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Abstract. Let X1,  X 2 . . . .  be i.i.d, positive random variables, and let p, be the 
initial rank of X, (that is, the rank of X, among X 1 . . . .  , X,). Those obser- 
vations whose initial rank is k are collected into a point process N k on IR +, 
called the k-record process. The fact that {Nk; k=1,2 ,  ...} are independent 
and identically distributed point processes is the main result of the paper. 
The proof, based on martingales, is very rapid. We also show that given 
N 1, . . . ,N  k, the "lifetimes" in rank k of all observations of initial rank at 
most k are independent geometric random variables. 

These results are generalised to continuous time, where the analogue of 
the i.i.d, sequence is a "time-space" Poisson process. Initially, we think of 
this Poisson process as having values in ~ + ,  but subsequently we extend to 
Poisson processes with values in more general Polish spaces (for example, 
Brownian excursion space) where ranking is performed using real-valued 
attributes. 

1. Introduction 

Let X 1, X2, ... be i.i.d. (independent, identically distributed) positive random 
variables with distribution function F; we assume that F ( x ) < l  for all x, and 
F(0) = 0. Define the initial rank p, of X, by 

Pn--- no. of k < n such that X k > X,, 

and define for each j = 1, 2 . . . .  the stopping times 

T ~ O ,  TJ+I -=inf{k: k J > T~, Pk =J} (neZ+) �9 

The times T~, TJ, ... are the times at which observations with initial rank j 
occur, and the values of those observations are 

RJn=-XT~ ( n = l , 2  . . . .  ). 
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It is clear that R{ <RJ2 <. . . ,  and we may think of the points {R~: n~N} as a 
point process in P,+. For  the present, this and other point processes will be 
most  conveniently formulated by the counting process, here given by 

= ~ 1 {R~ (x >_ 0). N~-J __<x} 
n = l  

We call this point process the j-record process. Thus the 1-record process is just 
the ordinary record sequence. Collectively, these processes are partial record 
processes. 

If the law of the X i is exponential with mean 1 then it is not hard to see 
that N ~ is a unit Poisson process, that is, N~ - x  is a martingale. However  it is 
far from obvious that 

{NJ;j> 1} are i.i.d, unit Poisson processes; (1.1) 

this is a special case of our main result, Theorem 1. 
Next we consider lifetimes of observations in various ranks, i f  T, j = t, then 

the rank of Xt=RJ, among X 1 . . . .  , X  t is j, but as more observations are taken, 
the rank of X t among the larger sample X1, ... ,  X m increases as m > t increases. 
We define the lifetime IJ', k of the observation R~ in rank k(k>j)  to be the 
number  of integers m such that X~ is ranked k th among X 1 . . . .  , X m. 

Lifetimes depend in a complicated way on the partial record processes. 
Where this dependence becomes transparent is in that 

conditionally on {N~; j =  1, 2 . . . .  , k} the lifetimes IJ', k in rank k 
are independent, for j = 1, 2,. . . ,  k and n = 1, 2 . . . . .  with laws 

P(IJ~ k = I I Ni; i = 1 . . . . .  k) = (1 - F(R~)) F(R~) '-~ (I~IN). (1.2) 

The reader will agree, we feel, that this result is intuitively ' r ight '  even without 
the result (1.1). 

Our proof  of (1.1) is straightforward and short, but, being largely computa-  
tional, it does not give a very clear explanation of the amazing fact that the N j 
are i.i.d.. We outline now an argument  that makes (1.1) plausible, even though 
it would not be easy to formulate rigorously. For  simplicity, F (x )=  1 - e  -x. 

Fix some k > l  and consider the j-record processes for j < k .  Discard every 
observation of initial rank bigger than k, leaving a subsequence Y~---Xnj. We 
shall consider the first point Y=-R~ of the k-record process and show that, 
conditional on Nk, the a-field generated by N 1, . . . , N  k-~, Y has density e -x. 
Obviously, none of the first k - 1  observations can be in the k-record process, 
although the k th might be. Figure 1 illustrates the situation after the first k - 1  
observations have been made (taking k--5):  

+ 
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I- . . . .  t 

Fig. 1 
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Fig.  2 

Let x be the smallest of the first k -  1 observations. At the k th observation, one 
of two things may happen: 

(i) X k < x, in which case X k = Y; 

(ii) Xk>x, in which case Y>x. 
In the first case, 

P(Y~dyl(r for O<=y<x. 

In the second case, Y must be greater than x, so any subsequent observation in 
[0, x] can be ignored. So the situation is now that illustrated in Fig. 2 where x' 
is the second smallest of the first k observations. But if we ignore observations 
in [0,x],  the observations in (x, oe) are i.i.d, exponential random variables, so 
the picture in Fig. 2 is essentially the same as in Fig. 1; we are waiting for the 
first rank k observation. By the argument in the first case then, 

P(Y--x~dylq~k, Y>x)=e-Ydy for O<y<x'-x 

But P(Y>X]Nk)=e -x, so that P(Yedy[Nk)=e-Ydy for O<y<x' and the con- 
ditional density of Y is negative exponential, not just on the (stochastic) 
interval [0, x ] ,  but now also on the larger stochastic interval [0, x']. Repeating 
the argument, we extend the conditional density to the whole of R+. 

The instant T1 k of the first observation of initial rank k is a renewal epoch, 
so the whole procedure starts afresh, and the random variables Rk,+~-Rk, are 
independent negative exponentials. This makes it at least (and at most !) plau- 
sible that N k is independent of N 1 . . . . .  N k - 1. 

The statement (1.1), or equivalently the F-continuous case of our Theorem 
1, is known. It seems to have first been stated by Ignatov [81, but there the 
reader is referred for proof to Ignatov [7], a paper which despite its date has 
not yet appeared (in any form). Motivated by Ignatov's assertion, A.J. Stam 
and the first author independently found proofs, different from each other and 
from that below, in 1982. See Stam [15] and Goldie [5]. Meanwhile P. 
Deheuvels, knowing nothing of the above references, had also formulated and 
proved (1.1), and his work has appeared as Deheuvels [4]. For  convenience's 
sake, and in keeping with an old tradition, we shall refer to (1.1) as 'Ignatov's 
theorem'. 

Conditional independence of lifetimes (1.2) was also found independently by 
Stam and the first author, motivated again by a result in Ignatov [8] giving 
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the k = 1 version of (1.2). Actually the k = 1 case is a rediscovery of a result of 
Shorrock [14] Theorem 2.1. To Shorrock [12, 13] is also due the structure of 
the record process for general F, a structure which we show carries over to the 
partial record processes. So it is appropriate that we use the name "Shorrock 
processes" for the point processes which arise in this way. 

The plan of the rest of the paper is as follows. The point processes N j are 
Poisson only when F is an exponential law. For  general F the larger class of 
Shorrock processes is needed; it is set up and characterised in w In w the 
characterisation is used to prove Theorem 1, by identifying a suitable family of 
martingales. w is devoted to (1.2). w 5 extends everything into continuous time. 
As befits a generalisation section, there we shall only sketch the relevant 
proofs. The extensions turn out fruitfully: we shall find ourselves splitting a 
' t ime-space Poisson process '  by initial rank into i.i.d. ' space '  point processes. 
That  has immediate application to the jumps of L6vy processes. On more 
general spaces, for instance excursion space, one can rank values by some 
chosen real-valued 'a t t r ibute '  (w Different attributes will give different re- 
sults, and we close with two selected examples based on Brownian motion. 

- 2.  S h o r r o c k  P r o c e s s e s  

Let N t be a counting process (a 2g+-valued increasing cfidl~tg process on [0, oo), 
with unit jumps). Let ~N--a(Ns; s<_t) be the canonical filtration of N. Let F 
be a distribution function, F(0)---0, F ( t ) < l  for all t; then we say N t is a 
Shorrock process (derived from F) if 

dF 
M t -  Art- ~ is an (~N)-martingale. (2.1) 

(O, tl 1 - F ~ _  

Remarks. (i) The case F ( x ) = l - e  -~ furnishes us with the familiar Poisson 
martingale N t - t. 

(ii) Let z I <~2 <---  be the jump times of N;  

z ,+ l - in f { t>%;  Nt@Nt_ } (n>O) 

where z 0 is defined to be zero. Then the law of z 1 is F. 

(iii) If c=-sup{t;F(t)<l} is finite, the definition of M has to be reinter- 
preted in (c, oo). We have assumed c =  + oe because in the records application, 
if c < + oo one of two cases arises 

(a) F ( c - ) = l ,  so that F is concentrated on [0,c). In this case we can 
identify [0,c) with N+  by a strictly increasing continuous map and reduce to 
the case c = + oe. 

(b) F ( c - ) <  1, in which case F has an a tom at c, and there will be infinitely 
many Xn taking that value. This is not very interesting from the records point 
of view; we could always replace F by 

rE(x) (x < c) P(x),--(F(c_)+ ~ {1-e-~-~}AF~ (x>c) 
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and we could deduce all the information about records for the law F from the 
records for F. 

(iv) Defining 
(t => 0), A,--- 1 _  g 

(0, t] 

it is plain that A can be any right continuous function on [0, ~ )  with the 
properties. 

A non-decreasing, A(0)=0, A ( ~ ) =  o% AAt< 1Vt. (2.2) 

Here, A A t = A t - A t .  Removing the jumps, we get the continuous part, A C. In 
terms of A, (2.1) can be rephrased in the form: a Shorrock process on [0, oo) is a 
counting process with deterministic compensator A satisfying (2.2). 

Counting processes with deterministic compensator have been characterised 
by Br6maud [3], and Kabanov, Lipster and Shiryayev (see Lipster and Shiry- 
ayev [10] Theorem 18.9). Paraphrasing their characterisation, and combining 
with the above, we find that a Shorrock process is a counting process N having 
independent increments and with increment taw given by 

EeiZ(N'-us)={s~<=t(1-(1-eiZ)AA,)}exp(-!(1-e~Z)dA~ ), 

( O < s < t <  oo, 2~IR), 

where A satisfies (2.2). In other words, it is a Poisson process of intensity 
measure dA~ together with independent 0 - 1  valued random variables at the 
jumps of A, and as a Shorrock process, in particular, the 0 - 1  variables must 
each have positive probability of being zero, and the cumulative mean A t = EN~ 
must tend to ~ as t--+oo. 

We shall use the characterisation in generating-functional form. Let 
q~ : IR + ~(0,13 be measurable; then 

E(1]  ~b(~,))={l- [ ( 1 - (1 -~s )AAs ) }e x p  - (1-qS~)dA~ , (2.3) 
n>l .  s > 0  

where the z, are the jump-times of N. To prove this from the characterisation, 
just approximate l -q5  by step-functions. Conversely, (2.3) is essentially the 
Laplace functional of the process (replace ~b by e-*), hence determines its law. 

In particular, it is easy to see that if F has no atoms, then the Shorrock 
process N t is a Poisson process, with intensity measure dAx=F[x  , oo)-1F(dx). 

3. The k-record Processes  are i.i.d. 

We turn now to the main result. 

Theorem 1. The k-record processes N k (k=1,2 ... .  ) are i.i.d. Shorrock processes 
derived from F. 

Remarks. As already stated, the proof is essentially computational, but first we 
set up some notation, and explain the central idea. Let X,  ~ >X~>...____Xk, be 
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the first k order-statistics of X~ .... , X, ,  with the convention X~=0 if j>n.  Let 
the ~bj: l (+ ~(0, 1] be measurable and, as will be adequate for character]sat]on, 
equal to 1 outside some compact set. Let 

then if we can prove 

Uj = I~ qSj(R~); 
n > l  

(1-dpj(s))dA~ 1--I (1-(1  --dpj(s))AAs) , 
0 s > 0  

(3.1) 

the theorem follows from (2.3). k 
Let ~ be the a-field generated by X1 . . . . .  X,, and let U ~ [ I  Uj. Then U is 

1 

a bounded non-negative random variable and E(UI~)  is a bounded non- 
negative martingale. Some of the factors in Uj are known at time n; explicitly, 
if 

{m: TJm<=n} 

then E(UjI~)= V]E(Uj/V]I~). Now Us/V ] is the product of dpj(R~) over those r 
such that R]>X~, s o / f  the theorem is true, then 

E(u jv i )=  f j(x ) 
where 

f j (x ) -exp  ( - ~  (1-Oj(s))dA~) [ I  (1-(1-dpj(s))AAs). 
x s > x  

We shall indeed prove that 

k 

M n -  [I  V]fi(X~) is a bounded martingale. (3.2) 
j=l 

k 

=l-[f~(0), and Moo= U because fj(x)= 1 for large enough x, so by the 
1 

Then M o 

optional sampling theorem 

EMoo 
k 

= eU =[Ifj(O)=EMo, 
1 

which is, of course, (3.1). 

Proof. In view of the preceding remarks, all we need do is to prove that M, 
defined by (3.2) is a martingale, and for that, the following rather surprising 
formula covers a key calculation. 

Proposition 3.1. For 0 <_ a < b, 

S 4)j(s) fj(s) dF~ = fi(a) if(a) - fj(b) if(b), 
(a, b] 

where ff = 1 -- F. 
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Proof For  ease of notation, we omit the subscript j. Writing ~ - 1 -  ~b, the 
defining formula for f becomes 

f~=exp ( -  ~ tp~dA:) ~> x(1-~h~AA~) 
x 

whence 

dft = ft OtdA~ + Aft = ft~ttdA~ + ft - (1 - ~t AAt)ft 

= ft~tdAt= ft~k flFt/~_ 

Now differentiating ft/~ by parts, 

d(ftfft)= Ft_dft + f f l f t  

= f t~tdFt-  fflFt 

= -f~4)td~ 
as required. 

We now assemble the pieces. To prove that M n 
O__ under the convention X n = + o% we can write 

k 

E(M.+,L~)=E(M.+I;  X . + l < X ~ ] ~ ) +  ~ E(M.+I ;  XJn<Xn+l~XJn-l[O~n) 
d = l  

k 

<=Xn]~n) q- 2 E(Mn+I' j =M.P(X.+ a k ~ " X.<X.+I<=X~-I[.~). (3.3) 
j = l  

N o w i f  J 1~---~ j - - 1  r r r X . < X . +  X~ , then X . + I = X  ~ for r<j, X.J+I=X.+I ,  and X.+ 1 
- -  r - - 1  - X ~  for j<r<=k. Thus 

j E(M.+ 1; X . < X . + I < X J . - I I ~ )  
k j - - 1  k 

= [I V~ I~ fr(X~) 1~ f~( Xs-  1) ~ fj(x) (Oj(X) F(dx) 
l = 1  r=l s=j+l (X~,X~ -11 

k j - - 1  k 

[I  V. l l~ f.(X~.) I-[ ,-1 J F X J j -  1) F(X ~,- = f~(X. ) { f j ( X . ) ( . ) - f j ( X .  1)}, 
/ = 1  r = l  s = j + l  

using Proposition 3.1. 
Thus the sum in (3.3) telescopes, leaving 

k k 
E(M.+ ~ _  k 11 n)-M.F(X, , )+ l-] V~ [-[ s 

1=1 r = l  

completing the proof of Theorem 1. 

is a martingale, note that 

4. Lifetimes 

So far we have thought of the i.i.d, sequence {X.} as given, and have derived 
the counting processes {N J} from it. But Theorem 1 tells us that the probabi- 
listic structure of {N J} is every bit as nice as that of {X.}, so one might ask 



204 C.M. Goldie and L.C.G. Rogers 

whether one can recover {X,},__>~ from knowledge of the j-record processes 
{NJ}j>=I. Clearly we can find the values of the X,, but what about the order? A 
little thought shows that this too can be deduced from the N J inductively, for if 
we know the order in which the observations X~ , - R~  (n= 1, 2 , . . . ,  j =  1, 2 , . . . ,  
k - l )  appear, we can insert in that order the observations Rk, (n=1 ,2  . . . .  ). 
Indeed, the first k-record value, R~, is inserted when there have appeared k - 1  
of the j-record values (]= 1 . . . .  , k -  1) that are larger than R~. The subsequent 
values Rk, are inserted similarly. 

However, this inductive method of recovering the X,  from the N J is 
unsatisfactory in that the original sequence X, is obtained only as a limit; after 
we have ordered the observations in N~,.. . ,  N k, we still do not know the time- 
gaps between those observations. But the conditional law of the gaps is 
actually very simple, as the next result shows. 

Fix k, and define Wo-0,  W,+l=-inf{m:m>Wn, pro<k}. Thus the times 
L , -147 , -W,_  1 are the gaps between observations of initial rank at most k. Let 
Y, =-Xw., as in w 1, and abbreviate Xkw. to S,. 

Theorem 2. Conditional on { Y1, Y2, ...}, or equivalently, conditional on 
{N a, N2, ..., Nk}, the L, are independent, with distributions 

P ( L , = I ) = F ( S , _ f f - I { 1 - F ( S , _ O }  ( l=1,2  . . . .  ). 

(Recall that S~ - X ~  = 0 for n < k.) 

Proof As noted, the a-fields generated by {Yx, Y2 .. . .  } and {N ~, . . . ,N k} coinci- 
de, so it is sufficient to prove that 

znf(Sn-1) 
E 

. . . . .  1 - z , F ( S , _ I ) /  n = l  / = 

for each z.e(O, 1], ~: IRN~[o, 1]. 
This is true if N = I ,  and if we suppose true for N < M ,  by conditioning on 

~w~ firstly, 
( M+I ) 

E ~'(Y1,. ~ Lo �9 ., M+0 lq Zn 
n = l  

e n  =E z . .  F ( S j - l z ~ + ~  I 0 ( ~  . . . . .  gM,x)F(dx) 
- j = 1 ( S y ~ ,  oo) 

M z~+ 1F(S~) ] 

where ~(Yz .. . .  ,Y~t;s) = ~ ff(Yl . . . . .  YM, x)F(dx)/ff(s); 
(s, ~) 

~ e  . . . . .  Y~; s~)  1 ~ ~ )  ~=~l 1 - z . F ( S . _ I ) !  

by the inductive hypothesis, since S M is a function of Y~ . . . . .  YM; 
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~--E ff/(Y1 .... , YM+I) .=~l 11 ~ - z ~ $ 2 1  ) ] 

since ~(Y1,...,Ym;SM)=E(tp(Y1,...,YM+I)I~w~), and the product is ~w~- 
measurable. This completes the proof. 

The second result stated in the introduction is a simple corollary; indeed, 
the lifetime I2h k of the observation R~ in rank k is L~ for some r, and as 
Theorem 2 tells us the conditional law of L~ given N ~, . . . ,N  k, the result (1.2) 
follows. 

5. Continuous Time 

Suppose that the observations X > X  2 .... occur not at the integer time points 
1, 2, ... but at times 7'1, 7"2, ... where T1, T 2 -  T1, T 3 -  T 2 .. . .  are i.i.d, exponen- 
tially distributed random variables independent of {X,}, of rate /~. Then the 
points {(T,, X , ) } , ~  form a point process ~ in IR2+ which it is easy to see is a 
Poisson process of intensity t~dt x F(dx). Writing 2 for Lebesgue measure and 
defining v(dx)-I~F(dx), the intensity may be rewritten as 2 x v. The process ~ is 
a 'time-space Poisson process'. It forms a plot in a 'time-space diagram' of the 
jumps of the compound Poisson process 

X(t)= ~ Xnl{Tn<=t} (t>=O). 
n =  1 

Partial records of the jump heights X,  are, as we have seen, i.i.d. Shorrock 
processes, and conditional laws of lifetimes, instead of being independent 
geometric distributions, are now independent geometric compounds of expo- 
nential distributions. For  these we can use the elementary fact that if Y1, Y2 .. . .  
are i.i.d, exponential of rate #, and L is independent with law P(L=l)= 

L 
p(1-p)Z- l ( /6N) ,  then ~ Yj has an exponential law of rate p/~; this implies that 

1 
conditional on the first k of the partial record processes, the lifetime in rank k 
of an observation R~ of initial rank j < k  is an exponential random variable 
with rate #F(RJ,, ~)~v(RJ,, oo), and that the lifetimes in rank k of the different 
observations in the first k partial records processes are independent. 

Thus if the characteristic measure v of the time-space Poisson process ( is 
finite, the situation is essentially that considered in the first part of the paper. 
But if v were to be ~r-finite (as happens in most cases of interest), there are 
some slight changes. Indeed, the initial rank r(t, x) of a point (t,x) of 4, defined 
by 

r(t,x)=-~((O,t] x [x, oo)), 

will be finite a.s. iff v(x, oo)<oo for all x>0 .  As in w remark (iii), there are 
minor complications if the support of v is bounded above, so we shall assume 

0<v(x ,  oo)<c~ for all x~(0, oo). (5.1) 
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The only difficulty now is that the partial records processes cannot be thought 
of as counting processes; for each e > 0, there will be infinitely many k-record 
values in (0,e). Thus we think of the k-record process as an integer-valued 
random measure Ok; explicitly, for all Borel subsets B of (0, oo), 

Ok(B)-- ~ IB(x)I{r(t,x)=k}~(dt, dx). (5.2) 
F,. + x ~,,+ 

To specify the distribution of the Ok, we say an integer-valued random 
measure r on (0, oo) is a Shorrock process (derived from v) if for each measur- 
able qS: (0, oo)--,(0, 1] which is equal to 1 outside some compact set, 

E l-I qS(s)=exp - (1-qSs)dA; I - I{1-(1-r  
s~D(O) 

Here, d A s - v [ s  , oo)-lv(ds), and D ( 0 ) -  {s; 0({s})4=0}. 
As point processes, Shorrock processes can be characterised by the proper- 

ties: 

(i) r has no multiple points; 

(ii) r has no sure points (that is, P(0({s})= 1)< 1 for all s) 

(iii) for disjoint Borel A1, ..., A,,  r ..., O(A,) are independent; 

(iv) 0((0, oo))= + oo a.s. 
Note that, from (2.3), this definition coincides with the earlier one in the case 
where v is a probability measure. The analogue of Theorem 1 is the following. 

Corollary 5.1. The partial record processes 01, 02, ... are i.i.d. Shorrock proces- 
ses derived from v. 

Proof. To check that the 01 are independent Shorrock processes, it is enough to 
consider the restriction of the 01 to (e, c~), for arbitrary positive e. However, it 
is an elementary observation that the restriction of the r to (e, oo) can equally 
well be obtained by firstly restricting ~ to IR + x (e, oo) and then deriving the 
partial records processes from that. But the restriction of ~ to IR + x (e, oo) is a 
time-space Poisson process with a finite characteristic measure, and for this 
the partial records processes are i.i.d. Shorrock processes, as we have already 
seen. 

If (t, x) is a point of ~ of initial rank j, then for each k >j,  the point has a 
time of entry into rank k, 

zk=inf{u>t;  ~((t,u] x (x, oo)) = k - j } ,  

and its lifetime in rank k is then %+ 1--'tk" We associate this lifetime with the 
point x of 0j and denote it LJ'k(x). We than have the following analogue of 
Theorem 2. 

Corollary 5.2. Conditional on 01 . . . . .  Ok, the random variables lj'k(x) (j 
= 1, 2 . . . .  , k, x~D(t//2) ) are independent exponential random variables, with law 

P(/J'k(x) > t l O 1 . . . .  , Ok) = exp(-- t v(x, oo)). 
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Proof  Again, it is sufficient to consider the restrictions of 0i to (e, oo) for 
arbitrary e>0,  and for this case the result follows immediately from the 
discussion at the beginning of the section. 

From knowledge of the j-record processes {0j} one can recover the space 
coordinates x of all the points of 4, in the time-order of  occurrence, by a two- 
level induction. If we choose some sequence c,+0, then all points (t, x) of ~ that 
have x > c  1 can be reconstructed in time-order by the inductive algorithm 
described in w Similarly, all points with x > c  2 can be reconstructed in their 
time order, adding a new 'layer'  to the reconstruction of the time space 
diagram, and so on. 

Remarkably, when v(lR+)= oo the process ~ itself can be reconstructed on a 
{Xl,X2 . . . .  } be the probability-1 event from knowledge of {Oj}j~N alone. For  let ~ 

sequence of x-values exceeding % in their order of occurrence, as obtained 
above. These sequences, for i = 1 , 2  .. . .  together make up a nested array in the 
sense of Greenwood & Pitman [6]. The condition of Theorem 2.2 of that 
paper is easy to check, and the theorem gives an explicit construction. 

The most obvious example of a a-finite time-space Poisson process comes 
from the upward jumps of a L6vy process; the results of this section say that 
the upward jumps can be split into i.i.d. Shorrock processes according to initial 
rank. 

6. Attributes 

In this section, we consider a time-space Poisson process ~ on N+ x S, where S 
is a Polish space, and the intensity measure is 2 x m, where 2 is Lebesgue 
measure, and m is the (a-finite) characteristic measure of S. We suppose given 
a measurable q: S~(0,  oo) such that 

O<(moq-1) (x ,  oo)<oo for all x~(0, oo). (6.1) 

We define in a natural way a Poisson process ~ on N+ x IR + by 

~(A x C)=~(A x q-l(C)) 

for A, C Borel subsets of IR +, corresponding to mapping the point (t,s) of S to 
(t,q(s)). The intensity measure of ~ is simply 2 x  v, where v=-moq -1. To avoid 
certain complications, we assume that v has no atoms (see Goldie [5] for a full 
account). 

We use the real-valued attribute q to rank the points of ~; we define the 
initial q-rank of the point (t, s) of 3 to be 

r (t, s) = ~ ((0, t] x [q (s), oo)). 

Condition (6.1) is equivalent to (5.1), ensuring that all the initial q-ranks are 
finite a.s. Having ranked the points of ~ using q, we split ~ into its partial q- 
record processes tPi, point processes on S defined by 

oo  

tIIk(n) = S ~ IB(S) I{r(t, s)= k}~( dt, ds) (6.2) 
0 S 



208 C.M. Goldie and L.C.G. Rogers 

for Borel B ~S,  just as before (5.2). Similarly we define the lifetime in rank k, 
LJ'k(s), of a point (t,s) of N of initial q-rank j<k  to be the lifetime in rank k of 
(t, q(s)). We have the following result. 

Proposition 6.1. Assuming (6.1) and that v has no atoms, the partial q-record 
processes 7J 1, 7J2 .. . .  are i.i.d. Poisson processes with intensity measure n, where 
n ~ m  and 

dn 
dm (s)= v(q(s), o0)-1. 

Conditional on {T  1 . . . . .  ~ }  the lifetimes LJ'k(s) ( j = l  . . . . .  k, sED(Tj)) are indepen- 
dent exponential random variables, 

P(Ij, k(s)>ul 7Jl . . . . .  ~}  =exp{ --uv(q(s), oe)}. 

Proof. Since S is a Polish space, there exists a regular conditional distribution 
for m given q (that is, a kernel K: (0, oo)xN(S)-- , [0,1]  such that for each 
A~N(S), the Borel a-field of S, the random variable K(q(s),A) is (a version of) 
the conditional expectation of A given q). For  a proof of this, see, for example, 
Bourbaki [2] w No. 7, Prop. 13, or alternatively, modify the usual result (such 
as appears in Williams [17] II.69, for example). 

The key observation is that one can obtain a realisation of the Poisson 
point process S in two stages: 

(i) Obtain a realisation of the Poisson point process ~ on IR + x IR + with 
measure 2 x v; 

(ii) to each point (t, x) of 4, assign a point (t, s) of if, where the distribution 
of s given ~ is K(x,.).  

Let the point process so constructed be denoted ~'. To prove that it has the 
law of •, take any measurable 4): IR + x S ~ ( 0 ,  1], and calculate: 

e~ I1 4)(t,s))=e( I] 0(t,x)) 
(t, s) sO(-~') (t,x)~D(3) 

where 0 (t, x ) -  ~ K (x, ds) 4) (t, s); 
S 

=exp  dt S v(dx)(1 -O(t,x)) 
0 

= exp - dt ~ v(dx)~ K(x, ds)(1 - 4)(t, s))} 
0 

=exp{-~odtSm(ds)(1-4)( t , s ) )  } 

by definition of K; 

=h i  1~ 4)(t,s)). 
(t,s)eD(~) 

In view of this construction, the result is obvious; the partial records 
processes 01, 02 . . . .  of ~ are i.i.d. Shorrock processes derived from v (and thus 
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are Poisson processes with intensity v[,x, OO) -1 v(dx)), and to obtain ~ from Ok, 
at each point x of Ok, we place a point s in S according to the law K(x, .), 
independently of all the other 3 '  The reader may formulate this with greater 
precision if desired. The statement about the laws of the lifetimes needs no 
proof, as it is merely a statement about the process 4. 

A good example of the application of Proposition 6.1 is to excursions of 
Brownian motion from 0. Let S be the Polish space C([,0, oo),lR) with the usual 
topology of uniform convergence on compact sets. Letting 

a(s)- inf{ t>O: s(t)=0} (seX), 

the excursions lie in the subset 

Se--  ( s e S :  S(0) = 0, 0 < a(S) < O0, s(t) = 0 Vt >--__ O-(S)} 

of S. The excursion process is a time-space process Z, namely a Poisson process 
on IR+ x S of intensity 2 x m, where the measure m on S is supported by S e and 
is called the excursion law. This formulation is equivalent to the original 
"Poisson point process" formulation of It6 [--9]. The time variable t is actually 
the local time of the Brownian motion B at 0. The path of B determines the 
realisation of Z and may be reconstructed from it. Now there are many ways 
to formulate the excursion law m, and for us it is best to relate the formulation 
to the attribute to be used for ranking. 

Example 1. Let us rank by duration: q(s)= a(s). (On S ~ S  e define q arbitrarily.) 
For  local time we use the normalisation implied by 

Lt=- l im~- l i l {O<Bu<e}du  (teN+), 
E,LO 0 

where off a null event the limit exists for all t. The inverse process 
L- l ( x ) - i n f { t :  L( t )>x} is then the driftless stable subordinator having Levy 
measure (2nts)-~dt,  and since q represents duration the measure v = m o q  -1 
may be identified with this L6vy measure. To find m we use a product-space 
representation of Se (see, for example, Balkema [1]). The sign of seS  e is sgn(s) 
= + 1  or - 1  according as s( t )>0 or <0  for all te(O,a(s)). (One or other 
alternative must occur.) The normalised excursion is g defined by 

g(t)=--cr-~ls(ta)[ , 0<t_<l ,  

where a-a(s) .  It belongs to 

S~-  {se C[-0, 1]: s(0) = 0 =s(1), s(t)>OVte(O, 1)}. 

We identify S e with the product space (0, oo)x { - 1 ,  1} x Se by means of the 
map s+-+(a(s), sgn(s),~). As a measure on this product space, m decomposes into 
the product measure, 

m~VX~X~ 

where v(dt)=(2=t3)--~dt as noted above, f i { - 1 } = l = f i { 1 } ,  and = is a probabil- 
ity measure on Se- Let R be a BES(3) process i.e. the radial part of standard 



210 C.M. Goldie and L.C.G. Rogers 

Brownian motion in 1113. Then rc turns out to be the probability law of the 
BES(3) bridge; 

Z={(~- t )R( t / (1 - t ) )  (O<t(t=l)<l) 

We calculate 

hence 

v(a(s), oo): (~,~(s)) ~, 

v(da)fl(sgn)n(d~) da 1 
n(ds) = - rc(dg). 

v(a, oo) 2a 2 

On the product space (0, oo) • { - 1, 1 } x S~ this is the measure 0 -  t /x f lx ~, 
where ~(da)=(2a)-lda. Proposit ion 6.1 shows that the excursions having ini- 
tial duration rank j, constituting the "points"  of the processes ~ ,  j =  1,2 . . . . .  
give i.i.d. Poisson processes on S~, each of intensity 0. "Lifetimes" of excursions 
are the amounts  of local time they spend in the various ranks. The second 
statement of Prop. 6.1 expresses these lifetimes as having conditionally inde- 
pendent exponential laws. 

Example 2. Here we rank by peak height. On S~ define now q(s)=_supjs(t)j. Let 
t~0 

Se= {s: seS~, sgn(s) = 1, q(s) =1}. 

The normalised excursion is now seSe defined by 

N(t)=(1/x)ls(x2t)l (tE[O, oo)) 

where x-q(s). This time we identify S e with the product space (0, oo)x { - 1 ,  1} 
x Se by means of the map s,,-~(x, sgn, 3), where x =-q(s) and sgn-sgn(s) .  A small 

extension of results of Williams [16, 17] II.67, and Rogers [11], shows that the 
excursion law m becomes the product measure  v x fl •  on the product space, 
where v(dx)=x 2dx, f i { -1}  =�89 and p on Se is defined as follows. Let r t 
and r 2 be independent BES(3) processes (started at 0). Let a l - i n f { t :  r i ( t )=l  }. 
Then p is the law of the random element F of S~ defined by 

rl(t ) (0~ ~ 0-1) 
F(t) = - 1 - r 2 ( t - a l )  (0" 1 ~ ~ ~ O" 1 -t- 0"2) 

0 (0-1 -t- a2 ~ t < oo). 

In this example we have v(x, oo)=I /x ,  hence the intensity measure 0 of the 
partial records Poisson processes becomes r/x fi • p, where tl(dx)=x -1 dx. Pro- 
position 6.1 applies as before. 
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