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1. Introduction 

Let d be a fixed natural number, and X 1 , X  2 . . . .  be a sequence of independent 
d-dimensional random vectors with common distribution function F(x), 
x=(xa . . . . .  xe)eR e, and characteristic function C(t )=Sexp( i ( t , x>)dF(x  ), 

d B a 

t=(ta . . . . .  re)eR e, where (t,x> = ~" tkx k is the usual inner product. Throughout, 

#v will denote the measure on the d-dimensional Borel sets induced by F, and It] 
= {t, t> -~ and IItql =max(lt l t ,  ..., [tel) will denote the length and maximum-norm 
on R e. Let, for each n, F,(x), x s R  e, be the empirical distribution function of 
X1, ..., X,,  and introduce the n th d-variate empirical characteristic function 

C , ( t )= !  ~ exp(i(t,  Xk))= I exp(i(t,x))dFn(x), teRe" 
k =  1 R d 

(i.i) 

The asymptotic behaviour of the univariate empirical characteristic function and 
of some modifications of it was recently investigated by Kent [24], Feuerverger 
and Mureika [17], CsSrg5 [5-8], Marcus [26], Breuer [2] and Keller [22]. It was 
Feuerverger and Mureika's paper first proposing a systematic study of C, and 
thus prompting [5], where it was realized that the questions are deeper than 
they seemed at first sight. [-2, 6-8, 26] and partly [22] were inspired by [5]. The 
aim of the present paper is to extend most of the results of the above nine papers 
to the multivariate case. Many of these multivariate results stand in their final 
form, and some of them are new or better than the existing ones even in the 
univariate case. Sufficient motivation for why to deal with C, is found in [17, 
22], [15, 16], and in many other papers. One such motivating factor is, for 
instance, to provide theoretical background for statistical inference in uni-, and 
multivariate stable laws, where the closed form of the characteristic function is 
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known, but not of the distribution function. An annotated bibliography of the 
whole field was compiled in [10]. 

Sect. 2 here deals with the uniform convergence of IC,(t)-C(t)]  to zero. In 
Sect. 3 a necessary and sufficient condition is given for the weak convergence of 
the d-variate empirical characteristic process 

Y,(t) = n~(C,( t )  - C(t)) = S exp (i ( t ,  x ) )  dfl ,(x),  (1.2) 
R a 

on any compact set S of R d, where 

ft, (x) = n ~ (F, (x) - F (x)) (1.3) 

is the d-variate empirical process, and then this condition is analysed in terms of 
the tail behaviour of F. In Sect. 4 I1, is strongly approximated by a sequence of 
suitable copies of the limit process, and the completely specified rates of these 
approximations are analysed. The condition under which this approximation 
takes place is very near to the condition of weak convergence. The weak limit of 
Yn is a nonstationary process. In possible applications a stationary limit would 
be more useful, since we know much more about the distribution of certain 
functionals of stationary processes than about that of nonstationary ones. 
Therefore it is of some interest to look for modifications of Y,, the limit 
processes of which are stationary. Sect. 5, 6, and 7 consider four such modifi- 
cations, where the limit is either second order stationary or strictly stationary. 
All of these four modifications are achieved by introducing extra randomization. 
Sect. 8 deals with the weak convergence and strong approximation of the d- 
variate complex quantogram, which is a non-randomized modification of Y, 
having a strictly stationary limit. In Sect. 9 functional laws of the iterated 
logarithm are derived from the results of the preceding sections. Sect. 10 
investigates the weak convergence of the d-variate empirical characteristic 
process when unknown parameters are also estimated from the sample. The 
estimators themselves are also based on the empirical characteristic function. 

All the stochastic processes appearing in this paper are assumed separable. 

Acknowledgements. I thank P6ter Breuer, Richard Dudley, Andrey Feuerverger, Heinz-Dieter Keller, 
Michael Marcus and Walter Philipp for sending me preprints of their papers, and especially Xavier 
Fernique for explaining to me several possible extensions of his Proposition 2.3 in [ 14], one of which 
is used in the present paper. 

2. Glivenko-Cantelli Convergence 

The Glivenko-Cantelli theorem says that F~ almost surely uniformly converges 
to F on R d. Hence by the continuity theorem of P. L6vy we evidently have 

Theorem 2.1. On each bounded set  S c R d 

supJC. ( t ) -  C(t)[~O a.s. (2.1) 
t ~ S  
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We note here that when C satisfies a certain condition (cf Theorem 9.1), then 

( n f s u p l C . ( t ) - C ( t ) l = K  a.s. (2.2) limsup,~oo 21oglogn t~s 

with K =sup  {sup Ik(t)l: k ~ ;fv}, where J~ffv is of Theorem 9.1. 
t E S  

By the argument of [17] the supremum in (2.1) cannot generally be taken on an 
unbounded set. On the other hand, this can be done for certain special kinds of 
distributions. For example, the easy proof in [17] also gives the following 
multivariate extension of their result. 

Theorem 2.2. (i) I f  F is purely discrete, then 

sup[C,( t ) -C(t )[~O a.s., 
t E R  a 

(ii) and if, moreover, #r(A)= 1 with some bounded Borel set A ~ R  a, then 

d, suplCn(t)-C(t) l~O a.s., 
t ~ R  d 

where d, = o((n/loglog n)~). 
Part (ii) of this statement was noticed by Keller [-22] in the case d = 1. 

Something more than (2.1) can also be said in the general case. Let a<b be 
two numbers, and consider the cube 

T={(t l , . . . , ta) :  a<t  1 <b, . . . ,a<ta<b} ,  
and let 

IT[ = ( b -  a) a, 
and 

(2.3) 

(2.4) 

(2.5) 

conditions, the 

H TII =(max (lal, Ibl)) a. 

For d-variate functions f and g, satisfying the appropriate 
following rough upper bound follows via integration by parts: 

T! f(x) dg(x)] < ! g(x) ~x 1 Oa... ~Xaf(X ) dx 
a- 1 3k (2.6) 

+Srsuplg(x)[ ~ ~ sup J ( x ) ,  
~ T  k = o  j . . . . . .  j~>=o x~r  ~ x { 1 . . . ~ x ~  

j l + . . . + j a = k  

where S r = 2 d ( b - a )  a- 1 is the surface of T. This inequality will also be used later 
in the case when g is some random field. Now let a = a , ,  b = b ,  in (2.3). Using 
(2.6), the fact that sup I/Ux)I has a limit distribution, and the d-variate Chung- 

x e R  d 

Smirnov loglog law, the proof of Theorem 1 in 1-5] extends to give 

Theorem 2.3. (i)/f/I  T.II =o(n~), then 

sup IC,( t ) -  C(t)l---,0 in probability. 
t ~ T n  
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(ii) I f  I I T.II = o ((n/loglog n)-~), then 

sup lC , ( t ) -C( t ) l~O a.s. 
t ~  T n  

The proof of Theorem 2.7 of [17] again trivially extends to give 

Theorem 2.4. If]T,]=o(np/2), 0 < p < 2 ,  then 

]C,( t ) -  C(t)]P dt ~O  in probability. 
T n  

S. Cs6rg6 

3. Weak Convergence 

Let S be a compact set in R a and denote by cg(S) the Banach space of continuous 
complex valued functions on S with the usual sup-norm [[. [1oo =sup I" [. I1, of 

t ~ S  

(1.2) restricted to S is a random element of cg(S) for each n. Write C(t)=R(t) 
+iI(t), and consider a complex valued d-variate Gaussian random field Yv(t) 
=U(t)+iV(t) ,  t=( t  1 .... ,ta), with EY(t)=O, and having the same cross-co- 
variance matrix as Y, has (for each n), i.e., 

(v(t) V(s) v(t) v(s)~ 
E \v(t) v(s) v(t) V(s) I 

= { �89 �89 
\ � 8 9  � 8 9  ] 

and specifically EYv(t ) Yv(s) = C ( t -  s ) -  C(t) C(-s) .  
Just like in the univariate case ([17], [5], [26]), the finite-dimensional 

distributions of Y, converge by the multidimensional central limit theorem to 
those of Yr. But Y, does not always converge weakly in cg(S) to YF, since the 
latter process can be almost surely discontinuous for certain F's. When looking 
at these kind of properties of the Yr process, the following stochastic integral 
representation is useful. 

Yv(t) = ~ exp (i(t, x)) dBv(x), (3.1) 
R a 

where Bv(x ) is a d-variate Brownian bridge process associated with the distribu- 
tion function F, i.e., B v is a d-variate Gaussian process with the following 
properties: 

EBr(x ) = O, EBv(x ) Bv(y ) = F(x/x y) - f ( x )  F(y), 

lim BF(X 1 .. . .  ,xa)=O, j = l  . . . .  ,d, (3.2) 
X j ~  - -  oO 

lira B F(x 1,..., xn) = O, 
( x l ,  . . . ,  X a ) ~ ( ~  . . . . .  co)  

where for x, y s R  a we write x A y=(min(x l ,  Y0, ..., min(xa, Ya)). Clearly the right 
hand side of (3.1) is a Gaussian process, and using elementary properties of the 
stochastic integral one can easily check that it has the required coveriance 
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structure, i.e., it is indeed a representation for YF. Now we give a representation 
for BF, which will make the representation in (3.1) more tractable. Let Fi(xj) 
denote the jth marginal distribution of F. According to a result of Wichura [33] 
(p. 293, cf. also Lemma 1 in [29], and Lemma 3.2 in [27]), there is a d-variate 
distribution function G, all the univariate marginals of which being uniformly 
distributed on [0, 1] such that 

F(x) = G(L(x)), (3.3) 
where 

L(x) =(F 1 (x 1), '" ,  Fa(xa))" 

Now consider a d-variate Wiener process WG(y ) on the unit cube of R a 
(y~ [0, 1] a) associated with the distribution ruction G of (3.3), i.e., W G is a d- 
variate Gaussian process on [0,1] a with EWG(y)=0, EWG(x ) WG(y)=G(xAy) ,  
and WG(Yl, ..., Ya) = 0 whenever yj = 0, j = 1, ..., d. The process 

Be(Y) = WG(Y l, "", Ya) -- G(y l, ... , Ya) W~(1 ... .  ,1), (3.4) 
y = (y~, . . . ,  Ya) ~ [0, 1] d, 

is a Brownian bridge process on [0, 1] d associated with G, and B e of (3.2) can be 
represented via (3.3) and (3.4) as 

BAx) = B G ( L ( x ) ) =  W~(L(x))- F (x) Wall,..., 1). (3.5) 

By (3.5) we then have instead of (3.1) that 

Ye(t) = S exp(i<t,x>)dWG(L(x)) - C(t) WG(1, ..., 1). (3.6) 
R a 

Y, can converge weakly to Ye in c#(S) only if the latter process is sample- 
continuous. On the other hand the continuity properties of Yv are evidently 
equivalent to those of the process 

Ze(t  ) = j exp (i (t, x>) dWG(L(x)) 
Rd (3.7) 

=U*( t )+iV*( t ) ,  

for which we have EZF(t)=O, and 

(u*(t) U*(s) u*(t) V*(s)] 
E \V*(t) U*(x) V*(t) V*(s)! 

_ l  [ R ( t - s ) +  R(t  +s) - I ( t - s ) +  I(t  +s)] 
--2 \ I ( t - s ) + I ( t + s )  R ( t - s ) - R ( t + s )  ]' 

and specifically EZv( t )Ze(s  ) = C ( t - s ) .  So Z e is already second order stationary 
but not yet strictly stationary. Let Z(v 1) and Z~ 2) be two independent copies of 

~(1) t +iZ~)( t ) ,  6S. The continuity pro- Ze,  and consider the process X~( t )=L e () t 
perties of X e are equivalent to those of Yf, moreover X F is a strictly stationary 
complex Gaussian process with E X e ( t ) X e ( s ) = 2  C(t-s ) ,  and for the stationary 
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real and imaginary parts of it we have 

~b: (t - s) = E(Re Xr( t  ) - Re X e (s)) 2 
(3.8) 

= E  (Ira Xr(t)-ImXe(s))  z= 1 - R ( t -  s). 

Let "~d denote the d-dimensional Lebesgue measure, and for this function ~b(t) 
= (1 - R(t)) ~ define 

m(Y)=2a{t: Iltll<�89 4,(t)<y}, 0 < y < l .  (3.9) 

The non-decreasing rearrangement ~ of ~b is the inverse function to m: 

$(h)=sup {y: m(y)<h}. 

The univariate special case of the necessity part of the following theorem was 
proved independently by Cs6rg6 [5] and Marcus [26], while the sufficiency part 
in [26] alone (if d = 1). 

Theorem 3.1. Yn converges weakly to Y~ in cg(S) if and only if  

dh< . (3.10) 

Proof. By Theorem 2.3 of [20] (cf. Theorem 7.6 and Corollary 6.3 in Chapter IV 
of [21]) condition (3.10) is equivalent to the Dudley-Fernique necessary and 
sufficient condition (Th6or~me 8.1.1 in [13]) for the sample-continuity of XF, 
and thus for that of Yr. Therefore (3.10) is indeed a necessary condition for weak 
convergence. 

In the univariate special case Marcus [26] gave two different proofs for the 
sufficiency. Now we extend his shorter second proof to the present d-variate 
case. Introduce the following random infinite rectangles in Rd: 

Ak={X~Ra:Xk<X}, k = l , 2 , . . . ,  (3.11) 

and write for simplicity Ik=I{Ak} , where I{a } is the indicator function of the set A. 
Introduce also 

Yff(t)= ~ exp(i( t ,x))df l . (x)  
UN 

1 ~ f exp( i ( t , x ) )d[ Ik (x ) -F(x )] ,  
tqz k=l UN 

where N >0  is such a fixed number that the surface of the d-dimensional cube 

UN={(x 1 . . . .  ,Xd): -- N < x  I < N , . . . , - N < x a < N  } 

has zero #v-measure. With some ~ > O, the inequality 

El YnN(f)-- YN(B)] 2<2  S (1 --cos ( t - s , x ) ) d F ( x )  
U~v 

<2 ~ [( t -s ,x)[ l+6dF(x)<=2dN l+a l i t - s [ [  l+a 
U~r 
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ensures the weak convergence of y N, as n ~ oe, by the easy d-variate variant of 
Theorem 12.3 of [1]. Let VN=Ra\UN be the complement of U N. On applying 
the Pisier-Fernique theorem (Th6or6me 1.3 of [14], quoted also in [-26]), it is 
enough now to show that for 

we have 

Wff(t)= S e x p ( i ( t , x ) ) d f l . ( x )  
VN 

=~__ ~ e x p ( i ( t , x ) ) d [ I k ( x ) - F ( x ) ]  
1~12 k =  l V iv  

E II w~(- ) l l  co < G 

for each n, where 6N'-~0 as N--, oe. Define 

1 " 

= ~ exp(i(t ,x))dmN.(co,  x), 

(3.12) 

a d 

where {G} is a Rademacher sequence (i.e., a sequence of independent random 
variables taking on the values - 1, 1 with probabilities 1/2) independent of the 
original sequence {Xk}, CO is the element of the basic space (• ,d ,P) ,  and 
m, N (co, x) is a random measure on R e defined by 

gl k =  l 

Here B k = {x e Rd: X~, < x}, where {X~,} is a sequence of independent identically 
distributed d-dimensional random vectors defined by 

X, f0, if X k ~ U  N 
k-- [Xk ,  if X k ~ V N. 

It can be checked that m~(x)=EIm~(co, x)l 2 is  a measure on R d with rn~(Rd)= 1 
-gF(UN)=pe(VN). Following still [26], first by inequality (10) of its Lemma 2 
(attributed to "certain circles"), and then by Proposition 2.3 of [14] (which is a 
multivariate result, and can be applied here since the random measure rn~(co, x) 
has symmetric values on disjoint sets) we get 

E II W~(')ll ~o --< 2E I[ U~(')II oo 

2(u~)r~))6 [log (1 1 __< 8 (~/r~))~ + (2d)* Ks 

where the constant K s depends only on S, and m(.) is defined under (3.9). By 
Lemma 2.2 of [-20] (cf. Lemma 6.2 in Chapter IV of [21]) the finiteness of the 
latter integral is a consequence of condition (3.10). Thus the right hand side of 
the last inequality goes to zero as N ~ c~, proving (3.12), and hence the theorem. 
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In order to see what condition (3.10) is all about if measured in the tail 
behaviour of F, for m=2 ,3 . . ,  and e > 0  consider the following functions in- 
troduced in [5]. 

gin(u) = (log u) log k u , u_>_ expm(1 ) 
k 

and 

[(logu) __[I 21OgkU (1og~u) 2+~, u>eXpm(1) 
gm,,(u) = j  k (3.13) 

0, 0__< u < expm(1), 
t 

where logj and expj denote the j times iterated logarithmic and exponential 

functions ( [ I = l ) . F o r u > 0 1 e t  
k = 2  

A u = {x = (xl, ..., xd): max (Ix 11, ..., Ixdl) > u} (3.14) 

be the outside of the corresponding cube. It follows from the discussion in [5] 
that r - 

~/~(A,) 
A u  / 

is not enought to ensure condition (3.10), i.e., having only (3.15), the weak 
convergence generally fails to hold. On the other hand, suppose that 

S gm,~(lxl)dF(x)< ~ (3.16) 
R d 

with some m--2,3, ..., and e>0,  and for h > 0  let 

tp(h)= sup dp(s-t) (3.17) 
s, t e S  

IIs-tll-<h 

where ~b( t )=(1-Re C(t)) ~ is of (3.8). Then, extending the corresponding uni- 
variate result in [5], Keller [22] (p. 78) has shown that 

O ( h ) = O (  

But for such a ~ one clearly has 

1 ~ ' 
g i n ,  

h -,0.  (3.18) 

! tp (h) dh < o% 

h log~ 

(3.19) 

or, what is equivalent to this, 

~ (e-"2) du < oo, (3.20) 
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and (3.10) follows from (3.19). Indeed, on introducing 

/ z (6 )= i  .x(~h) 1 �89 0 < 6 < 1 ,  
~ h ( log~)-  

we always have Ie)(6)<Io(6 ) (cf. p. 176 of [21]). Hence condition (3.16) implies 
weak convergence. It is a pleasure to point out that Keller has proved this 
special case of Theorem 3.1 in his dissertation [22] (Satz 3, Kapitel III). His 
method is different from, but in spirit related to the one presented here. Note 
that (3.19) or (3.20) is Fernique's sufficient condition (Th6or6me 4.1.1 of [13]) for 
the sample-continuity of the process X F, and hence for that of Yr. 

4. Strong Approximation 

The main result of [5] was Theorem 3 on strong approximation. Following the 
line of the proof of that univariate result, Keller [22] could refine the approxi- 
mation at one point, and thus he was able to establish in his Satz 20 (Kapitel 
III) the content of Remark 2 in [5]. Fortunately to the present aims, Keller has 
worked out that point separately for the multivariate case. Using this multi- 
variate result, a d-variate analogue of Keller's Satz 20 will be given in this 
section. For convenience, the approximation will be given on the cube T= [a, b]d 
of (2.3) instead of S of the preceding section, and II" II oo belongs to T. 

Let p be a natural number with loglog p > 2, and let 

m = ( [ d / 2 ] + l ) ( [ b - a ] + l ) p  z, (4.1) 

where [.  ] denotes integer part in this section. Further, let 

2 k2 
b p =  L P -  

k=l 
and 

| 2 (4.2) 
k2 log2 +loglogp" a P = k =  1 

With m of (4.1), introduce am: = {J = (J l, "" ,Jd):O<jk <m, 1 < k <d}, and let 

0 
Remember the notation of an indicator function from the preceding section, and 
let e--exp (1). Then Keller's mentioned bound is formulated as 

Theorem A ([22], Satz 16, Kapitel III). 

1IRe Y, II oo <max  IRe Y.(s)")l +2X ~ V'~kt ~,r(l) ~ ~ ~/t(1)~_ . . . .  k I 
J~Jm e~ l= 1 k= 1 
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and 

where 

and 

m +~z~l  + E M k  )' IlIm Y~II ~ <max  IIm Y,(sj )l (M~t) - (1) 
j ~ J m  = k =  1 

M(k 1) = b plXkI(ro.el}(IX~l)l 

M(k 2) = ap loglog lX k I~(e, ~)~(IXkl)[- 
The role (in the proof of the mentioned univariate strong approximation 

results) of the Koml6s, Major, Tusn~tdy [25J strong approximation theorem for 
the univariate empirical process will be played here by the presently available 
best multivariate approximation theorem of Philipp and Pinzur [29]. To 
formulate their result we need the notion of a Kiefer random field. A (d + 1)- 
variate Kiefer process Kv(. ,"  ) on R a x  [0, oe) associated with the distribution 
function F(x), x ~ R d, is a real valued (d + 1)-parameter (x ~ R e, 0 < z < o0) Gaus- 
sian process with 

K v ( x  , O) = 0 

lim KF(X 1 . . . .  ,xa, z)=0, l < j < d ,  

lim Kv(x  1 . . . .  , Xd, Z) = O, 
( x l ,  . . . ,  x a ) ~ ( ~ ,  . . . ,  ~ )  

E K  F (x, z) = O, 
and 

EKv(x ,  z) K f ( y ,  u) = rain (z, u) [V(x /x y) -- F(x)  F(y)], 

for all x, y ~ R a and z, u > 0. Let G and L be of (3.3), and consider a (d + 1)-variate 
Gaussian process Wo(y, z) on [0, 13 d x [0, oo) such that WG(Yl . . . .  , Yd, Z) = 0 when- 
ever any of Yl , . . . ,Ya  or z is zero, EWo(y ,z )=O,  and EWo(y ,z )  Wo(x,u) 
=rain (z, u)G(x  A y). Then KF can be represented as 

K~(x, z )= Wo( L(x), z ) - F ( x )  WOO,..., 1, z). (4.4) 

Clearly, for all fixed z > 0 

{ z - ~ K v ( x ,  z): x e R  a} ~= {Be(x): x ~Rd}, (4.5) 

where = stands for equality in distribution, and B e is of (3.2) or (3.5). The 
following approximation for fin of (1.3) holds on a suitable probability space. 

Theorem B. ([29]). There exists a Kiefer process {KF(X, z): x ~ R e, z > 0} such that 

P {sup I f l , ( x ) -n -~Ke(x ,n ) l  >Q~ n -k} <Q2n -(x + 3Aft) (4.6) 
x ~ R  a 

for 2 = 1/(5000 d2), where Q1 and Q2 are positive constants depending only on F and 
d. Consequently, 

sup I f l , ( x ) - n - ~ K v ( x , n ) [ = O ( n  -z) a.s. (4.7) 
x ~ R  d 
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It should be noted here that Philipp and Pinzur 1-293 state only (4.7) in their 
Theorem 1. But going through their proof one can see that they have in fact 
proved the somewhat stronger (4.6). This form is more advantageous in that the 
convergence rates for the distributions of some functionals of fir (to those of BE) 
can immediately be deduced from it, while not from (4.7). 

Consider now the Fourier transform of the normalized Kiefer process of 
Theorem B: 

K~(t)= 5 exp(i(t,x))d{n KF(x,n)}. (4.8) 
R d 

Because of (4.5), for each fixed n we have 

{Kf(t): t6Rd}~={Yu(t): t6Rd}, 

with YF of (3.1), and this relation holds on arbitrary subsets of R e. K f  is thus, for 
each tl, a copy of the limit process YF, and Y, will be approximated with K~ 
under the assumption 

#v(Au)=,  dF(x)=O (~@.a ), u~oo, (4.9) 
Au 

where A, is of (3.14), and h(u) is a continuous function on (0, oo) such that there 
exists an m = 2, 3, ..., and 6 > 0 that 

h(u) 
/" ~ ,  u ~ 0% (4.10) 

gm, a(u) I~ 1ogku 
k - - 2  

where g,,,a is of (3.13). Since, by an appropriate variant of Lemma 1 of [9], 

j" gm,~(Ixl) dE(x) = - ~ gin, e(u)dg(u) 
R e` 0 

with g(u)= ~ dF(x), it follows via integration by parts that condition (4.9, 10) 
I<>, 

implies (3.16) for all 0 < e < 6. (Of course, the tail condition (4.9) on the outside of 
a cube and the corresponding one on the outside of a ball are equivalent.) In 
particular, (4.9, 10) implies 

log Ixl dF(x) < oo. (4.11) 
Ixl _-> e 

Also, through (3.16) and (3.18), (4.9, 10) implies (3.19) or (3.20), and hence for 

q (u) = 2 (log u) ~ ~ O (M u- v2) dv = ~ v O~gv) ~ dv (4.12) 
1 u 

we have 
q(u )  -~  O, u ---, oo. 

Here Ip is of (3.17), and M=(b-a)/2.  Now the result of this section is 

(4.13) 
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Theorem 4.1. I f  F satisfies condition (4.9, 10), then on the basic space of Theorem 
B _ 1 §  

P {sup [Y,(t)-g~,(t)[ >Llr*(n) } <=g2n ( 36)  (4.14) 
t e T  

where L 1 and L 2 are positive constants depending only on F, d and T, and 

with q(n) of(4.12) and 

r* (n)---max (r(n), q(n)) (4.15) 

r (z) = u a (z) z -  ~ (4.16) 

with 2=1/(5000d 2) of Theorem B, and where the inverse u -1 (z) of  u(z), for 
large enough z, is defined by 

(u- 1 (z))2x log u-  1 (z) = h (z) z 2a. (4.17) 

One notes that from the latter definition (4.17) of u-1 it follows that 

u -  ~ (z )  ~ g (z )  {logg(z)}l/2x , g(z)=(h(z))l/ZZz a/z, z ~  ~ .  (4.18) 

A simple computation then yields that even in the worst case 

we have 

h(z)=gm,~(z) f i  l~ 
k=2 

r(n)~ (~ )a/2z / (k~= 21ogk n ) 3a/Z~ (log,, n)a~/2a, 

so (cf. (4.13)) we always have r*(n)~O as n ~ o o .  Hence the Borel-Cantelli 
consequence (of (4.14)) 

A,=sup]Y,(t)-KV,(t)[=O(r*(n)) a.s. (4.19) 
t e T  

implies, of course, weak convergence. In addition to this, r*(n)-rates of con- 
vergence also follow from (4.14) for the distributions of many functionals of Y, 
(cf. Corollary 1 of [5]). 

In order to see what is our rate r*(n) in many situations (for example, in the 
case of all d-variate stable distributions), we state 

Proposition 4.2. I f  for the function h of condition (4.9), there exists an ~ >0 such 
that h(z)/z%, ~ oo as z ~ 0% then r*(n)=r(n) in Theorem 4.1. 

Now if, for instance, h(z)=z ~, c~>0, then it follows from this proposition and 
(4.18) that 

d .L 
r* (n) ~ n �9 + 2a (log n)~+ 2a. (4.20) 

Remark. 4.3. In the case d = 1 (cf. Theorem 3 and Remark 2 of [5] or Satz 20 of 
Kapitel III in [22]) r(z) of (4.15) and (4.16) is defined as 

r(z) = u(z) z -~ (log z) 2 
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where the inverse u-1 to u, for large enough z, satisfies 

u -  1 (z)  = h ( z )  z 2. 
(log u - ' (z)) 3 

Hence (cf. Corollary 2 of [5]) if h(z)=z% e > 0 ,  then 

2 c t + 1  

r*(n)~n 2~+4 (logn) '+2 

in the univariate case. Given our method of proof, Theorem 4.1 cannot at 
present be a straight generalisation of the univariate result, as far as rates are 
concerned, since the univariate Komlds-Major-Tusn~tdy approximation (with 
their best and nearly best rates) does not have such a generalisation. The better 
rate one proves in Theorem B, the rate of Theorem 4.1 improves as well. 

Remark 4.4. Regarding this last remark it should be noted that M. CsSrg6 and 
P. R6v6sz [4] proved (4.6) for a class of d-variate distribution functions 
satisfying a rather complicated regularity condition with the better rate 

1 

t(n)=n 2d+4 (logn)2 

instead of n -x, 2 =  1/(5000dZ). For  their class of F's (plus (4.9, 10)) the proof of 
Theorem 4.1 also gives (4.14) with 

r(z) = ue(z) t(z) 

in (4.15) and (4.16), where the inverse u -1 to this u satisfies for large enough z 

1 

(u - 1 (z))  ~+ 2 

(log u -  1 (z))a = h(z) z ae 

instead of (4.17). In this case, if h(z)=z ~, e>O, then 

1 ~t 2 c t + d  

r*(n)~n 2e+4~+2e(logn)~+2~ 

instead of the weaker (4.20). 

Proof of Theorem 4.1. Case 1. If there is a u > 0  such that #v(A,)=0, then we 
know from the representation (4.4) that Kv(x,n)=O for x e A , .  Hence for A, of 
(4.19) we have 

A,= [I S exp(i<t,x>)d{fl,(x)-n-~KF(x,n)}][oo 
Du 

with Du=Ra\Au . Thus, applying inequality (2.6) on the finite cube D. we get 
(4.14) directly from Theorem B with the better r*(n)=n -z. 

Case 2. #v(Au)>0 for all u >0. It is clearly enough to establish the theorem for 
large enough n. Therefore n is taken as large as needed, for certain inequalities 
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to hold, without further mention in the sequel. Let ~/> 1/2 be fixed. Using (4.18) 
we can see the same way as in the univariate proof ([5]) that without loss of 
generality we can assume 

1 
h(u) #v (A,) < 16(1 + (d + 1) q)" (4.21) 

Since h(u(n)) = n 2~ log n/(u(n)) 2~ = (log n)/rZ(n), this means that 

rZ(n) 
>(1 + ( d +  1) q) log n. (4.22) 

16#F(A.~.) ) = 
Now 

where 
A . ~  III.x II o~ + . . .  + I lLs II oo, (4.23) 

I,k(t)= ~ qk(ft, x))dfl,(X), k = l , 2 ,  
Au(n) 

I.k(t) = I qk ( ( t , x ) )d{n -~Kv(x ,n ) } ,  k=3,4,  
Au(n) 

with q l (z)= qa(z)= cos z, q2(z)= q4(z)=sin z, and where for 

1,5(t) = ~ e x p ( i ( t , x ) ) d { f l n ( x ) - n - ~ K F ( x , n ) }  
Du(n) 

we get from Theorem B via (2.6) that 

P { ][In5 II ~ > M1 r(n)} < Q2 n-(1 + ~ )  (4.24) 

Here M 1 =QIH1 [[TH (remember (2.5)), where H 1 depends only on d. 
Following [22] time and again when estimating the first two terms of (4.23), 

let p, = [n ~ and define m = m n of (4.1) through this Pn. Since u(n) ~ oe as n ~ oo 
from (4.18), by Theorem A 

1 " 
[I In 1 [[ ~ =< max ]I,1 (sT) [ + ~ k ~=1 (Mnk + EMnk)' (4.25) 

j eYm = 

where 
m,k  = a, loglog [XkI{r,(n) ' ~o)}([XkJ)[, 

and where s j  and a.=ap,  are defined in (4.3) and (4.2) respectively, through Pn. It 
was also taken into account here that the ball with radius u(n) and centered at 
the origin is inside the cube D.(.). For any fixed s, 

with 

Inl(s)=n -~ ~, R,k(s) 
k = l  

R.k(S ) = I{Au(mI(Xk) COS (S, Xk )  -- S COS (S, X) dF(x), 
Au(n) 

whence [Rnk(S)[ <_ 2, ERnk(S) = O, 2 _ ER,k(S)<pF(A,(,) ). Therefore, proceeding exactly 
the same way as in the univariate proof in [5], the Bernstein inequality and 
(4.22) yields 
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P {max}l,l(sT)l > 2r(n)} == ~ 2n-(* +(~+ 1).) 
;~Jm j~sm (4.26) 

= 2m e n-(1 + (d+ 1),) = Q3 n-(1 +,), 

where Q3 = 2(([d/2] + 1) ( [b-a]  + 1)) d. For the second term of (4.25) we obtain by 
the Markov inequality that 

t "  } p n-~ ~ (M,k+EM,k)>r(n) <(Eexp(M,1 +EM,1))"exp(-n-~r(n)) 
(. k = l  

= (exp (EM, O E exp (M,0)" n-l(') 
< / ~ - ( l + r / )  

for 

l(n)=r(n)n ~ n~ud(n) 
logn nXlog n ,o% n ~ o e ,  

and 
EM, I =a . ~ loglog]xl dF(x)-+O, n ~ oe 

Ixl >=u(n) 

(since a , ~ 0  and the second factor ~ 0  by (4.11)), and 

Eexp(M,0- -  ~ (loglxl)a"df(x)~O, n~oe ,  
I xl _-> u(n) 

again by (4.11). Putting together (4.25), (4.26) and the last inequality and taking 
into account that 11/,2 [I ~o is estimated similarly, we obtain 

e { I[1,1 ]l ~ + 1/1,2 [I 0o > 6r (n)} __< Q3 I rl  n-(1 +,), (4.27) 

where Q3 depends only on d. 
Now we turn to the estimation of the supremum of the d-variate Gaussian 

processes I,k , k=3,4.  Since Fernique's inequality (Lemma 4.1.3 of [13]) is 
proved for multivariate processes, we can still follow the line of the univariate 
proof in [5]. 

First, if F~k(s, t)=Elnk(S)I,k(t), then we find that 

Second, for 

we find that 

[[F,k][, = sup ]F,k(S,t)l<2#v(A,(,)), k=3,4.  
s, t s T  

O.k(h) = sup (E(I~k(S)--I~k(t))2) ~, h>0,  
s , t ~ T  

II~-tl[__<h 

(4.28) 

< �89 O,k(h) = 2 0(h) (4.29). 

with 0 of (3.17). Let p = l + t / + 2 d  and v,=(2plogn) ~. Then using (4.15), (4.12), 
(4.22), (4.28), (4.29), and the fact that 2p<8(1 + ( d +  1)t/) (because t/> 1/2), we 
obtain 
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P{llI,3lloo + 111,411 ~ > 2(1 +(2+2~)p~)r*(n)} 
4 

< ~ P {XlI,kJIoo >r(n)+p~(Z+2~)q(n)} 
k = 3  

4 oo 

=< ~ P{III,j~>v,(IIF,~tI~ +(2 + 2 (. r 
k = 3  1 

co 

<25n 2d f e x p ( -  uZ/2)du 
Vn 

= < 5n 2d exp (v2/2) = 5n -(1 +") 

by the Fernique inequality. This last inequality together with (4.23), (4.24) and 
(4.27) proves (4.14), the theorem. 

Remark 4.5. It is clear from the proof that if Theorem B held true with arbitrary 
t />0  instead of 1/36, then Theorem 4.1 would also be true with arbitrary ~/ in 
place of 1/36. The constant L 1 would then depend, of course, also on q. 

Proof of Proposition 4.2. Here we need half of Theorem 1 of [9], being a d- 
variate extension of the corresponding univariate result of Boas, Binmore and 
Stratton, and stating that if 0 < ~ < 1, then the conditions 

-~ (4.30) UAAu)=O(U ), u-~oo 
and 

4~2(t)= 1 -  Re C(t)=o(lltl?), t -* (0, . .. , 0) (4.31) 

are equivalent. We may and do choose e of the proposition the following way. If 
there is no e in [22, oo) for which 

h~u)/, o% u ~  o% (4.32) 

would hold, then we choose our c~e(0,22) so that h(u)<=u 2~ is also satisfied (for 
large enough u) together with (4.32). If e > 22 can be chosen in (4.32), the we pick 
it out so that 22 < e < 1, but otherwise leave it arbitrarily. By conditions (4.9) and 
(4.32) we have (4.30) and hence (4.31), from which 

r N K h "/2 (4.33) 

where ~ is of (3.17), K is some positive constant, and 0 < h < l  say. Let C, 
=KM~/2/(1 +(cr By (4.12) and (4.33) we get 

q(n) < C~n-'/2. (4.34) 

Therefore, to prove the proposition, it is enough to show that n - ~ / 2  Nr(n), which 
is equivalent to 

n; ( -~ '  <__ u(n). 

Since u(n)--*o% this is trivial if e>__22. Let then c~<22. Because of (4.18), 
u-l(z)<=g(z) for large enough z, whence g-l(z)<=u(z) for large enough z, where 
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g-1 is the inverse to g of (4.18). Hence, it is enough to show that 

L x_~ n0( 2)<__g-l(n). 

Indeed, since d >  1 and 22<  1, 

g(nTt -7)) = (h(nTt -YJ))~ n t -Yf T 

__ 1 .~  a .  2 ~ + . 2  ~ . 1  1 ~ 1 + ~  
<n-St -5)~ t-~)~=n(-sx)( ~- 
=< n(1-~)(1 +~) _< n, 

(4.35) 

what is equivalent to (4.35). 
Under the condition of Proposition 4.2, the constant L 1 of Theorem 4.1 

depends on e only through C a in (4.34). But if we break up T into small cubes T k 
= [G, bk] d such that b k -  a k < 2 (for similar details cf. the proof of Corollary 2 in 
[5]), then the effect of e disappears, and the following d-variante analogue of the 
last statement of Corollary 2 in [5] follows from (4.20) and Proposition 4.2. 

Corollary 4.6. I f  I~F(A~,)=O(u-~), u--* o% for arbitrary large c~, then (4.14) holds 
with r*(n)= n -k, the rate-sequence of Theorem B. 

Theorem 4.1 can obviously be generalised for more complicated figures in R a 
than a cube. Also, the size of these figures can vary with n. But then, of course, 
we must separate out from L 2 = Q 2 + Q 3 + 5  and L1=3  max(M1,6, 2(1+(2 
+2 ~) p~)IT]) the dependence on the figure T=  T~. Here the last I r l  arose from 
the just mentioned break-up trick, and now q(n) is replaced in (4.15) by 

0(n) = ,  u (log u) ~ du (4.36) 

not depending on T. One of the simplest possible such extensions of Theorem 1 
(to be used in Sect. 8) is the following. 

Let, for each n, T, be the union of a finite number of finite rectangles in R d, 
parallel with the axes. Besides the volume [T,I of T,, we still keep the notation 
IlZn][ =sup{ltll . . . ltdl: (tx, ..., td)eT,}. An inspection of the above constants L 1 
and L 2 leads to 

Theorem 4.7. Under condition (4.9, 10) of Theorem 4.1 

P{sup IY,( t ) -g~(t) l  > g  111 Z~ll r*(n)} <g2l  r,I n -(1 +1) ,  
t E Tn 

where r*(n)=max(r(n), gl(n)) with r(n) of (4.16) and el(n) of (4.36), and where L 1 
and L 2 depend only on F and d. 

5. Stationary Limits: Kac Processes 

Let 21,;~2, ... be a sequence of Poisson random variables with E2n=n, n 
= 1, 2, .... Assume that the sequence {2k} is independent of our basic sequence 
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{Xk} of d-dimensional vectors. The d-variate version of Kac's modified empirical 
distribution function is 

, 1 )~k 
F/, (x)=n k~l I{Ak}(X)' xeRa' 

where A k is of (3.11) and I is its indicator function. The d-variate empirical Kac 
process (cf. [7] for historical background) is 

f l*(x)=n~(F*(x)-F(x)),  x eR  d. 

The following relation links fl* with fin of (l.3). 

fl*(x) = flx. (x)+F(x) 2 " - n  x e R  a . (5.1) 
n�89 , 

Now a d-variate Wiener process WF(x ), x s R  a, associated with the distribution 
function F, is a Gaussian process with EWF(x)=O, EWF(X) WF(y)=F(x Ay), and 

lim We(x > ..., xa)=0, k = l ,  ..., d. It can be represented as We(x)= Wo(L(x)), 
X k ~  - -  O0 

where G and L are of (3.3) and W G is defined after (3.3). Using Theorem B of 
Sect. 4 and (5.1), the univariante proof in [7] trivially extends to give 

Theorem 5.1. On a rich enough probability space there is a sequence We (l}, W[ 2), ... 
of Wiener processes associated with F such that 

P {sup [fi* (x ) -  Wv(")(x)[ > K 1 n -z} =< K 2 n - 0  +3@ ), 
x ~ R  d 

where 2 =  1/(5000d 2) is of Theorem A, and K 1, K 2 depend only on F and d. 

Introduce now the Kac type empirical characteristic function and process 

1 x .  
C*(t)= n k~ 1= exp(i(t ,  Xk))= Rdf exp(i(t,  x))dF*(x),  

n~(C, ( t ) -  C(t))= f exp(i(t,  x))dfl*(x). L*(t )= ~ * 
R a 

Analogously to (5.1) we have 
i 

(5) 
2 

Y,*(t) = E (t)+ C(t) X"zn,  t eR  d. (5.2) 

Let again cg(S) be the space of Section 3. The Fourier transform Z v of W v has 
already been defined in (3.7). This is thus a second order stationary Gaussian 
process, being sample-continuous if and only if YF is such. By Theorem 3.1, (5.2), 
and the independence of {2k} and { Yk} we have 

Theorem 5.2. {Y.*} converges weakly in cg(S) to Z v if and only if condition (3.10) 
holds. 

Now let again T be the cube of Theorem 4.1. To get a strong approximation 
result for II.* we do not need Theorem 5.1 (stated only for the sake of complete- 
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ness). The same way as noted in the univariate case [-7], from (5.2) and 
Theorem 4.1 one can easily deduce the following 

Theorem 5.3. Suppose that F satisfies condition (4.9, 10) of Theorem 4.1. Then, on 
a rich enough probability space, there exists a sequence W~ (1), WF (2), ... of Wiener 
processes associated with F such that for the Fourier transforms 

zF(t) = ~ exp(i(t,x))dWF(")(x), t eR  d, 
R a 

we have 
_(i+!~ 

P{sup[Y*(t)-Z~(t)l>Msr*(n)}<=Men 36,, 
t e T  

where r*(n) is of Theorem 4.1, and the constants M s and M 2 depend only on F, d 
and T. 

6. Stationary and Strictly Stationary Limits: Rademaeher Combinations 

Let es, e2, ... be a Rademacher sequence which is independent of {Xk}, and 
consider 

1 " 
R , ( t ) = ~  ~ ~k exp(i(t, Xk) ). 

'~ k = l  

R, is itself a second order stationary process with ERa(t)= 0 and having, for each 

n, the cross-covariance matrix of Z v of (3.7). Specifically, ER,(t)Rn(s ) = C( t - s ) .  
Let 6t, 52, ... be another Rademacher sequence which is independnet of both 

{Xk} and {ek}, and consider 

1 
R*(t)-(2n) ~ k~l (ek+ ifik) exp(i(t, Xk)  ). 

R* is itself a strictly stationary process with ER*(t)= 0 and having, for each n, 
the cross-covariance matrix (in the notation of Sect. 3): 

(R(t-s) - I ( t - s )  ~ (6.1) 
�89 \1(t-s) R(t-s)1" 

In particular, ER*(t)R*(s)= C( t -s ) .  Introduce also the complex Gaussian pro- 
cess Ve(t), t s R  d, with EVF(t)=O and cross-covariance matrix of (6.1). V e is thus 
Vf(t)=2-~Xr(t) ,  where X f is the process considered in Sect. 3 before Theo- 
rem 3.1. That is, if Z~ 1) and Z(F 2) are two independent copies of Z v of (3.7) and of 
the proceeding section (supplied by We (s) and W~ 2), independent copies of W r of 
Sect. 5), then V F can be represented as 

VF(t ) = 2 -  �89 (t) + iZ(~2)(t)). (6.2) 

The finite-dimensional distributions of R, and R* converge to those of Z f 
and V v respectively, and if cg(S) is again the space of Sect. 3, then a simplified 
form of the proof of Theorem 3.1 also gives 
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Theorem 6.1. {Rn} and {R*} converge weakly in cg(S) to Z F and V F, respectively, if 
and only if condition (3.10) holds. 

7. Strictly Stationary Limits: Random Phase Translations 

Let r ~b2, ... be a sequence of independent random variables, each of which is 
uniformly distributed on the interval [ - ~ ,  zc]. Assume that {4~g} is independent 
of {Xk}, and consider 

S~(t) = 1  ~ exp(i(t,  Xk)+qbk). 
k=l  

S~ is itself a strictly stationary process with ES,(t)=O and having, for each n, the 
cross-covariance matrix of (6.1). The finite-dimensional distributions of S, con- 
verge to those of V F of the preceding section as it was noted (if d = l )  by 
Feuerverger and McDunnough [16] who first proposed S, when d = l .  They 
proved weak convergence if E IXll ~ +~ < ~ (d-- 1) with some ~ > 0. Adapting the 
proof of Theorem 3.1 to the present situation we obtain 

Theorem 7.1. {S,} converges weakly in cg(S) to V F if and only if condition (3.10) 
holds. 

8. Strictly Stationary Limits: Quantograms 

8.1 Weak Convergence. In this whole section we deal with such distributions 
for which 

lira C(t)=0. (8.1) 

Under this condition C, can be so modified directly (i.e., without further 
randomization) that the limit process be strictly stationary. Motivated by 
Kendall's "hunting quanta" in the measurements of certain neolithic stone 
monuments in [23], this modification was introduced by Kent [24] in the case d 
--1. His univariante "Snake" theorem (being the first weak convergence result 
for the empirical characteristic function) was further investigated in [6], [26] 
and [2]. 

Let cg(S) be the space of Sect. 3. By condition (8.1) there exist a sequence 
t, eRa such that lit, I] z oe and 

s(n)=sup{n~lC(t)[: [Itll > [Itn][}---,0 , n ~ o e .  (8.2) 

The d-variate quantogram is then defined as 

Qn(t)=n~C~(t+t,) =n~ S exp( i ( t+t , ,x ) )dF, (x) ,  t~S, 
R a 

and the centralised quantogram is 

G.(t)= !2 . ( t ) -  n ~ c( t  + to)= y~(t + t.) 

= ~ exp( i ( t+t , ,x ) )d f l , (x ) ,  teS. 
R a 
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Kent's univariate proof in [24] clearly extends to show that the finite-dimen- 
sional distributions of G, (and hence of Qn) converge to those of V F of Sect. 7. 
(3.10) is a necessary condition for weak convergence. The sufficiency part of the 
proof of Theorem 3.1 does not apply to G n since the centralised quantogram (as 
well as the quantogram) cannot be represented as a normalised partial sum of 
identically distributed cg(S) valued random elements (the terms themselves 
depend on n). But the more laborious first proof of Marcus [26] (for the 
sufficiency of (3.10) to the weak convergence of the univariate Y,) extends not 
only for the d-variate Yn, but also for the d-variate G,. In the computations he 
presents one needs such kind of changes that were done in the proof of 
Theorem 3.1, and all the results of himself, Jain and Fernique he uses are 
multivariate. Hence we have 

Theorem 8.1. {G,} converges weak l y  in cg(S) to V F i f  and only  i f  condit ion (3.10) 
holds. 

Because of (8.2), {Q,} converges weakly in cg(S) to V v if and only if {G,} does. 

8.2 Strong Approx imat ion .  For simplicity suppose that the cube of Sect. 4 is 

r = { x = ( x  1 . . . .  ,xa): - 1 <=x 1 <=1, . . . ,  - 1 < x  1 <= 1} (8.3) 

and that t, in (8.2) is chosen such that for its coordinates we have 

t 1. = . . .  = ta, = t(n) > 0 (8.4) 

(i.e., now we will translate S = T of Theorem 8.1 out towards infinity along the 
line x t = ... = x  d of the "positive (1/2a) th space" of Re), and define 

T , = { x = ( x l , . . . ,  xa): t ( n ) < x g  < t ( n ) +  l ,  k = l , . . . , d } .  

Then, under the condition of Theorem 4.7, we have 

P{suplGn(t )_  e Ko it + to) l > L1 r* (n) t d(n)} 
t e T  

=P {sup I Y.(s) -K.V(s)l >L1 r*(n) ta(n)} 
s s  Tn 

-(1 +!) < 2 d L 2 t e - l ( n ) n  36 . 

This approximation is meaningful only if t, can be chosen so that (8.6) below is 
fulfilled. In this case, since r*(n) can at best be O(n-a), 2=  1/(5000d2), there is a 
0<7=7(d)<1 /36  such that the right side of the latter inequality is not greater 
than 2eL2 n -~j-v). Introducing 

H,e(t)= ~ e x p ( i ( t + t , ,  x)) d{n-- We(x, n)}, (8.5) 
R a 

where the (d+ 1)-variate process We(x  , n)= WG(L(x),  n) was defined before (4.4), 
and coming then back to the (non-centralised) quantogram, we get 

Proposition 8.2. I f  t~ o f  (8.2) and (8.4) can be chosen so that  

b ( n ) = r * ( n ) t a ( n ) ~ O ,  n ~ o o ,  (8.6) 
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then, under the condition of Theorem 4.7, 

P {sup ]Q,(t) - H~(t)] > g s a(n)} =< L 4 n-(1 +,), 
t E T  

where L 3 and L 4 depend only on F and d, and a(n)=max(b(n), s(n)) with s(n) of 
(8.2). 

H F is a Gaussian process for each n, but it is not yet a copy of the limit 
process V v of (6.2). In order to obtain then a usual kind of approximation result, 
H,  e should be strongly approximated by 

vf(t)  = ~ exp(i(t ,  x))dlTV,(x), (8.7) 
R a 

which is a copy of V e for each n, where 

I~,(x) = 17V, V(x)=(2n)-~(Wr(1)(x, n)+iWF(2)(x, n)), x~R  a, (8.8) 

where We (1) and WF (2) are appropriate independent copies of W r of (8.5). The 
univariate special case of this problem was posed in [6] and solved, under some 
conditions, in [2]. It turned out that the required construction of the corre- 
sponding two-variate Wv ~l) and W(2)"F is quite involved. Nevertheless, it is possible 
to follow the main line in Breuer's construction when generalising it to the 
present case. The details are lengthy, only the idea will be sketched here. 

The first simple but basic step is to notice that 

F n n (t)= ~ exp(i(t ,  x)) d(7,(x) (8.9) 
R a 

where 

(2n(X)=(JF(x)=n -~ ~ exp(i( t , ,y))dWF(y,n),  x~R  a, 
T x  

(8.1o) 

with the infinite rectangle T x = {y~Rd: y < x}. In the second step we construct W, 
of (8.8) that it be near to (the already given) U, of (8.10). Here the univariate 
construction of [2] can be extended if we add some techniques from [9] and 
note that the Remark after Lemma 1.3 of [28] holds true for the real and 
imaginary parts of both 17V n and U,, since these four processes have independent 
increments in the sense of p. 139 of [28]. In this way we obtain the following 
extension of Theorem 1 of [2]. 

Proposition 8.3. Suppose that for some fl > 0 

t(n) 
n~ .o% n ~ o o ,  (8.11) 

the density function f of F exists, and that the function 

g(u)= y f ( u - u  2 - . . . - u a , u 2 , . . . , u a )  du2...du a (8.12) 
R d 1 
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is of bounded variation on the whole line. Then the probability space of Proposi- 
tion 8.2 can be extended ( i f  necessary) to carry W~ ~) and WF ~2) of (8.8) SO that 

P{sup I ~; ,(x)-  17V, (x)] >Ls(t(n)) -p} =<L6 n-~l +6), 
xER d 

where p is arbitrary in (0, 1/3), 6 > 0 is arbitrary, and L 5 and L 6 depend only on fl, 
b and F. 

Note that g of (8.12) is the density function of the univariate distribution 
function 

G(u) = ~... f f ( x l , . . . ,  xa) dxl . . ,  dxa, 

~, Xk~U 
k= l  

which reduces to F in the univariate case. 
Now in the third step we will use the nearness of t~ and ~ ,  to show that V F 

of (8.7) and H F of (8.9) are near. Since in Theorem 8.5 below we have to assume 
both (8.6) and (8.11) to obtain a meaningful approximation, r*(n) should be a 
negative power of n. The simplest way to achieve this is to assume the condition 
of Proposition 4.2. Making Proposition 8.3 play the role of Theorem B in the 
proof of Theorem 4.1 (there are no empirical tail integrals only Gaussian, and 
some minor modifications are, of course, needed) with 

2 

u(n) = ( t ( , O ) ~ +  ~J 

and 
2 d  

v(n) = (u(n)) a (t(n)) -p = (t (n)) 3~+ 6a p 

in place of r(n), and noting that the proof of Proposition 4.2 also goes through 
for v(n) (because of (8.11)) instead of r(n), we obtain 

Proposition 8.4. I f  F satisfies condition (4.9) with a function h for which there is an 
> 0 that 

h(u) oo f," , u - ~ ,  (8 .13)  

and if the conditions of Proposition 8.3 are satisfied, then on the probability space 
of Proposition 8.3 we have for any 6 > 0 that 

P {sup [H r(t) - Vf  (t)] > L v v (n)} < Ls n-  (1 + 6), 
t6T  

where L 7 and L s depend only on fl, 6, d and F. 

Combining now Propositions 4.2, 8.2 and 8.4, we get the following approxima- 
tion for the quantogram. 

Theorem 8.5. I f  the conditions of Proposition 8.4 are satisfied, then on the 
probability space of Proposition 8.3 we have 

P {sup IQn(t)- VF(t)I > L  9 m(n)} NLlo n -(1+~), 
t~T 
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where 0<7<1/36 ,  T is of (8.3), t,=(t(n), ..., t(n)) is of (8.4), L 9 and Llo depend 
only on d, F and/3 of (8.11), and 

re(n) = max (r(n)(t(n)) a, (t(n)) - ( p - ~ ) ,  s(n)), (8.14) 

where s(n) os of (8.2), p is arbitrarily close to 1/3, c~ is of (8.13), and r(n) is of 
Theorem 4.1, i.e. r(n) is less than the right side of (4.20). 

Of course, this approximation makes sense only if m(n)~O, n ~ oo, i.e., if the 
first term of the maximum of (8.14) goes to zero. This is so if t(n) can be chosen 
for example so that t (n)=n ~ with /3<z<2e/(c~d+2d2). In this case re(n) 
=max(n  -z, s(n)) with some ~c>0. 

9. Loglog Laws 

Utilizing Th6or6me 4.3 of Pisier [30] (for the final result into this direction cf. 
[19]) we derive now functional loglog laws for Y,, Rn, R* and S, from the weak 
convergence Theorems 3.1, 6.1 and 7.1. The only problem is to determine the 
corresponding four sets of limit points, which are the unit bails in the reproduc- 
ing kernel Hilbert spaces of the (identical) distributions (in cg(S) of Sect. 3) of the 
summands in these four partial sum sequences. It is, of course, easier to do this if 
we guess in advance the form of these sets. For example, when handling Y,, 
assume first the stronger (than (3.10)) condition (4.9, 10) of strong approxima- 
tion. Then a repetition of the proof of Theorem 5 of [5] shows that S~ below is 
the set of limit points of Y,(.)/(2 loglogn) ~ on T of Theorem4.1. From this we 
can conjecture that this is always the case whenever the result holds. From this 
guess the other three (~F  and ~r below, the latter for both R* and S,) easily 
follow. The rigorous identification of these sets with the appropriate unit balls 
then can be done by standard functional analytic methods. 

For functions h: R a ~ R  consider the following classes of d-variate functions 
on the whole Ra: 

~F = {g: g(x)= 5 h(y)dF(y), ~ hZ(y) dF(y)< 1, ~ h(y)de(y)= 0}, 
T x  R a R a 

5~F={g: g(x)= ~ h(y)dF(y), ~ h2(y)dF(y)<l}, 
T ~  R a 

NF = { f = g l  +ig2: ga, g2, O:gl +flg2E~ if 0~ 2 "t-f l  2 = 1} ,  

where Tx={y~Re: y<x}, ~ and /3 are real numbers. Here ~ r  is the generalised 
Finkelstein set (cf. [31] or more generally [11]), while 5e v is a generalised 
Strassen set. Consider also the Fourier-Stieltjes transforms of these sets re- 
stricted to S, a compact subset of R e. 

Jg'e={k: k(t)= ~ exp(i(t,x))dg(x), ge.o~, teS}, 
R a 

s k(t)= ~ exp(i(t,  x))dg(x), g~5~e, t~S}, 
R a 

JC/v= {k: k(t)= j exp (i(t, x)) df(x), f~f#F, t~S}. 
R a  
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Theorem 9.1. I f  condition (3.10) holds, then the sequences 

r.(.) R.(.) R*(.) S.(') 
(2 loglog n) -~' (2 loglog n) ~' (loglog n) ~' (loglog n) ~ 

are all relatively compact in cg(S), and the sets of their limit points are YF, ~F, 
d/IF, J/gF, respectively. 

Pisier's result cannot be applied to deduce a loglog law from Theorem 8.1 for 
the quantogram, for the summands of Q, are not identically distributed. Such a 
law follows from the strong approximation Theorem 8.5. First we prove it for 
V F by an obvious modification of the proof of Theorem 5 of [5], and then the 
result is automatically inherited by Q, if m(n)~O in (8.14). 

Theorem 9.2. I f  the conditions of Theorem 8.5 are satisfied with re(n)--,0, then the 
sequence {Q,(')/(loglog n) ~} is relatively compact in ~(T), and the set of its limit 
points is JgF. 

10. Multivariate Empirical Characteristic Processes 
when Parameters Are Estimated 

Assume that we are given a parametric family of d-variate characteristic 
functions {C(t; 0), 0=(01, ...,Op)~OcRP}, p>l ,  t~R d, and consider the esti- 
mated empirical characteristic process 

?.(t) = n~(c . ( t ) -  c( t ;  0.)), 

where 0,=(6n,, ..., O,v)is some estimator (based on our sample X1, ..., X,) of 
the unknown vector 0o=(0ol, ..., O0v)eO of the true values of the parameters. 
In order to obtain a limit process for f'~, generally we have to assume 
concerning the estimator that there is some function l: Rdx R P---~R p such that 

n~(O.-Oo)=~ k~= ll(Xk, 0o)+~., (10.1) 

where qn~0 in probability. Assume condition (3.10) for C(t; 0o). Then Y,(t) 
=n�89 0o) ) converges weakly in cg(S) to YVo, where Yvo is of (3.1) 
corresponding to F 0 (x)= F(x; 0o), the distribution function belonging to C(t;Oo). 
According to a well-known theorem of Skorohod [32], on a suitable probability 
space we can re-define our basic sequence {Xk} and BFo in YFo of (3.1) without 
changing their distribution such that 

sup lYn(t ) -  YFo(t)]~0 a.s. 
t ~ S  

Using this, but otherwise proceeding similarly as in the proof of Theorem 6.1 of 
[3] (which is a multi-variate generalisation of a result of Durbin [12]), under the 
evidently formed characteristic function variants of the mild regularity con- 
ditions of Theorem 6.1 of [3] we obtain that 
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sup IY,(t)-G(t;  0o) I ~ 0  in probability, 
r ~ S  

where the complex Gaussian process G can be represented as 

G(t; 00)= ~ exp (i(t, x)) dBvo(X ) - ( ~ l(x; 0o) dBvo(x), V o C(t; 0o)), 
R a R a 

where 

(10.2) 

( 6  0 ) 0:0o" vo c(t;  0o)= c(t;  0), ..., c(t;  0) 

Of particular interest are, of course, those estimators which are themselves 
based on the empirical characteristic function C,( 0. One such estimator is the 
integrated squared error estimator considered in [18] if d =  1. For general d >  1 
this is the random p-vector 0~, 1) which minimizes 

j" I C , ( t ) -  C(t; 0)12 dH(t), 
R a 

where H is some d-variate probability distribution function. Another such 
estimator is the integrated error estimator first proposed in [15] if d =  1, p =  1, 
and treated in [8] for p > 1. For general d > 1 this is the random p-vector 0~, 2) 
which solves the equation 

S (c , ( t ) -  c(t; 0)) dA(t)=(O, ..., O)eR', 
R a 

where A(t) is a p-vector of d-variate complex-valued functions Ak(t), each of 
which is of bounded variation on the whole space R d with Ak( t )=Ak( - t ) ,  k 
=1, ..., p. 

Direct conditions on C(t; O) are derived in [8] in the case d = l  to ensure 
(10.1) and (10.2) for 0(, 1) and 0 ~2) with appropriate l (1) and /(2). Let us replace 
assumption (IV) of [8] with the weaker condition (3.10) for C(t; 0o) (which is 
also necessary), and interpret the other five assumptions there for tER a in the 
obvious way, by writing ItlJ ... Itd] in place of Itl in assumptions (V) and (VI), and 
R e as a domain of integration. Then Theorems 1 and 2 (10.1 for 0(, 1) and 0 ~2), 
respectively) and Theorems 3 and 4 (10.2 for 0~, 1) and 0 ~2), respectively) of [8], 
with the corresponding l (1) and l(2), remain true for arbitrary d > 1. 
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