in such a way that their 
probability distributions on the path space W are P~ and PgY respectively, and that 

E[f[(t)-2~(t)l<=eClt{lx-yl+eC~ t>O. 

This assertion immediately implies the following lemma, in which we put 

e~(t ,x ,A)=P~{X, eA}, AeN(R3). (5.2) 

Lemma 5.1. (i) For any B~Nw,  P~(B) is jointly measurable in ( f  x ) ~  x R 3. 

(ii) For each A ~N(R3), e I ( t, x, A) is jointly measurable in ( f  t, x )E~  x R+ x R 3. 

It can be easily verified that the function es (t, x, A) of (5.2) satisfies (e.3) of w 1. 
(e.4) can also be verified by first applying (2.3) to a solution X(t) of (5.1) and then 
taking the expectation. 

Theorem 5.1. For any x ~ R 3 , f ~ ,  A~N(R 3) and O<t o <tl ,  we have 

P~{Xtl~A[Nto } = e,(to)(t 1 - to ,Xto,  A), P~-a.s., (5.3) 

Pi{Xt~6A]Nto}=e,,(to)(tz-to,Xto,A ), Pfa.s., (5.4) 

where U(to)=U(to,. )=P I {Xto~. }. 

Proof. For a fixed t o > 0, if we put 

p~(t)=p(to+t ), t>0,  

go ~={~,Q}, ~=~{p~(s),0<s__<t}, 

then {p ~ (t)} is also an { ~  }-adapted Poisson point process on S with characteristic 
measure 2. Let N * (d t d a) be the associated Poisson random measure. Taking a PI- 
distributed e-process {Y(t)}, we define a P,(to~-distributed ~-process {Y*(t)} by 
Y~ (t)= Y(t o + t), t >0, and then consider the stochastic differential equation 

dX~(t)=a(X~(t-), r~(t-),~o+~o~)dN ~, X~(0)=y, (5.5) 

where ~o*=q)*(t,e, co) is a suitable {~e}-predictable process. By a method of 
iteration similar to that used in solving (4.1"), we can construct a family 
{Xr ~ (t),yeR 3} of integrable solutions of (5.5) together with {o~}-predictable 
processes (p~ = ~Oy ~ (t, c~, co), y s R  3, in such a way that 

(i) X~,(t, co) is N(R 3) • ~e-measurable  for each fixed t>0,  

(ii) ~o~(t, c~, co) is N(R 3) x ~%measurable where ~ is the predictable a-field on 
R+ x (0, 1) x (2 corresponding to { ~ } .  

We now take an integrable solution {X(t)} of (5.1") and put 

xO(t)=~X(t)  for 0 < t < t  0 
[X~(to)(t-to) for t> t  o. 

fop* (t, ~, co) for 0 < t < t  o 
(P~ for t> t  o. 
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Since J~o and {~*} are independent and the process {X~ (t)} is Pu~'~to)-distributed, 
we have for t~ > t  o 

P(X~ 

=p{XLo )(t~-to)cAl~o} 
= P { X ? ( t l - t o ) e A  }, y=X(to),  a.s. 

_ pX(to) _ (5.6) -,(~o) {Xt toeA}-e,(~o)(t- to,X(to),A),  a.s. 

On the other hand, from (i) and (ii) it follows that {X~ is {~}-adapted, (po is 
{~}-predictable and that {X~ is a solution of(5.1*) with p* =q)o. Thus {X~ 
is P~-distributed and hence (5.6) implies (5.3). (5.4) can also be proved in a similar 
manner. The proof is finished. 

From what we have proved, it is now clear that ey(t, x, A) is a transition function 
associated with (0.3) and so the corresponding Markov process {Xt,Py, f~Nl} is 
also associated with (0.3). As stated in the introduction, it was proved in 1-19] that 
this Markov process is the unique one which is associated with (0.3) in the sense of 
w 

Chapter II. Trend to Equilibrium 

w 6. Some Lemmas Concerning p-metric on ~2 

The purpose of this section is to prepare some lemmas concerning e and p, defined 
below, for the use in later sections. We denote by ~ the space of probability 
distributions on R 3 with finite second moments. For f and g in ~2 we put 

(~(F)= j" Ix -y l2F(dxdy) ,  
R 3 x R  3 

e(f,g)= inf ~(F), p(f ,g)= e(l/~,g), 
F~F(f, g) 

where F(f, g) denotes the family of probability distributions F on R 6 satisfying F(A 
• R 3) =f(A) and F(R 3 • A)=g (A) for any A ~H (R 3). Since F(f, g) is compact with 

respect to the topology induced by the usual convergence as probability 
distributions on R 6 and since ~ (F) is continuous on F (f, g), the infimum value e (f, g) 
is attained at some F~F(f ,  g). As in the case of pl of w it can be proved that p gives 
a metric on ~2. However, when we speak of a convergence in ~ ,  we always mean 
that it is the usual one as probability distributions unless p-convergence is explicitly 
stated. 

The proof of the following lemma is elementary and so is omitted. 

Lemma 6.1. (i) The p-convergence implies the usual convergence in aS~ 2. 
(ii) I f  f ,  ~ f in ~@2 and if 

lira sup ~ [x[Zf,(dx)=O, (6.1) 
N ~ o v  n_>_I ] x l > N  

then {f,} is also p-convergent to f. In general, f ~ f  and g ~ g  in ~2 imply 
e(f,g)< lim e(f,,, g,). 

n~Go 
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Let e>0  be fixed. We denote by g~ the Gaussian distribution (2g~;) -3/2 
exp(-lx122e)dx on R 3 and put 

#(~) = {f* 9~ Ife~2 and f({lx] > l/e}) = 0}. 

Then we have the following lemma. 

Lemma 6.2. For each pair ( f  g) e~(~) x #(~), there exists a unique Fy, geF ( f  g) such that 
~(Ff, g)= e(f  g). Moreover, the mapping ~ from ~(~) x ~(~) into the space ~(R 6) of 
probability distributions o n  R 6, defined by ~b(f g) =Fi, g, is continuous. 

Proof First we remark that 

if F e F ( f  g) and ~(F)=e(f,g),  then 

F(A x B)=~ 3~(~)(A)g(dx) for any A, Be~(R  3) with a 
B 

suitable Bore1 mapping ~ from R 3 into itself, (6.2) 

where 6~(~)(') denotes the 6-distribution at O(x). In fact, (6.2) was proved in [12: 
Tlleorem 1] in the special case when g is the Gaussian distribution with the same 
mean vector and variance matrix as those off,  and the proof in [12] is also adapted, 
without any change, to the more general case when g has a strictly positive density 
with respect to the Lebesgue measure. Next, assume that F 1 and F 2 are in F(f, g) and 
satisfy ~(F1)=~(F2)=e(f,g). Then, F=(FI+F2)/2 also belongs to F ( f g )  and 
satisfies ~(F)=  e(f, g), and so by (6.2) 

3~(~)(A) = {3o~(~)(A ) + fio~(~)(A)}/2, g-a.s. 

with some Borel mappings ~, 0~ and 0z. But this formula clearly implies that 0 
= ~ ~ = t)2, g-a.s., and hence F~ = F 2. This proves the first half of the lemma. Finally, 
to prove the second half, we assume thatf ,  ~ f a n d  g, ~ g in ~ ) ,  and write F, = FI, ' g. 
Obviously {F,} is relatively compact in ~(R6). Let F be any limit point of {F,}. Then 
by (ii) of Lemma 6.1 we have 

e(f, g)= lim e(f,, g,)= lim ~(F~)=~(F), 
n ~ a 9  n ~ o o  

which implies that F=Fy, g by the uniqueness part of the lemma, proving the 
continuity of #. Thus the proof of the lemma is finished. 

Lemma 6.3. Let ((2, ~ P) be an arbitrary probability space and suppose that we are 
given sub-families {f~, cocO} and {gO,, tong?} of ~ 2 satisfying the following conditions. 

(i) For each A6N(R3), f~(A) and g~'(A) are ~-measurable in 09. 

(ii) The probability distributions f =  S f~ and g = S g*P(dco) belong to ~2. 
f2 ~2 

Then we have 

e(f  g)< E {e(f ~, g~)}. (6.3) 
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Proof. For each e > 0 and fe~2  let f~ stand for the probability distribution f .g~,  
where * denotes convolution and 

f ( A )  = f ( A  ~ {Ix] __< l/g}) +f({]x] > 1/~}) ao(A), A ~ ( R 3 ) .  

Then we have f~--+f as e$0, lim sup ~ ]x[Zf~(dx)=O, and hence e(s  
N~av 0 < e < l  {x{>N 

e(f, g) as e $ 0 for any f, ge~2 by (ii) of Lemma 6.1. Next, denote by F~O, the unique 
probability distribution on R 6 such that F~O,eF(f[, g~) and ~(FJ )=  e(s  ~ g~). Since 
each mapping in 

co el2 --+ (fo,, go,) e ~2 • ~a 2 _~ (f~, g~) e ~ )  x ~ ) - +  F~o, e~a (R 6) 

is measurable (the last mapping is continuous and hence Borel measurable 
according to the preceeding lemma), F~o, is also measurable in co. Therefore ~(Fj ~) -- 
e(f2 ~, g~') is J~-measurable in o0, and it follows that 

lim E {e (f~, g~')} = E {e (fo,, gO,)}, (6.4) 
e$0 

because the integrand e(J[,g~') is dominated by 2j'lxlZfO,(dx)+2~]xt2gO,(dx) 
which is P-integrable by the assumption (ii) of the lemma. On the other hand, F~ 
= S F~ ~ P(dco) clearly belongs to F(f~, g~) and hence we have 

g? 

e(L,g~)<~(FO= S e(F~o,)P(dco)=E {e(f2,g~ }. 
f2 

Now letting e+0 in the above and then noting (6.4), we obtain (6.3). 
To state the last lemma of this section, let us denote by C .... ~ the circle with 

center x (e R3), of radius r and lying on a plane which is perpendicular to a unit 
vector I. Also we denote by U,,r,~ the uniform distribution on C .... z; this can be 
regarded as a probability distribution on R 3 and so U,~,~,~e~2. 

Lemma 6.4. For an)' x, y e R  3, r , s>O and unit vectors I and m, we have 

e(Ux,r.l,  U} . . . . .  ) ~ Ix - y l  2 + r  2 -} -s2  - l ' s  {1 + 1(1. m)I }. 

Proof. In proving the lemma, without loss of generality we may assume that x = 0, l 
=(0,0, 1) and m= (0 , - s i n T ,  cosT) with 0<~<7r/2. Let f2=[0,2~z), P be the 
Lebesgue measure in [0, 2~) multiplied by 1/2~ and put 

X(co)=(r cosco, r sin co, 0), 

Y(co)=y+(scosco,  ssinco cosy, ssinco sinT), coEO. 

Then X and Y are random variables that are uniformly distributed on C . . . .  i and 
Cy ..... respectively. Therefore, 

e(Ux,r, ,, U s, . . . .  ) < E { t X -  Y]2} = 2 ~  2= ]X(co)- Y(co)]2 dco. 
0 
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By elementary calculations we see that the last term is equal to 

lylZ +rZ +s 2 - rs (1  +cosy), 

completing the proof. 

H. Tanaka 

w 7. Non-expansive Property of the Associated Nonlinear Semigroup 
with Respect to the Metric p 

Let X=  {Xt, P f , f ~ }  be the Markov process associated with (0.3). We associate 
with each t > 0 and f E ~  the probability distribution Ttf on R 3 defined by 

(TJ)(A) =PI{Xt~A},  A~N(R3). 

Then, the Markovian property of X implies the semigroup property of {Tt}, that is, 

Tt+sf=T~T J ,  t,s>O, f ~ .  

Since f e ~  implies T~fsN 2 by Theorem 4.4, { T~} is also a nonlinear semigroup on N2. 
The purpose of this section is to prove that T t is non-expansive with respect to the 
metric p on ~ .  

First we prepare a lemma of an approximation type. Namely, we prove that the 
Markov process associated with (0.3) can be approximated in an appropriate sense 
by the one associated with 

d 
~ ( u , ~ ) = f u |  ~6C~(R 3) (7.1) 

for small e > 0, where K~ ~ is defined by (0.4) with the replacement of (2 (d 0) by 
Q~(dO)-ll(~,~)(O)Q(dO). As in w we take an {~}-adapted Poisson random 
measure {N(dtda)} corresponding to the measure ,k Then the Markov process 
associated with (7.1) can be obtained by the family of solutions of 

d X (t) = a~ (X (t - ), Y(t - ), O, cp) d N, (7.2) 

where a~(x,x 1,0, cp)=ll(~,~)(O)a(x, x l ,  O,(p) and {Y(t)} is an a-process which is 
required to be equivalent in law to the {~}-adapted solution {X(t)} as in the case of 
(4.1). We denote by Tt(~)f the probability distribution of the solution, at time t, of 
(7.2) with initial distribution f ~ .  

The proof of the following lemma is slightly complicated, but it can be done in a 
manner similar to that of Lemma 4.1 and so is omitted. 

Lemma 7.1. Let T be an 3, positive number, A a partition of the interval [0, T] given by 
(4.5) and define a process { X ~ (t), 0 < t <= T} by (4.6). Also for a given e6(O, ~z) define a 
process {X~(t), O < t < T }  by 

x~(o) = x  

X~(t) =X~A(tk)-t - ~ a~(X~(tk) , Yk',p(s)) for tk<t<tk+ 1 (0=<k<n), 
tk<s<=t 
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where Y~ . . . .  , Yd- t are a-random variables defined in each step so that Yk ~ has the same 
probability law as X](tk). Then, if  g{ lx ]  2} < o% we can construct two processes 
{ X  ~ (t), 0 < t <= T} and {2~A (t), 0 <_ t <_ T} in such a way that they are equivalent in law 
to {X  a (t), 0 <_ t <- T} and {X~ (t), 0 < t <- T} respectively and satisfy 

E {])(a (t) - - ) (~ (t)l 2} < const ~ OQ(dO). 
0 

Here, const depends on T but neither on e nor on A. 

The following approx ima t ion  l e m m a  is an immedia te  consequence of the above  
and L e m m a  4.4 

L e m m a  7.2. (i) Let  T be a positive number, ee(O, re) and f e ~ 2 .  Then, on a suitable 
probability space (O,~,,P) we can construct two processes {Jr(t), O<t<_ T} and 
{X~(t), 0 < t < T} in such a way that they are equivalent in law to solutions of(4.1) and 
(7.2), respectively, with initial distribution f and satisfy 

g 

R {12 (t)- 2~(t)l 2} <=const ~ OQ(dO) 
o 

with const depending on T but not on e. 

(ii) p(T~f T/~)f)-~O as e$O for  each t>O and f E ~ .  

Before stating the theorem of this section, we introduce some notations.  For  
each 0e(0,~)  and X, x1ER 3, we put  

H . . . . .  0 = Uz,,-.l = the uniform distr ibution on C .... l, 

where z = {x + x 1 + (x - x 1) COS 8}/2, r = JX -- X 1] (sin 8)/2 and  l = (x - x 1 ) / ] x  - x l t, and 
regard H . . . . .  0 as a probabi l i ty  dis tr ibut ion on R 3 . Fo r  any probabi l i ty  distr ibutions 
f, g on R 3 and 0e(0, ~z), we define another  probabi l i ty  distr ibution (fo g)0 on R 3 by 

( fog)o(A)= ~ 1I . . . . .  o (A) f (dx )g (dxO,  A e ~ ( R 3 ) .  
R 3 x R 3 

Obvious ly  

((fo g)0, {)  = j" ~ ( x ' ) d g f ( d x ) g ( d X l )  , {eC?(RS), 
( 0 , 2 ~ ) x R 3 x R  3 

and hence ( f o  g)oe~2 provided f,  g E ~  2. We write [ f ]o  = ( f ~  for short, and put  

eo(f, g) = e ( f  g) - e ( [ f ] o ,  [g]o). 

Theorem 7.1. For each t > 0 T~ is non-expansive on ~ with respect to the metric p, that 
is, 

p(T,f, T, g) < p ( f  g), f g e 4 .  
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More precisely, for any f, ge~2 we have 

~o(f g) > 0, (7.3) 

t 

e(T,f T t g) < e(f, g) - 2rr S ds ~ ~o(TJ, T~ g) Q(dO). (7.4) 
0 0 

Our discussions are devided into two cases according whether 

iQ(dO)<oo or =oo. 
0 

Tc 
Case I. First we discuss the special case in which q - 2re ~ Q(dO) < Go. In this case, 

o 
for each pair of probability distributions f and g on R 3 we can define a probability 
distribution f o g  on R 3 by 

f o g  = (2 re~q) ~ (fo g)0 Q (d 0). 
0 

With this notation the equation (0.3) is equivalent to 

d 
dt(U,~}=(q(uou-u) ,~} ,  ~C~(R3) .  (7.5) 

A unique (probability) solution u(t) of (7.5) for any given initial distribution f 
can be obtained by a method of iteration, and the solution is explicitly expressed by 
the so-called Wild sum ([21]): 

u(t)=e qt ~ ( 1 - e  qt)n-lf(n). 
n = l  

Here f("), n > 1, are probability measures on R 3 defined inductively by 

f(l~ =f, 
1 n--1 

f~,)_ y f~k)or n-- l k~l" ~ k), n> l. 

On the other hand, from what we have proved in Chapter i we know that T J i s  also 
a solution of (7.5) with initial distribution f, at least if feN~. Therefore, we have 

Tff=e -q~ ~ (1-e -q t )" - l f  ("), f e ~  1. 
n = l  

The proof of the theorem in Case I will be based on the above Wild sum and the 
following three lemmas. 

Lemma 7.3. 

e( f f l  . . . . .  O' 17Jy,yl, O) N C]) o(X, X1,  Y, 71), 
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where 

q)o(X, xl,y, yl) = - - ~ ( x - y ) 4 l  +cos  0 1 -cos2 0 (xl -Yl )  2 

sin 2 0 r 
+ ~  ~fx --xl[ 2 + [y--yl] 2 --/x --xl[ [y - -Yl[ -  I(x --x~, y -- Yl)[}- 

Proof It is enough to apply Lemma 6.4 with the replacements: 

X --1" {X @X 1 -}-(X--XI) COS0}/2, 

r ~ IX --Xl] (sin 8)/2, 

l - - ) ' ( X - - X 1 ) / [ X - - X I [  , 

Y ---+ {Y -}-Yl At_ (y --Yl) COS 8}/2, 

S --+ [y --YzI (sin 0)/2, 

m ~ ( Y - Y l ) / [ Y - Y l [ .  

Lemma 7.4. Let f >f  2, gl and g2 belong to ~2. Then we have the following inequalities. 

g2)0] ~ 1 + COS 0 1 -- COS 0 
e[(f~~176176 2 e(fl, &) ~ - -  e(f2, g2), O~(O, rr). (i) 2 

(ii) e(flofg,glog2)<__Te(f>gl)+(1-7)e(fi,g2) ' where 

7 = (2 ;r/q) i 2-  1 ( 1 -~ COS 8) Q (d 8). 
0 

Proof We choose two pairs {X1, }11} and {X2, Y2} of random variables so that they 
satisfy the following three conditions. 

(a) E { l X i -  Y~lZ}=e(f~,gO, E{[X2-  y2j2}=e(f2,g2). 
(b) For i=  1, 2, X i is fcdistributed while Yi is &-distributed. 

(c) {X> I11} and {X2, Y2} are independent. 

Then we have 

(LoA)o=E{Ilxlx2,o}, (gl og~)o=E{Fly1,y2,o}, 

and hence by Lemma 6.3 and 7.3 

e [(L ~ (gl ~ g2)0] 

< E {e(Hxl,x2, o, Fly,, y2,o)} < E {~bo(X1, X2, Y~, Y2)} 

{ l + c o s 0  1-cosO(x2_y2)  2 } 
= E  ~ ( x l -  Y,)~ 2 

sin 2 0 E 
+ ~ - -  {IXI-XNI2"+IYI- Y21Z-]XI-X21IYI- y2[ 

-l(x, -x~, Y~ - Y~)I}. 

We now use the inequality 

( x ~ - x 2 ,  }11 - Y2)_-< I x ~ - x 2 1  lY~ - :~2t (7.6) 
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to obtain 

e E(L ~ (g,o g0o] 

l + c o s 0  1 - c o S 0 ( x  2 Y2) 
~ E  ~ - ( X l  - Y1) q- ~ -- 

sin 2 0 E X + ~  {I l-x212 +lga- g2[2-2(xl-x2, gl- g2)} 

_(1  + cos 0) 2 E{IX 1 _ y,12 } +(1 - c o s  0) 2 E {IX 2 - I7212} 
4 4 

sin 2 0 sin z 0 
+ ~ E  { I X a -  I1112} + ~ E  { I X 2 -  Y2] 2} 

1 + cos 0 1 - cos 0 
-- ~ e ( f l '  gl)-] 2 e ( f>  g2). 

This proves (i), and (ii) follows from (i) and L e m m a  6.3. The proof  of the lemma is 
finished. 

Lemma 7.5. For any f and g in ~ ,  we have 

e (f("), g(")) < e (f, g), n > 1. (7.7) 

Proof. Since (7.7) is evident for n = 1, it is enough to prove that  (7.7) holds for n = m 
assuming that  it holds for n<m. Making use of L e m m a  6.3 first and then (ii) of 
L e m m a  7.4, we have 

/ 1 m-1 1 ' ~  1 ) 
e(f(") 'g(m))=e (n~--lk~l f ( k ) ~  k=l gIk)o g(~-k) 

1 " - ]  < ~ e(f(k)of(m-k),g(k)~ (m-k)) 
= m - - 1  k=l 

1 m-* < ~ {7e(f(k),g(k))+(1--7)e(f(m-k),g(m--k))} 
= m - - 1  k=l 

_--< e (f, g), 

as was to be proved. 
Now the proof  of the theorem in Case I is completed as follows. (7.3) is immediate  

from (i) of L e m m a  7.4. To  prove (7.4), we notice that  

Tt+sf=e-q~ ~, ( 1 - e - q S ) " - l ( T j )  ("), 
n = l  

Tt+sg=e q~ ~ (1-e-qS)n-l(Ttg) ('~ 
n = l  
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and then apply L e m m a  6.3 and 7.5. The result is 

e(~+J, T,+sg) 
< e -  q~ e (Ttf  T t g) + e-  qs (1 -- e -  qs) e [(Ttf) ~2), (T t g)(2)] 

+(1-2e-qS+e-2q~)e(T, f  T,g), 

and hence 

lira {e(T~+~f Tt+sg)-e(T,f  T~g)}/s 
s$O 

__< - q { e (Ttf  7~ g) - e [(Ttf) (2), (Ttg)(21]} 

< - q(2rr/q) i {e (Ttf  T t g) - e [[  T, f]o, [7~ g]0]} Q (d 0) 
0 

r~ 

= - 2~ S ~o(~f,  ~ g) Q(d 0). 
0 

The inequality (7.4) now follows from the above, since e (Ttf  Ttg ) is cont inuous in t. 
The  p roof  in Case I is finished. 

Case II. We deal with the case when i Q(dO) = oQ. For  each e~(0, ~), the result in 
o 

Case I is applicable to the semigroup {Tff ~} which is associated with Q~(dO), and 
hence 

e ,( Tt (of  j ,  T t (~) g) < e ( f  g) - 2 7r d s S g'0,c T.s(~)cj, Tff ) g) Q (dO). (7.8) 
0 

On the other  hand, making use of (i) of  Lemma  7.4 and (ii) of L e m m a  7.2, we have 
p~[Tff)f] o, ITs f ]0  ] <=p(Tff~f T~f)~O as s~0 and hence 

p[[Tff)f]o, [Tff~g]o]~p[[T~f]o, [T~ g]0], s,L0. 

Therefore  we have ~o(Tff)f Tff~g).---,,~o(T,f Tsg ) as e+0, the convergence being 
bounded.  Now, letting e ~, 0 in (7.8) we obtain (7.4). Thus the p roof  of the theorem is 
completed. 

w 8. Theorem of Ikenberry and Truesdell on Time Evolution of Moments 

The result on the time evolution of the moments  for solutions to Boltzmann's  
equat ion of Maxwell ian molecules goes back to Ikenberry  and Truesdell  [41. In 
[41, however, the existence of solutions of the Bol tzmann equat ion is not  discussed 
rigorously. Here we state and prove the theorem of  Ikenberry and Truesdell  in our  
setting, for completeness. We state also a corollary;  this will be useful in the next 
section where a more  precise result on the trend to equil ibrium will be obtained in 
connect ion with our  metric p. 

The me thod  of [4] is to use harmonic  polynomials.  For  each k > 0 we choose 2k 
+ 1 linearly independent  (homogeneous)  harmonic  polynomials  {~(x)}j~j_< k of 



98 H. Tanaka 

degree k in R 3 and put 

2~ t (r, k, 1), n(x)=lx] ~(x) for n - -  

~o, o, o~(x) = 1, 

where r=0 ,  1 ....  , k =0, 1,..., and I/I =< k. The degree of ~n is Inl =2r  + k. Then it is 
well-known that any homogeneous polynomial ofx with degree n can be expressed 
by a linear combination of ~n(x) with Inl =n, and therefore when dealing with 
moments of a probability distribution f on R 3 it is sufficient to consider only the 
(harmonic) moments/4, ( f )  - (f ,  ~ ) .  

Lemma 8.1. (i) Let h(x), Ix] = 1, be a spherical harmonic of degree k and y be a unit 
vector in R 3. On the unit sphere S 2 = {Ixl ; 1} we take a spherical coordinate system 
with polar axis y, and denote by y and t) the colatitude and the longitude, respectively, 
of a point xaS  2. Then 

2r~ 

S h(x)d@=2~zPk(c~ (8.1) 
0 

where Pk denotes the Legendre polynomial of degree k. 

(ii) I f  ~(x) is a (homogeneous) harmonic polynomial of degree k, then 

( H  . . . .  0, ~) = Pk(COS 0) ~(X). 

Proof. (i) is known as the mean value theorem for spherical harmonics; for the proof 
it is enough to check (8.1) for each h in the list 

~ ( c o s T )  

P~m)( c~ 7) sinm 7 cos mO 

Pff") (cos 7) sinm ? sin toO, r e= l ,  ...,k, (8.2) 

because (8.2) forms a basis for the vector space of spherical harmonics of degree k 
(I-3]). (ii) follows from (i), since ~ can be expressed as ~(x) = Ixt k h(x/lxj), x~R 3, with 
some spherical harmonic h of degree k. 

Theorem 8.1 (Ikenberry and Truesdell [-4]). Given a probability distribution f on R 3 
with ~ IxTf(dx)< oo for some integer v> 1, we put 14.(t)=/q,(Ttf) for n such that 
Inl < v. Then, for any n with Inl <= v we have 

d / ~  (t) = ~ '  fi.",,~/~, ( t ) /~  (t) -/~n/4,(t), (8.3) 

where ~ '  means the summation taken over all pairs (nl, n2) satisfying In1] + Inz] = In] 
and Inll, ln2l>= 1. fin is given by 

fl.=27C?{1--(COS~)In'Pk(COS~) - / "  0\1"1 ksln ~ Pk(sinO)}Q(dO)>O, 

and fi~,n2 are also some constants. 
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Proof  The p roo f  will be given in four steps. 
Step 1. We prove  that  

/ 0\~"~ ( 0) 
cos  n=(r,k, 0. 

In fact, f rom the relat ion Hx, o .o=H . . . .  (o/21 . . . . .  (o/2~, o/2 it follows that  

(Hx,  o,o, g . )  = ( H  . . . .  (o/2), - . . . .  (o/2), o/z, q . )  

= Ixl 2~ cos  ( H = o s ( O / 2 > ,  _ . . . .  <o/2~, o / 2 ,  ~)  

_ ,  0,.. 
- tcos j 

Step 2 is to prove  that  

K.(x ,  y ) - 2 ~  ~ {<u~,  , ,o, ~ . )  - 4 . (x)}  0 (a 0) 
0 

= (K ~.) (x, y) 

is a homogeneous  po lynomia l  in x and y of  degree ]nl. Since we can write ~ . ( y + x )  

= ~ rli(x)~iY), where t/i and ~i are homogeneous  polynomials  of degree m i and hi, 
i 

respectively, with m~ + n~ = ]n], we have 

(u~,,,,o, ~,) =(Ux_,, o, o, ~.(y +" )) 

i 

On the other  hand, t b can be expressed as 

rl i ~ i �9 , = cm~ m, m = ( s , j , I ) ,  
Iml=ml 

and hence f rom Step 1 we have 

( 0)m (0) 
i COS~ Pj c o s ~  ~m(X--y).  

i ]m l=mi  

Therefore  

(Hx,  y, o, 4.5 - ~,,(x) 

=E E cos~ P~ cos -1  c~.:i(y)~.(x-y). 
i lm l=mz  

This is a homogeneous  po lynomia l  in x and  y of degree Inl with coefficients 
depending upon  0 in such a way that  they are O(0) as 040. Thus  Kn(x , y  ) is a 
homogeneous  po lynomia l  in x and y of  degree InF. 
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Step 3 is to prove that 

Kn(x , 0) = - -  fl'n ~ n ( X ) ,  Kn(0, y) = - fi~ ~n(y) (8.4) 

where 

i{ (~176 fl',=2~z 1 -  cos~ Pk cos Q(dO), 

~ i . 0, '"' ( O) 
f l ~ = - 2 ~ ! ~ s m ~ ]  Pk sin~ Q(dO), n=(r,k,l).  

In fact, the first expression of (8.4) follows immediately from Step 1. As for the 
second, noting Flo.y,o=l-ly, o,~_ o and then using the result of Step 1 we have 

= [ ~ - O \ t . I  

[ .  0\,-, 0) = ?ln ) P (sin  

This implies the second expression of (8.4). 

Step 4. If we set J . ( x , y ) = K . ( x , y ) - K , ( x , O ) - K . ( O , y ) ,  then by Step 2 the 
polynomial J.(x, y) consists only of those terms which have at least degree 1 in x as 
well as in y, and therefore it can be expressed as 

J. (x, y) = 2 ' /~, , ,2  ~,1 (x) ~.~ (y). 

Now, keeping in mind the moment estimate (4.30), we obtain 

d 
-d~ #.(t) = ( (Ttf) | (Ttf),K.(x, Y)} 

= ((Ttf)  | (Ttf), Jn(x, y)) 

+ ((Tt f )  | (TJ),  K,,(x, O) + Kn(O , y)) 

= Z' /~  .... #., (t) #.~(t)-  &#.(t), 

where ft. = fi'. + fi~. This completes the proof of the theorem. 
It should be noticed that, in the right hand side of (8.3), there appear only the 

moments of degree less than In[ except for #,(t) and that the coefficient ft. of #.(t) 
is positive (we exclude the trivial case Q - 0 ) .  As a consequence we have the 
following corollary which is also found in [-4]. 

Corollary. Let f be a probability distribution on R 3 with finite absolute moments of all 
degrees, and assume that 

~ l x -m l2 f (dx )=3 v>O,  m=~xf (dx ) .  (8.5) 

Let 9 be the Gaussian distribution 

(2~ v)- 3/2 e x p ( -  [x -m12/2v) dx (8.6) 
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and put #n = #, (g)" Then, for each n 

#n(t) converges to #. exponentially fast as t ~ oo. (8.7) 

In particular, T J  converges to g as t ~ oo. 

Proof Clearly (8.7) holds for In[ =0 and 1 (the case of In[ =1 is nothing but (4.31)). So 
we assume that (8.7) holds for 0 < [n] < k and prove it for In[ = k. First we notice that g 
is invariant under T~ (see 2 of Appendix). This implies 

~ '  finn1, n2 #n, #n2 -- fin #n = 0. (8.8) 

For any n with Inl=k we put #-.(t)=~'fl~ l, . . . .  #m(t)Pn2(t). Then the induction 
hypothesis implies that fin(t) converges, exponentially fast as t ~ o %  to 
~'fl." . . . .  #n~#~ which is equal to fin#n by (8.8). This fact combined with (8.3) 
implies that 

#~(t)=e-/~nt#n(O)+ie-Bn(t-~)fi~(s)ds~#~, exponentially fast as t ~ o o .  
0 

So the proof is finished. 

w 9. Proof of the Trend to Equilibrium 

In this section we make use of the results of w 7 to prove the trend to equilibrium 
without assuming the existence of higher absolute moments. Fundamentally, our 
theorem is an extension of the result [17] in Kac's one-dimensional model to the 
case of Boltzmann's equation of Maxwellian molecules. 

Theorem 9.1. Let f ~ 2  and assume that (8.5) is satisfied. Let g be the Gaussian 
distribution (8.6) and put e ( f )=e ( f9 ) .  Then, e(T~f) decreases to 0 as t'r oo. In 
particular, Ttf  converges to g as t T oo. 

The proof is based on the following lemma. 

Lemma 9.1. Let f and g be the same as in the theorem and put r162 g), Then, 
r 0 < 0 < r ~ / f f  #9. 

Proof of the Lemma. Since (g o g)0 = 9 by 2 of Appendix, what we have to prove is 
e [(f~ (g ~ g)0] < e(f, 9) for 0 < 0 < rc provided f # g. By (i) of Lemma 7.4 we have 

e [(f~ (g o g)0] < e(f, g). (9.1) 

So, assuming the equality holds in the above, we prove t h a t f  = g. We now recall the 
proof of(i) of Lemma 7.4. Then, in order to have the equality in (9.1), the inequality 
(7.6) must be the equality 

( X 1 - X 2 ,  Y1-  Y 2 ) = I X I - X z I [ Y 1 -  Y2t, a.s., 

which is equivalent to 

X l - X  2 Y I -  V2 
tXl_XNl-lga_ g2 I, a.s., (9.2) 
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On the other hand, both Y~ and Y2 are g-distributed in the present case, by Theorem 
1 of [12] (or by (6.2)) there exists a unique Borel mapping ~ from R 3 into itself such 
that X~ = ~ (Yi), i = 1, 2, almost surely (the uniqueness of O was remarked in the proof 
of Lemma 6.2). Therefore, (9.2) yields 

I~ (ya) - ~'(Y2)I - lya  - yzl 

for almost all y l ,y2~R 3 with respect to the Lebesgue measure. Thus for some 
YoeR 3 

I~(Y) - ~P(Yo)[ 
~P(Y) = ~'(Yo) -~ (Y - Yo) (9.3) 

lY-Yol 

must hold for almost all y. Therefore, 

I O ( y d  - 0)1 -  '(yo)l 
(Y~ -Yo) (Y2-Yo) 

{Yl -Yol 122 -Yo[ 

I~(Y0-~(Y2)[ 

lYl --Y2I 
and hence 

a.e., 

I~P(YO-~(Yo)[ IO(Y2)- @(Yo)l 
{Yl --Y0{ {Y2 --Y0{ ' a.e. 

This combined with (9.3) implies that ~(y) = ~(Yo) + const (y -Yo), a.e., and hence 
~p(y)=ybecauseE{X1} =E{Y1} and E{]XI[ 2} =E{IYl[Z}.Thus we ob t a in f=9 ,  as 
was to be proved. 

Proof of the Theorem. Since e(Ttf T t 9) = e (Ttf, g) = e (Ttf), the decreasing property of 
e(Ttf ) in t follows from Theorem 7.1. To prove that e(Ttf ) tends to 0 as t]" ~ ,  we first 
assume that S ]x]4f(dx) < ~" Then by the corollary to Theorem 8.1 S Ix] r (TJ)  (dx) is 
bounded in t, say, by M. We denote by ~ the family of probability distributionsfon 
R 3 satisfying 

 xf(ax)=m,  lx-mt2fIdx)=3 , S t 14f(d )- -<M, 

and put ~ = { f e ) :  e (f) > e} for a > 0. Then ~ is compact with respect to the metric 
p. Moreover, using the triangle inequality for p and (i) of Lemma 7.4 we can see that 
Ieo(f)-~o(~,)[<Ze(f,~,) for f , ~ e ~  and hence ~-0 is p-continuous on ~ for each 
0e(0,70. Since e 0 is strictly positive on ~ by Lemma 9.1, we have 

inf ~-0(f) > 0, 0e(0, ~z), 

and hence 

~b(~) -- inf 2~ i eo(f) Q (d 0) > 0. (9.4) 
f~ t~ 0 
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On the other hand, from (7.4) we have 

t 

e(TJ) <__ e ( f ) -  2re ~ ds ~ r Q(dO). 
0 0 

Because Ttf~ ~ with e=e (TJ )  if e (TJ)>0 ,  the above inequality combined with 
(9.4) implies 

e (Ttf) < e(f) - i ~ [e (TJ)] ds (9.5) 
0 

for t such that e(Tff)>0. But, this inequality clearly implies that e(T~f)~0 as 
t - +  o~D. 

Finally we remove the restriction ~]xlgf(dx)<oo. For each e>0  and f ~  
satisfying (8.5) we can chooses  in such a way that 

xf~(dx) =m, ~ rx -m[2s 3v, ~ Ixf4f~(dx)< 0% 

and p( f s  hold. Then, using Theorem 8.1 we have 

e(TJ) < {p(TJ, T~s + p(T,s g)}2 

_-< {~ + ~ L ) }  ~ 

and hence lim e(Ttf ) < e 2. The proof of the theorem is completed. 
t ~ o o  

Remark. Making use of the corollary to Theorem 8.1 in full, we obtain a much 
simpler proof of Theorem 9.1. If f has finite absolute moments of all degrees, then 
/~,(T~f) ~ /z ,  as t ~  oe for every n and hence e(Ttf)--,0 as t ~  oe. The general case 
when f belongs to ~z and satisfies (8.5) can be treated by choosing s with finite 
absolute moments of all degrees in such a way that ~xs ~ Ix-mlaf~(dx) 
= 3 v and p(ff~)< e hold. However, our first proof based upon the inequality (9.5) 
seems to be interesting. 

Appendix 

1. In the introduction we regarded the equation (0.3) as a weak version of(0.2). This 
is justified by the formula 

S ~(x)(u'u;-uul)Q(clO)cl~odxdxl 
(0 ,  7z) x (0 ,  2n:) x R 6 

= f (K~)(x ,  x l ) u ( x ) u ( x 1 ) d x d x 1 ,  ~ C o ~  
116 

which holds, at least if u(x) is smooth enough, according to the following lemma. 

Lemma. Let ~(x, x> y,y~) be a continuous function on R ~2 with compact support. 
Then, for each 0~(0,~) 

~(x,x~,x',xl)dcpdxdx~= ~ ~(x',xl,x, Xl)dcpdxdxl. (1) 
(0 ,  2 ~c) x 116 (0 ,  2zc) x R 6 
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Proof. We denote by 05(0) and ~(0) the left and right hand sides of(l), respectively. 
Since 05 and ~ are continuous in 0, for the proof of (1) it is enough to show 

05(0) Qo(O) sin 0 d 0 = i 7J(0) Qo(O) sin 0 d 0 (2) 
0 0 

for any continuous function Qo(O) with compact support in (0, re). For x + xl we put 
l = (x' - x)/Ix' - x l and define 7 s(0, n/2) by cos 7 = (x 1 - x, l)/Ix 1 - x l. Since 0 = rc - 2 y, 
Qo(0)cosy becomes a function of I ( x l - x , l ) l  and [ x l - x l .  Thus we can write 
Qo(0)cosy = F ( x ,  x l ,  l) with some function F on R 3 x R 3 x S 2 satisfying 

F (x, x 1, l) = F(x' ,  x i, l) = F(x ,  x 1, - l). (3) 

We then have 

05(0) Qo(O) sin 0 dO 
0 

=4  ~ ~(X, X l , X ' , x ' O Q o ( O ) c o s y s i n T d T d q o d x d x  1 
( 0 ,  r e /2 )  x ( 0 ,  2 ~z) x R 6 

= 4  ~ d x d x  1 ~ ~(x, x l , x ' , x l ) F ( x ,  x l , l ) d l  
R 6 {l ~ $2: (x l  - x,  l) > 0} 

--2 ~ ~(x, x l , x ' , x ' l ) F ( x ,  x l ,  l ) d x d x x d l ;  (4) 
R 6 x S 2  

in the last line of the above x' and x~ are defined by 

x' = x + ( x  I - x , l ) l  

x'l = Xl - ( X  l - x, l) l. (5) 

Since d x d x  1 =dx 'dx 'a  for each fixed l~S  z, the last integral in (4) is equal to 

~(x, x l , x ' , x l ) F ( x ,  x t , l ) d x '  d x l  dl, (6) 
II 6 x S 2 . 

where x and x 1 are defined by the same rule as (5): 

x = x '  +(x'l - x ' , l )  l 

xa = x] - ( x ' l  - x', l) l. 

Now, from (3) it is clear that (6) is equal to 

~ ( x ' , x l , x ,  x l )  f ( x ,  x l , l ) d x  d x l  dl. 
R 6 x S 2 

But this is equal to the right hand side of (2) by the same reason as (4) holds. The 
proof is finished. 

2. Let g be the Gaussian distribution (8.6). Then g is invariant under T~. For  the 
proof, we first notice that the density function g satisfies g' g[ = g g ~ and hence by the 
above lemma 

( g |  =0, ~6 C~(R3). 
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This implies Ttg = g at least if j Q(d 0) < o% because the uniqueness of the solution 
0 

for  (0.3) c l ea r ly  h o l d s  in  t h a t  case.  T h e r e f o r e ,  in  gene ra l ,  we  h a v e  T t g = l i m  T~(e) g = g, 
e$o 

proving the invariance of g under T~. Moreover, (g o g)0 = g also follows from g'g] 
=gg l  and the above lemma. 
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