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Summary. We derive an asymptotic expansion of integrated square error in
kernel-type nonparametric regression. A similar result is obtained for a
cross-validatory estimate of integrated square error. Together these expan-
sions show that cross-validation is asymptotically optimal in a certain
sense.

1. Introduction

Let (X,Y), (X, Y}, ...,(X,, ¥) be independent observations from a bivariate
distribution, and let u(x) E(Y|X=x) denote the regression function. Na-
daraya [18] and Watson [26] introduced kernel estimators of u(x), which are
defined in the following way. Let K be a density function on the real line, and
h be a small positive constant. Set

A, =1, (x| ) = [Z K- X)m | /L‘;K{(x—Xj)/h}]-

If h=h(n) is chosen so that h—0 and nh— oo as n— oo, then g, (x)- pu(x) in
probability. Detailed accounts of the consistency of such estimators have been
given by Collomb [3], Devroye [8, 9], Devroye and Wagner [10, 117, Mack
and Silverman [17] and Spiegelman and Sacks [21]. Some of these results
describe the rate of convergence for different choices of the ‘window size’, &,
and show that the order of consistency depends crucially on the selection of h.
Cross-validation has been suggested by Wahba and Wold [25] as a practical
method of determining 4 in real statistical problems of this type. See also Diaz
[12]. Our aim in the present paper is to describe large sample properties of
integrated square error (ISE) in non-parametric regression. We derive asymp-
totic expansions of ISE and of a cross-validatory estimate of ISE. These lead to
a proof that the cross-validatory estimator is asymptotically optimal in the
sense of minimising a version of ISE, in the case where K is the rectangular
kernel.
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Collomb [4, 5] has derived several results which shed light on the problem
of selecting window size. In particular, he has shown that under appropriate
conditions on h, K and the underlying distribution of (X, Y),

E{fi,(x)—p0)}*=mh)~ [o? () {f(x)} 1 | K*(w) du]
+REL{f O () + 30 1 ()} L ()} 2 {f u? K (w) du}’]
+o{(nh)~ ' +h*}
as h—0 and n— 0. (We have assumed here that X has marginal density f, and
written ¢?(x)=var(Y|X =x).) Under additional constraints it is permissible to
formally integrate this expression [5, p. 82]. Thus, if 4 is a bounded interval on

which f is bounded away from zero, and if w is a bounded weight function,
then

I,,(h)EfflE{ﬁn(X)—ﬂ(X)}2 w(x)dx
=(nh)~" [;f1 o* () {f ()}~ wx)dx - | K*(u)du]
Jrh”'[lj:1 {70 1 () + 30 1} {f ()} 2 wlx) dox - {f u? K () du}]
+o{(nh)"t+h*}=(nh)~tc,+h*c,+o{(nh)"  +h*}, (1.1)

say. The sum of the first two terms on the right hand side of (1.1) is minimised
by taking
h=ho=(c,/4c))"*n~ 1%, (12)

which is the “asymptotically optimal” window size in the sense of minimising
1(h).

A natural choice for w is w=f. In this case we might conjecture that I (h),
which can be written as

L(m= £ E{fi,(x )= u(x)}* dF (x)

where F is the marginal distribution function of X, is closely approximated by
mean summed square error, given by

B.(m= i {,(x|h)— u(x)}? dF,(x)

=n~" ) {f.(X;1h)—p(X)}? (1.3)
Xied
where F, is the empiric distribution function of the X-sample. In Sect.2 we
derive an asymptotic expansion for f,(h) which shows that I (h) and §,(h) are
asymptotically equivalent. It will follow that f,(hy)/I,(h,)—1 in probability.
Thus, an adaptive, “data-driven” estimate of window size, k, will be asymptoti-
cally as good as the “best” window, h,, if

Ba(h)/1(ho)—1 (1.4)
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in probability. We shall prove that the cross-validatory window size attains
this optimal performance, and also that A/h,— 1 in probability.

Craven and Wahba [6, Theorem 4.3] and Golub, Heath and Wahba [13]
have described certain asymptotic properties of cross-validation, in the context
of fitting smooth splines to noisy data. However, their assumptions differ from
ours in a major respect: they assume that the values of the regressand are
regularly spaced on a bounded interval, being determined by a precise integral
formula. This obviously excludes the case where the design variables, X, are
random. The classical theory of nonparametric regression (as distinct from
curve-fitting) deals with the case of a random regressand; see for example
Stone [22]. Our results are different in nature from those of [6, 13], which
were effectively concerned with showing that the expectation of the left hand
side in (1.4) converges to the expectation of the right hand side.

More recent work by Hirdle and Marron [14] uses an ingenuous argument
which allows mean integrated square error to be calculated “conditional” on a
set on which the denominator of /i, behaves well. These results are in the spirit
of Stone [23], in that the order of magnitude of the bias contribution is left
undetermined. This allows the authors to impose only mild smoothness con-
ditions on f.

2. Results

Our early attempts at solving this problem were founded on a two-dimensional
version of the Komldés-Major-Tusnady [15] approximation to the empiric
distribution function, due to Tusnady [24]. However, this required very re-
strictive conditions on the regressor variable, Y, such as that it have high-order
moments. It seems to us that if cross-validation is to be recommended for
practical purposes, such restrictions should be avoided at almost all costs, since
doubt has been cast upon cross-validatory methods for density estimation
when the distribution is unbounded [2,20]. Therefore we shall present an
alternative solution, based in part upon techniques we learned from Révész
[19] and Csorgd and Révész [7, Sect. 6.3]. This requires us to restrict attention
to the rectangular kernel,

1 for jul=3

0 otherwise, @1

K (u)={
but permits comparatively generous conditions on the underlying distribution
of (X,Y). (Our argument via Tusnady’s [24] approximation did not include
the rectangular kernel.)

Let A=[a, b] denote a compact interval, and set A°=(a— 3, b+ 8) for §>0.
We assume that X has a twice differentiable density, f, on A° for some &> 0,
and that f is bounded away from zero on A and satisfies a Lipschitz condition
of order 3:

sup | f"(x+y)—f"(x)]=0(5%) as §—0. (2:2)
J

xed¥% 0<y<
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Suppose u(x)=E(Y|X=x), c*(x)=var(Y|X=x) and p,(x)=E[{Y—u(x)}* X
=x] are all well-defined and bounded on A4° and p has two continuous
derivatives on A° Set

Y =" () i (%) + 2 (x) " (%),

The cross-validatory criterion for estimation on A is defined by

oy(h)y=n"" 3 {¥— (X | W)},

Xicd

where 4,;(x|h)=g,(x)=[) Y, K{(x— /h}]/[z K{(x—X)/h}] is a kernel es-

timator of u based on thejsample excluding X We choose /4 to minimise a, ().
In view of the results of Collomb [4, 5] and the expansion (1.1), we know in
advance that A should be selected in the vicinity of n='/5. Therefore we may
suppose that o,(h) is minimised over he[yn=*'3, An~= /%], for # arbitrarily small
and A arbitrarily large. In the proof below we shall assume that # and A are
fixed as n— oo, although it is easily seen that we may choose #—0 and A — o0
at a sufficiently slow rate.

Our first result shows that minimising «,(h) is asymptotically equivalent to
minimising mean summed square error, f,(h), defined at (1.3). Of course, the
value of y is unknown, and so f§, cannot be minimised directly.

Theorem 1. Under the conditions stated above,

a(h) =B, ()41~ Y (T (X)) +0,(n=*") 2.3)

Xied

uniformly in nn= "> <h<An='5, for any 0<n<i<co.

Our next theorem provides an expansion for f§,(h), in which the first two
terms are deterministic functions of h, and the remainder is negligibly small.
Note that the kernel in (2.1) satisfies

1
{K*(u)du=1 and j"uZK(u)du=E’

and so the first two terms of our expansion coincide with the first two terms
on the right hand side in (1.1), with w=f.

Theorem 2. Under the conditions stated above,

B.(=(nh)~" | GZ(X)derm h* I Y@} dxto,(n )

uniformly in nn= '3 <h<in=5, for any 0<p<i<oo.

Let h, denote the “asymptotically optimal” window size defined at (1.2),
and suppose ¢, ¢,+0 and # is so small and 4 so large that 5 <(c,/4c,)*5 <A
Then it follows from the expansion (1.1) and Theorems 1 and 2 that h/h,— 1,
B, (ho)/ 1 (hy)—1 and B,(h)/f,(hy)—1 in probability. Therefore the cross-vali-
datory window size, h, is asymptotically equivalent to h,.
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3. Proofs

We begin by introducing some notation. Let H, denote the interval [nn='/,

An~137, and define 4,=Y,— (X)),
v(x)=v(x| k)= E[{p(x)— p(X)} K{(x—X)/h}],

Julx[R)=(nh)~ Z K{(x—X)/h}
and .
F()=n""} IX;Sx)
i=1
(the empiric distribution function of the X-sample). Let F(x)=E{F,(X)} denote
the true distribution function, and Z =% {X,, ..., X,} denote the o-field gener-

ated by the X-sample. Write E’ for expectation conditional on %, )* for

summation over i such that X,e4 and 1<i<n, and Y'® for summation over j
; , j

J
such that X jeA‘s and 1<j=n. Let C, Cy, C,, ... denote positive generic con-
stants. Arrange the variables X,,..., X, in order of increasing magnitude,
obtaining X, X, =...£X,, and set ¥, =Y, and 4,=4;if X, =X,.

Observe that
not Y= A, (XY =20t 2 Y= (X0} (X)) — (X))
Y {uX) — 1, (XD} +n DY — p(X)} (3.1

The proof is divided into two main sections, the first showing that the first
term on the right hand side in (3.1) equals o(n~*") in probability, and the
second showing that the second term equals mean integrated square error plus
a remainder of o(n~%°) in probability. Each section is divided into subsections,
which control individual components in expansions of these two terms.

(I) Note that

n~! Z* {Y—uX)} {p(X) — (X} = — T+ T, + T, 3.2)
where l
—‘Z*A[Z:A KA — X)), K{(X,—X)/m] =7,
"12*4'[;{#()() 1(X)} KX, — X)/h} — (n—1) v(X)]
X[g.K{(Xi_Xj)/h}]_l
and ~

T,=(1—-n" M) Z* Av(X)[ Z K{(Xi_Xj)/h}]v L
i j*i
We shall handle these terms individually, in Sects. (Li}-(Liii) below. Our proof

is prefaced by three lemmas, the first of which is easily derived. Let ¢(x|h)
=E{/.(x|h)}.
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Lemma 1. Under condition (2.2),
sup lp(x|h)—f(x)—(1/24) R* £ (x)| = O (h**)

as h—0.

Lemma 2.
[fa(x | B)—f(x)|=0,(n~*" log*n) 3.3)

uniformly in xe A and he H,. Furthermore, if o>2/5 then

lfuXTh) = fulx [ hy)l =0, (n™%) G4

uniformly in xe A and values h, hyeH, satisfying |h, —h,|<n"

Proof. Applying the Komlds-Major-Tusnady approximation [15] to the em-
piric distribution function F,, we see that there exist Brownian bridges W7,
n=1, such that

fux IR = $ (x| y=n%h= [ W2 {F (x+4h)}
— WO {F (x—1h)]+0, (=% logn) (3.5)

uniformly in xeA and heH,. The modulus of continuity of W°,

W= sup (W) WO
O<s,t<1;|s—t|=Su
is dominated by Z{u(1—logu~')}* for an almost surely finite variable Z.
Therefore |f,(x|h)—¢(x|h)|=0,(n"?°log*n), uniformly in xeA and heH,.
The result (3.3) follows from this estimate and Lemma 1.
By Lemma 1,
Su§|¢(XIh1)—¢(thz)|§ Clht—h3|+0(n~%) (3.6)

uniformly in h;, h,eH, satisfying |h, —h,| <n~* Furthermore,

sup [W2{F (xhy)} — W {F (x £3h,)}|=0,{(n™ *log n)*} =0, (n~*7%)

xeA

uniformly in hy, h,eH, satisfying |h, —h,|<n~* The result (3.4) follows from
this estimate, (3.5) and (3.6).

Lemma 3.
U= sup ZA(j)K{(x——X(j))/h}‘zop(n'(’/zo), (3.7)
xeA; heH,, Jj=1
sup 1> A K{(x—X)/h}| :Op(ng/zo) (3.8)
1 Zisn; xed;heHy j+i
and
sup Z@E)Aj'+ sup | > #94,1=0,n?). (3.9)
1=rgn |j=1 1£rEnjj=1
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Proof. For large n,
U= sup

Osr<s<n;s—r=m

2(2 P 4);

j=r+1

im+r
3¢)

= sup YEIAL, (3.10)

OZiZn/m+1;1SrSmyim+rsn |j=im+1

where m=nsup{F,(x+3An""%)~F (x—3An~"5)} +1. The first inequality fol-
xed

lows on noting that the term K{(x—x;)/h} appearing within modulus signs in
(3.7), equals unity for values of j in the range r+1=<j<s, for some r and s, and
zero for all other values of j. Consequently

}

njm+1 im-+m im+m
¢S SReag) s sy
i=0

j=im+1 j=im+1

im+r

Z(ZE) A(/)

j=im+1

4 4 n/m+1r
4-*E(Uh ZE sup

1sr=m

< C,(n/m)m*=C,nm,

using a version of Rosenthal’s inequality [1, (2.1.5), p. 40]. Therefore E'(U,)
=0,{(nm)"/*}, and since m=0,(n*"), the result (3.7) follows. We may deduce
from (3.10) that whenever m=1,

s
Z(%S) A(J')

j=r+1

sup. |A(l)| < sup

Xpedke OZr<ssSms—r=m

=0,(n°)

and so (3.7) implies (3.8). The result (3.9) is proved similarly.
(Li) T,: We may deduce from (3.3) of Lemma 2 that

[(nh)~* _;K {x =X~

={fC} =R —f )} +0,(n~*  logn)  (3.11)

uniformly in 1<i<n, x4 and he H,. Combining (3.8) and (3.11) we see that
[;‘Au) K{(x— X;)/h}] [;K i —X(j))/h}]‘ !
=(mh) 1LY 4, K{(x =X /By = {f ()} 2 {fulx | ) —f (x)}]

i
+ OP(n’]”/20 logn) (3.12)
uniformly in 1<i<n, xed and heH,. Since n~'Y%?|4,|=0,(1), we may

deduce from (3.12) and the definition of T, that i
=2Ty; — Ty, +o,(n*?) (3.13)

uniformly in he H,, where

Ty =n"*h" 12*4(1){f(X(1))} PY A KX~ Xp)/h)

J¥Fi
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and
Ta=nh™t 5 4 U (Kol /K 11) S 4 KK = X))

We shall prove that
sup| Ty | =0, (n=*%) (3.14)

heH,

as n— o0o0. A similar (but shorter) argument may be used to show that

sup|Ty(|=0,(n"*").
heH,

Let a>2/5, and break the interval H, up into N or N+1 disjoint subin-
tervals [t; ,,t;), each of precise length n~* where N equals the integer part of
(A=mn*= 1% and gn= P =ry<t, <..<ty<in"S<ity,,. Given heH,, let k
=k(h) equal the positive integer such that he[r,,t,, ;). Write T,,=T,3+ T,
+ T, s (k(h)), where

Tia=n"2h"' 3* A {f (X))} {£iXy 1) — 1, (X | 1)}

x ) Ay K{(Xy—X;)/h}

JjFi

T14 =n"?h"! Z* A(i) {f(X(i))} _an(X(i) | to) ;‘A(j) K {(X(i) - X(j))/h}>
and for a general /,
Tis()=n2h=1 3% Ao {f X))} 2 {f,(X g [ 1) = £u(X | £0)}

x ;_A(j)K{(X(i)—XU))/h}-
Then !
|T13|§n—1h—1{in£f(x)}‘2 sup ) |f. (x| hy)—f, (x| o)l

xed; hy, hae
s.it. fhy—h2| En—*

XS heHnlJ;iA(j)K {(Xo— X/} n? Z* 4.
It now follows from (3.4) and (3.8) that
|Ty5l=0,(n=*>n= 12 n2% =0 (n=*") (3.15)
uniformly in heH,.
Let w,,; stand for either {f(X)}~2f,(Xy1t,) or
X)) A &X )= fX g 1)}

Then we may write both T, and T, (I} in the form

Tie=n=2h"1 Y% A w,. Y Ay K{(X = X p)/h},

j=Fi
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where w,; does not depend on 4 and is measurable in %,. We may further
subdivide T, into two parts, in which the inner sum is taken first over j=2i+1
and then over j<i—1. Both series may be handied similarly, and so we shall
treat only the first, equal to n~*h~! T, where

r(i, h)

17 z A(l)wm Z A(J)

j=i+1

and r(i, h) is the largest j such that IX(i)-—X(j)lgéh and j<n. For each i, r(i,*) is
an %-measurable function and right continuous with left hand limits. Let
u; <...<u, be the points of discontinuity of all functions r(i,*), 1 <i<n, in the
interval (nn='73, An=13]. Set ug=nn="', s(i, p)=r(i,u,) and

s(i, p)
Sy Z Ay Wai Z 4¢-
J=i+1
(The inner series is taken as zero if s(i, p)<i.) Let Y,=S, and Y,=S,-S, 1
1=p=<M, and observe that E'(Y,)=0 for each p. It may be shown after some
algebra that E'(Y,Y)=0 unless p=g, and so the variables Y, are conditionally
orthogonal. We may now deduce from the Rademacher-Mensov inequality [16,

p. 457] that
E'(sup T2)=E'( sup S?)
" heH,

O<psM
<(log4M/log2)’ E'(S})
r(i, upg)
=(log4M/log 2)2 Z* Z(X(l)) Wm Z GZ(X(j))'
j=i+1

The integer M does not exceed #2, and if X, 5€4 then (i, u,) is dominated by

sup n{F,(x+3in""*)=F,(x—5An~ ")} +1=0, (n*"), (3.16)

xeA

using Lemma 2. Therefore

E'(sup T,)=0,(n°"* log? n)( sup w?)

heH, Xned
and
E'(sup T/5)=0,(n~%"* log? n)( sup w?). (3.17)
heH, XneA

Since the formula (3.16) does not depend on the weights Wi then in the special
case where T, =T, (J), the formula (3.17) holds uniformly in I:

sup E {sup T5(D}=0,(n"°"°log?n){ sup sup wZ()}. (3.18)

O<IZN 0SISN Xned

When T, =T, supw;,=0,(1), and so by (3.17),

sup| Ty 4| =0, (n~*"). (3.19)

heH,
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In the case T, ,=T,5()),

sup sup [w,,(DI=C  sup  [fi(x|hy)—f, (x| )l
O0=ZISN Xed x€d; hy, haeH,,
=0,(n"?*log*n),
by Lemma 2. Hence by (3.18), and remembering that N < Cn*~ /3,
N =
E’[ Y. {sup les(l)}] =0,(n* 17 -n=13 log’ n).
I

=0 heH,

Therefore if 2/5<a<1,

sup 01 3 (sup 03 | =0, ) (.20

O0=<I=N:;he
Combining (3.19) and (3.20) we see that (3.14) holds, and so by (3.13),
sup |T;|=o0,(n"*"). (3.21)

heH,

(Lii) T,: We begin with a lemma. Define

SCeh)= ) [{n(x)—p(X)} K{(x—X)/h} —v(x)].
J
Lemma 4.
sup |S(x|h)|=0,(n*"?). (3.22)
xe€d; heH,

Furthermore, if 3/5<a<1 then

IS(x|hy)—S(x | hy)| =0, (¥ 02 logtn) (3.23)
uniformly in xe A and hy, h,eH, satisfying |h, —h,|<n~"

Proof. Since (x4 y)— p(x)— yp' (x)| £ Cy* uniformly in xe4 and |y|<%e, then
if xe4 and 0<h, <h,<in" 1<,

|2 An) = p(X D I Ghy <|x—X[|S3ho) =0 () Y (x = X) IGhy <[x— Xj|S3h))

<} CHEY I(shy <|x—X)|<4hy) (3.24)
i

First we shall prove (3.22), taking 4, =0 and h,=h in (3.24). Now,

sup Y I(lx—X)| S1h)£An*% sup £, (x| An*%) = 0,(n*'%),

xeA;heHpn j xed

and a similar formula holds for the supremum of expectations. Therefore

sup [S(x|h)—w' () X [(x—X) I(x—X | <3h)

xeA; heHp,

~E{(x—X) I(x— X <3h}1|=0,0*"). (3.25)
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Let S(x|h) denote the sum of the terms within square brackets in (3.25).
Integrating by parts in the identity

n—1§(x|h)_ ] (x—y)d{F,(»)—F}

1 1
—$hZy=x-+5h

and using the fact that sup |E (y)—F ()| =0p(n‘%), we may deduce that
sup |S(x|h)|=0,m-n"% n"%)=0,n>°).

xed; heH,

The result (3.22) follows from this estimate and (3.25).
To prove (3.23), let sup’ denote the supremum over xed and hy, h,eH,
satisfying 0<h,—h, <n~* Note that

supT Z I(%h1 <x—Xj§%h2):n supT {Fn(x_%hl)_Fn(x_%hZ)}
j
—0,(n'~2)

using the Komlbs-Major-Tusnady [15] approximation. A similar formula
holds for the supremum of expectations, and also for the series

Y IGh, <Xj—x§%h2).
Therefore by (3.24), ’
sup’ [{S(x | hy) =S [} — 1/ (x) 2 [l = X) IGhy <|x =X | <5hy)
J
—E{(x=X)IGh, <|x—X|£3h)}]|= 0, 7). (3.26)
Integrating by parts in the identity

n 'y [(x— X)I(zh <X, —xsi )—E{(x—X)IGh, <X, —xSé 3

J

= § (x=y)d{F,0)—FO)},

X+ 3hi<yEx+ih

we may deduce that the left hand side is dominated by

hy {F,(x+5hy) = F(x+5hy)} — {F,(x +5h) = F(x +3hy)}|
+1hy—hy] sup [F,()=F () |

uniformly in xeA and hy, h,eH, with 0<h, —h, <n~% and so equals
0,(n""*n~*n""?log* n)

uniformly, using the Komlds- Major Tusnady approximation [15]. A similar
estimate holds for the series in which IGh, <X; —x=<%h,) is replaced by
IGh <x—X; Sé ,). The result (3.23) now follows via (3.26). This proves
Lemma 4.

Since {v(x|h)|=0(k>) uniformly in xcA as h—0, then if we replace S(x|h)
by R(x|h)=S(x|h)+v(x]|h), the results (3.22) and (3.23) continue to hold. Let
(3.22) and (3.23) denote these alternative results.
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We may deduce from (3.22) and the expansion (3.11) that
T,=2T,,—T,,+0,(n %" logn) (3.27)
uniformly in he H,, where
Ty =n=2h"' Y* A,{f(X)}~  R(X,| h)

and
Ty =n=2h=t T AL £(X)) 2 1,(X, | ) R(X, ),

Our aim is to show that sup |T,,[=0,(n~ /) and
h

€y

sup |T,,|=0,(n=*/5). (3.28)

. heH,

We shall prove only the latter result, since the former is simpler.
Divide H, into intervals [t; ,,t;) of length n~% as in (Li). Recall that k
=k(h) is defined by he[t,, t,_,). Set T, =T, + Ty, + T;5(k(h)), where

Tha=n"2h~1 3 * AL (XD} {1 h) —£,(X;1 8)} R(X; | b),

Ta=n2h 1 Y * A{f (XD} 2 £(X, tk){R>(Xi [ )= R(X; [t}

and
Tzs(l):"hz h! Z* Ai{f(Xi)}—zfn(Xi [t) R(X; [ 1)).

Using (3.4), (3.22) and the fact that n=' ) *|4,|=0,(1), we obtain
sup | Ty5|=0,(n~ " - n'> - n=%.n¥%)=0 (n=*"). (3.29)
heH,

From (3.23) we may deduce that if 3/5<a<1,

sup [To,|=0,(n~ " - n'?-n¥107%2 logt ny=o (n~*7). (3.30)
heH,

For each [,

E'{n*hT,s(D}*= Z* (X)X LX) R (X |y,
and so
i R*(X,]1).

sup T225 (k(h))= Op(n— 18/5) z*
heH, L
But if xe4,

E{R*(X,|t)| X;=x}=(n—1) var [{(x)— u(X)} K{(x—X)/t;}]

snsup [ {u(x)—puCe+w}?f(x+u)du

xed _ 1y

< Cn(An—13)3
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uniformly in /. Consequently, since N < Cn*~ /3,

sup T2 (k(h)=0,(n= 185 . n . n*= 1% . 2% =0 (n=%/5),
heH,

provided 3/5<wo<4/5. The result (3.28) follows from this estimate, (3.29) and
(3.30). We may now deduce from (3.27) that

sup [T,/ =0,(n"*). (3.31)

heH,
(Liii) Ty: Since |v(x)|=O(h?) uniformly in xeA as h—0, then by (3.11),
T,=2T;, — T3,+0,(n °" logn) (3.32)
uniformly in he H,, where

Ty =0 —n"Yn~ ™t Y * Av(X) {f(X)}
and l
Ty=(1=n"Yn "h™ Y * A v (X)) 2L(X. ] h).
We shall prove that l
sup [Ty, =0,(n= ). (3.33)

Similarly, it may be shown that | Ty,|=o0,(n~*°) uniformly in heH,.

Divide H, into N or N+1 intervals [1;_,t,) of length n~% as before, and
define k(h) by helt,,t,, ). For definiteness we shall take a=7/10, so that
3/5<a<4/5. Let f=13/40 and m=[n*]. Given an integer [ in the interval
[0, N], define 1,=t,,,..,. Observe that

Ty, =(1 —n‘l)h*l{i T3+ i T3j(k(h))}, (3.34)
where B =
Ty =n"' 2FAS(X)) H{A X W) = £(X 10} v(X, | b),
Ty =n ' YA XN LX) X —v (X)),
Tys()=n"" Y* 4, {f (XD} { A (X 1) — fuX; £} V(X 1),
Ty(D=n"" 2% 4, {f (X} 2 fu(X; | t0) [ (X; 1 1) — (X, | )}
and

Ty (Y =n"" Y * A, {f(X)} 2 £, (X[ to) v(X,1 1),

In view of (3.4),
:qu | T35l=0,(n"%-n"*%) =0, (n""). (3.395)
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Under the conditions imposed on y and f,

()= u(x +u)} f(x+u)+up' (x) f(x)| £ Cu?

uniformly in xed and [u| <}e. Therefore

$ha

[v0e|ho)—=v(x|hy)|= J {u()—p(x+u)} f (e +u) du

271
~%hy

= [ {pC)—px+wlf(x+u)du

—4h

<Cn=?° [hy—h,|
uniformly in xeA and h,, h,eH,. Hence

sup | T4l =0, (n~ =% =0,(n""). (3.36)

heH,

It follows from (3.3) that
sup E {T& (1)}
0<ISN

=n"2 sup Y * o (X){S (XD} H{f,(Xily) _fn(Xi“O)}zVZ(Xilto)

O0=<ISN
=0 fn-1-n-* n-
=0,{n""-n"*>(logn) - n=°%},

and so
N 1
sup |T35(Z)|§{ z T325(l)}
0=<ISN =0
=0,{(n*" "% n"3logn)yt=o0,(n""). (3.37)

Similarly, since
sup  |v(x|t)—v(x|£) S Cn=25. n- @ P,
N

xed; 0=I<

then
SUp |Ty6()] =0, {(n*= 5 n-ten 4520 —o n=1).  (338)
0<IEN

As [ ranges over the integers 0, ..., N, t; takes no more than [N/M]+1
=0(n*~#~'%) values. Since sup E'{T()}=0,(n""'"/%) then
N

0sls
sup [Ty, (D] =0, {(w*=P~ 1% n= 315} =0, (n ). (3:39)
O<ISN

The result (3.33) follows on combining (3.25)-(3.39). We may now deduce from

3.32) that
(332 sup | T3|=o0,(n=*?). (3.40)
heH,,

It follows from (3.2), (3.21), (3.31) and (3.40) that

sup [n~ ' Y% (Y- u(X)} ((X) — (X} =0, () (3.41)

heH, i

This takes care of the first term on the right hand side of (3.1). We now
examine the second term.
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(II). We may deduce from (3.3} that
sup [ K{(x—X 31/} K{(x—X)/h}]—1] >0

is probability as n— c0. Consequently
{L+o,(yn~" 3% {u(X) — (XD}
=n= ' YL Y~ n(X)) KX, — X /I KX, — X )/h}] =)

=n" Y {uX)— AV 2T+ T, (3.42)

where

Ty=n~" T* ALY (¥~ p(X)) K{(X,~ X )/my 1LY K(X,— X /]2
and l ’ ’

Ty=n=' Y% A2[Y KX~ X /]2
Now, l ’

2AY— (X)) K{(X,— X )/}

:ZAjK{(Xi_Xj)/h} +Z {(X )—pu(X)} K{(X;— X )/}
=0p(l’l9/20)

uniformly in heH,, by (3.7) and (3.22). Therefore T, =0 ,(n~>*?°) uniformly in
heH,, and it is easily proved that T,=0,(n~ ") uniformly in heH,. Hence by
(3.42),

n~? Z* (X)) = A (XD} ={1+o0,()}n" Z* {(X) = G, (X)} +o,(n=*3), (3.43)
uniformly in heH,.

Next we examine the first term on the right hand side in (3.43), which we
write asymptotically as

{L+o0,()}n~" Z* {W(X) = ,(X)}?
=n"3p2 Z* {f(Xi)}’Z[; {Y,— u(X)} K{(X;— X )/h}1?
=n 3h*2(§* {f(X)} [ AKX, — X )/ TP
+212* {f(Xi)}‘ZEZAjI]({(Xi—Xj)/h}]
x [ {nX) —H(JQ)J}K{(Xi—X,»)/h}]
+;]* {f(xr? [; {(X )= (X))} K{(X;— X )/h}]?)

=n" h X T,+2T,+Tp), (3.44)

say. We shall treat these terms individually.
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(ILi) Ts: Divide H, into N or N+1 intervals [¢;,_,,t;) of length n=?% as before,

and define k(h) by he[tk, tey 1) We assume 3/5<o<1. Now,
| Te(h) — T8l
é CZ* |Z’A(j){I(IX(i)_X(j)I é%h)_I(lX(i)_X(j)'é%tk)}l
i i

X |Z,A(j){I(IX(i)—X(j)Iélh)—l_l(lX(i)—_X(j)lé%tk)}l

<4C{ sup

12r<n

Z 40 }Z*{Sup*ii ApI(X =30 X ;<X —3t)

‘Jr‘SllpJr |Z A(j)I(X(i)—l_itl<X(J)—X(z)+§5)|}$
J

(3.45)

where on this occasion, sup’ denotes the supremum over 0<I< N and values &

satisfying £,<0 <t,+n~* We shall prove next that if o> 3/5,

Z* sup’ IZ’ A X G +36<X ;£ X, +30)|=0,n" 1)
i j

(3.46)

From this estimate, a similar result in which the indicator function is replaced

by I(X;, —30 < X ;< X, —3t), and (3.9) and (3.45), it follows that
sup|T(h) — Ty(t,)| =0, (n"").

heH,,

Define
M(x)=sup’ |Z ApI(x+3t, <X, Sx+30)|*

gz sup |Z ApI(x+3t,<X ;) £x+39)%,

1=0usd<ti+n"*

where xeA. Then

E{Mx)}=C, Z[{Z, Z(X(,))I(x‘l’ L<XpSx+3 stHgn M)

=0
+ Z E(A(J))]
Jix+it<XpEx+i+4n>

<C,n* Y3[n sup {F(y+3in~9—FEu)}1%

yeA2

(3.47)

where neither C,; nor C, depends on x or I (The first inequality follows from
[1, (2.1.5), p.40].) Therefore the left hand side of (3.46), which equals

Y {M(X ;)}"*, has conditional mean (given X, ..., X,) dominated by

Cn29/20+a/4[ sup {F y+ 1n~a Fn(y)}]Z — Op(n29/20~oz/4)20p(n1 3/10)’

yedd®

provided o> 3/5. This proves (3.46).
Next observe that Ty(t)=2T,,(I)+ T;,(l), where

T6l(l):z*{f( (1))} 2ZZA(J)A(k)I(‘X'(k) ZtlSX(l) X(])+%tl)
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and
T62(l)=z* {fx)-? Zﬁf (X, =56, X, X ,+31).
i j

Let m=n’, where 0< f<a—1/5, and set '=m[l/m]. Then

E{T,(D— Te (1)} = Z ; JZ(X(j)) O'Z(X(k)) [Z* X} 2
X {I(X(k)—%tzéx(i)éX(j)—l-%tl)
<X, +3t0%

@)=

—IXy—3tr=X
and the absolute value of the term within square brackets is dominated by
© ;* {I(X =505 X <Xgy—35t) + (X + 30 <Xy S X +30)}
< C,nsup {F(x+t,—t,)—F,(x—)}=0,n'~*7)
xedbe

uniformly in j, k and [. Therefore
E{Ts1()— T, (1} =0, (n* -2,
N

sup
ESES
whence
il 3
E’{osgpNiTe (DT (M} = [ Y E{T, ()T 1(1’)}2]
= 1=0
:Op(n19/10+lf—oc/2)=0p(n9/5), (348)

provided we choose p<a/2—1/10. Repeating this argument but with o, f,m

and I’ replaced by a—f, v, p=[n"] and I”=p[I'/p], respectively, where 0 <y<a

—pB—1/5, we see that if y<(a—f)/2—1/10,
(3.49)

E{ sup | Tos(1) = Tou (1)} = 0,(n”").

Let us take a=13/20, B=1/5 and y=1/10 for definiteness. As |/ ranges over

0<IZN, the total number of values taken by I” is of order O(n*#-7—1/%)
(3.50)

= 0(n3/2°). Therefore if we prove that
sup E{T&(D}=0,(n'""),
0=<IEN
(3.51)

it will follow that
sup [T, (1) =0, (#3120 ni 7)) =0, (1),
0<I<N

The left hand side of (3.50) is dominated by a constant multiple of

SEZ;{Z*I(X(k)—%/ln‘m§X(i)§X(j)+%/ln"”5)}2.
j< i
The series within parentheses equals zero unless X(k)—X(j)gn‘l/s, and for

large n the series is always dominated by
nsup {F,(x+in~ %) —F(x)} =0,(n*").

1
xeAzé
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Therefore

n—1 n
S=0p(n8/5) Z(%E) Z(%E)I(X(k)—X(j)§/1n_1/5)=Op(n”/s),

j=1 k=j+1

which proves (3.50).
Combining (3.48), (3.49) and (3.51), we see that

sup |Tg, (D= Op(ng/s)' (3.52)
0SIEN

Next we examine Ty ,. Set

Tsll) = Toall)— E{ Ty (D)}
=Y {42~ AKX} TF (X)) (X~ 30 S XS X 450,

and observe that
sup (BTS00} S CY (V2 I(X,~3an~ B SX S X +3an 192
Y J i

=0,(n"?").
Therefore
E'{ sup |T,5(D}=0,{(n" ' -n*¥*}F}=0,(n°7) (3.53)
0<IZN

when a<4/5.

We may write E'{T;,()} = Z ;(, where

ToaD=2* {f(X)}* 0*(X)=0,(n), (3.54)
:Z* {f(Xi)}‘ZZ.[O‘Z(Xj)I(Xi—%tléxjéXi—i_%tl)
_E{O-Z(Xj)I(Xi_%tléXjéXi+%tl)lXi}]

and
Tss(l):(n‘“l)z* {f(Xi)}72E{O-Z(Xj)I(Xi_%tléXjéXi+%tl)|Xi}7

where j=i. Let U(,j,]) denote the random variable within square brackets in
the expression for T (/). Then

o Sup 1T65(1)|<CZ*OSHP | UGLD

=N j=i
and
E[ sup |Y UGLDI’IX]SC, Zn<C nt+e-1/5,
OZISN j+i
Consequently
E{ sup |Tys(} =0{n-(n'**~ %)} =0(n’?) (3.55)
O0=<IEN

if ®<4/5. Let M denote the number of X,’s in 4. Then
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: N
EL sup |T,5()~ E{ToDIMYPIMS 3 var {Tog(D] M)

—0,(n*~ Us p3-15) = Op(l’ll 8/5),
Furthermore,

E{Tee(DIM}=(n— 1)M§1 {feR1 dxxz 20)f()dy/P(XeA)

1 .

=n*t, | 6*(x)dx+0,(n’") (3.56)

uniformly in I. Combining (3.53)~(3.56) we see that

Too(D=n?1,{ 6*(x)dx+o0,(n°"°)
A

uniformly in [, whence by (3.47) and (3.52),

T,=n*h§ 6*(x)dx+0,(n°?) (3.57)
uniformly in heH,,. !
(ILii) T,: Write
Ty (ely=n=" 3 {u(X ) — p(x)} K{(x—X ;)/h}
and !

T,1(x|h)=E{T, (x| h)}

= _zh{ll(x +u)—ux)} fx+u)du

=& y(0)+om>) (3.58)

uniformly in xeA and heH,. Then

T4 (x[h) =4 1(x|R)= _lh<§< lh{#(JJ)— p(x)} d{F,(y)— F(y)}

=0,(n~ ") (3.59)

uniformly in xed and heH,, on integrating by parts. We may now deduce
from (3.7) that

T7=nz* {f(Xi)}‘2T71(Xi|h)ZAjK{(Xi_Xj)/h}

+Op(n2~n*7/1°~n9/2°). (3.60)
Define

T72(x|h)=ZAjK{(x——Xj)/h},
j
and note that if 0<h, <h,,
T72(x|h2)—T72(x|h1)=ZA(j){I(x-—%h2_S_X(j)<x——%h1)+l(x+%h1<X
j
S x+3hy)}.

&)}
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The argument leading to (3.7) may now be used to prove that if 2/5<a <1,

sup [T55(xhy) — T, 5(x| hy)l
xed;hi,hzeHys.t.|hy —hy|Sn—%
=0,{(n-n" ="} =0,(n*"). (3.61)

Therefore if we divide H, into intervals [¢,_,,t,) of length n~% and define k(h)
by he[t,t,, 1), we see from (3.58) and (3.60) that

Ty=nY* (X)) 20 (XN Y 4K (X~ X )/t +o,0%%)  (3.62)

uniformly in heH,. The argument leading to (3.58) may be modified to prove
that
[T5,(x1h)—15,(x|h,) S Cn= 23 |h, —h,|

uniformly in 4, h,eH,. It now follows from (3.7) and (3.62) that

T,=T,3(k(h)+ 0 ,(n* - n=?>~%.n®2% 10 (n°?)
=Ty 5(k(h))+0,(n*") (3.63)

uniformly in he H,, where

T =n T* () o (X X AK (X=X
Now,
n BT} S O OO (58 X0 o (X 10X, = X S50}
LY E@ T X)) 0y (X6 10X, — X | <3)l%)
< C 05 =)= 1,

and so )
E'{ sup |T;5(D}=0,{(n" "> -n** )4} =0, (n*"), (3.64)
OZIEN

provided 2/5<a<3/5. Combining (3.63) and (3.64) we see that
SS£| T,|=0,(n°?). (3.65)
(ILiii) Ty: The results (3.58) and (3.59) imply that
Tyi(x|h) =y nh*y(x)+0,(n*"?)
uniformly in xeA and he H,. Therefore
Ty=rhanh® T* (F(X)} 292X +0,n°")

ke [ {f ()} 1y (x)dx +0,(n°°) (3.66)

I

uniformly in heH,,.
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Combining the estimates (3.44), (3.57), (3.65) and (3.66), we sec that

nt Z* {M(Xi)_ﬁn(Xi)}z

=(mh)~" [ e*(x)dx +izh* [ {f(0)} 1’ (x)dx+o0,(n~*7) (3.67)
A 4

uniformly in heH,. This estimate, (3.1), (3.41) and 3.43) imply that

n Y A X)) =0 YR (Y- p(X))

+(nh)~ ' f eP(x)dx+gizh* [ {f ()}~ (x)dx+ o0, (n™ ")

uniformly in heH,. Theorem1 follows from (3.67) and (3.68), and Theorem 2
from (3.67).
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