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1. Introduction

In the study of multidimensional diffusion processes and related problems, one
of the main tools is the stochastic calculus of Ité which, nowadays, has been
formulated in a very general framework of semimartingales, cf. [2, 11, 17]. This’
stochastic calculus can be applied to diffusion processes with sufficiently
smooth coefficients but there is an important class of diffusion processes which
cannot be covered by this approach; for example, a class of diffusion processes
corresponding to uniformly elliptic second order differential operators with
measurable coefficients and of the divergence form, analytical theory of which
has been developed by De Giorgi, Nash, Stampacchia, Aronson, etc. cf. [7, 15].
These diffusion processes, when they are symmetrizable with respect to some
measure, can be treated in the framework of Fukushima’s theory of Dirichiet
spaces: Actually Fukushima [4, 5] developted another stochastic calculus in
this framework which is well suited for the study of this class of diffusion
processes. In this study one is naturally led to a class of additive functionals
which are no longer semimartingales but retain a similar property with the
part of the process of bounded variation being replaced by a process of zero
energy, or equivalently, a process of zero quadratic variation. The purpose of
the present paper is to develop a systematic stochastic calculus for such
additive functionals of a symmetric Markov process.

More specifically, let M=(X,, ) be a nice symmetric Markov process on a
state space X with respect to a measure m on X and (%, &) be the associated
Dirichlet space (cf. 6] for details). Fukushima showed that, for every ue % the
corresponding additive functional (abbreviated as a.f} AM=#(X,)—#(X,) (@i is
a quasi-continuous version of u) admits the decomposition

API= M+ NI,

where M™ is a martingale a.f. of finite evergy and N™ is a continuous a.f. of
zero energy. We shall introduce the following class of continuous a.f’s of zero
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energy:

t
M={NJ’”+fg(Xs)dS;uE%geLZ(X;m)}- (1.1
38V

In the forthcoming paper [14], we show the importance of this class and
indeed .#, exhausts all continuous a.f’s of zero energy if the process M is
conservative (see Remark 3.3 in Sect. 3). In this connection we mention a recent
work of Oshima-Yamada [16] on related representations. ¢

The main problem treated in this paper is to define an integral j o AN,

Ne.#,, for a suitable class of functions v on X. Since Ne.¥, is, usually, not of
bounded variation, this integral cannot be defined as an ordinary Stieltjes
integral. By assuming ve%, (%= nL*(X;m)), however, we can define it for
Ne.#, to be a continuous a.f. express1ble as a sum of an element in ./, and a
continuous a.f. of bounded variation. If thls integral is once lntroduced we can

define stochastic integrals of the form j X dA¥ (Ito-type) and jv(Xs) odAM™
(4]

(Stratonovich-type) for ue# and ve%;. 1t6 formulae will then be obtalned in
Sect. 4 in context of these stochastic integrals. In this connection, we note that
Follmer [3] introduced a class of processes which are called Dirichlet pro-
cesses (the sum of a martingale and a process of zero quadratic variation) and
developed a similar calculus for these processes. '

As an application of the Stratonovich-type integral in the above sense, we
define in Sect. 5 stochastic line integrals of 1-forms along the paths of general
symmetric diffusion processes on manifolds. The stochastic line integral was
introduced by Ikeda-Manabe [10] for a diffusion process on a manifold whose
generator has smooth coefficients, and consequently whose coordinate pro-
cesses are semimartingales. Kusuoka then considered the stochastic line in-
tegral for a certain class of symmetric diffusion processes whose coordinate
processes are no more semimartingales in general (see Remark 5.1 and Exam-
ple 5.1). Our stochastic line integral turns out to be an extension of Kusuoka’s
one.

2. Preliminary Facts

Let X be a locally compact separable metric space and m be an everywhere
dense positive Radon measure on X. Consider an m-symmetric Hunt process
M=(Q,4,X,,(,B) on X whose Dirichlet space (% &) on I[*(X;m) is C,-
regular. In this paper we treat a.f’s admitting exceptional sets of M, the precise
meaning being appeared in [4, 6]. Two af’s AY and A are said to be
equivalent if for each t>0 B(4AV=A4P)=1 (q.e. xeX) and then we denote by
AN = 42),

We use the following notations. For a signed Borel measure v on X, a
Borel function g on X and a random variable A on Q, we let {v,g>
= [g(x)ydv(x), p, g(x)=E[g(X,)] and Eg‘v[/ljz)j(Ex [A] g(x)dv(x). Let S be the

X
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set of all smooth measures of M and A, be the family of all positive con-
tinuous a.f’s of M. Fukushima [4] showed that A’ and S are in one to one
correspondence and this correspondence is characterized by the following
formula; for AeA} and ueS

t t
Eyom [jg(Xs)dAs] —[{g-mphdds (ghed andi>0), (1)
0 0

where #* is the set of all non-negative Borel functions on X.
We denote by A the space of all a.f’s of M and define for AcA

1
e(4)=lim - E, [47],
t—0 2t

whenever the limit exists. e(A4) is called the energy of 4. Now we exhibit two
important subclasses of A. One is

J%={MEA; e(M) is finite. For qe. xeX E,[M?]< oo}

and E,.[M,]=0 (t>0).
and the other is

,/ch{NeA; N is a continuous a.f. such that for q.e}.

xeX E,[INJ]<oo (t>0) and e(N)=0

We call Me./# a martingale a.f. of finite energy and Ne.#, a continuous a.f. of
zero energy. Since ]/E is a Hilbertian norm on .#, we define an inner product

e(Mth):%{e(Ml +M;)—e(M)—e(M3)} for MszEjZ-

Then (.#,e) is a Hilbert space. The smooth measure corresponding to the
quadratic variation (M) of Me.# is denoted by p . Similarly we define

. .
Hnts, Moy =2 VM, + M) — Hemyy —Memsys for My, Moye .

Obviously it holds that e(My, M3)=% pr, m»(X) for My, M, /.
Fukushima [5] showed that the af AM=#(X,)—#(X,) (ucF) can be de-
composed in the following manner;

AW =ML N MEe 7 and NMex,.

This decomposition is unique according to .# n.#,={0}. Moreover M™ ad-
mits a decomposition

MU =y 4 N ]\I;[[u]7

(4
where M™ is a continuous martingale a.f. of finite energy

: /—__\ o k /\ o
MR (@(X) — (X, )1y ged and MML (X, )Igoyed,
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cf. [9, 13]. Here A=A —A* (A* is the predictable dual projection of A) and I

is the indicator function of a set B. It is known that this is an orthogonal

decomposition in (,/% e). The smooth measures wuppmy, ,u . U and
[u]) (MUl

k
4 ,  are simply denoted by u<u>, ,u<u>, ,u<u> and i, respectlvely. The no-
(M)
(4

tations feu, vy, Heu,oss ,u<,, »» and u<,, o (U, vef) are used i 1n an analogous sense.
We state fundamental properties of u<u o3> ,u<,, »» and ,u<u s cf. [9, 12]. ,u<u 0
possesses the derivation property; for u, ve %, and we %

A a0 () = T06) At () + BOE) ALy (). 2.2)

Let (H, N(x,dy)) be a Lévy system of the Hunt process M (cf. [1]) and v be the
smooth measure corresponding to HeAS. We put

Jdxdy)=3N(x,dy)v(dx), k(dx)=N(x,{4})v(dx) (2.3)

and call them the jumping measure and the killing measure of M respectively.
J is a symmetric measure on the product space X x X such that J(d)=0 and J
is a Radon measure on X x X —d, where d is the diagonal set of X x X. kis a
Radon measure on X and moreover k is the smooth measure whose associated
positive continuous a.f. is Iy<, x, _x#. It is known that for u,veZ#

li<u,u>(dX) =2 ){ (@(x) —a(y) (B(x) =5 (y)) J(dx dy) (2.4)
and .
u<u,u>(dX)=fl(X) 0(x) k(dx). (2.5)

c . k
Setting 61, 0) =4t u,05 (X), E9(,0) =41t 05(X) and 6D (u,v) =, 0y (X) for
u,ve#, we have

&, v)=Eu, v)+ EV(u, v) + EX(u, v). (2.6)

The derivation property (2.2) implies a local property of the symmetric form
(69, #) and thus the decomposition (2.6) of (% &) is just the Beurling-Deny
formula, cf. [6].

Next we state a necessary and sufficient condition for which N™(ue %) is of
bounded variation on each compact interval of [0,{). This result is obtained by
Fukushima (Theorem 5.3.2 in [6]).

Definition 2.1. We say that {K;};_q,, .. is a nest of a smooth measure u if
{Ki}i- 1,4, .. satisfies the following conditions.
(i) {Ki}i—1,2, .. is an increasing sequence of compact subsets of X such that

(-

(i) For each I=1,2,...,Ix- u is of finite energy integral and
lim Cap(K — K;)=0 for any compact subset K of X.

1=

For B X define F3={ue# ;ii(x)=0 q.e. on X —B}.
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Theorem 2.1 (M. Fukushima). Consider ue# and u'V, y‘?eS. Let AY and A®
be the positive continuous af’s corresponding to 'V and p'® respectively. Then
the following conditions are equivalent to each other.

(i) NM=—A4D 1+ 4D for <.
(ii) For each common nest {K;};_1.,. .. of p*) and u®

g(uﬂ U) = <IK1 : (:u(l) _:u(Z))7 T)>
for veFy, and 1=1,2, ...
(iii) There exists a common nest {K;},_ 1. ... of u® and u'® such that
g(ua U) = <IK1 ’ (/‘L(l) _/‘L(Z))’ T)>
Jor veFg,nFoand 1=1,2, ...

We now introduce a subclass A} of A by A ={4eA}; the smooth
measure corresponding to A is finite.}.

Lemma 2.1. Let AcA;. Then we have for he %,

1 ~
im=E,. .[4.]=<{u k>,

-0 I

where p is the smooth measure corresponding to A.

Proof. Obviously we may assume that & is quasi-continuous and Borel measur-
able. From (2.1), we get

Ey.wl[A]= g {p, ps b ds.

{u, p,hy is continuous at s=0, because p,h converges to h q.e. on X as s -0, cf.
[8]. Thus the proof is completed. []

Lemma 5.1.9 in [6] implies that, for AeA., B(4,< o for 0<t<0)=1 (q.e.
xeX) and so the following space is well defined;
N*={N+A;+A4,; NeN, and A;,A4,€A}},
where 4 is the subspace of .4 defined by (1.1). This space plays an important
role in the next section.
Theorem 2.2. Let CV, CP e *. Suppose that
.1 !
lim - E,.,[CV]=lim ~E,.,[C*®] for he®,
t—0 t -0 t
Then we have C'=C®),

Proof. By the definition of .4#:*, we can find w;e %, f;e[?(X;m) and A9, BYeAS
such that

t
CO=NM 4 [ fi(X)ds+ AP —BP  for i=1,2.
0
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We put
A8 =(f7 + f5) dm+dvD + dp®
and
A5 =(f* + fi ) dm+du® +dv),
where p® and v® are the smooth measures which correspond to A® and B®

respectively for i=1,2. Then it is easy to see that 6" and 6 are smooth
measures. From Theorem 5.3.1 in [6] we obtain

1
lim;Eh.m[Z\ft[’“"‘ﬂ]: — &y —uy, by for hes

t—0

On the other hand (2.1) and Lemma 2.1 imply

1 t
fim = By | § (= 1+ £)(X) ds — AP+ B+ A~ B |

t—0 0
=M =8P 1>  for hed,.

Thus we obtain &(u; —u,, h)= —(6Y —62 k> for he% and, applying Theo-
rem 2.1, we conclude CV=C®, [

The following two lemmas are used in Sect.5. We use the following no-
tation; for Borel measures p and v on X u<v means that u is absolutely
continuous with respect to v.

Lemma 2.2, There exists a finite Borel measure ¢ on X such that

,LL<M><O'< ZQ‘LL<L> fOV Meﬁ (27)

Le#
Proof. We denote by (#,&;) the Hilbert space endowed the inner product
&1 (u,v) =& (u, v) + f u(x) v(x)dm(x) (u,veF). We can find a countable dense sub-

X
set ' ={u,;n=1,2,...} of &, because this Hilbert space is separable. Setting

i 1
g= A1 T o M
JZ 2L g (X))

it is obvious that ¢ is a finite Borel measure on X such that 0< Y pucyy. For
Led
any ueZ, there exists a sequence {v,},_q,2, .. (v1,€%') which converges to u in

(Z, &) Tt is easy to see that for a Borel set 4 of X with ¢(4)=0

M(u)(A) = M(Un—u>(A) § l’t<vn—u>(X)'

Letting n— o0 we obtain u,,(4)=0 and thus u., is absolutely continuous
with respect to ¢. Combining this result and Lemma 5.4.5 in [6], we get i
<o for any Me.# in the same way as above. []

We note that o-finite measures on X satisfying (2.7) are mutually absolutely
continuous.
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Lemma23. Let M,e.d (n=1,2,...), Me. and Ledl. If {M,}p_1. .. .. con-
verges to M in (., e), then the total variation of pepr,— 1y converges to 0 as
n— 0.

Proof. Let X= ) X; (X; is a Borel set of X for j=1,2,...) be a countable
j=1
partition of X. Using Lemma 5.4.3 in [6] and the Schwarz inequality we get

© © 1/2 { © 1/2
z |,u<Mn—M,L>(Xj)|§{ Z ,u<Mn—M>(Xj)} {2 ﬂ(L)(XJ')}

j=1 j=1

<V2e(M,—M) ury(X).
This completes the proof. [I

t
3. Definition of an Integral with Respect to N™ -+ | g(X)ds
0

t

First we define an af. Q,= [ (v(X,)+ C)dNM to be an element of A* for CeR

0
and u,veF with el?(X;ues). If Q is defined to be an element of A.*,
Theorem 2.2 assures that Q is uniquely determined by the quantities

1
lim—Ey.,[Q] (ke ).
t—-0 t

Denote by & the generator of the Hunt process M. If u is in the domain of %
t

and ve%, then dNM=%u(X)ds and we ought to let Q,=f(v(X,)
+ C) Lu(X,)ds. Consequently 0

lim %Eh.m [0]=(h(v+ C) Lu)= —Eh(v+ C),u).
t—0

In order to construct Q satisfying the above formula, it is therefore necessary
to analyze the quantity &(hv, u).

Lemma 3.1. We have for ue# and h,ve %,

k
Ehv,u)y=% j d(.u<v uy T ,U<u uw) (%) +3 j D) d (g, uy + Pen uy) ().
X X
Proof. It holds from (2.2), (2.5) and (2.6)
E(hv,u)= % Heho, u>(X)+7.ll<hv u>(X)+M<hu w(X)

%f d#(v w(x +%f d#<h w(X)
X X

J o
+ 5 tino, s (X) + f9(x) d#<h,u>(x)~
X
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Using the symmetry of J and (2.4), we have

/i<hv,u>(X) =2 [ (A(x)5(x) —h() B() (@(x) —(y)) J (dx dy)

=2 (RO =00+ o) (i) )} () ~70) Tded)
= ﬁ(x)dil<u,u>(x)+)j{ 500 djtgh. ()

and thus the proof is completed. []
We introduce the functional A defined by

Al M)=% pcyon s i ary(X)  for he F;, Me . (3.1)

Then by the definition of the stochastic mtegral v M™ (see (5.4.14) in [6]) it
holds that

Ahs v MMy =3 {5(x M<h,u>+ﬂ<h,u>)(x)- (3.2)
X
Lemma3.2. For Mel there exists a unique function weZ such that A(h; M)
=& (w, h) for he Z.
Proof. We can easily check that

Mh; M)? <% #<M>(X)(H<h>(X)+ﬂ<h>(X))<M<M>(X) &1(h, h)
and thus A(*; M) is a continuous linear functional defined on the Hilbert space
(#&). 1
From now on we denote the function we# in Lemma 3.2 by y(M). It is

easy to see that y is a mapping from A to F satisfying

yai Mi+ta, My)=a,y(M)+a,y(Mz) (a;,a;€R, M, M,ed) (3.3)
and
E((M), Y (M) Span(X)=2eM)  (Me.d). (3.4)

Using this bounded operator y, we introduce the linear operator I' from M to
A, in the following manner

t
I(M),=NP®!—{ (M) (X,)ds for Me.d. (3.5
0
We then have
lim — E,, W[C(M)]=—A(h; M)  for he,. (3.6)
t—ro

In particular we see
r(M")=Nt  for ue%, (3.7)

because A(h; M) =& (h,u).
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Remark 3.1. Assume that k=0 and M is transient. We denote by (%, &) the
extended Dirichlet space associated with M. It is known that {M"™;ue%} is a
closed subspace of .4 and so we can consider the projection 25 upon {M%;
ueZ)}. Then it is easy to see that I'(M)=N™! for Me./#, where w is a unique
element in % such that M™ =2, M

Remark 3.2. There are many cases in which k=0 and {M™;ueZ} is a closed
subspace of .#. In these cases we can easily check that I'(M)=N™ for Me.Z,
where w is an element in & satisfying M™' =2, M and % is the projection
upon {M™; ye #}. Though w is not unique but N™! is determined uniquely.

Definition 3.1. Let CeR and u,ve # such that e L?(X; u,y). The af.
I((v+ C)- M") —4 (M) ML, M4 oty (3.8)

is called the integral of v(X.)+ C with respect to N, We shall often denote it
t

by [(v(Xg)+ C)dNM.
0

Obviously this integral is linear in u and v+ C. Moreover, in case that
ve,, we can combine (3.2), (3.6) and (3.7) with Lemma 3.1 to see that the a.f.

t

f((X )+ C)dNM satisfies

0

lim — : E,, m [j(v (X)+0C) st["]]

t—0

—E((v+ C)hu)y for he, (3.9

as was expected at the beginning of this section. We further show that, if N™ is
of bounded variation, the a.f. in Definition 3.1 is thé same as the a.f. which is
defined as the ordinary Stieltjes integral.

Lemma 3.3. Consider u,, u,€S such that the supports of u, and p, are contained
in a compact set K of X. If ue % satisfies
éa(h7u):<#1—:u2)ﬁ> for he%m%(,

then we have

3 (B0 dttnus () 44 T A ditgo, s (6) = pty — i, A (3.10)
X X

for he Fy N F and BeF N I*(X; pow) such that © is bounded on K.
{u)

Proof. If ¥ is bounded on X, (3.10) is obvious. Consider the truncations o,
=@ v(—n)an for n=1,2,.... Since {D,},-1,4, ... converges to ¥ in (&, &), we
have
lim {{ ,(x)dps, ,,>(x)+jh(x A v, uy (X))

X

j v} dpen, w(x I (x) d#<u uwy (%)
X X
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On the other hand the boundedness of & on K implics

lm {py —pa, A8, ={py —pa, Ao

and this completes the proof. [J

Theorem 3.1. Let CeR, ueF and veF such that 5el*(X; p,). Suppose that
N™ is of bounded variation on each compact interval of [0,(). Then we have for

t<{
t

(X)) + C)dNM = [ (B(X )+ C)d(— A + AP),
0

Oty

where AM, AP eAl such that N¥= — AV + AP (1< ).

Proof. We may assume that C=0. Let u® be the smooth measure correspond-
ing to AY for i=1,2. According to Theorem 2.1, u* and u® satisfy

&)=, (WP —py®), k>  for heFnF, and 1=1,2,...,

where {K;},_1, ., .. is a common nest of ™’ and u‘?. It is easy to see that there
is a common nest {Ki},_; , .. of u and u® such that K;cK,; and blg, is
continuous on Kj for I=1,2,.... Putting w=y(v- M™) we let

dvWD=p*dp +5- dy(2’+%d/i<v_u>+%d,tjt<,,_u>—I—w‘ dm
and _
¢ j

dvVP =5~ dpP + 5% dpP + Fdpcyrus +Ed oy + W dm,

then v\ and v**’ are smooth measures.
We have from the definition of w=y(v- M™)

&) =3 [ 5(0) dttgpus + ficn i) () — [ R W) dm(x)  for heF,
X X

Lemma 3.3 implies for he%,m,%(; and [=1,2,...
%)j;ﬁ(X)dmh,@(X)Jr%s[ﬁ(X) Apt o,y (x) = gy (0 — ), B D).
Consequently we ot\)tain for he%m%{; and I=1,2,...
81 w)= L (1) =), 58y =4 TR e+ )9
—)f(h(x)w(x) dm(x)
= <IK£ (VD — @), ],;>

Therefore Theorem 2.1 implies the desired equality. []

Next we define an integral with respect to Ne.#,.
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t
Definition 3.2. Let N,=N"+ [ g(X,)ds (ue %, gel*(X;m)). For CeR and ve,
t 0
we define the af. [(v(X,)+ C)dN, by
0

}(D(Xs)+ C)dN,= j' ((X)+ C)dNM + i w(X)+C)g(X)ds for t=0.
0 0 0

It follows from Theorem 3.1 that the above integral does not depend on a
choice of ue# and gel?(X;m) which represent N.

Remark 3.3 (see [14]). If M is conservative, then .4#,=.4,. So in this case the
integral with respect to any continuous a.f. of zero energy is now defined. But
N, is a proper subspace of .#, if, for example, M is an absorbing Brownian
motion on (0, o). In general a necessary and sufficient condition for which
Ne, belongs to A, is | | E.[N]?/t*dm(x)dt < co.

o+ X
Using the integral with respect to an element in 4, we can define the

following stochastic integral of 1t6 type.

Definition 3.3. Let A=M + N(Me.#, NeA,). For CeR and ve%, we define the
t

af [(v(X)+ C)dA, by
0

}(U(XSH C)dA,= f (X)) + C)dM,+ f ((X.)+ C)dN, for t=0.
0 0 0

The above stochastic integral of 1t6 type is determined uniquely because
M~ N, ={0}. Now we state an important property of I'(M) of (3.5) which plays
a fundamental role in the above integrals.

Theorem 3.2. Let M,e.l (n=1,2,...) and Me.d. If {M,},_1,2, .. converges to
M in (4, e), then there exists a subsequence {n'} such that for ge xeX
B(lim I'(M,),=T(M), uniformly on any finite interval of t)=1.

Proof. Set w,=y(M,) (n=1,2,...) and w=y(M). In view of (3.3) and (34)
{Wytno1,2,.. converges to w in (& &,). We have for any measure v of finite
energy integral

E, [ sup

0<sst

i(w —w)(X,)du

i
|={<uplwa=wivas
0
i
=_"£1(U1 V:Ps|Wn_W|)d5
<& (U v, U v) 1/2§ ( +1) ds(w, —w, w, —w)V/2,

where U, v is the l-potential of v and ( , ) is the inner product on I?(X;m).
Therefore, using the same method as in the proof of Lemma5.1.2 in [6], we
can find a subsequence {n;} such that for g.c. xe X

t
(hm fwa (X )ds—j'w(X )ds uniformly on any finite interval of t)

np—> a0 Q
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Theorem 5.2.1 in [6] assures the existence of a subsequence satisfying the
above property for N"L ]

Finally we want to define a stochastic integral of Stratonovich type but, in
doing so, we must assume that M is a diffusion. So in the remainder of this
section, we assume that J=k=0.

Definition 3.4. Assume that J=k=0. Let ue# and vel*(X; ). The af.

v MM+ I(v- M™M) (3.11)
is called the stochastic integral of Stratonovich type of v(X.) with respect to
A", We denote it by jt"v(X JodAM,

o]
We discuss a local extension of the stochastic integral of Stratonovich type.
Denote by 75 the leaving time of a Borel set B of X.

Lemma3.4. Assume that J=k=0. Let M®, M®Pe 4 and G be a relatively
compact open set of X. If poyar_ o (G)=0, then we have for t<tsIT(MD),
=I(M®), and M® + [(MW), = M@ + [ (M®),.

Proof. Consider he F n Cy(X) such that supp(h)= G. We have from Lemma 2.2
in [9] pey(X —G)=0 and this implies

e, o — py (X)?

= 2wy (X) preare - a2y (@) 4+ 2 prowen - my (X) prgay (X — G)

=0,
Consequently we obtain that & (y(MW),h)=&,(y(M®),h), namely, G is a 1-
regular set of p(M")—p(M?). By the same argument as in the proof of

Theorem 5.3.4 in [6], we can conclude that I'(M®),=I(M*?), for t<tg. Com-
bining this with Lemma 5.4.6 in [6], the second assertion is also proved. []

The following lemma is immediate from Lemma 3.4.

Lemma 3.5. Assume that J=k=0. Consider u;,u,€% and bounded Borel func-
tions v, and v, on X. Let G be a relatively compact open set of X. If u;=u, m-
a.e. on G and vy =v, on G, then we have for t <14

j"vl(X A[“I]_j'vz(X A[uz]

For a relatively compact open set G of X define #(G)={ulg;ucF}. By
virtue of Lemma 3.5, for we#(G) and a bounded Borel function g on G, we
can define an integral A which is defined locally;

A;=[g(X)odAP™ for 0=t=1s. (3.12)

o!-qﬂ

We say that u is locally in #F(ue%,, in notation) if ulge#(G) for any
relatively compact open set G of X. Lemma 3.5 enables us to extend Defini-
tion 3.4 as follows:
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Definition 3.5. Assume that J=0 and {=o0. Let v be a locally bounded Borel
function on X and ue% . There exists the unique a.f. 4 such that for any
relatively compact open set G of X

A= MG(X dAMS!  for t<tg. (3.13)

t
A is denoted by [ v(X,)odAM.
4]

4. Ito Formula

In this section we show that the usual It6 formula for the semimartingales
t

remains valid in our situation if we use the integral {uv(X,)dNM of Sect.3. In
0

this formula N™ plays the same role as a process of bounded variation in the
usual Itd formula, cf. [2]. Consider ¥eC*(R™ such that P(0)=0. Here C'(R")
is the space of all [-th continuously differentiable functions on R" It is known
that Y(uy,u,,...,u,)e%, for uy,u,, ..., u,e%,. First we present a Itd formula for
the stochastic integral of It6 type.

Theorem 4.1. Let $e C2(R") and uy,u,,...,u,e%,. Then we have for t=0
DX ) — D((X o))

@(u(X ) AM™M + 7,

O ey =

4.1)

+i

i=1

t
§ ®,,((X ) d (MU, MUty 1 VA
0]

1

B,(u(X ) AN,

[y au—— TM’

where
V= Z({ (X =0, )= 3, KX~ ai<Xs~))},
oo ¢
é(x)_axi( )’ ¢ij(x)=axiaxj(x) (19J=17253n)
and u=(Uy,u,, ..., uUy,).

Proof. We may assume ®(0)=0. Put w;=y(®(it)- M™J) for i=1,2,...,n. For
he %, we have from (2.3), (2.4) and Theorem 5.4.3 in [6]

Y, Eiwi, hy=}% Z § @3 (8(x)) d g 1 fiom, piary (X)

i=1 i=1X

=&1(P(w), h) — Ay (k) — A, (h) — A3 (h),
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where
Ay (h)= . j ; {45(51 (x)) — @(@(y)) - él &,(B(x)) (it (x) — (y))}
(h(x) —h(y))J(dxdy),
Aa(h)={ {dj(ﬁ(x» - Z @,(ii (x)) ﬁi(x)} h(x) dk(x)
and ) -

As(h)= j‘P x)) h(x) dm(x).

It 1s easy to see that for i=1,2,3 1;(h) is a continuous linear functional on the
Hilbert space (&%, &,). By virtue of the Riesz theorem there exists a unique
g;€% such that 4;(h)=¢&,(g;, h) for heZ (i=1,2,3). Obviously we have

t

zw B(u)—g;—g,—gs and N=I= — [ Du(X,)ds+ | g5(X,) ds.
0 [¢)

i=1

Therefore we obtain

M=

t t
§ D:i(u(X ) AN = N[O — Nfer Feal 4 S (81 +g2)(XJ)ds
0

i=1

n

Z <M[‘I’ ()] _,_M[‘I’ ()] M[uJ +M[“‘]>

where ¥(x)=&;(x)—&;(0) for i=1,2,...,n This equality implies that the right
hand side of (4.1) is equal to

M[®(u)]+N[¢(u)]+{ Z J‘@ u(Xs)) dM[ul] N[g1]+_fg1(X

i=10

C3 Y (PO Ny 4 S (S(X ) - SH(X, )

i=1 O<s=t
t<l
) @(a(Xs_))(a‘-(Xs)—a,-(Xs_»)}+{i [ @,(u(X )) diVtied — Nis»
i=1 i=1 0

+ g g2(X) dS+€Z (—@(@E(X )+ Z @(a(X,-)) ai(XC—))}

i=1

c
= MIP@WI L NIP@I J,+K,.

i k
Therefore it is sufficient to prove J,=M!®®! and K,=M12™]

J
We show J,=M!®™1 Let {K;},_, » .. be an increasing sequence of compact
sets of X such that imK;,=X and p be the metric of X. We put for i

-0

=1,2,...,nand [=1,2,....
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Vti(l) = Z (ﬁi(Xs) _ai(Xs—)) I{(Xs, Xs-)eDi}s

O0<s=t

V;(l) = Z (é(a(Xs)) - ¢(ﬁ()(s—))) I{(Xs, Xs-)eDi}s

O<s=t

Wih= % (B((X )~ B ) x,, x,-renns

O<s=t

) ~ j ~ j .
) i D _ 74 Wil __ 1
M;“ W _ Vtt( ), M£ )1 V;( ) and M{ @) — [/Vtt( ),

1 .
where D,={(x, y)eK; x K;; p(x, y)gf}. By virtue of the Riesz theorem there

exists a unique fPe# (I=1,2,...) such that for heF

D;

E(fO )= {4’(5! () = D(E(y)) — Z Dy (1 () (i (x) — s (y))} (h(x) —h(y) J (dx dy).

Putting for I=1,2, ...

n t t
Jh= Z j@l (i(X,_)) dM[uJ(l) [f“’]_,_j‘f(l)(X )ds

i=10

—4 3 v, oy oy {d>(a(xs))—@<a(xs_)>
i= O<sst

Z ((B(X ) (@(X ) — (X ))}qus,xs_)em’

we have from the symmetry of J for he %,

lim ~ —Ep [0 = NiPwI0

t—»0 t

=23 [ h(x) @) (1) ~#(y)) J(dx dy) + &1 (f, h)
i=1 D

§ (@ ((x)) — P (@ () (@ (x) —iti(v)) J(dx dy)
Dy

=2 [ h(x)(P(a(x)) — P((y)) J (dx dy)
=0.

. . J .
By virtue of Theorem22 we arrive at JP=MPPO® for [=1,2,.... Since

{Ki}1-1,2,.. converges to X and {f®},_, , . converges to g; in (% &), there
exists a subsequence {I'} satisfying that for g.c. xeX, B(J!") converges to J, on

J 7
each finite interval of [0, c0))=1 and B(M®™® converges to MI®®! on each
Jj
finite interval of [0, c0))=1. Therefore J,= M®®),

k
We can prove K,=M!®™ in the same way. []
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Now we discuss a Itd formula involving the stochastic integral of Strato-
novich type.

Theorem 4.2. Assume that J=k=0. Let cC*(R"), uy,u,,...,u,c% and g be a
bounded Borel function on X. Then we have for t=0

T n t
fg(Xs)odA£¢(u)] = Z j.g(Xs) gDi(u()(s))OdA,EMi]’ (42)
(4] i=10
o .
where u=(u;,u,,...,u,) and @i(x)zax x)(i=12,...,n).

n

Proof. It is known that g-M™®®1= %" ¢ @,(u)- M™). Since the mapping I' is
i=1

i=

linear we obtain I'(g- M™®®N= 3" I'(g ®;(u)- M™J). Thus (4.2) follows from the
i=1
definition of the stochastic integral of Stratonovich type. [

We can easily obtain the following corollary.

Corollary 4.1. Assume that J=k=0. Let G be a relatively compact open set of X.
Consider @ CY(R"), uy,u,,...,u,€%(G) and a bounded Borel function g on G,
where Z5(G)={v|g; ve F}. Then it holds that for t<1g

[E(XodAPDI= 3§ o(X,) By(u(X )od A 43)
0

i=10

where u=(u;,u,,...,u,) and <D,~(x)=a—x—(x) (i=12,...,n).

5. Stochastic Line Integral of Differential Form Along Paths
of Diffusion Process

The purpose of this section is, using the stochastic calculus in Sect.3 and
Sect. 4, to define the stochastic line integral for symmetric diffusion processes
on manifolds in a systematic way.

Consider an m-symmetric diffusion process M=(Q, 4,{, X,, B) on a ¢-com-
pact d-dimensional manifold X such that { = co. The Dirichlet space associated
with M is denoted by (% &) and in this section we assume that CP(X) is a
dense subspace of (£ &,), where CF(X) is the space of all C®-functions with
compact support. Let A,3 (X) be the space of all differentiable 1-forms on X
with locally bounded Borel measurabie coefficients.

Definition 5.1. Let aeA;,{X). A continuous af satisfying the following con-
dition is called a stochastic line integral of o along X, (0=t < c0); for any local
coordinate neighbourhood (U, ¢ =(x*, x?, ..., x%) of X such that U is relatively
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compact, it holds that

t
Bc(At: Y fou(X)odAF1 for t§rU)=1 (g.e. xeX), (5.1
i 0

i=1

d
where a= Y o;(x)dx’ on U. 4, is often denoted by | o.

i=1 X(0,1]
Lemma 5.1. For any o€, (X) the stochastic line integral of o along X,
(0=t < 0) is determined uniquely.

Proof. Assume that continuous af’s AV and A® satisfy (5.1). For relatively
compact local coordinate neighbourhoods (U,¢=(x',x%...,x%) and (V¢
=4, v%4 ..., y9), applying Corollary 4.1, we obtain

d t d t
P (Z fou(X)odAXI=Y | Bi(X)odAY for tgrUnV) =1 (qe xeX),
i=10 i=10
d d
where o= ) a;(x)dx’ on U and a= ), B;(y)dy’ on V. Consequently there exists
i=1 i=1

a stopping time 5 such that P.(y>0)=1 and P,(A"(t)=A4?(¢) for t<n)=1 for
q.e. xeX. Thus, using the additivity of a.f, we can conclude that AV =A@, [

Now we discuss the existence of the stochastic line integral of ae 4,4, (X) along
X, (0=t<oo). To prove this, first of all, we construct a Hilbert space of 1-
forms on X with Borel measurable coefficients which is isomorphic to the
Hilbert space (., e) in a natural way. We choose % ={(U,, ¢,);n=1,2, .
satisfying the following conditions;

(i) for each n=1,2,...,U, is a relatively compact open set of X and all
components of ¢,(x)=(x1(x), xZ(x), ..., x3(x)) belong to CF(X),

(ii) for each n=1,2,...,(U,, ¢,ly,) is a local coordinate neighbourhood of X
and {U,},—1,2,... 18 an open covering of X.

n—1
Put V,=U; and V,=U,~ U U;(nz2) and fix a o-finite Borel measure o on
j=1
X satisfying (2.7). For i,j=1,2,...,d and n=1,2,... the Radon-Nikodym de-
ditest o . . . . iy
*%‘l (x) is denoted by aj(x). Setting a’(x)=aj(x) (x€V,, n

=1,2,...) and A(x)=(a"(x)); j=1,2,...4, then it is easy to see that for c-a.e.
d

xeX, A(x) is symmetric and non-negative definite. A l-form a= Z o () dxE
d im1

rivative

(xeV,,n=1,2,...) on X is denoted by a= ) w(x)dx' simply. For 1-forms o

i=1
= i o;(x)dx’ and f= i Bi(x)dx’ on X, define
i=1 i=1
d
(o, B(x)= Y. w(x)B;(x)a’(x) (xeX)
i, j=1

and

IE (o, ﬁ)=£ e, B (x)do(x).
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Let IF* be the space of all 1-forms with Borel measurable coefficients o on
X such that IE(x, o) is finite. (IF* IE) is independent of a choice of % ans o.
Two 1-forms o and f§ in IF* are said to be equivalent if IE(x—f,«—f)=0 and
the set of all equivalence classes of IF* is denoted by IF. We shall show that
(IF,IE) is the desired Hilbert space. Set for Med and i=1,2,....d, Bi(x; M)
_dHonMED (o ey net2, ),

do

Lemma 52. Let Me./. Then it holds that 'B(x;M)=4B:i(x; M),
Ba(x; M), ..., Pa(x; M))eRange A(x) for og-a.e. xeX, where 'a='(ay, ..., a,) is the
transposed vector of acR".

Proof. First- consider the case where M=f-M™ (feCy(X), ueCg(X)). The
assertion is clear. By virtue of Lemma 5.4.5 in [6], for any Me.#, we can find
sequences f,€Co(X) and 14,eCP(X) (®=1,2,...) such that {M,
=f-M"}, |,  converges to M in (M,e). Then applying Lemma 2.3 we
obtain lim [ |Bi(x; M,)—pBi(x; M)|do(x)=0 for i=1,2,...,d. This implies

now X

‘B(x; M)eRange A(x) for g-a.e. xeX. [

Lemma 5.3. Let ¢(x) be a Borel measurable symmetric nonnegative definite (d, d)-
matrix valued function on X and f(x) be a Borel measurable R%valued function
on X. If ff (x)eRange c(x) for any xeX, then there exists a Borel measurable R’-
valued function g(x) on X such that 'f(x)=c(x)'g(x) for any x€X.

Proof. Put ¢,(x)=c(x)+¢l (¢>0), where I is the identity matrix. Then we can
easily check that {c,(x)"''f(x)} is convergent as &—0 and ‘g(x)
=lim ¢,(x) ™ 1¥f (x) satisfies /f (x)=c(x)'g(x) for any xeX. ]

e=>0

Lemma 5.4. Consider Me .

(i) There exists a Borel measurable R*valued function «(x; M) on X such
that
Blx; M)=A(x)'a(x; M) for o-a.e xeX. (5.2)

(i) If a Borel measurable R*-valued function
a(; M)= (o001 (; M), a3(x; M), ..., a4(x; M))

on X satisfies (5.2), then we have
e(M):j{ i (5 Mo (x; M)a”(x)} da(x).
X

ij=1

Proof. (i) is immediate from Lemma 5.2 and Lemma 5.3. To prove (ii) we
choose sequences

fu€Co(X) and u,eCP(X) (m=12..)
such that {M,, = f,,- M~} converges to M. Now fix n=1,2, ... and set

d
Xy ={er,,; > oci(x;M)ZéN} for N=1,2, ...

i—1
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In view of (2.2) and (5.2) we can obtain

ionsp (=4 3. 1) 52 00y )
- z 1 () 2 (s M) () da ()
=1§1 1 a0 M)t 9
= % [ o0 M5 My

Therefore, letting m — o0, Lemma 2.3 provides us with

2H<M w(Xn)= f { Z oci(x;M)ocj(x;M)aij(x)}da(x)
v U, j=1

and then, letting N — o0, we have by Lebesgue’s monotone convergence theo-

rem

S o (V)= | { > ai(X;M)ij(X;M)a”(X)}dG(X)-

V, U, j=1
The proof is thus completed. []
The above lemma provides us with the following theorem.

Theorem 5.1. (IF,IE) is a Hilbert space which is isomorphic to the Hilbert space
(M, e) by the isomorphism E characterized by

E(fduw)y=f-M"  for feCo(X) and ueCX).

d
Proof. For a= Y w(x)dx'elF and n=1,2, ... we denote by M the limit in .#
i=1

of the sequence
N
{ z (IX" O M[xn]} ,
N=1,2...

where

Xn N—{XEI/VU z 2<N}

i=1

Since

(MY, M =06, | <o, ap(x)do(x), MP=73 M
Vn n=1
is convergent in (.#, ) and e(M™) =TE(«, ). Setting Z(«)=M™ it is clear that =
is a linear operator from IF to .#. 5 is injective from e(M™)=IE(x, o) (a€lF)
and, applying Lemma 5.4, Z is surjective. []

Now we show the existence of the stochastic line integral of aeA;, (X)
along X, (0=t < o).
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Theorem 5.2. The stochastic line integral of we A, (X) along X,(0<t< 00) exists.
In particular if aeA;,(X)NIF, then the stochastic line integral of « along
X, (0=t < 0) satisfies

| a=E()+T(E@), for t=0.

X[0,1]

Proof. First consider the case where aeA, , (X)NIF and put A=5(a)+T'(Z(x)).

It is sufficient to prove that A satisfies (5.1), because A is a continuous a.f.

already. Let (U, ¢ =(x1, ..., x%) be a relatively compact local coordinate neigh-
d

bourhood of X and a= ) «;(x)dx’ on U. For any bounded Borel measurable

i=1
R%valued function (%,(x), @,(x),...,&(x)) on X with (&,,&,,...,&)

=(aq, %z, .-, #g) and any (uy, us, ..., uy) ;e i=1,2,...,d) with (uq, u,, ..., uy)|
=(x',x% ..., x%) m-a.e. on U, we can easily check that
d (U)ZO
<§: 1z oc)>

So Lemma 3.4 implies for g.e. xeX

( _

Namely A is the stochastic line integral of .
Using Lemma 3.4 again, we can see the existence of the stochastic line
integral of aed;, (X). [

IIM:._

t
f 0(X,) o d A for té‘[u) =1.
10

Remark 5.1. For a certain class of symmetric diffusion processes on a manifold
such that {M™; ueZ} is a closed subspace of .#, Kusuoka has defined the
stochastic line integral of aclF by Z(u)+ N™, where we# is an clement with
MW" =2,5(a) and 25 is the projection in Remark 3.2. Our present definition
is an extension of his to a more general situation (see Remark 3.2).

Finally we state an application of the stochastic line integral. This is due to
Kusuoka (a communication at a conference on Markov processes, held in
Japan 1981).

Example 5.1. Let A(y)= (a"(y));, j=1,2....,a be @ measurable, bounded, symmetric
and uniformly elliptic (d, d)-matrix valued function on R Suppose that each
component of A(y) is a periodic function with period 1 in each coordinate y*
(1 €i<d). Consider the symmetric diffusion processes {¥} (¢>0) on R? whose
Dirichlet forms are
(y)a” (Z) dy.
&

Fukushima [7] discussed the homogenization problem for {Y*®} and showed
that {Y?} is convergent weakly in C([0, o) —R?) as ¢~ 0.
Kusuoka formulated the above homogenization problem as a limit theorem

of the stochastic line integral ¢ | o of the 1-form «. Here X, is a symmetric
X[0,t/62]

d
= ¥ [
j=1R?%
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diffusion process on a torus T?=[0, 1) whose (extended recurrent) Dirichlet
space (£, &) is given by

4 Ou ov .
& (u, D):i’jz:lf“dﬁ(X)W(X)al(x)dx
and .
F={ueH (TY; [ u(x)dx=0, u(x', ..., x'~1 0+, X", ..., x%)
Ta

=u(x?, ..., x"L 11—, ¥ L, X9
for a.e. (x!, ..., x' "L Xt .. xH) (15i<d)).

In particular we can see that Y —Y¢ is equivalent to (¢ | dx);<iqs. For
. X[0,¢/e2]
1 £i<d there exists the unique bounded function y'e# such that

E(dx'—dy, duy=0 for any ue% (5.3)
(see [7]). It holds that for 1<i<d

e | dx'=¢ [ (dxX'—dy)+ex(Xy2)—ex'(Xo)

X[0,1/e2] X[0,¢/e2]

and the above stochastic line integrals are well defined (Remark 5.1). Since the

main part of the above expression is (¢ | (dx* —dy")); <i<a, the covariance

X[0, /2] ] ] ) )
function of the limiting Wiener process is determined by IE(dx' —dy', dx’/ —dy’),
the harmonic part of the 1-forms dx’ (in the sense of (5.3)), i,j=1,2, ..., d.

Acknowledgement. T would like to thank Professor Shigeo Kusuoka for allowing me to refer to his
unpublished result.
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