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1. Introduction 

In the study of multidimensional diffusion processes and related problems, one 
of the main tools is the stochastic calculus of It6 which, nowadays, has been 
formulated in a very general framework of semimartingales, cf. [2, 11, 17]. This  
stochastic calculus can be applied to diffusion processes with sufficiently 
smooth coefficients but there is an important  class of diffusion processes which 
cannot be covered by this approach; for example, a class of diffusion processes 
corresponding to uniformly elliptic second order differential operators with 
measurable coefficients and of the divergence form, analytical theory of which 
has been developed by De Giorgi, Nash, Stampacchia, Aronson, etc. cf. [7, 15]. 
These diffusion processes, when they are symmetrizable with respect to some 
measure, can be treated in the framework of Fukushima's  theory of Dirichlet 
spaces: Actually Fukushima [4, 5] developted another stochastic calculus in 
this framework which is well suited for the study of this class of diffusion 
processes. In this study one is naturally led to a class of additive functionals 
which are no longer semimartingales but retain a similar property with the 
part  of the process of bounded variation being replaced by a process of zero 
energy, or equivalently, a process of zero quadratic variation. The purpose of 
the present paper is to develop a systematic stochastic calculus for such 
additive functionals of a symmetric Markov process. 

More specifically, let M =  (X ,  P~) be a nice symmetric Markov process on a 
state space X with respect to a measure m on X and (~, #) be the associated 
Dirichlet space (cf. [6] for details). Fukushima showed that, for every ueo  ~, the 
corresponding additive functional (abbreviated as a.f.) A}"l=fi(Xt)-fi(Xo) (fi is 
a quasi-continuous version of u) admits the decomposition 

A["J = M~.1 + N,t.1, 

where M t'l is a martingale a.f. of finite evergy and N Eul is a continuous a.f. of 
zero energy. We shall introduce the following class of continuous a.f.'s of zero 
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energy: 

In the forthcoming paper  [14], we show the importance of this class and 
indeed ~ exhausts all continuous a.f.'s of zero energy if the process M is 
conservative (see Remark  3.3 in Sect. 3). In this connection we mention a recent 
work of Osh ima-Yamada  [16] on related representations, t 

The main problem treated in this paper is to define an integral ~ v(Xs)dN~, 
0 

N ~ ,  for a suitable class of functions v on X. Since N ~  is, usually, not of 
bounded variation, this integral cannot be defined as an ordinary Stieltjes 
integral. By assuming v6~b (~=Y~L~~ however, we can define it for 
N~A?~ tO be a continuous a.f. expressible as a sum of an element in ~ and a 
continuous a.f. of bounded variation. If this integral is once introduced, we can 

t t 

define stochastic integrals of the form ~v(Xs)dA~ "j (It(3-type) and ~v(Xs)odA~ ul 
0 0 

(Stratonovich-type) for u ~  and v ~ .  It6 formulae will then be obtained in 
Sect. 4 in context of these stochastic integrals. In this connection, we note that 
F611mer [3] introduced a class of processes which are called Dirichlet pro- 
cesses (the sum of a martingale and a process of zero quadratic variation) and 
developed a similar calculus for these processes. 

As an application of the Stratonovich-type integral in the above sense, we 
define in Sect. 5 stochastic line integrals of 1-forms along the paths of general 
symmetric diffusion processes on manifolds. The stochastic line integral was 
introduced by Ikeda-Manabe  [10] for a diffusion process on a manifold whose 
generator has smooth coefficients, and consequently whose coordinate pro- 
cesses are semimartingales. Kusuoka  then considered the stochastic line in- 
tegral for a certain class of symmetric diffusion processes whose coordinate 
processes are no more semimartingales in general (see Remark 5.1 and Exam- 
ple 5.1). Our stochastic line integral turns out to be an extension of Kusuoka 's  
one. 

2. Preliminary Facts 

Let X be a locally compact  separable metric space and m be an everywhere 
dense positive Radon measure on X. Consider an m-symmetric Hunt  process 
M=(~2,N,X~,~,P~) on X whose Dirichlet space (~ ,# )  on L2(X;m) is Co- 
regular. In this paper  we treat a.f.'s admitting exceptional sets of M, the precise 
meaning being appeared in [4, 6]. Two a.f.'s A (~) and A (2) are said to be 
equivalent if for each t > 0  P~(A}a)--A}2))=I (q.e. x~X) and then we denote by 
A ( 1 ) = A ( 2 ) .  

We use the following notations. For  a signed Borel measure v on X, a 
Borel function g on X and a random variable A on g2, we let ( v ,g )  
= 5 g(x) dv(x), p, g(x) = E~ [g(X,)] and Eg.~ EA] = 5 E~ [A] g(x) dr(x). Let S be the 

X X 
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set of all smooth measures of M and A~ + be the family of all positive con- 
tinuous a.f.'s of M. Fukushima [4] showed that A~ + and S are in one to one 
correspondence and this correspondence is characterized by the following 
formula; for A~A + and #~S 

t t 

Eh.,,, [! g(Xs)dA~] = ! < g "  #, p~h> ds (g, h e n  '+ and t>O), (2.1) 

where ~ +  is the set of all non-negative Borel functions on X. 
We denote by A the space of all a.f.'s of M and define for A e A  

e(A) = l im  1 
, - + 0  27 Em rag], 

whenever the limit exists, e(A) is called the energy of A. Now we exhibit two 
important  subclasses of A. One is 

{ e(M) is finite. For  q.e. x~XEx[MZt]<oo} 
~ / ' =  M e A ;  and E~[Mt]=O (t>O). 

and the other is 

N is a continuous a.f. such that for q.e.) 

~ =  N e A ;  xeXE~rlN,[]<c~ ( t>0)  and e ( N ) = 0  ~ J '  

We call M ~ J ~  a martingale a.f. of finite energy and N~Ar~ a continuous a.f. of 

zero energy. Since ] /7  is a Hilbertian norm on ~ ,  we define an inner product 

e(Ma,M2)=�89 for M1,M2~d/[. 
Then (~/,e) is a Hilbert space. The smooth measure corresponding to the 
quadratic variation (M> of M e  J : / i s  denoted by #<M>. Similarly we define 

1 #<M1,M2> =~  {#<M1 +M2> --#<M,> --#<M2>} for Mt,M26J/[. 
Obviously it holds that e(Ma, 1 M2)=~#<M,,M2>(X) for M1,M2eSg. 

Fukushima [5] showed that the a.f. A}"l=fi(Xt)-fi(Xo) (u~) can be de- 
composed in the following manner;  

A E"~ = M E"l + N t"~, M r"~ s ~ /  and N ~'J ~.Ar~. 

This decomposition is unique according to J~c~dg~={0}. Moreover M E"~ ad- 
mits a decomposition 

+ M NI, 

where/~/r,} is a continuous martingale a.f. of finite energy 

�9 ~ ~ =~' f i (X~__)I(r  ~ I } " ~  (fi(X~)-fi(X~_))l~t<~j~JZ and 2~/[,1 ~ J{,  
O < s < t  
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cf. [-9, 13]. Here  A = A - A  ~ (A ~ is the predic table  dual project ion of A) and IB 
is the indicator  funct ion of a set B. It is known tha t  this is an or thogona l  
decompos i t ion  in ( ~ , e ) .  The  smoo th  measures  #<~tf-~>, #<M~]>~ ' P<~tL~> and 

c j k 
/* k are s imply denoted by p<,>, p<,>, p<,> and p<,> respectively. The no- 

(M[~J)  
c j k 

ta t ions p<~,v>, #<~,~>, #<~,v> and #<u,~> (u, v ~ )  are used in an analogous  sense. 
c j k c 

We state fundamenta l  proper t ies  of  #<.,~>, #<u,~> and p<.,~>, cf. [9, 12]. #<..~> 
possesses the der ivat ion p roper ty ;  for u, W ~ b  and w e ~  

c c c 

d#< . . . .  >(x) = fi (x) dp<v, w> (x) + ~ (x) dp<,, w> (x). (2.2) 

Let  (H, N(x, dy)) be a L6vy system of the H u n t  process M (of. [1]) and v be the 
smoo th  measure  cor responding  to H e A  +. We put  

J(dx dy) =�89 N(x, dy) v(dx), k(dx) = N(x, {A}) v(dx) (2.3) 

and call t hem the j ump ing  measure  and the killing measure  of M respectively. 
J is a symmet r ic  measure  on the p roduc t  space X • X such that  J(d)=0 and J 
is a R a d o n  measure  on X • X - d ,  where d is the d iagonal  set of X x X. k is a 
R a d o n  measure  on X and moreove r  k is the smoo th  measure  whose associated 
posit ive cont inuous  a.f. is I{~<=t,x~_~x}/~. It  is known  that  for u, ve~, ~ 

J 
~<., v>(dx) = 2 ~ (fi(x) - ~(y))(~(x)  - V(y)) J(dx dy)  (2.4) 

x 
and 

k 

fl<u,v> (dx) = ~t (x) ~ (x) k (dx). (2.5) 

c 1 j k 
Setting g(C)(u,v)=�89 gU)(u,v)=~t~<~,~>(X) and N(k)(u,v)=I~<.,~>(X) for 
u, v ~ J  ~, we have  

C(u, v) = ~(~)(u, v) + gU)(u, v) + g(k)(u, V). (2.6) 

The  der ivat ion p rope r ty  (2.2) implies a local p roper ty  of the symmetr ic  form 
(g(r ~ )  and thus the decompos i t ion  (2.6) of (~,, E) is just  the Beur l ing-Deny 
formula,  cf. [6]. 

Next  we state a necessary and sufficient condi t ion for which Nr"~(ue~) is of 
bounded  var ia t ion on each compac t  interval  of [0, {). This result is obta ined by 
F u k u s h i m a  (Theorem 5.3.2 in [6]). 

Definition 2.1. We say that  { K I } I = I ,  2 . . . .  is a nest of a smoo th  measure  # if 
{Kz}t= l, 2 .... satisfies the following conditions.  

(i) {K~}l= 1,2 .... is an increasing sequence of compac t  subsets of X such that  

# ( X -  ~ K , ) = 0 .  

(ii) Fo r  each l - -  1, 2, ..., I t "  g is of finite energy integral  and 
l i m C a p ( K - K l ) = 0  for any compac t  subset K of X. 
l--+ oO 

For  B c X define ~ = { u e ~ ;  fi (x) = 0 q.e. on X - B}. 
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Theorem 2.1 (M. Fukushima) .  Consider u ~  and #(1), #(2)ES.  Let A (1) and A (2) 

be the positive continuous a f ' s  corresponding to #(~) and /[/(2) respectively. Then 
the following conditions are equivalent to each other. 

(i) Ntt"l= -A}I )+A~  2) for t<~. 
(ii) For each common nest { K I } / = I ,  2 .... of #(1) and #(2) 

g(u, v) = (IK," (#(~)- #(2~), ~) 

for vs~K~ and l= 1, 2, .... 
(iii) There exists a common nest {Kl}l= 1, 2 .... of #(1) and #(2) such that 

~(U, V) = ( I K , '  (/A (1) __ #(2)), ~ )  

for V ~ K , C ~  and l = 1 , 2 , . . . .  

We now int roduce a subclass A+ of A + by A+ = { A ~ A + ;  the smooth  
measure  corresponding to A is finite.}. 

L e m m a  2.1. Let A~fi, +. Then we have for h~o~ 

lira 1 Eh.m [A, ]  = (# , / ~ ) ,  
t~o t 

where # is the smooth measure corresponding to A. 

Proof. Obvious ly  we may  assume that  h is quas i -cont inuous  and Borel measur-  
able. F r o m  (2.1), we get 

t 
Eh.m [At] = ~ (#, Ps h) ds. 

0 

(# ,psh)  is cont inuous  at s = 0 ,  because psh converges to h q.e. on X as s -*0 ,  cf. 
[8]. Thus the p roof  is completed.  

L e m m a  5.1.9 in [6] implies that, for A ~A~+, P~ (At < oo for 0_-< t < oo) = 1 (q.e. 
x~X)  and so the following space is well defined; 

A/ 'c*={N+AI+A2;  N ~  and A1,A2~A]} ,  

where .X~ is the subspace of ~ defined by (1.1). This space plays an impor t an t  
role in the next section. 

Theorem 2.2. Let C (I~, C(2)sJV~ *. Suppose that 

l im 1Eh.~[C~l)]=lim~Eh.~[C~2) for h ~ .  
t~o t t~o t 

Then we have C (1) = C (2). 

Proof. By the definition of ~ * ,  we can find u i~ , ,  f~L2(X;  m) and A (~ B~ + 
such that  

t 
C~~176176 for i =  1,2. 

0 
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We put  

d~i(1)=(f C + f~)dm+dv(1)  +d# (2) 

and 

d6(2) =(fa+ +f~-)dm+d#(1)+dv (2), 

where #(1) and v (~ are the smooth  measures which correspond to A (~ and B (~) 
respectively for i = 1 , 2 .  Then it is easy to see that  6 (1) and 6 (z) are smooth  
measures. F r o m  Theorem 5.3.1 in [6] we obtain 

lim 1 E h . m [ N t [ " * - " 2 ] ] = - g ( u l - u z , h  ) for h e ~ .  
t ~ 0  t 

On the other  hand  (2.1) and Lemma2 .1  imply 

lim l Eh'm [ i  ( -  f l  + -t -~I~(1) + ~(1) • - 

= (6(1) - b(2),/~) for h e R .  

Thus we obtain g (u l -u2 , h )=- (6 (1 ) -6 ( z ) , I~ )  for h ~  and, applying Theo- 
rem 2.1, we conclude C (a) = C (2). 

The following two lemmas are used in Sect. 5. We use the following no- 
tat ion;  for Borel measures # and v on X p ~ v  means that  # is absolutely 
cont inuous  with respect to v. 

L e m m a  2.2. There exists a finite Borel measure a on X such that 

~<M>~G~ ZoO<L> for M~Jg .  (2.7) 
L~,4/ 

Proof We denote  by (~,d~) the Hilbert  space endowed the inner p roduc t  
gl(u,v)=g(u,  v)+ ~u(x)v(x)dm(x) (u, w ~ ) .  We can find a countable  dense sub- 

X 
set f f ' = { u , ;  n =  1,2 . . . .  } of  J~, because this Hilbert  space is separable. Setting 

1 
a - =  a 2"(1 + #<..>(X)) #<.n>, 

it is obvious that  ~ is a finite Borel measure on X such that  o-4 ~o#<L>- For  
Le~g 

any ueo~, there exists a sequence {v,},=1,2 .... (v,e~- ')  which converges to u in 
(if, E~). It is easy to see that  for a Borel set A of  X with a ( A ) = 0  

#<~>(A) = #<~,_~>(A)<#<~n_,>(X). 

Letting n ~ o o  we obtain  #<,>(A)=0 and thus #<,> is absolutely cont inuous 
with respect to a. Combin ing  this result and L e m m a  5.4.5 in [6], we get #<M> 
~ a  for any M e J ~  in the same way as above. 

We note that  a-finite measures on X satisfying (2.7) are mutual ly  absolutely 
continuous.  
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Lemma2.3. Let M,  sffg (n=l ,2 , . . . ) ,  Msff/ l  and L~ffg. I f  { M n } n = l ,  2 . . . .  con- 
verges to M in (J~,e), then the total variation of #<M.--M,L> converges to 0 as 
n---~ oo. 

Proof Let X =  ~ Xj (Xj is a Borel set of X for j=1 ,2 , . . . )  be a countable 
j = l  

partition of X. Using Lemma 5.4.3 in [-6] and the Schwarz inequality we get 

F{ F I#(M"-M'L>(XJ)I  <= # ( M n - M } ( X J )  ~=1 # ( L ) ( X J )  
1 = 1  k j = l  j =  

__<1/2 e(M.-  M) U<~>(X). 
This completes the proof. [7 

t 

3. Definition of an Integral with Respect to Nt t"l + ~ g(X~)ds 
0 

t 

First we define an a.f. Qt = ~ (v(XA + C) dN} "~ to be an element of ~g;c* for C~R 
0 

and u, v s ~  with ~L2(X;/~<,,>). If Q is defined to be an element of JV;~*, 
Theorem 2.2 assures that Q is uniquely determined by the quantities 

1 
lim -- Eh., [Q,] (he~) .  
t~O t 

Denote by ~ the generator of the Hunt process M. If u is in the domain of 
t 

and v e ~ ,  then dN}"l=GYu(X~)ds and we ought to let Qt=~(v(X~) 
+ C) ~u(X~)ds.  Consequently o 

lim 1 Eh.,, [Qt] = (h, (v + C) LYu) = - g(h (v + C), u). 
t~O t 

In order to construct Q satisfying the above formula, it is therefore necessary 
to analyze the quantity •(h v, u). 

Lemma 3.1. We have for u ~ Y  and h, Va~b 

~ c j k 
o~(h v, u)= �89 ~ h(x)d(#<v,.> + p<v,.>)(x)+�89 ~ ~(x)d(#<h,.> + p<h,,,>) (X). 

X X 

Proof It holds from (2.2), (2.5) and (2.6) 

�9 k 

e(h ~, u) - } ~ .o , .>(x)  + �89 + ~<hv,.>(x) 

c 

X X 

l j  k 
+:~<ho,.>(x)+ ~ ~(x) d~<h,.>(x). 

X 
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Using the symmetry of J and (2.4), we have 

J 
~<hv,,>(x) = 2 ~ (~ix) ~(x) - ~(y) ~iy))i~ix) - ~(y)) J(dx  dy) 

X x X  

= 2 i {t;(y) (~ (x) - ~(y)) + v (x) (/~(x) -/~(y))} (fi (x) - fi (y)) J(dx dy) 
X x X  

~ J J 
= y h (x) d#<v,,> (x) + I ~(x) d#<h, u)(x) 

X X 

and thus the proof is completed. [~ 

We introduce the functional 2 defined by 

)o(h; M ) -  1 k --~[,QM[h]+M[h],M)(X ) for h ~ ,  M ~ .  (3.1) 

Then by the definition of the stochastic integral v . M  ["j (see (5.4.14) in [6]) it 
holds that 

k 

2(h; v' M ~"1) =�89 5 ~(x) d(#<h,,> + #<h,,>) (X). (3.2) 
X 

Lemma3.2. For MsJ7// there exists a unique function w e ~  such that 2(h;M) 
=d~,(w,h) for heJ  ~. 

Proof We can easily check that 

k 
2(h; M)2 =< �89 #<M> (X)(#<h>iX) + #<h> (X)) < #<M>(X) o~ (h, h) 

and thus 2(" ; M) is a continuous linear functional defined on the Hilbert space 

(g, ~0. D 

From now on we denote the function w e ~  in Lemma 3.2 by y(M). It is 
easy to see that ? is a mapping from ~ to ~,~ satisfying 

?(a, M l + a 2 M 2 ) = a t y ( M O + a 2 y ( M 2 )  ( a , , a 2 ~ R , M , , M 2 ~ )  (3.3) 
and 

g,(y(M), ~,(M))<I~<M>(X)=2e(M) (Me~:) .  (3.4) 

Using this bounded operator ?, we introduce the linear operator F from ~ to 
in the following manner; 

t 

r ( M ) ,  = N t'(M~ - ~ ~(M)(XO ds for M e ~ .  i3.5) 
0 

We then have 

lim l~Eh. m [ r (M)d  = -;~(h; M)  for h e ~ .  (3.6) 
t ~ O  t 

In particular we see 

F(M["~)=N ["~ for u ~ ,  (3.7) 

because )~(h; M ~"1) = g(h, u). 
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Remark3.1. Assume that k = 0  and M is transient�9 We denote by ( ~ , g )  the 
extended Dirichlet space associated with M. It is known that {MV'~; u e ~ }  is a 
closed subspace of ~t' and so we can consider the projection Ny~ upon {MM; 
u e ~ } .  Then it is easy to see that F ( M ) = N  ~wl for M e ~ ,  where w is a unique 
element in ~ such that M rwl = ~ o  M. 

Remark3.2. There are many cases in which k = 0  and {ME"~; u~f f}  is a closed 
subspace of ~ .  In these cases we can easily check that F ( M ) = N  r~l for M e J ~ ,  
where w is an element in f f  satisfying M ~ J = ~ y M  and ~ is the projection 
upon {Mt"~; uef f} .  Though w is not unique but N ~w~ is determined uniquely. 

Definition 3�9 Let C e R  and u, v e f f  such that ~eL2(X; ~t<,>). The a.f. 

r((~+ c) M ~ ) - � 8 9  ~v~, c �9 M ~"~ + M ~"~) (3 �9  

is called the integral of v(X.)  + C with respect to N L"1. We shall often denote it 
t 

by ~ (v(Xs) + C) dNs E"1. 
o 
Obviously this integral is linear in u and v +  C. Moreover, in case that 

v ~ ,  we can combine (3.2), (3.6) and (3.7) with Lemma 3.1 to see that the a.f. 
t 

(v(Xs) + C) dN} ~1 satisfies 
0 t 

= - E ( ( v +  C)h,u) for h e ~ ,  (3.9) 

as was expected at the beginning of this section�9 We further show that, if N r~l is 
of bounded variation, the a.f. in Definition 3.1 is the same as the a.f. which is 
defined as the ordinary Stieltjes integral. 

Lemma3.3.  Consider #I,]/2ES such that the supports of  #~ and ]~2 are contained 
in a compact set K of X.  I f  u ~  satisfies 

then we have 

g ( h , u ) = ( # l - # 2 , 1 ~ )  for h ~ c ~ r ,  

1 I ~) (X) d[A(h ' u)(X) ~-1 ~ h(x)  d~(v, u ) ( x )  = <~1 - ~ 2 ,  ]~ ~ )  (3 .10)  
x x 

for h e ~ c ~  K and ~effc~L2(X;#<,>) such that ~) is bounded on K. 

Proof. If ~ is bounded on X, (3.10) is obvious. Consider the truncations ~, 
= ( ~ v ( - - n ) ) A n  for n = l , 2 , . . . .  Since {v,},=1,2 .... converges to ~ in (~,,E1), we 
have 

lim { 5 ~. (x) dt.t(h" u> (X) + I ]~(X) d#< ..... >(x)} 
n ~ m  X X 

= ~ ~(x) d~<h,.>(x) + ~ ~(x) d~<v,.>(x). 
X X 
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On  the other  hand  the boundedness  of ~ on K implies 

l im @ 1 - 1 2 2 , / T G )  = (12a --t22,/7~). 
n+oo 

and this completes  the proof.  D 

Theorem3.1 .  Let C e R ,  ue@ and w o  ~ such that ~eL2(X;12<,>). Suppose that 
N t"~ is of bounded variation on each compact interval of [0, 0. Then we have for 
t < (  

t t 
I ( v (xs )  + C) dNs [u] = ~ (~)(Xs) § C) d( - - A ~  1) § A ] 2 ) ) ,  

o o 

where A (1), A(2)ffA + such that N,r"J = - A } I ) + A ~  2) ( t< ( ) .  

Proof We m a y  assume tha t  C = 0 .  Let  #(0 be the smoo th  measure  correspond-  
ing to A (~ for i =  1,2. According to Theo rem 2.1, 12(~) and 12(2) satisfy 

g(h,u)=(IK,'(12(1)--12(2)),]~) f o r  h ~ K ~  and 1 = 1 , 2 , . . . ,  

where {K~}~= ~, 2 . . . .  is a c o m m o n  nest of 12(~) and #(2). It  is easy to see that  there 
is a c o m m o n  nest {K~}l=l,2 .... of 120) and 12(2) such that  K~cKt  and vl~; is 
cont inuous  on K~ for l =  1, 2, . . . .  Put t ing w = 7(v'  M M) we let 

c 
dv( t )=~  + d12(a)+~ - d#(Z)§ J d12<~_,> + w -  dm 

and 
c j 

(2) 1 1 d v ( 2 ) = v  - d12(1)+~ + d12 +gd#<v+u>+-gd#<v+,>+w + dm, 

then v (~) and v (2) are smoo th  measures.  
We have f rom the definit ion of w = y(v. M t"l) 

e(h, w)= 11"  k v(x)d(12<h,u>+#<h,u>)(x)--~h(x)w(x)dm(x) for h ~ .  
X X 

L e m m a  3.3 implies for h ~ b C ~ -  G and l =  1, 2, ... 

S ~(x) d12<h,.>(x) + �89 ~ &x) dm~ ,.> (~) = G<" (12"~ -12(2)), ~>. 
X X 

Consequent ly  we obta in  for h e ~  c~ ff~:; and I= 1, 2,... 

~ c j 
g(h, w) = ( I  G �9 (#(1) _ 12(2)),/~) _�89 ~ h(x) d(12<v,,> + 12<v,,,>)(x) 

X 

- f h(x) w(x) dm(x) 
X 

= ( I r q '  (v O) -v(2)),/~). 

Therefore  T h e o r e m  2.1 implies the desired equality. D 

Next  we define an integral  with respect  to N ~ .  
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t 

Definition 3.2. Let Nt=N~E"]+ S g(Xs)ds (ue~@, geL2(X; m)). For  C eR and v e ~ ,  
t 0 

we define the a.f. S (v(Xs) + C) dNs by 
0 

t t t 

~(v(Xs)+C)dN~=~(v(Xs)+C)dN~[UJ+~(v(Xs)+C)g(X~)ds for t>0 .  
0 0 0 

It follows from Theorem 3.1 that the above integral does not depend on a 
choice of u E ~  and g~L2(X; m) which represent N. 

Remark 3.3 (see [14]). If M is conservative, then ~ = ~ .  So in this case the 
integral with respect to any continuous a.f. of zero energy is now defined. But 

is a proper subspace of ~ if, for example, M is an absorbing Brownian 
motion on (0, oo). In general a necessary and sufficient condition for which 
NeJV~ belongs to ~ is ~ ~Ex[N]2/t2dm(x)dt< oo. 

o+x 
Using the integral with respect to an element in ~ we can define the 

following stochastic integral of It6 type. 

Definition 3.3. Let A=M+N(MeJIg ,  N e ~ ) .  For CeR and verb ,  we define the 
t 

a.f. ~(v(Xs)+ C)dAs by 
0 

t t 

~(v(Xs)+C)dA~=~(v(X+)+C)dM~+~(V(Xs)+C)dN~ for t>0 .  
0 0 0 

The above stochastic integral of It6 type is determined uniquely because 
+/~ ~ ~c = {0}. Now we state an important property of F(M) of (3.5) which plays 
a fundamental role in the above integrals. 

Theorem3.2. Let M,~J/I (n= 1,2, ...) and ME~/I. I f  { M n } n = l ,  2 . . . .  converges to 
M in (J/t,e), then there exists a subsequence {n'} such that for q.e. x e X  
P~( lim F(M,,), = F(M)t uniformly on any finite interval of t )= 1. 

n" ~ o o  

Proof. Set w , =? (m, )  (n= l, 2, ...) and w=7(M). In view of (3.3) and (3.4) 
{w,},=t,2 .... converges to w in ( ~ g l ) .  We have for any measure v of finite 
energy integral 

E~ sup (w,-w)(X,)du <= (v, ps[w,-wl)ds  
LO~<s-<tlO 0 

t 

= f gt(U~ v,p+lw.-wl)ds 
0 

g l ( U 1  Y, U 1 V) 1 /2  -~ 1 ds(w. - - W ,  W n - - W )  1 /2 ,  

0 

where Ut v is the 1-potential of v and ( , ) is the inner product on LZ(x; m). 
Therefore, using the same method as in the proof of Lemma 5.1.2 in [63, we 
can find a subsequence {nt} such that for q.e. x e X  

( ' , ) 
P~ lim ~ w,,(Xs)ds= ~ w(X~)ds uniformly on any finite interval of t = 1. 

\ t i t  ~ ~  0 0 �9 
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Theorem5.2.1 in [-6] assures the existence of a subsequence satisfying the 
above property for N Ew"l. 

Finally we want to define a stochastic integral of Stratonovich type but, in 
doing so, we must assume that M is a diffusion. So in the remainder of this 
section, we assume that J = k = 0. 

Definition3.4. Assume that J = k = 0 .  Let u c ~  and v~L2(X; #<,>). The a.f. 

v" M ~"1 + F(v. M t"~) (3.1 i) 

is called the stochastic integral of Stratonovich type of v(X.)  with respect to 

A t"~. We denote it by i v(X~) ~ 
0 

We discuss a local extension of the stochastic integral of Stratonovich type. 
Denote by zB the leaving time of a Borel set B of X. 

Lemma3.4.  Assume that J = k = 0 .  Let M (1~, M(Z)eJ~ and G be a relatively 
compact open set of  X. I f  #<M(~)_M(2))(G)=O, then we have for t<-_zaF(M~ 
= F(M(2)), and M} 1) + F(M(1))t = M~ 2) + / ' (M(2) ) t .  

Proof Consider h ~ @ ~  Co(X) such that supp(h)c  G. We have from Lemma 2.2 
in [9J #<h>(X- G)= 0 and this implies 

#<MthJ, M(~,- M(2)> (X) 2 

< 2 #<h> (X) #(M(1)_ M(2)) (G) + 2 #<M(.- M (2)) ( X )  #<h)  ( X  - -  G) 

= 0 .  

Consequently we obtain that gl(V(M~ namely, G is a 1- 
regular set of v(M(~))-7(M(2) ). By the same argument as in the proof  of 
Theorem 5.3.4 in [6], we can conclude that F(M(a))t=F(M(2))t for t<zo .  Com- 
bining this with Lemma 5.4.6 in I-6], the second assertion is also proved. 

The following lemma is immediate from Lemma 3.4. 

Lemma  3.5. Assume that J = k = 0 .  Consider u l , u 2 6 ~  and bounded Borel func- 
tions vl and v2 on X. Let G be a relatively compact open set of X. I f  ul =ue m- 
a.e. on G and v l=v2 on G, then we have for t< zo  

0 0 

For  a relatively compact  open set G of X define J~(G)={ulo;ueo~}.  By 
virtue of Lemma  3.5, for w e ~ ( G )  and a bounded Borel function g on G, we 
can define an integral A which is defined locally; 

t 
A,=~g(X,)odA~ wJ for O<-t<za. (3.12) 

0 

We say that u is locally in ~-(u~,~or in notation) if ulo~,~(G) for any 
relatively compact  open set G of X. Lemma 3.5 enables us to extend Defini- 
tion 3.4 as follows: 
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Definition 3.5. Assume that  d = 0  and ( - - c~ .  Let  v be a locally bounded  Borel 
function on X and u S ~ o r  There  exists the unique a.f. A such tha t  for any 
relatively compac t  open set G of X 

At=ivlG(X,)odA~"l~a for t < z a .  (3.13) 
0 

t 

A is denoted by ~ v(X~)odA~ "~. 
0 

4. ItS Formula 

In this section we show that  the usual I t6 fo rmula  for the semimart ingales  
t 

remains  valid in our  s i tuat ion if we use the integral ~ v(Xs) dN~ "j of Sect. 3. In 
o 

this fo rmula  N M plays the same role as a process of bounded  var ia t ion in the 
usual I t6  formula,  cf. [2]. Consider  7JECI(R ") such that  7/(0)=0. Here  C(R")  
is the space of all /-th cont inuously  differentiable functions on R' .  It is known 
that  7flu1, u2 . . . . .  u , ) ~ ;  for ul ,  u2, ..., u , ~ .  First  we present  a I t6 fo rmula  for 
the stochastic integral of I t6 type. 

Theorem 4.1. Let (be C2(R n) and ul, U2,..*, IAn~b. Then we have for t >O 

�9 (~(x,))- ~(~(Xo)) 

= i 
i=1 o (4.1) 

t c c 

+�89 ~ #hj(u(X,))d(M t~'~, Mt"JJ)s + Vt~ 
i , j =  1 0 

t 

+ 
i = 1  0 

where 

i ( )  =~x~xl (x), q ) i j ( x ) = ~ ( x )  (i , j=l,2,. . . ,n) 

and u=(ul,u2, ...,u,). 

Proof We may  assume q~(0)---0. Put  wi=7(~i(fi)'M L"'~) for i = 1 , 2 , . . . , n .  For  
h6~b we have f rom (2,3), (2.4) and T h e o r e m  5.4.3 in [6] 

n 

gl (wl, h) = �89 Z ~ ~i (fi (x)) d#<Mth~ + ~tt~, Mrs,l> (x) 
i = 1  i = 1  X 

= E~(~(u), h) - 2~ (h) - 22 (h) - 23 (h), 
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where  

and 

- (~(x)- ~(y)) J(dx ~y), 

~ ~(x) clk(x) 
i = 1  

;~(h) = ~ ~,(u(x)) h(x) am(~). 
X 

It is easy to see that for i =  1, 2, 3 2dh) is a cont inuous  linear funct ional  on  the 
Hilbert space (~, ,gt) .  By virtue of  the Riesz  theorem there exists a unique 
g ~  ~ such that 2~(h) = g l  ( g i ,  h) for h ~ (i = 1, 2, 3). Obvious ly  we  have  

t t 

w i = ~ ( u ) - g a - g z - g a  and N~;g~I= -S  ~(u(X~))ds+ ~g~(X~)ds. 
i = 1  0 0 

Therefore  we  obtain  

t 

i dPi(u (X~)) d N~" '] = N[ *(u)l - Nt [~1 + g~l + S (gl + g2) (x , )  ds 
i = 1  0 0 

i = l  

where ~ ( x ) = q ~ ( x ) - ~ b d 0  ) for i=1 ,2 , . . . , n .  This  equality implies  that the right 
hand side of  (4.1) is equal  to 

~*~"~ + N L~"~ + edu(X~)) dM~",~ - N  E~,~ + f g~(X~) & 
k i = l  0 0 

i =  i O < s < - t  

}{it i = 1  i 

i } + ~ g d x , ) & +  F~ (-~(~(x~_))+ ~(~(x~_))~(x~_)) 
0 ~ t  i = 1  

c 
= M[ e(")~ + N r*(")l + J~ + K~. 

j k 

Therefore it is sufficient to prove  J~----=M~ ~(u)l and Kt-M~/~ e(")j. 
J 

W e  s h o w  J t ~  *("~1. Let {Kz}~= 1,z .... be an increasing sequence  of  compac t  
sets of  X such that l i m K z = X  and p be the metric  of  X. W e  put for i 

I--* cO 

= 1 , 2 , . . . , n  and / = 1 , 2 , . . . .  
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V/q)= ~ (ui(X.)--~i(Xs-))I{(x.,x._>D,i, 
O < s < t  

Vt (t)- ~ (~(fi(X~))-~)(fi(X~_)))I{(x=,x~_)~o,), 
0<a< t  

Wt i( ' ) :  ~ (~(fi(Xs))-~(fi(X~_)))S((x:,x._)~D,}, 
O < s < t  

2t~/}-aa) = ~.o,  2~/~a,(,,)](~) = ~(o and /~/~(,,)l(o = i~/(o, 

{ 1} 
where Dl=  (x ,y )eKzxKz;  p(x,y)=>~ . By virtue of the Riesz theorem there 

exists a unique f (0e~ -  ( /=  1,2, ...) such that  for he~-  

{ ,)t( r (~ (x)) (ui (x) -- ui (Y h(x) - h(y)) J(dx dy). #, ( fa / ,  h) = 5 q~(fi(x)) - q~(fi(y))-i=l 
DI 

Putting for l = 1, 2,. . .  

,,("= i 
i = 1  0 0 

i = l  O<s=t 

" ))} i{( -,~=1= ~,(r,(Xs_))(r,,(X~) -r,,(X~_ x~,,._)~.,}, 

we have from the symmetry of J for h e ~  

lim i Eh.m [Jt (0 --D} @(u)l(/)] 
t-+0 t 

= 2 ~, ~/~(x) ~i(fi (x))(ill(x) -- ill(Y)) J(dx dy) + gl (f(o, h) 
i = 1  D1 

- ~ I/~(x)(~i(~(x)) - ~i(~(y))) (ai(x) - ~i(y)) J(dx dy) 
i = l  Dl 

--2 f/~(x)(r -- 4~(fi(y))) J(dx dy) 
D1 

- - 0 .  

By virtue of Theorem2.2 we arrive at Jt(~ ~(~)1(~ for l = 1 , 2 , . . . .  Since 
{Kt}l=l,2 .... converges to X and {f(~ 2 .... converges to gl in (if, g1), there 
exists a subsequence {/'} satisfying that for q.e. x eX,  p~(j}r) converges to Jt on 

J J 
each finite interval of [0, oo))= 1 and P~(M} *('re(r) converges to M~ *(u)l on each 

J 
finite interval of [0, oe))= 1. Therefore Jt = MI e'(')l. 

k 
We can prove Kt = M~ e(")l in the same way. 
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Now we discuss a It6 formula involving the stochastic integral of Strato- 
novich type. 

Theorem4.2. Assume that J = k = 0 .  Let OeCI(R"), U~,U2,. . . ,U,~b and g be a 
bounded Borel function on X. Then we have for t >= 0 

t t 

g(Xs)odA~ *(")1 = ~ ~ g(Xs) cbi(u(Xs))odA~ "d, (4.2) 
0 i = l  O 

3~ 
where u =(ul ,  u2,..., u,) and ~bi(x) =~xl  (x) (i = 1, 2 . . . .  , n). 

Proof It is known that g'M[e(")]= ~ g(pi(u).M t"~l. Since the mapping F is 
i = l  

linear we obtain F(g. M[e(")])= ~ F(g ~bi(u)" Mr"'~). Thus (4.2) follows from the 

definition of the stochastic integral of Stratonovich type. 

We can easily obtain the following corollary. 

Corollary 4.1. Assume that J = k = 0 .  Let G be a relatively compact open set of X. 
Consider ~eCI(R"),  Ul,U2 .... ,u,~~ and a bounded Borel function g on G, 
where ~(G)={vlG;  v ~ ; } .  Then it holds that for t<=z~ 

i g(Xs) ~ ~ i g(Xs) ~bi(u(X~))~ "d, (4.3) 
0 i = 1 0  

u =(Ul, u2,..., u,) and ~i(x) = ,0-~-~ (x) (i = 1, 2, . . . ,  n). where 
cxi 

5. Stochastic Line Integral of Differential Form Along Paths 
of Diffusion Process 

The purpose of this section is, using the stochastic calculus in Sect. 3 and 
Sect. 4, to define the stochastic line integral for symmetric diffusion processes 
on manifolds in a systematic way. 

Consider an m-symmetric diffusion process M =(f2, N, (, Xt, P~) on a o--com- 
pact d-dimensional manifold X such that ( =  Go. The Dirichlet space associated 
with M is denoted by (~,E) and in this section we assume that C~(X) is a 
dense subspace of (o~,gl), where C~(X) is the space of all C~~ with 
compact support. Let Al.b.(X) be the space of all differentiable 1-forms on X 
with locally bounded Borel measurable coefficients. 

Definition5.1. Let c~ALb.(X). A continuous a.f. satisfying the following con- 
dition is called a stochastic line integral of e along Xt (0__<t< oe); for any local 
coordinate neighbourhood (U, q5 =(x  1,x2, ..., xd)) of X such that U is relatively 
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compact, it holds that 

P~ S~i(Xs)odA~ ~q for t < z v  =1 (q.e. xeX),  (5.1) 
- 0 

d 

where e =  ~ ei(x)dx i on U. A~ is often denoted by ~ e. 
i = 1 X[0, t] 

LemmaS.l .  For any ~ffAl.b.(X) the stochastic line integral of  ~ along Xt 
(0 < t < o~) is determined uniquely. 

Proof. Assume that continuous a.f.'s A (1) and A (2) satisfy (5.1). For  relatively 
compact local coordinate neighbourhoods (U,O=(Xl,X2, . . . ,xd))  and (V,O 
=(yl, y2, . , . ,  yd)), applying Corollary 4.1, we obtain 

P~ cq(Xs)odA~ xq= fii(Xs)odA~Yq for t<=zvnv =1 (q.e. xeX) ,  
i =  i = 1  0 

d d 

where e =  ~ ~(x)dx  i on U and ~= ~ fli(Y)dY ~ on V. Consequently there exists 
i = 1  i = 1  

a stopping time q such that P~(q>0)=l  and P~(A(a)(t)=A(2)(t) for t=<q)=l for 
q.e. x e X .  Thus, using the additivity of a.f., we can conclude that A(a)=-A (2). [-1 

Now we discuss the existence of the stochastic line integral of ~EAI.b, (X) along 
Xt ( 0 < t <  oo). To prove this, first of all, we construct a Hilbert space of 1- 
forms on X with Borel measurable coefficients which is isomorphic to the 
Hilbert space ( ~ ,  e) in a natural way. We choose q/={(U,,  qS, ) ;n=l ,2  . . . .  } 
satisfying the following conditions; 

(i) for each n=  1,2, . . . ,  U, is a relatively compact open set of X and all 
components of ~b,(x)= (x~, (x), xZ(x) , . . . ,  xd,(x)) belong to C; ~ (X), 

(ii) for each n=  1, 2, ..., (U,, q~,lv,) is a local coordinate neighbourhood of X 
and { U,},=,, 2 . . . .  is an open covering of X. 

n--1 

Put V1 = U1 and V, = U , -  ~J Uj(n > 2) and fix a a-finite Borel measure a on 
j = l  

X satisfying (2.7). For i, j =  1, 2, ..., d and n=  1, 2, ... the Radon-Nikodym de- 

rivative d#<~L~{> (x) is denoted by dj(x). Setting a~ (xeV,,  n 
2da 

=1,2 , . . . )  and A(x)=(aiJ(x))i,j=l,2 ..... d, then it is easy to see that for a-a.e. 
d 

x e X ,  A(x) is symmetric and non-negative definite. A 1-form e =  ~ ai(x)dxi, 
d i = l  

( x E V , , n = l ,  2, ...) on X is denoted by c~= ~ cq(x)dx i simply. For 1-forms c~ 
d d i ~ 1  

= ~ ~i(x)dx i and fl= ~ fli(x)dx i on X, define 
i = 1  i = 1  

d 

(~,f l>(x)= 2 ~i(x)flJ(x)aiJ(x) ( xeX)  
i , j= 1 

and 
IE(~,/~) = ~ <~,/~>(x)da(x). 

X 
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Let  IF* be the space of all 1-forms with Borel measurab le  coefficients c~ on 
X such tha t  IE(e, e) is finite. OF*, IE) is independent  of  a choice of ~/ ans o. 
Two  1-forms ~ and fi in IF* are said to be equivalent  if I E ( e - f i ,  e - f l ) = 0  and 
the set of  all equivalence classes of  IF* is denoted by IF. We shall show that  
(IF, IE) is the desired Hi lber t  space. Set for ~//g~/~ and i =  1,2, ..., d, fidx; M) 

- da (x) (xeV,, n = 1 , 2  . . . .  ). 

Lemma 5.Z Let M~Jg.  Then it holds that tfi(x; M)=t(f i l(x;  M), 
fi2(x; M) . . . . .  fie(x; M))eRangeA(x)  for a-a.e, x e X ,  where ta=t(a~, ...,aa) is the 
transposed vector of acR  e . 

Proof FirsV, consider the case where  M = f . M  tu3 ( f eCo(X) ,  usC~(X)) .  The 
assert ion is clear. By virtue of  L e m m a  5.4.5 in [6], for any  M e J ~ ,  we can find 
sequences f , e  Co (X) and u ,e  C~ (X) (n = 1, 2 , . . . )  such that  {M, 
=fn'M[U"]}n=l,2... converges  to M in (J~,e) .  Then  applying L e m m a  2.3 we 
obta in  l i m ~ l f i i ( x ; M , ) - f i i ( x ; M ) l d a ( x ) = O  for i = l , 2 , . . . , d .  This implies 

n ~ ~  X 

tfi(x; M)eRangeA(x )  for a-a.e, x e X .  

L e m m a  5.3. Let c(x) be a Borel measurable symmetric nonnegative definite (d, d)- 
matrix valued function on X and f (x) be a Borel measurable Re-valued function 
on X. I f  t f (x)~Rangec(x)  for any x~X ,  then there exists a Borel measurable R e_ 
valued function g(x) on X such that tf (x)= c(x)tg(x) for any xeX .  

Proof Put  c~(x)=e(x)+eI  (e>0) ,  where 1 is the identi ty matrix.  Then  we can 
easily check that  {c~(x)-l~C(x)} is convergent  as e--*0 and tg(x) 
= lira c~(x)- 1 tf(x) satisfies ~C(x) = c(x)tg(x) for any x e X .  [3 

e - -*0  

L e m m a  5.4. Consider MeJg .  
(i) There exists a Borel measurable Re-valued function c~(x; M) on X such 

that 
tfi(x; m)=A(x ) t e ( x ;  M) for a-a.e, x e X .  (5.2) 

(ii) I f  a Borel measurable Rd-valued function 

~(x; M ) = ( ~ l ( x ;  M), c~2(x; M), ..., ,e(x; M)) 

on X satisfies (5.2), then we have 

Proof (i) is immedia te  f rom L e m m a  5.2 and L e m m a  5.3. To  p rove  (ii) we 
choose sequences 

fmeCo(X) and UmeCg(X) ( m = l , 2 , . . . )  

such that  {Mm = f ~ ' M  t""l} converges  to M. N o w  fix n = 1, 2, ... and set 

XN={ xEVn; i=l ~ e d x ; M ) Z < N }  f ~  
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In view of (2.2) and (5.2) we can obtain 

i i d ~U m 

i=l XN 
d ~U m 

= ~ S f~(x) Ox~(X)Cg(x;M)aq(x)da(x) 
i,j= l XN 

d 
= Z I a j ( x ; M ) d / 2 < ~ , M ~ > ( x )  

j = l  XN 
d 

= ~ S aj(x;M)fij(x; M~)da(x). 
j = l  XN 

Therefore, letting m ~ o% Lemma 2.3 provides us with 

�89 { ~ e~(x;M)e2(x;M)aq(x)} i ,j= 1 

and then, letting N ~ o% we have by Lebesgue's monotone convergence theo- 
rem' 

�89 (gn)= I M)O~j(X; M)aiJ(x)  da(x) .  
v~ i, 

The proof is thus completed. D 

The above lemma provides us with the following theorem. 

Theorem 5.1. (IF, IE) is a Hilbert space which is isomorphic to the Hilbert space 
(~, e) by the isomorphism ~ characterized by 

~(fdu)=f.M ~"l for f~Co(X) and uEC~(X). 

d 

Proof For 0~= ~ O:i(x)dxiEIF and n = 1, 2, ... we denote by M~ ~j the limit in ~/~ 
i = 1  

of the sequence 

where 

Since 

] 
(]X~ N O~i)" Mc ~1~ i =~1 x "% ' j N =  1,2.." 

e(Mtf, Mtm~l)=b",m S (~, cO(x)da(x), Mc~I= ~ M~, ~j 
Vn n= 1 

is convergent in ( ~ ,  e) and e(M M) =IE(~, ~). Setting ~(~)= M r~l it is clear that 
is a linear operator from IF to ~ .  Z is injective from e(M~)=IE(~,  ~) (~IF)  
and, applying Lemma 5.4, Z is surjective. [~ 

Now we show the existence of the stochastic line integral of o~Al.b.(X) 
along X~(0< t < ~).  
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Theorem 5.2. The stochastic line integral of ~EAI.b.(X ) along X~(O< t< ~ )  exists. 
In particular if ~6ALb.(X)cMF, then the stochastic line integral of ~ along 
X~(O < t < ~ )  satisfies 

~=~(~),+r(~(~)), for t>o. 
x[0,t] 

Proof First consider the case where ~EAI.b.(X)~]F and put A=~(c~)+F(3(c~)). 
It is sufficient to prove that A satisfies (5.1), because A is a continuous a.f. 
already. Let (U, r =(x  1, ..., xa)) be a relatively compact local coordinate neigh- 

d 

bourhood of X and ~= ~ ~i(x)dx i on U. For  any bounded Borel measurable 
i = 1  

R<valued function (~l(x), ~2(x) . . . .  ,~a(x)) on X with (~l,~2,...,~a)lv 
=(~1, ~2,-.., c~a) and any (ul, u2, ..., Ud) (UI~Y i= 1, 2, ..., d) with (ul, u2, ..., ua)l 
=(x  1, x 2, ..., x a) m-a.e, on U, we can easily check that 

~(~ ~.M~o,,_~(~)) (U)=~ 
i 1 

So Lemma 3.4 implies for q.e. x ~ X  

d t . ) 

Namely A is the stochastic line integral of ~. 
Using Lemma3.4 again, we can see the existence of the stochastic line 

integral of ~EAI.b.(X). 

Remark 5.1. For a certain class of symmetric diffusion processes on a manifold 
such that {M["~; u ~ }  is a closed subspace of d),  Kusuoka has defined the 
stochastic line integral of c~sIF by ~ ( ~ ) + N  fwl, where w e ~  is an element with 
M H = ~ 3 ( c 0  and ~ is the projection in Remark 3.2. Our present definition 
is an extension of his to a more general situation (see Remark 3.2). 

Finally we state an application of the stochastic line integral. This is due to 
Kusuoka (a communication at a conference on Markov processes, held in 
Japan 1981). 

Example 5.1. Let A(y)= (aiJ(y))~,j=~,2 ..... a be a measurable, bounded, symmetric 
and uniformly elliptic (d, d)-matrix valued function on R d. Suppose that each 
component of A(y) is a periodic function with period 1 in each coordinate y~ 
(1 <i<d). Consider the symmetric diffusion processes {Yt ~} (e>0) on R d whose 
Dirichlet forms are 

0u 0v .. 
g(~)(u,v)= ~ ~iyi(Y)~Ty~(y)a'J(Y)dy. 

i , j = l R  a 

Fukushima [-7] discussed the homogenization problem for {Y~} and showed 
that { Y~} is convergent weakly in C([0, ~ )  -~ R a) as e-~ 0. 

Kusuoka formulated the above homogenization problem as a limit theorem 
of the stochastic line integral e ~ ~ of the 1-form ~. Here X~ is a symmetric 

X[0,  t/~, 2] 



Stochastic Calculus for Additive Functionals of Zero Energy 577 

diffusion process  on  a to rus  T d = [ 0 ,  1) a whose  (ex tended  recur ren t )  Di r i ch le t  

space (g, ~-) is g iven  by  

a n d  

d 

g(u,v)= y" r~ ~ Ou ?v 
i,j=a ~ ( X ) ~ x j ( X ) a l J ( x ) d x  

Y =  { u ~ H t ( T e ) ;  ~ u(x)dx=O,  u(x 1, . . . ,  x i - 1 ,  0 + ,  X i+l . . . . .  X d) 

T a 

. . .  ~ X i + 1 X d )  =u(x  1, x i - l ,  1 - ,  ..., 

for a.e. (x 1, ..., x i-1, x i+1, ..., x a) (l=<i=<d)}. 

In  pa r t i cu l a r  we can  see tha t  Yt~-Y~ is e q u i v a l e n t  to (e ~ dxi)a<=i<=a. F o r  
X[O, t/~ 2] 

1 <-i<-d there  exists the  u n i q u e  b o u n d e d  f u n c t i o n  Z ~ e ~  such tha t  

IE (dx l -d z~ ,du )=O for any  u 6 ~ -  (5.3) 

(see [71). I t  ho lds  tha t  for 1 <_i<_d 

~ dx i=e  ~ (dx i - d z l ) + e z i ( X t / ~ ) - e z i ( X o )  
X[O, t/e 21 X[O, tie 2] 

a n d  the  above  s tochas t ic  l ine  in tegra l s  are  well  def ined  ( R e m a r k  5.1). Since the  

m a i n  pa r t  of  the  above  express ion  is (e ~ (dxi-dxi) ) l<i<e,  the  cova r i ance  
X[0, tie 2] 

f u n c t i o n  of the  l imi t ing  W i e n e r  process  is d e t e r m i n e d  by  IE(dx i - d Z  ~, dxJ-dzJ) ,  
the  h a r m o n i c  pa r t  of  the  1-forms dx i (in the  sense of (5.3)), i , j=  1, 2, ..., d. 

Acknowledgement. I would like to thank Professor Shigeo Kusuoka for allowing me to refer to his 
unpublished result. 
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