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Summary. We derive an asymptotic expansion of integrated square error in 
kernel-type nonparametric regression. A similar result is obtained for a 
cross-validatory estimate of integrated square error. Together these expan- 
sions show that cross-validation is asymptotically optimal in a certain 
sense. 

1. Introduction 

Let (X, Y), (X 1, I11), ..-, (X,, Y,) be independent observations from a bivariate 
distribution, and let #(x)=E(YIX=x) denote the regression function. Na- 
daraya [18] and Watson [26] introduced kernel estimators of #(x), which are 
defined in the following way. Let K be a density function on the real line, and 
h be a small positive constant. Set 

i i  ] /~n(x)=/Jn(xlh)- Yjg{(x-Xj)/h} g{(x-Xj)/h} . 
L j  ~ 1 / L j  = I 

If h=h(n) is chosen so that h ~ 0  and nh~oo as n--+oo, then #,(x)~#(x) in 
probability. Detailed accounts of the consistency of such estimators have been 
given by Collomb [3], Devroye [8, 9], Devroye and Wagner [10, 11], Mack 
and Silverman [17] and Spiegelman and Sacks [21]. Some of these results 
describe the rate of convergence for different choices of the 'window size', h, 
and show that the order of consistency depends crucially on the selection of h. 
Cross-validation has been suggested by Wahba and Wold [25] as a practical 
method of determining h in real statistical problems of this type. See also Diaz 
[12]. Our aim in the present paper is to describe large sample properties of 
integrated square error (ISE) in non-parametric regression. We derive asymp- 
totic expansions of ISE and of a cross-validatory estimate of ISE. These lead to 
a proof that the cross-validatory estimator is asymptotically optimal in the 
sense of minimising a version of ISE, in the case where K is the rectangular 
kernel. 
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Collomb I-4, 5] has derived several results which shed light on the problem 
of selecting window size. In particular, he has shown that under appropriate 
conditions on h, K and the underlying distribution of (X, Y), 

E {~, (x) - ~ (x)} 2 = (n h)-~ 1-o .2 (x) { f(x)} -~ ~ K 2 (u) d u] 

+ h 41-{f' (x) #' (x)+ �89 #"(x)} 2 {f(x)}- 2 {~ u 2 K (u) d u} 2] 

+o{(nh) -1 +h  4} 

as h ~ 0 and n ~ oe. (We have assumed here that X has marginal density f, and 
written cr2(x)= var(YlX--x).)  Under additional constraints it is permissible to 
formally integrate this expression 1-5, p. 82]. Thus, if A is a bounded interval on 
which f is bounded away from zero, and if w is a bounded weight function, 
then 

I , (h)-  ~ E{f i , (x)-#(x)}  2 w(x) dx 
A 

= (nh) -11-f a2(x) {f(x)} -1 w(x) dx.  ~ K2(u) du] 
A 

+ h4 If  {f '(x) #:(x)+ ~f(x) #"(x)} 2 {f(x)} - 2 w(x) dx .  {~ u 2 K(u) du} 2] 
A 

+o{(nh) -1 + h  4} = (nh)- t ci +h4cz+o{(nh)-I  +h4}, (1.1) 

say. The sum of the first two terms on the right hand side of (1.1) is minimised 
by taking 

h--- h o =- (c1/4c2) 1/5 n- ~/5, (1.2) 

which is the "asymptotically optimal" window size in the sense of minimising 
I(h). 

A natural choice for w is w=-f In this case we might conjecture that I,(h), 
which can be written as 

I,(h) = y E{l~(X ]h)-#(x)} 2 dF(x) 
A 

where F is the marginal distribution function of X, is closely approximated by 
mean summed square error, given by 

ft.(h) = ~ {~.(x I h)-#(x)} 2 dF,(x) 
A 

= n - 1  ~ { f i . (Xi  I h ) -  # (Xi ) }  2 (1.3) 
Xi~A 

where F. is the empiric distribution function of the X-sample. In Sect. 2 we 
derive an asymptotic expansion for ft.(h) which shows that I.(h) and ft.(h) are 
asymptotically equivalent. It will follow that fi.(ho)/I.(ho).--*l in probability. 
Thus, an adaptive, "data-driven" estimate of window size, h, will be asymptoti- 
cally as good as the "best" window, h o, if 

ft. (~1/I (ho) ~ 1 (1.4) 
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in probability. We shall prove that the cross-validatory window size attains 
this optimal performance, and also that f(h o --* 1 in probability. 

Craven and Wahba [6, Theorem 4.3] and Golub, Heath and Wahba [13] 
have described certain asymptotic properties of cross-validation, in the context 
of fitting smooth splines to noisy data. However, their assumptions differ from 
ours in a major respect: they assume that the values of the regressand are 
regularly spaced on a bounded interval, being determined by a precise integral 
formula. This obviously excludes the case where the design variables, Xi, are 
random. The classical theory  of nonparametric regression (as distinct from 
curve-fitting) deals with the case of a random regressand; see for example 
Stone [22]. Our results are different in nature from those of [6, 13], which 
were effectively concerned with showing that the expectation of the left hand 
side in (1.4) converges to the expectation of the right hand side. 

More recent work by H~irdle and Marron [14] uses an ingenuous argument 
which allows mean integrated square error to be calculated "conditional" on a 
set on which the denominator of/~, behaves well. These results are in the spirit 
of Stone [23], in that the order of magnitude of the bias contribution is left 
undetermined. This allows the authors to impose only mild smoothness con- 
ditions on f 

2. Results 

Our early attempts at solving this problem were founded on a two-dimensional 
version of the Komlds-Major-Tusnfidy [15] approximation to the empiric 
distribution function, due to Tusnfidy [24]. However, this required very re- 
strictive conditions on the regressor variable, Y, such as that it have high-order 
moments. It seems to us that if cross-validation is to be recommended for 
practical purposes, such restrictions should be avoided at almost all costs, since 
doubt has been cast upon cross-validatory methods for density estimation 
when the distribution is unbounded [2, 20]. Therefore we shall present an 
alternative solution, based in part upon techniques we learned from R6v6sz 
[19] and CsSrg6 and R6v6sz [-7, Sect. 6.3]. This requires us to restrict attention 
to the rectangular kernel, 

K(u)=fl for [u[<�89 
(2.1) 

otherwise, 

but permits comparatively generous conditions on the underlying distribution 
of (X, Y). (Our argument via Tusn~tdy's [24] approximation did not include 
the rectangular kernel.) 

Let A = [a, b] denote a compact interval, and set Aa= ( a - 6 ,  b + 6) for a >0. 
We assume that X has a twice differentiable density, f, on A ~ for some e>0,  
and that f is bounded away from zero on A and satisfies a Lipschitz condition 
of order 1. 5. 

s u p  If"(x+y)-f'(x)l=O(6 ~) as 6--,0. (2.2) 
x~A~e; 0<y<5  
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Suppose #(x ) -E(YI  X=x),  ~r2(x)-var(YI X=x)  and #4(x)--E[{Y-#(x)}4IX 
= x ]  are all well-defined and bounded on A ~, and # has two continuous 
derivatives on A ~. Set 

? (x) =f '  (x) #' (x) + �89 #" (x). 

The cross-validatory criterion for estimation on A is defined by 

c~n(h)=n -1 ~, {Yi-fini(Xilh)} 2, 
Xi~h 

where fini(x I h) = fini(x) = [ ~ Yj K {(x - Xj)/h}]/[ ~ K {(x - Xj)/h}] is a kernel es- 
j:~i j * i  

t imator of # based on the sample excluding X~. We choose h" to minimise an(h ). 
In view of the results of Collomb [4, 5] and the expansion (1.1), we know in 
advance that /~ should be selected in the vicinity of n-1/5. Therefore we may 
suppose that e,(h) is minimised over he1-tln -l/s, 2n-1/5], for r/arbitrarily small 
and 2 arbitrarily large. In the proof below we shall assume that r/ and 2 are 
fixed as n ~ o% although it is easily seen that we may choose t / ~ 0  and 2 ~ oe 
at a sufficiently slow rate. 

Our first result shows that minimising c~n(h ) is asymptotically equivalent to 
minimising mean summed square error, fin(h), defined at (1.3). Of course, the 
value of # is unknown, and so/~n cannot be minimised directly. 

Theorem 1. Under the conditions stated above, 

c~n(h)=fl~(h)+n-X ~ {Yi-#(Xi)}2 +op(n-4/5) (2.3) 
XieA 

uniformly in tln- ~/5 < h <,~n-1/5, for any 0 < r / < 2 <  oo. 
Our next theorem provides an expansion for ft,(h), in which the first two 

terms are deterministic functions of h, and the remainder is negligibly small. 
Note that the kernel in (2.1) satisfies 

1 
~K2(u)du=l and ~u2K(u)du= - 

12' 

and so the first two terms of our expansion coincide with the first two terms 
on the right hand side in (1.1), with w=f .  

Theorem 2. Under the conditions stated above, 

1 h4 ~ ?2(x){f(x)}_ 1 dx~_Op(n_4/5 ) fln(h)=(nh)-i ! a2(x)dX + l ~  

uniformly in tln-1/5 <-h <-2n-1/5, for any 0 < t / < 2 <  oe. 

Let h o denote the "asymptotically optimal" window size defined at (1.2), 
and suppose c lc2~0  and t/ is so small and 2 so large that t1<(c~/4c2)1/5<2. 
Then it follows from the expansion (1.1) and Theorems 1 and 2 that h/h o -* 1, 
fin(ho)/In(ho)~l and fln(~)/fn(ho)-~l in probability. Therefore the cross-vali- 
datory window size, fi', is asymptotically equivalent to h o. 
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3. Proofs 

We begin by introducing some notation. Let H ,  
2n -  1/5], and define Ai= Yi -# (XI ) ,  

and 

denote the interval [tin -a/s , 

v(x) = v(x lh)=  E [{# (x ) -  #(X)} K { (x -  X)/h}], 

f , ( x  [ h) = (nh) -1 ~ K { (x -  X~)/h} 
i = 1  

F.(x)=n -1 ~ I(Xi<=x) 
i = l  

(the empiric distribution function of the X-sample). Let F ( x ) = E { F , ( X ) }  denote 
the true distribution function, and ~ = ~ {X 1 . . . . .  32,} denote the a-field gener- 
ated by the X-sample. Write E' for expectation conditional on ~ ,  ~*  for 

summation over i such that X~eA and 1 <_iNn, and ~(a) for summation over j 
J 

such that X~eA ~ and l < j < n .  Let C, C 1, C 2 . . . .  denote positive generic con- 
stants. Arrange the variables X 1 . . . .  , X. in order of increasing magnitude, 
obtaining X(t) <__X(z) < ... <=X(,,>, and set Y(i)= Yj and A(o=A ~ if X t i ) = X  j. 

Observe that 

n -1 ~ *  {Yi- f i . i (Xi )}  2 =2n  1 ~ ,  {Y~-#(Xi)} {#(Xi ) - f i . i (X i )  } 
i i 

+n -a ~ *  {#(X, ) - f i . , (X i )}a  +n  -a ~_* {Y~- #(X~)} z. (3.1) 
i i 

The proof is divided into two main sections, the first showing that the first 
term on the right hand side in (3.1) equals o(n -4/5) in probability, and the 
second showing that the second term equals mean integrated square error plus 
a remainder of o(n-4/5) in probability. Each section is divided into subsections, 
which control individual components in expansions of these two terms. 

(I) Note that 

n -1 ~*  {Y~ - #(X~)} (/~(X~)- fi,,(X~)} = - T~ + T 2 + T3, (3.2) 
i 

where 

and 

T 1 = n-1 ~ ,  A i [ ~ A; K {(Xi - Xj)/h } ] [ ~ K {(X i - Xi)/h } ] - 1, 
i j~:i  j~:i  

T z = n-1 2 *  A i E 2 {# (Xi) - # (X j)} K {(X, - Xj)/h} - (n - 1) v (X,)] 
i j * i  

x [ ~. K {(X i - X j ) / h } ]  - a 
j4=i 

i j~: i  

We shall handle these terms individually, in Sects. (I.i)-(I.iii) below. Our proof 

is prefaced by three lemmas, the first of which is easily derived. Let ~(x]h) 
=E{L(xlh)}. 
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Lemma 1. Under condition (2.2), 

sup ]d? (x ] h) - f  (x)-  (1/24) hZ f ''(x)[ = O (h s/2) 
x e A  

as h-*O. 

Lemma 2. 
If,(x [h) - f i x ) [  = Op(n- 2/5 log~- n) 

uniformly in xEA and h~H,. Furthermore, if c~ > 2 / 5  then 

(3.3) 

I s  I h D - f . ( x  I h2)l = O,(n-~) (3.4) 

uniformly in x6A and values hi, h26H ~ satisfying [h 1 -h2[<=n-L 

Proof. Applying the Koml6s-Major -Tusn~dy  approximat ion  [15] to the em- 
piric distr ibution function F,, we see that there exist Brownian bridges W ~ 
n > 1, such that 

f ,(x l h) -O(x  I h)=n-~h -1 [W ~ {F(x + �89 h)} 

- W ~ {r(x-�89 + Ov(n -4/5 log n) (3.5) 

uniformly in x~A and hcH,. The modulus  of continuity of W ~ 

w~ =- sup t W~ W~ 
0 < s ,  t <  1;  Is-t l  <_u 

is dominated  by Z{u(1-1ogu-1)} ~ f o r ; a n  almost  surely finite variable Z. 
Therefore [f,(x[h)-qS(x]h)l=Op(n-2/51og~n), uniformly in xeA  and hsH,. 
The result (3.3) follows from this estimate and L e m m a  1. 

By L e m m a  1, 

sup I~b (x I hl ) - q5 (x [ h2)[ __< C [h 2 - h2[ + 0 (n - ~) (3.6) 
x E A  

uniformly in hz, hz~H . satisfying [h~ - h21 __< n -  L Furthermore,  

sup I W ~ {r(x +_ ha)} - W ~ {F(x __+~h2)} I = Op {(n- ~ log n) ~} = Op(n- i/5) 
x ~ A  

uniformly in hi, hzEH n satisfying Ihl-h21<n-L The result (3.4) follows from 
this estimate, (3.5) and (3.6). 

Lemma 3. 

and 

U , -  sup ~=lA(j)K{(x-X(j))/h} Or(n9~2~ 
x e A ;  h~Hn j 

sup I ~ A(j) K {(x - X(~))/h}l= Op (n 9/2 o) 
1 <_iNn; x~A;  h~Hn j # i  

r r 

sup ~ ( ~ ) A j  + sup ~ ) A ( ~ )  =Ov(n6 ). 
1 <-r~n j = l  l<=r<=n j 

(3.7) 

(3.8) 

(3.9) 
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Proof For large n, 

~.__< ~(~) d sup z_, (j) ' 

O<r<s<n;s--r<m j = r + l  

im+r A(j) , 
=< sup 4 ~(~) (3.10) 

O<-i<nlm+l;l<=r<m;im+r<n j=im+l  

where m= nsup{F,(x +�89 1/5)-F,(x-�89 1/5)} + 1. The first inequality fo1- 
xeh 

lows on noting that the term K{(x-x(~))/h} appearing within modulus signs in 
(3.7), equals unity for values o f j  in the range r +  1 < j ~ s ,  for some r and s, and 
zero for all other values of j. Consequently 

n/m+ 1 t im+r 4 t 
4 - 4E ' (U4)<  ~ E' sup A(S ) E (�89 

i = 0  ~l<~r<m j=im+l  
im+m ] ./m + 1 r ( i,. + m Z ~(~) E (A (j)) =C1 E [~ E(-~e)o2(x(j)) 2f_ , 4  

i = 0  Lj=im+ l j=ira+ l 

<= C2(n/m ) m2= C 2 nm, 

a version of Rosenthal's inequality [1, (2.1.5), p. 40]. Therefore E'(U,) using 
=Op{(nm)a/4}, and since re=Or(n4~5), the result (3.7) follows. We may deduce 
from (3.10) that whenever m > 1, 

s A(j) sup~)A(i)[ < sup 2 E (�89 =Op(n9/2~ 
X(oeA~ O<=r<s<=n;s-r<= m j = r + l  

and so (3.7) implies (3.8). The result (3.9) is proved similarly. 

(I.i) T 1 : We may deduce from (3.3) of Lemma 2 that 

[(nh) -1 Y~ K { ( x -  X()/h}]-i 
j , i  

= {f(x)} - 1  __ {f(x)} - 2 {f,(x [ h) - f ( x )}  + Op(n-4/5 log n) (3.11) 

uniformly in 1< iNn ,  x e A  and hell , .  Combining (3.8) and (3.11) we see that 

[ y~ A (s~ K {(x - X J h } ]  E ~ K {(x - X(~)/h}]-i 
j~:i j~=i 

= (nh) -1 [ ~ A(D K {(x - X{j))/h}] [{ f (x )} - i  _ {f(x)} - z {f,(x[h) - f ( x ) } ]  
j@i 

+Op(n 23/20 logn) (3.12) 

uniformly in l < i < n ,  x e A  and hsH,.  Since n-l~(4~ we may 
i 

deduce from (3.12) and the definition of T 1 that 

T 1 = 2 T l l  - T12+op(n -4/5) (3.13) 

uniformly in h~H,, where 

Tll = n-  z h-  1 ~ ,  A (o{f(X(i))} - 1 ~ A (j)K {(X~i)- X(s))/h } 
i j * i  
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and 

T12 = n -  2 h-1 ~ ,  A(o {f(X(i))}- 2 f.(X(i) ] h) ~ A(j) K {(X(o - X(j))/h}. 
i j:#i 

We shall prove that  

sup [ T 121 = op ( n -  4/5) (3.14) 
haHn 

as n-+ oe. A similar (but shorter) argument  may be used to show that  

sup I T1 ,l = o,(n-4/5) . 
h~Hn 

Let ~>2/5 ,  and break the interval /4, up into N or N + I  disjoint subin- 
tervals [ti_ 1, ti), each of precise length n -=, where N equals the integer part  of 
( 2 - t / ) n  ~-1/5 and ~ln-1 /S=to<t l<. . .< tu<=2n-1 /5<tN+l .  Given hsH. ,  let k 
=k(h) equal the positive integer such that  he[tk, tk+l). Write 7"12=7"13+7'14 
+ T15 (k(h)), where 

7"13 = n-  2 h-1 E *  A (i){f(X(i))} - 2 {f.(X(i) [ h) -f,,(X~o [tk) } 
i 

X Z A ( j ) K  {(X(i ) - -  X(j))/h}, 

T~,~ = n-  2 h-1 2 *  A, ){f (X(0  } - 2f,(X(01 to) ~ A (j)K {(X, ) -  X(j))/h}, 
i jm i  

and for a general l, 

T15 (1) = n -  2 h-1 ~ ,  d (0 { f(X{i))}- 2 {f~(X{o[h) _f~(X{i) ito)} 
i 

x ~ A<j) K {(X(i ) - X(j))/h}. 
je~i 

Then 

[T13[<n-Xh- l { in f f ( x ) }  -2 sup I f , ( x l hO- f , ( x l h2 ) l  
xaA xaA; hi, h2aA 

s.t. [hl-h2l <n -~' 

x sup I Z A(j)K{(X(o--Xtj))/h}I( n-1 2 *  IAi[). 
1 <=iNn; xeA; haHn j#=i i 

It now follows from (3.4) and (3.8) that  

IT131 - -  Op(n- 4/5 n -  1/2 n 9 / 2 0 )  = o.(n -'/5) 

uniformly in hzH. .  

Let w.i stand for either {f(X(i)) } - 2f,(X(olto) or 

{ f (X(i)) } -  2 {f,(X(o ] tl ) _ f , (  X(i) l to) }" 

Then we may write both T14 and T15(/) in the form 

T16 = n-  2 h-  1 ~ .  A (1) w,i ~ A (j)K {(X(i ) - X(j))/h }, 
i j * i  

(3.15) 
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where w,i does not depend on h and is measurable in ~,.  We may further 
subdivide T16 into two parts, in which the inner sum is taken first over j > i +  1 
and then over j < i - 1 .  Both series may be handled similarly, and so we shall 
treat only the first, equal to n - ah -1  T~ 7, where 

r(i, h) 

T17 = ~ *  A~,) w,i ~ A(j) 
i j = i + l  

and r(i, h) is the largest j such that ]X(i)-X(j)l<�89 and j < n .  For each i, r(i, ") is 
an ~ function and right continuous with left hand limits. Let 
ul < ... <u  M be the points of discontinuity of all functions r(i, "), 1 < i N n ,  in the 
interval (r/n- ~/5, )m- a/s]. Set u o = r~ n-  1/s s(i, p) = r(i, up) and 

s(i, p) 

Sv=~*A~w.~ ~ A~. 
i j = i + l  

(The inner series is taken as zero if s(i ,p)<i.)  Let Yo=So and Y p = S p - S p _ ~ ,  
l < p < M ,  and observe that E'(Yp)=0 for each p. It may be shown after some 
algebra that E'(Yp Yq)=0 unless p = q, and so the variables Yp are conditionally 
orthogonal. We may now deduce from the Rademacher-Mensov inequality 1-16, 
p. 457] that 

E'(supT27)=E'(  sup S 2) 
herin O <~p< M 

=< (log 4M/log 2) 2 E' (S 2) 
r(i, uM) 

2 =(log4M/log2) 2 ~* o-2(X(o) w.i ~ aE(x(j)). 
i j = i + l  

The integer M does not exceed n 2, and if X(or then r(i, UM) is dominated by 

supn{F , ( x+ �89  1 /5) -F , (x -12n-a /5)}+l=Op(n`* /s ) ,  (3.16) 
xeA 

using Lemma 2. Therefore 

E'(sup T(7 ) = Op(n 9/5 log 2 n)( sup w2,1) 
herin X(i)eA 

and 
E'(sup T~6)=Ov(n -9/s log2n)(sup 2 Wni ). (3.17) 

herin X(i)e A 

Since the formula (3.16) does not depend on the weights w,i , then in the special 
case where T16-T15(/), the formula (3.17) holds uniformly in l: 

sup E'{supT~s(l)}=Op(n -9/5 logZn){ sup sup w2fl)}. (3.18) 
O<--l<-N herin O<=l<=N X(i)~A 

When 7"16 = T14 , sup w2i=Ov(1), and so by (3.17), 

sup t 7"141 = op (n- ,*/5). (3.19) 
herin 
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In the case T16 ---- Ta 5 (1), 

sup sup [w,i(1)l < C sup [ f . ( x l h  0 - f n ( x l h 2 ) [  
0 < l < N  X(i)~A xaA; hi, hzaH n 

= Op(n- 2is log~ n), 

by L e m m a  2. Hence by (3.18), and remembering that  N<= Cn ~-1/5, 

N 

El= 0 herin 

Therefore if 2/5 < c~ < 1, 

sup ITs s (1)1 < { sup 7"125 (l)} = %(n-'*/s). (3.20) 
O<=I~N;hEHn kl=O h~Hn 

Combining (3.19) and (3.20) we see that  (3.14) holds, and so by (3.13), 

sup 17"11= %(n-4/5). (3.21) 
herin 

(I.ii) T2: We begin with a lemma. Define 

S (x I h) = ~, [{# (x) - # (X j)} K {(x - Xj)/h } - v (x)]. 
) 

Lemma 4. 
sup IS(xlh)l=Op(n2/5). (3.22) 

xcA;  h~Hn 

Furthermore, if  3/5 < c~ < 1 then 

IS(x l h O -  S(x l h2) t = Op(n 3/~~ log~ n) (3.23) 

uniformly in x 6 A  and hi, hzeH,  satisfying Ih~-h21 <n -~. 

Proof Since [#(x + y ) - # ( x ) - y # ' ( x ) l  < Cy 2 uniformly in xEA and lYl<�89 then 
if x 6 A  and O<h l <hz <2n -1/5 <e, 

I~  {# (x ) -  # (Xj)} I(�89 1 < Ix - Xjl <�89 - I/(x) ~ (x - Xj) I(�89 1 < I x ,  Xjl < �89 
j J 

<=~Chzl 2 ~  i(�89 <lx_Xj l< �89  (3.24) 
J 

First we shall prove (3.22), taking h I = 0  and hz=h  in (3.24). Now, 

sup ~ I ( I x - X j l  <�89 4/5 sup f , ( x l2n  4/5) = Op(n4/5), 
x~A; h~Hn j xEA 

and a similar formula holds for the supremum of expectations. Therefore 

sup IS(x I h ) - # ' ( x )  ~ [ ( x - X j )  I ( I x - X j l  <�89 
xeA; h~Hn j 

- E {(x - X~) I(I x - Xjl _-<�89 I = Op(n2/5). (3,25) 
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Let S(xlh) denote the sum of the terms within square brackets in (3.25). 
Integrating by parts in the identity 

n - 1  ~ (x ] h) = S (x - y) d {F. (y) - F (y)}, 
x--~h<=y<=x+�89 

and using the fact that sup IF,(y)-F(y)I =Op(n--~), we may deduce that 

sup IS(xl h)l = Op(n" n -~. n- 1/5)= Op(H3/lO). 
xeA;  herin 

The result (3.22) follows from this estimate and (3.25). 
To prove (3.23), let sup* denote the supremum over xEA and ha, hzEH n 

satisfying 0 < h 2 - h 1 < n- ~. Note that 

sup* Z I(�89 < x - X i < � 8 9  sup* {V,(x- �89189 } 
J 

= O p ( n  a -  ~), 

using the Koml6s-Major-Tusnfidy [15] approximation. A similar formula 
holds for the supremum of expectations, and also for the series 

Z I(�89 < X j -  x <�89 h2). 
J 

Therefore by (3.24), 

sup* [{S (x I h2) - S(x I h 1)} - /~ '  (x) ~ [(x - Xj) I(-~ h I < Ix - Xj[ <�89 h2) 
J 

- E { ( x - X j ) I ( � 8 9  <lx-Xj]<=�89 (3.26) 

Integrating by parts in the identity 

n -a • [(x-X;)I(�89 < X j - x < � 8 9 1 8 9  <Xj-x<�89 
J 

= S ( x -  y) d {F.(y)-  F(y)}, 
x+ �89 < yK=x+�89 

we may deduce that the left hand side is dominated by 

h 2 1 {F.(x +�89 - F(x +�89 } - {F.(x +�89 0 - F(x +�89 I 

+ Ih a -h21 sup IG(y)-F(y)] 
y~A~ e 

uniformly in x~A and hi, h2eH . with 0__<h 2 - h  a <n  -~, and so equals 

Op (n- 1/s n- ~ n-  ~/2 log~ n) 

uniformly, using the Komlds-Major-Tusnfidy approximation [-15]. A similar 
estimate holds for the series in which I(�89189 is replaced by 
I(�89189 The result (3.23) now follows via (3.26). This proves 
Lemma 4. 

Since [v(x[h)[=O(h 3) uniformly in x~A as h ~ 0 ,  then if we replace S(x[h) 
by R(xlh)=S(x[ h)+v(xlh), the results (3.22) and (3.23) continue to hold. Let 
(3.22)' and (3.23)' denote these alternative results. 
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We may deduce from (3.22)' and the expansion (3.11) that  

T2 = 2T21 - -  Tzz-l-Op(n -6/5 logn) 

uniformly in heH.,  where 

T21 = n -  2 h-1 ~ ,  A~ {f(Xz)} -~ R (Xi ] h) 
i 

and 

Ta2 = n -2 h -1 ~*  A, {f(X~)}-2 f.(X~ I h) R (X~ I h). 
i 

Our aim is to show that  sup IT21[=op(n-2/5) and 
h e H ~  

sup 1T22 [ = op(n- A/S). 
h~:Hn 

We shall prove only the latter result, since the former is simpler. 
Divide H. into intervals [ t i_l ,  ti) of length n -s, as in (I.i). Recall 

=k(h) is defined by hS[tk, t k_ 1)" Set T22 = T23 + T2~+ Tzs(k(h)) , where 

T23 = n-  2 h-1 ~ .  A~ {/(X~)} z {f,(X~ [ h) - f , (X~ I tk)} R(X~ I h), 
i 

T24 = n-  2 h 1 ~ ,  A i {f(Xi) } 2 f . (X i I tk) {R(Xi [ h ) -  R (X  i [ tk) } 
i 

and 
T25(1)=n -2 h -1 ~*  Ai{f(X~)}- 2 f , (Xi  ]tt)R(X, I tt). 

i 

Using (3.4), (3.22)' and the fact that  n -1 ~ *  IAi] =Or(l ) ,  we obtain 
i 

sup I T231 --Op(n-1.  nile. n-~.  n2/5)= op(n-4/5). 
h e r i n  

From (3.23)' we may deduce that  if 3/5 < c~ < 1, 

sup IT2,1 = Op(n- 1. n1/5. n3/1o- ~/2 log~ n) = ov(n-*/s ). 
h ~ H n  

For  each l, 

and so 

E' {n 2 h T25(1)} 2 = ~*  a2(Xi){ f  (Xi)}-4 f2 (X i  I t,) RZ(xi ] tt), 
i 

N 

sup T225(k(h))=Op(n- lS/S) ~ * ~ RZ(xI I t,). 
h ~ H n  i l = 0 

But if x s A ,  

E {R 2 (Xi [ tt) l Xi = x} -- (n - 1) var [{~ ( x ) -  #(X)} K {(x - X)/tl}] 
~tz  

< n s u p  ~ { p ( x ) - # ( x + u ) } E f ( x + u ) d u  
x ~ A  -- �89 

<= Cn(2n-a/5) 3 

(3.27) 

(3.28) 

that  k 

(3.29) 

(3.30) 
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uniformly in I. Consequently, since N <  Cn ~- 1/5, 

sup rd5 (k(h)) = Op(n- 18/5. n. n ~- 1/5. n2/5) = Op(n- 8/5), 
h ~ H n  

provided 3 / 5 < ~ < 4 / 5 .  The result (3.28) follows from this estimate, (3.29) and 
(3.30). We may now deduce from (3.27) that 

sup IT2[=op(n-4/e). (3.31) 
h ~ H n  

(I.iii) T3: Since ]v(x)l=O(h 3) uniformly in x E A  as h---,0, then by (3.11), 

T 3 = 2 T 3 1 -  T32+Op(n 6/5 logn) (3.32) 

uniformly in he l l , ,  where 

T3a --- (1 - n -  1) n-1 h-1 2 "  Ai v (X l ) { f (X i ) } - I  
i 

and 
Ta2 = (1 - n -  l) n-~ h-1 ~ ,  Ai v(Xi ) { f (Xi)  } 2 f . (X  i I h). 

i 

We shall prove that  

sup j r  3z[= o, (n-  4/5). (3.33) 
h ~ H n  

Similarly, it may be shown that  IT311 = Op(n-4/5) uniformly in h~H..  
Divide H, into N or N + 1 intervals [t i_ 1, t~) of length n -  ~, as before, and 

define k(h) by he[tk, tk+l). For  definiteness We shall take a=7/10 ,  so that  
3 / 5 < e < 4 / 5 .  Let f l=13/40 and m=[-n~]. Given an integer l in the interval 
[0, N], define t' z = t,~t~/mr Observe that 

T32=(I -n -1 )h -1{~=~3T3j+  j=s ~ T3j(k(h))} ' (3.34) 

where 

T33 = n-1 ~ .  A i { f (Xi)}  - 2 { f ,  (X i I h) - f ~  (X i I tk)} V (X i I h), 
i 

r3~ =n  -1 F.* Ai { f (Xi)}- z f , (X i  t tk){V(X~ t h)-- v(X~ I tk)}, 
i 

T35 (1) = n-~ ~ *  A~ {f(X,)} - 2 { f . (X ,  I tz) - f . (X~  I to)} v (X, I tl), 
i 

T36 (l) = n-  1 Z *  d i { f (Xi)}  - 2f.  (X i I to) {v (X i I t:,) - v (X i I t'l)} 
i 

and 
T37 (1) = n -1 ~ *  A i { f (Xi)  } - 2 f . (X ,  to) v(X i ITS). 

i 

In view of (3.4), 

sup IT33[=Op(n -~.  n -  a/5)=O p(n-1). 
h ~ H n  

(3.35) 
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Under  the condit ions imposed on # and f, 

I{# ( x ) -  # (x + u)} f (x + u) + u #' (x) f (x)[ < Cu 2 

uniformly in x e A  and lul <�89 Therefore  

�89 

I v ( x l h 2 ) - v ( x l h O I  = _~S {# (x ) -# (x  +u)} f (x  +u) du 

-~h~ du 
- ~ { # ( x ) - # ( x + u ) } f ( x + u )  

- ~ h 2  

<= Cn -2/5 Ih 1 -h21 

uniformly in x~A  and hi, h2~H n. Hence 

sup t T341 = Op (n- 2/5- ~) = op (n- 1). 
hEHn 

It follows from (3.3) that  

sup e '  { 7'25 (l)} 
O<~I<N 

= n -  2 sup ~ *  a 2 (X i) {f(Xz)} - 4 { f .  (X~ [ h) - f~  (Xi I to)} 2 v2 (X~ I to) 
0 < l < N  i 

=O p {n-1. n- 4/5 (log n) . ///--6/5 }, 

and so 

Similarly, since 

sup IT~5(t)l~ 2~ T~5(t) 
0__<l<N t = 0  

= Op {(n ~- 1/5. n -  3 log n) ~} = op(n- 1). 

(3.36) 

(3.37) 

sup Iv(xl tz)-v(xl t ' t ) l~Cn-2/5.n -(=-p), 
x~A;  0 <-I<-N 

then 
sup ]r36(1)l=Op{(n~-1/5.n-l.n-4/s-a(~-#))~}=op(n-a). (3.38) 

O<~l<N 

As l ranges over the integers 0 . . . . .  N, t' l takes no more  than [N/M] +1 
= 0 (n ~- ~- 1/2) values. Since sup E' { Tg27 (/)} = @(n-  11/2) then 

O < l < N  

sup 1T37(I)1 =Op{(n ~-l~-1/5" n -  11/5) +} =Op(n-~). (3.39) 
O N I < N  

The result (3.33) follows on combining (3.25)-(3.39). We may now deduce from 
(3.32) that  

sup t T31 = op(n-*/5). (3.40) 
h~Hn 

It follows from (3.2), (3.21), (3.31) and (3.40) that  

sup I , -~  Y~* { ~ - ~ (xi)} {~ (xi)  - ~,~ (x~)} I = o ,  (n-  ,/5). 
h~Hn i 

This takes care of the first term 
examine the second term. 

(3.41) 

on the right hand  side of (3.1). We now 
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(II). We may deduce from (3.3) that 

sup I[~K{(x-X~)/h}]/[~K{(x-X~)/h}]- 1[--+0 
1 <=i<=n;x~A j=l=i j 

is probability as n-+ oe. Consequently 

{1 + or(l)} n -1 ~*  {#(X~)- #,,~(X~)} 2 
i 

~.~ iv/-1 E *  ([ 2 { YJ --  # (Xi)} Kf(X~- Xj)/h}] [~ K{(X~- Xj)/h}3 - 1)2 
i j * i  j 

= . - 1  E ,  {~(x~)-  ~(x~)} 2 _ 2 T~ + T~, 
i 

where 
T 4 = n -1 ~*  A ~[~ {Y~-# (X~)} K{(X~-Xj)/h}] [~ K{(X,-  Xj)/h}]- 2 

i j j 

and 

Now, 

T 5 = n-1 ~ ,  A 2 [ ~  K {(Xi - Xj)/h}] - 2. 
i j 

(3.42) 

{ Yj- #(X,)} K {(X~- Xj)/h} 
J 

: Y~ ~ jK{(X,-  Xyh} + y~ {~(Xj)- #(&)} K {(X~- X~)/h} 
J J 

= O , ( n g / 2 ~  

uniformly in hEH,, by (3.7) and (3.22). Therefore T4=Op(n -23/2~ uniformly in 
hell,, and it is easily proved that Ts=Op(n -s/5) uniformly in hell,. Hence by 
(3.42), 

n-1 ~ ,  {# (Xi) _ ft, ~(X,)} 2 = { 1 + op(1)} n-1 ~ ,  {# (Xf) - fi.(X~)} 2 + op(n = 4/5), (3.43) 
i i 

uniformly in hell  n. 
Next we examine the first term on the right hand side in (3.43), which we 

write asymptotically as 

{1 + op(1)} n -1 ~*  {#(Xl) -/~(Xi)} 2 
i 

=n-3h-Z ~ ,  {f(Xi) } 2 [~  {yj_#(Xi)} K{(X_Xyh}]2  
i j 

=n 3h 2(~* {f(Xi)}-2[~AjK{(Xi-Xyh}]2 
i j 

+ 2 ~* {f(Xi) }- z [ ~  AjK{(X,- Xs)/h}] 
i j 

x [ ~  {#(X j) --bt(Xj) } K((X, -  X~)/h}] 
J 

+ ~* {f(X,)}- z [ Z  {#(X j ) -  #(X,)} K{(X,-  Xj)/h}l z) 
i j 

=n- 3h-2(T6 + 2T, + Ts), 

say. We shall treat these terms individually. 

(3.44) 
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(II.i) T6: Divide H ,  into N or N +  1 intervals [ti_ 1, tl) of length n -~, as before, 
and define k(h) by he[tk,  tk+ 1)" We assume 3/5 < c~ < 1. Now, 

]r6(h ) - Z6(t01 

< C 2 "  [2 '  A (i) {I([X(i) - Xo)] <= �89 - I(IX(o - X(~)[ < �89 tk)}l 
i j 

x I~,' A o) {I([X(i) - Xo)I <-- �89 + I(IX(i ) - X(j)[ < �89 tk)}l 
J 

< 4 C  sup 2 '  A(j) *{sup*12' A( j ) I (X(o- �89  X(j) < X(o-�89 I 
k I <r<n [j= 1 j 

+ sup* [2'  A (j) I (X(o + �89 t~ < Xo) < X(o + �89 5)]}, (3.45) 
J 

where on this occasion, sup* denotes the supremum over 0<l_< N and values c5 
satisfying t z < 8 < t z + n  -~. We shall prove next that  if ~>3 /5 ,  

2*sup t l~ , 'd ( j ) I (X6)+�89  <=X(i)+�89176 (3.46) 
i j 

F r o m  this estimate,  a similar result  in which the indicator  funct ion is replaced 
by 1 1 I ( X ( o - U 3  <X( j )<X(o -~ f i ) ,  and (3.9) and (3.45), it follows that  

sup i T6(h ) _ T6(tk) I = op(n9/5). (3.47) 
h~H~ 

Define 

M(x) - sup* 12' A( f l ( x  + �89 l < XO) < x + �89 
J 

N 
I ' I(x+�89189 4, < ~,, sup 2 A(j) 

l=Ott<=b<tl+ n-a j 

where x s A .  Then 
N 

E '  { M ( x ) }  ~ C 1 2 [ { 2  t ~ I ( x  -I- �89 t I < X( j )  ~ x -~- �89 t 1-1- �89 e)} 2 
/=0  j 

-1- 2 ' r 
j: x +-~tt < X(j) <=x +-~tt + �89 -~ 

C2 ~r - 1 / 5  [-n sup {V,(y + �89 ~) -- F,(y)} ] 2, 
y~A �89 

where neither C 1 nor  C 2 depends on x or I. (The first inequali ty follows from 
[-1, (2.1.5), p.40].) Therefore  the left hand side of (3.46), which equals 
2 "  {M(X(o)} 1/4, has condi t ional  mean  (given X 1 . . . .  , X,) domina ted  by 
i 

Cgl29/20 + c~/4 [- sup {F,(y + �89 ~) - F,(y)}] 2 = Op(n29/20 - c~/r = Op(nl 3/10), 
yEA-~ e 

provided a > 3/5. This proves (3.46). 
Next  observe that  T6(tl) = 2 T 61(0 + T62(/), where 

T61(1) = Z *  { f  (X(i))} - 22  2 A (j)A (k) I(X(k) -- �89 N X(i ) N X(j) + �89 
i j<k  
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and 
T6 2(/) = E *  {f(Xi)} - 2 E A} I (X j - �89  l <= X i <= Xj  +it,). 

i j 

Let  m=n ~, where 0 < f l < e - 1 / 5 ,  and set l'=m[l/m]. Then 

E,{T 61(i)_ T61(1,)} 2 = E ~, a2(Xu)) a2(X(k)) [~,,* {f(X(1))}- 2 
j < k  i 

x {I(x(~)-�89 < x . )  <= xu) + �89 
1 ~ ~ 1 2 

- I ( X ( k  ) - ~ t  r = X u )  = X(~) + ~ h ' ) } ]  , 

and the absolute value of the term within square brackets is domina ted  by 

C1 }-~. 1 < 1 {I(X(k ) --~tt = X(r < X ( a -  ]tr) + I(X(j) + �89 r < X(i ) <-_ X(j)-]-l tl)} 
i 

< Czn sup { F , ( x + h - t r ) - F , ( x - ) }  =Op(n 1 (~-~)) 
x~A�89 

uniformly in j, k and l. Therefore  

whence 

sup E'{T61(I ) -  T61(l')}2=Oe(n 4-z(" ~)), 
O < t < N  

r N 1~ 

E'{ O__<t<__Nsup IT61(1)- T61(l')]} <= [ ~__oE'{T6a(1)- T61(l')}2 

= O p ( n l  9/10 + fl-- ~/2) -~ O p ( n 9 / 5 ) ,  (3.48) 

provided we choose fi<cff2-1/lO. Repeat ing this argument  but  with c~,fi, m 
and l' replaced by c~- fl, 7, P = [ n~] and l" =p[l'/p], respectively, where 0 < 7 < c~ 
- f i - 1 / 5 ,  we see that  if 7 < ( ~ - f l ) / 2 - 1 / 1 0 ,  

E'{ sup 1T61(I' ) -  T61(/")1 } =Op(ng/S). (3.49) 
o_<~_<N 

Let  us take c~= 13/20, f l=  1/5 and 7 =  1/10 for definiteness. As 1 ranges over 
O<l<N, the total number  of values taken by l" is of order  O(n ~-~-~-l/s) 
= 0 ( n 3 / 2 ~  Therefore  if we prove that 

sup E'{ r21(1)} = Op(nl V/s), (3.50) 
O<_I<_N 

it will follow that  

sup IT61(/")l = Op{(n 3/2~ nlV/s) ~} = Op(n9/S). (3.51) 
0<l=<N 

The left hand side of (3.50) is dominated  by a constant  multiple of 

s = E Z {Y* I(x(k)- �89 1/5 < z , )<  xu)+ �89 ,.)} 2. 
j < k  i 

The series within parentheses equals zero unless X{a-Xu)<n-1/5 ,  and for 
large n the series is always domina ted  by 

n sup {Fn(x + 2n- 1/5)_ F,(x)} = Op(n4/5). 
xeA-~e 
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Therefore 
n - 1  n 

S = Op(n 8/5) ~(~)  ~(~) I (X(k  ) -- X(j)< 2n -  1/5) = Ol,(n 17/5), 
d = l  k = j + l  

which proves (3.50). 
Combining (3.48), (3.49) and (3.51), we see that  

sup IT 61(1)1 = %(n9/5). 
O<=l<N 

Next we examine T62. Set 

T63(1 ) _= T62(/) -E'{T62(1)} 

= E {A ~ - aZ(xj)} ~ *  { f(Xl)  }- 2 I ( X j - � 8 9  < X i < X j  + �89 
j i 

and observe that  

(3.52) 

sup {E'IT23(1)I} <= C~ { ~ *  I(XF�89 < X, <=X~+�89 
O<_l<_N j i 

= Op(n13/5) .  

Therefore 

when c~ < 4/5. 

E'{ sup IT 63(01} = Op{( n~- 1/5. n 13/5)~} = or(n9~5) 
O<_l<_N 

6 

We may write E'{r62(1)} = ~ r6j(1), where 
j=4 

ro~(1) = ~ ,  { f (Xi )  } - 2 aZ(xi) = Op(n), 
i 

r65(0 = Y~* { / ( x 3 } -  2 y~ [G2(xj) I ( x ,  - �89 t~ 5- x~  __< x~ + �89 
i j~-i 

- e {o-2(Xj) I ( X  i - �89 t l < X j  < Xr + �89 fi) I X,}] 
and 

T 66(1) = (n - 1) ~ *  {f(X~)} 2 E {a2(X2) I ( X ~ -  �89 < X j  < X~ + �89 fi) I X~}, 
i 

(3.53) 

(3.54) 

sup ]T6s(/)l =< C ~ *  sup 1~ U(i,j,/)l 
0 <l<-N i O < l < N  j * i  

N 

E[- sup I~U( i , j ,  1)12lXi]<=C1 2 n ~ C 2 t / 1 + a - 1 / 5 .  
0 < l < N  j + i  l=O 

Consequently 
E { sup IT 65(/)1} = O {n. (n I + ~- 1/5)~} = o(n9/5) 

O<_l<_N 
(3.55) 

if ct < 4/5. Let M denote the number  of Xi's in A. Then 

and 

where j:t=i. Let U(i,j, l) denote the random variable within square brackets in 
the expression for T65(/). Then 
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N 

E [  sup [T65(I)- E ( T66(l)[M}12]M] < ~ var { T66(I)[M } 
O<--I<-N / = 0  

= Op(n ~-  1/5.  n 3 - 1/5) = or(h i  8/5). 

Fur thermore ,  
Xq- �89 

E{T66(1)IM} =(n-  1)m S {/(x)} - ldx  [. aZ(y)f(y)dy/P(X~A) 
A x-�89 

= n 2 t z ~ a2(x) dx + ov(n 9Is) (3.56) 
A 

uniformly in I. Combining (3.53)-(3.56) we see that  

T62(1 ) = n 2 t t ~ a2(X)  d x  4- o p(n 9/5) 
A 

uniformly in l, whence by (3.47) and (3.52), 

T 6 = n2h ~ a2(x) dx + Op(n 9/5) (3.57) 
A 

uniformly in hsH, .  

(II.ii) T 7 : Write 

and 

T 7 l(x [ h) = n -1 ~ {#(X j ) -  #(x)} K{(x - Xj)/h} 
J 

%1(x[h)=-E{TTa(Xlh)} 
�89 

= S { U ( x + u ) - ~ ( x ) } f ( x + u ) d u  
-~h  

-- h h  3 ~ (x) + o (n- 3/5) 

uniformly in x e A  and h~H n. Then 

T71(xLh)-~v1(xlh)= S {#(Y)-#(x)}d{Fn(y)-F(Y)} 
x--~h<=u<=x+~h 

=O~(n 7/lO) 

(3.5s) 

Define 

uniformly in xaA  and h~I-I,, on integrating by parts. We may now deduce 
from (3.7) that  

r v = n ~ *  { f (X l )} -  2"C 71 (X ilh) ~, A jK {(X i - Xj)/h} 
i j 

4-Op(n 2"n  7/10.y/9/20).  (3.60) 

Z 72(x ] h )=  ~ A j K {(x - Xj)/h}, 
J 

and note  that if 0 < h  1 =<h2, 

T72(x [h2) -  T72(xlh1)= ~ A(j){I(x-�89 2 <= X(j) < x - �89  + I(x + �89 I < Xtj) 
J 

< x +�89 )} 2 ' 

(3.59) 
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The argument  leading to (3.7) may  now be used to prove that if 2/5 < c~ < 1, 

sup [r72(xlh 0 - -  r 7 2 ( x l h 2 )  ] 
x~A;hl,hz~Hns.t. ]hi --h2] ~n - ~ 

= Ov{(n. n 1-~)1/4} = op(n2/5). (3.61) 

Therefore  if we divide H ,  into intervals [ t i_l ,  ti) of  length n -s, and define k(h) 
by h~[t k, tk+ i), we see from (3.58) and (3.60) that 

T v = n 2 *  {f(X,)} - 2 zv l(Xilh) 2 A j K { ( X i -  Xj)/tk} + ov(n 9/5) (3.62) 
i j 

uniformly in h~H,.  The  argument  leading to (3.58) may  be modified to prove 
that  

['c71(xl hl)-'c71(xl h2) < Cn-  2/S lhl -h21 

uniformly in hx,h2sH,,. It now follows from (3.7) and (3.62) that 

Z 7 ---- T73(k(h)) + Op(n 2. n-  2/5 - ~. n9/20) _j_ Op(t19/5) 
= T73(k(h)) + Op(n 9/5) (3.63) 

uniformly in heH,,, where 

T 73(/)-- rt 2 *  { f (X/ )}-  2z7 l(Xi[t/) ~ '  A jK{ (X  i -  Sj)/tt}. 
i j 

Now, 

2 n-  4 E'{ Tr _-< C~(E~' a (X j) {~  (f(X~))- 2 z7 ~(X~[ts) I([X~ - Xjl <= �89 z] 2 
j i 

+ 2 '  E'(A ~) l~*  { f ( X ) }  - 2 "~71 (Xi It,) I(IXz - Xjl < �89 4) 
j i 

<= C~ {n. (n 4/ 5 �9 n-3/5)2)2 = C~ n1~/5, 

and so 
E'{ sup I Tv3(/)[} = Ov{(n ~- 1/5. n34/5)1/4} = Op(n9/5), 

O<l<_N 

provided 2/5 < c~ < 3/5. Combining  (3.63) and (3.64) we see that  

suplTTI = o p(n9/ 5). 
hEHn 

(II.iii) 7s: The results (3.58) and (3.59) imply that  

T71(xlh)= ~nh3y(x)+op(n  2/5) 

uniformly in x 6A  and hEH.. Therefore  

Ts = Y ~  n2 h6 2 "  { f (Xi)} - a y2(Xi) + op(n9/5) 
i 

= 1 - ~ 4  n 3 h 6  S { f ( x ) }  1 7 2 ( x ) d x + o p ( n 9 / 5  ) 
A 

uniformly in h~H,.  

(3.64) 

(3.65) 

(3.66) 
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C o m b i n i n g  the  e s t ima te s  (3.44), (3.57), (3.65) and  (3.66), we see tha t  

F* b(xo- 
i 

= (nh)-i ~ r  ) dx + 1-~h 4 ~ {f(x)}  -172(x)  dx + Op(n- 4/5) (3.67) 
A A 

u n i f o r m l y  in h~H,.  This  es t imate ,  (3.1), (3.41) a n d  3.43) imp ly  tha t  

. - '  Y? 2=n-  Z* taxi)} 2 
i i 

+ (n h)--1 ~ O.2(X) dx -~ 1-~4h 4 y { / (x )}  - '  7Z(x) dx + Op(n- 4is) 
A A 

u n i f o r m l y  in hel l , .  T h e o r e m  l fo l lows  f r o m  (3.67) and  (3.68), a n d  T h e o r e m 2  

f r o m  (3.67). 
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