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w 

Let {S(m), m>0}  be a random walk (r.w.) with S(0) -0 ,  S(m)= ~ X,. for m >  1, 
r = l  

where the X,. are i.i.d. Assume that with probability one l i m s u p S n - - +  o% 
l iminfSn= - ~ ,  so that the r.w. is oscillatory. Then for each k > l  the k th strict 
descending ladder index N k is proper, where Nk=min{m>Nk_ 1 s.t. S(Nk_ 1 
+m)<S(Nk_l) } and No~0.  By "the ]s excursion of the r.w." we will mean the 
shifted and stopped section of its path, {S({Nk_I+m)^ Nk)--S(Nk_I), m>0}.  
Suppose also that norming constants c n exist such that Wn ~ W,, where Wn is the 
normed process defined by Wn(t)=cf1S([nt]), W is a stable process of index 
0<c~<2, and ~ stands for weak convergence on the space ~ = D ( [ 0 ,  oc)). De- 
fine the excursions of W, in an analogous way, so that the first excursion of W n 
coincides with the stopped process W. which has W~(t)=W~(t A Tn), with T n 
=n-iN1 = A(W~), where for zeNA(z) denotes inf{t>O:z(t)<O}. 

In this paper we are concerned with the weak convergence of a conditioned 
process W, (A) to a limiting process W (A). The conditioning is to involve the be- 
haviour of the r.w. only up to time N 1, so we require W, (A) to be equivalent to 
{WnlI~/,~A}, where A is some subset of ~ with P{W, eA}>O for all large n. 
The basic example is when 

A = { z e ~ :  A(z)>l}  so that (V,~A~=~S(m)>O for O<m<n, 

and we are dealing with "r.w.'s conditioned to stay non-negative". In this con- 
text Bolthausen [31 showed that W, (A) is equivalent to Wn(K,+ .)-W.(K,), 
where K ,  is the time at which the first excursion of W, whose length exceeds 1 
begins. In the case c~=2 he also established that W,,(K,,+.)-W,(K,)~ 
W(K+ .)-W(K), where K is defined analogously for Brownian Motion W. 
Again in the case c~=2, Shimura [193 showed that the same method works for 
a large class of subsets of 9 ,  and in this paper we show that the same is true 
for 0<c~__<2. Technically, the main difficulty in extending the argument stems 
from the fact that, for ~ 2 ,  the stable process W has discontinuous paths. 
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Crucially, however, it turns out that, a.s., the paths of W are continuous at the 
beginning of each "excursion" and do not have an upwards jump at the end of 
each "excursion". (See Lemma 2 in w 

The "excursions" of W coincide with the "excursions away from zero" of 
the process Y, where Y ( t ) = W ( t ) -  inf W(s). In case c~=2 Y is, of course, 

O<_s<_t 

equivalent to Reflected Brownian Motion IWI, so that identification of the lim- 
it process W (A) seems possible, and has indeed been achieved in the case A 
={z:  A(z)>l}.  For  e~a2, equivalence between Y and [W[ fails, and identifi- 
cation of W (a) seems out of the question. (See, however, Remark 4 in w 4.) Nev- 
ertheless the functional conditional central limit theorem which we state and 
prove in w 2 can be used, for example, to compute the asymptotic behaviour of 
the tail probabilities of a variety of functionals of the first excursion of the r.w. 
This is demonstrated in w 3, and w 4 contains some remarks about related work. 

w 

Throughout  the paper we will be making the following assumption about X, a 
typical step of the r.w. (XsD(cq fl) means that X is in the domain of attraction 
of a stable law of index e < 2 ,  with symmetry parameter f l ~ [ - 1 , + l ] ,  and 
XeD(2) means that X is in the domain of attraction of the Normal law.) 

Assumption 2.1. One of the four following hold: 

X~D(2) and E(X)=0;  (2.1a) 

X~D(c~,fl) with 1<~<2  and- l__f l__<+l  and E(X)=0 ;  (2.1b) 

XeD(1,0) and E(X)=0;  (2.1c) 

XeD(~,fl) with 0 < ~ < 1  and 1/31<1. (2.1d) 

Under this assumption, norming constants c, exist such that W, ~ W, where W 
is a stable process with the corresponding parameters, and W L O G  we can as- 
sume that W(1) has the standard stable distribution, so that, e.g. in case c~ 
= 2  W is standard Brownian Motion. Observe also that under (2.1) 
P {W(1) > 0} e(0, 1), so that both (S(m), m >0) and {W(t), t > 0} are oscillatory. 

As in w 1, we will write A(z)=inf{t>O: z(t)<0} for z c ~ ,  and introduce "ex- 
cursion space" g =  {ze@: z(0)=0 and A(z)< oo}. On ~ we will use the metric 
d which induces the J1 topology but on g we will introduce another metric d 
given by d(z 1 , z2) = I A (zl) - A (z2)l + d(zl(" ^ A (z 1)), z2(" ^ A (z2))). 

Assumption 2.2. The subset A of o r is such that with respect to the d metric, O(~A. 

For  zeN,  let re(t)= inf z(s), y ( t )=z( t ) -m( t )  and introduce the ladder- 
O~s<=t 

point set L(z) which is defined to be the closure of the set {t: y ( t )=0  and ~ no 
c5>0 with y(s)=0 for all s~( t -~ ,  t]}. The excursion intervals of z are the maxi- 
mal finite open intervals contained in (0, oo)xL(z), and E(z) denotes the to- 
tality of all such intervals. For  I=(z,v)EE(z) write d i (z )=v- -z ,  Or(z ) for the 
function z ( .+z ) - z ( z ) ,  and c~r(z ) for the function 0i(z)(" ^ A1(z)). Finally for 
A c d  ~ set Ea(z ) = {IcE(z): ~i(z)eA}. 
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Assumption 2.3. I f  ~A denotes the boundary of A c ~ in the metric d, 

P {E~A(W)= (9, EA(W) ~= (9} = 1. 

Notice that whenever (2.2) holds, for each z ~ 9  EA(z ) has no finite limit points 
so we may denote by [a(Z) the first member of EA(Z ) when EA(Z )=# (9, and put 
f A(z) =(oO, oo) when EA(Z ) = (9. 

Theorem. I f  (2.1) holds and A is a fixed measurable subset of g satisfying (2.2) 
and (2.3) we have W, (a) ~ W (A) on 9 where w(A)=ofA(W). 

A basic ingredient in our proof is the following identity, first observed in a 
special case by Bolthausen E3]. 

Lemma 1. For measurable A c g, all n s.t. P { W, e A } > O, and measurable B ~ 9 

P { W, ~BI I;V,~A} = P {OiA (W,)~B}. (2.4) 

Proof The definition of the ladder point set has been framed so that, a.s., 
[a(W,) coincides with (n -1N~_I,  n -1NK), where K = m i n { k >  1 s.t. W,(n -1Nk_ 1 
+ ' A  n- l (Nk-Nk-1))~A}.  Thus (2.4) extends Lemma 3.1 of Bolthausen [3] by 
allowing A to be any measurable subset of # (he has A =  {z: A(z)> l }) and by 
considering OrA(W,), which involves Sm for all m>NK_I,  rather than a~A(W,), 
which involves S m for Nr>=m>NK_ 1. However the proof is essentially the 
same, and is omitted. 

For an arbitrary z~9,  the analysis of E(z) is quite tricky; however the sam- 
ple functions of W belong, a.s., to a subset of 9 with some convenient proper- 
ties: 

6 

Lemma 2. P { W c g * = I } ,  where 9 * =  ("] 9 i and 9 i is the subset of 9 which has 
propertY (i) below. ~= 1 

(1) (O,v)(iE(z) for any v>0;  
(2) L(z) coincides with the closure of {t: y(t) = 0} ; 
(3) E(z)~ It, oo) ~= (9 for every t < oo ; 
(4) z( . )  is continuous at all local extrema; 
(5) there exists no O<to<t i< t2<oo  with m(to)=m(t~)=m(t:) and y(to) 

=y(t~)=0;  
(6) (z, v)~E(z) ~ z is continuous at z and either z ( v - ) = z ( v ) = z ( z )  or z (v - )  

>z(~)_->z(~). 

Proof 

(1) (0, v)~E(W) ~ W(t) > W(0) = 0 for 0 < t < v, which has probability zero 
since a.s. there exists t ,+0 with W(t,)e(-oo,0);  in other words 0 is regular for 
(-~,0) .  

(2) This follows from the fact that, a.s., W(.) is not monotone in any inter- 
val of positive length. 

(3) This just says that the ladder point set is recurrent. 
(4) Millar [15] has established this result for any process with independent 

increments for which 0 is regular for both ( - ~ , 0 )  and (0, c~); it is essentially a 
consequence of the fact that jump times are Markov times. 



354 R.A. Doney 

(5) If z 6 9  s then there are rationals 0 < r l < r 2 < o o  with re(h)= inf z(s). 
r l=<S~r2 

But for fixed r 1 and r2, P{ inf W(s)= inf W(s)}=0, and hence P { W 6 9 5 }  
-----0. O<-s<-rl rl_-<s=<r2 

(6) Note first that (z, v)~E(z) ~ z is a local minimum of z, so that if z e 9 4 ,  z 
must be continuous at z. Next if also ZE92,  z(v--)<z(v)  ~ y(v)>0 SO we can 
find v , ~ v  with y(v,)=0;  but z < % < v  is impossible ( ' . 'v~L(z))  and v,,>v, 
v , ~ v ~ y ( v ) = 0  by right continuity. Since m(v-)=z(-c),  it follows that 
z(v)<z(~)<_z(v-). If z(v-)=z(,)>z(v) then we have that for to>V, the re- 
versed path -~( t )=Z( to) -Z( ( to - t ) - ) ,  t<to,  has 2(t)<-~(to-V)<-~(( to-V)-)  for 
ts(t  o - v ,  t o - z ) .  Using duality and the fact that jump times are Markov times, 
it follows that P { W s  96} = 1. 

We will also need some facts about convergence in the metric d on 9 .  

Lemma 3. (i) Let 

/J~)(z)= sup {min {Iz(t O-z(t) l ,  Iz(t2) -z(t)l} + sup {Iz(h) -z(O)[}. 
O<=t--c<tl < t<ta~ t+c;  O<--h<--c 

O~t<-_k 

Then z . ~  z on 9 iff z.(t)-* z(t) at some set of points t which is everywhere dense 
(k) z in (0, oo) and for each k lira limsup/5 c ( . )=0.  

c,~O n~oo 

(ii) Suppose z . ~ z  on 9 ,  t . -o t  and l= lira z.(t,,) exists. Then either l=z(t)  or 
/=z(t-). " ~  

(iii) Suppose z. ~ z on 9 ,  t. ~ t and z is continuous at t. Then z . ( t . )~  z(t) and 
z.(t.-)--,z(t). 

Proof (i) That  this is the appropriate extension to @ of a result for D [0, 1] in 
Skorokhod 1-20, Th. 2, p. 200] follows from Theorem 3 of Lindvall [14]. 

(ii) It is easily seen that we can find u~ < t. < v. with u. ~ t v. ~ t such that 
z.(u.)--* z ( t - ) ,  z . ( v . )~  z(t). But if 14= z(t), l + z ( t - ) ,  min {Iz.(u.)-z.( t .) l ,  Iz.(v.) 
-z.(t.)l}+-,0, which contradicts lira lira sup/3 k) (z.)= 0 for any fixed k > t. 

c ~ 0  n~oo 

(iii) Any subsequence of {z.(t.)} contains a convergent subsequence, and by 
(ii) its limit must be z(t). This shows that z . ( t . )~z( t ) .  But if some subsequence 
existed with z . ( t . - ) - - - , l#z( t ) ,  we could find s . ~ t  with z.(s.)--.l, so this is im- 
possible, and z.(t.  - )  ~ z(t). 

The main part of the proof  of the Theorem is contained in the next two 
lemmas. 

Lemma4.  Suppose z . e g ,  z . ~ z ~ 9 * ,  I .=(z . ,v . )~E(z . )  and z . ~ z ,  v . ~ v  where 
0 < t < v <  oo. Then 

(i) I =(z, v)eE(z); 

(ii) O~,(z,) d 0,(z); 

(iii) ei,(z,) d C~I(Z)" 

Proof. (i) Writing 5(t)=min(z(t),  z ( t - ) )  for t>O, 5(O)=z(O), it follows from (ii) 
of Lemma 3 that liminfS.(t.)>__5(t) for O<=t< oo. It follows easily from 1.eE(z.) 

tn~t  
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that z.(t)>5.(v.) for O<t<v .  and hence that z(t)>5(~) for every tE[0, v) which 
is a continuity point of z(.).  By right-continuity, this inequality is valid for ar- 
bitrary tE[0, v), and hence ~ is a local minimum of z(.). Since z E ~ ,  z is con- 
tinuous at T and z(z)=5(z)=m(z),  so that y(z)=0. We know ~(t)>z(z) for 
tE(r,v); if ~(tl)=z(z) for some t le(z,v ) then t 1 is a local minimum of z and for 
any tzE(tl,V ) m(z)=m(tO=m(t2) and y(r)=y(tO=O. Since z ~  5 this is im- 
possible so y ( t )>0  for t~(z,v). Finally another simple consequence of I.EE(z.) 
is that zjv.)<3.(r.);  since z is continuous at z, (iii) of Lemma3 gives 
5.(r.)~z(r),  and it follows that 5(v)<l iminf~jv . )<z(z )=m(v-) .  Since z ( v - )  
>re(v- )  this gives z(v)<z(z) so that m(v)=z(v) and y(v)=0. From y(r) 
=y(v)=0 ,  y ( t )>0  for rE(z, v) and z~N 2 it is immediate that leE(z). 

(ii) Since Zn(%) ~ Z(r), it suffices to prove that z* ~ z*, where z* ( . )  = z.(% + .), 
z* ( . )=z ( r+ . ) .  But z*(t)~z*(t) at each point t such that r + t  is a con- 
tinuity point of z(.),  and this set is everywhere dense on [0, ~).  Also if k* = k  
+ z + 7 ,  where 7>0,  then for all large enough n 12k)(z*) <T(k*)(z'~c , . )+  
sup IZ.(Z. + h)-z.(%)[, and since z is continuous at "c it follows easily that 

o < h < c  

lim lira sup ~k)(Z*) =< lira lim sup ~cT(k*) (Z.) 
c$0 n~oo c,L0 n ~  

+l im{  sup [z ( t ) - z ( t - ) [+ sup [z(z+h)-z(z)[}, 
c.~O ~ t < z + c  O<-h<c 

and the result follows by (i) of Lemma 3. 
(iii) Write x,,(. ) = 0i. (z,(.)) = z, (z, + .) - z, (t,), x( .  ) = Ot (z(.)) = z(z + .) - z(t), 

so that x . - * x  and we need to show that 2,--*2, where 2j ' )=Xn(6n^" ) 
=~IJZ,( ' ) ) ,  2( ')=X(6^')=7~(Z( ' ))  and 6 , = v , - % - ~ 6 = v - z > 0 .  Note first 
that 2~(t)-~2(t) at all te l0 ,6)  which are continuity points of 2(.) ,  and at all 
t>~3, provided x.(8,)-~x(~5). If x is continuous at ~5 this follows by (ii) of Lem- 
ma3. If x is not continuous at 6, then since z E ~  6 we have x (cS- )>0  and 
x(~5)<0. Thus if x j6 , ) -~x(6)  by (ii) of Lemma3 there is some subsequence 
along which x j 6 , ) - * x ( 6 - ) > 0 ;  however X,(6~)=ZJVn)--ZJZ,)<ZJV~)--~JZ,) 
<0, which leads to a contradiction. Suppose now that for some 

t ( k )  X ~ ^ ^ k l iml imsup ,~  (^,) 0. Then either there is h ~ 0  with limlx,(h,)-x,(O)l>O, 
cJ.O n~oo 

or u . < t . < v ,  with I t . - u . l ~ 0 ,  I t . - v . l - ~ 0  and g.=g.(u., t . ,v.)-~O, where g.= 
min {[2.(u.)-2.(t.)[, [2.(v.)-2.(t.)[}, Since 6 >0,  lira ]2.(h.)-2.(0)I = l im [x.(h.) 
-x.(0)]  so the first case is incompatible with x . ~ x .  In the second case 2.(v.) 
--2.(t .)=x.(6.) for t .>6. ,  so we may take t . < 6 .  for all n and assume, WLOG, 
that t . ~ t < 6 .  However if t<c~ then for all sufficiently large n ~. coincides with 
e., the corresponding quantity for x.,  so that g.--*0. We may therefore 
take t=~.  But then u . < t . < v ' . = m i n ( v . , 6 . )  and [ v ' . - t . l ~ 0 ,  so that 
e'. = e.(u., ~., v'.) ~ 0 and lim lim sup/~k)(2.) = 0. 

c$0 n ~  
f 

now introduce J , = ~ z ~  s.t. for k=O, 1 .. . .  , z is constant on We 
L 

, - ~ - - / )  {E(z)~( t ,~)#~,  all t_>_0} and remark that for each n > l ,  

P{W.~J . }=I ,  so that essentially we are only concerned with the situation 
where z. ~ z, z.EJ. and zE~*.  



356 R.A. Doney 

Lemma 5. Suppose A c g and z~@* are such that 0CA, E~(z)= ch and E,~(z)~-~. 
Suppose also that z, eJ n for n> l, z,---,ze~*, and /A(Z)=(f,~)), [A(Z,)=(f,,~n). 
Then f,---, f and ~ ,~  ~. 

Proof. Since EA(z)~= 4 and z ~  1, 0 < f < ~ ) <  oo. Since z,~d n L(zn) is discrete and 
for all large enough n we may define In=(Zn, V,) where z n = m a x { z < 4 + p  s.t. 
(z,v)~E(zn) for some v}, and p=10) - r  noting that v,>~+p. Then there is 
some subsequence along which G--*r', v ,~v '  where z '<~+p and v'>~+p. It 
is easily seen that v '=oo contradicts zs~2~@ s, and if -c '>f we have 
z,(z,)<G(f ) for all large enough n. Since z is continuous at ~, it follows that 
5(r < z(~), which contradicts ~(t) > z('~) for t e('~, ~?). Thus ~' < ~ < ~ + p < v' < c~ 
and Lemma 4(i) applies, giving I ' =  (r', v')~E(z). But [ =  (f, ~)~E(z) and/ '~  I'=~ ~b; 
from the maximal nature of E(z) it follows that I' =[, so that z,---* ~, v , ~  ~?. 
Now if ~n=z, for all sufficiently large n, the lemma is proved, so assume the 
contrary. Then either e~,(zn)~A occurs i,o. or cq,(z,)eA and "~,<z n occurs i.o. 

But Lemma 4 gives :~,(zn) ~', et(z) and ~f(z)eint(A) since E~a(z)= qS, so the first 
case is impossible. In the second case, in<z  . implies that ~n<Zn--*'~, SO there is 
some subsequence along which ~ , ~ r o ,  r  where 0<Zo<Vo<f .  Now z o 
=v o means that 0~A, so r0<vo and Lemma4 gives Io=(Zo,Vo)~E(z ). But since 
each cq,(z,)eint(A) it follows that e~o(Z)~A and [ is not the first member of 
E~(z). This contradiction establishes the result. 

Proof of Theorem. First we note that P{Wn~A}>0 for all sufficiently large n; 
for P{I;V,~A} =0  implies P{EA(W,)=d~}=I, and hence P{fa(W,)= oo}= 1. But 
Lemma5 and the facts that W , ~  W, P { W ~ J n } = I  , P { W ~ * } = I  show that 

D 
"~a(W,) , "~a(W), and ~ ( W ) <  oo a.s. by assumption 2.3. Thus Lemma 1 ap- 

plies and we need to show OG(W,)~ OIa(W). But this is a consequence of W, 
W, the continuous mapping theorem, Lemma 5 and (ii) of Lemma 4. 

w 

If ~b is a non-negative functional defined on excursion space g, we will denote 
by �9 the random variable ~b(S), where S is the stopped random walk process 
{S([t] ^ N~), t>0},  so that ~ is determined by the first excursion of the random 
walk. 

Definition. The class ~ consists of all non-negative measurable qS: ~ ~ [0, oo) 
such that for each y > 0  the set Ay={ze8 s.t. ~b(z)>y} satisfies (2.2) and (2.3) 
and some norming sequence 2, > 0 has the following scaling property: 

~b(YVn) = ~ ~b (S) for each n > l .  (3.1) 

The following are examples of functionals satisfying this definition, together 
with the appropriate norming sequences and values of q~; 
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Example l. O(z('))=A(z); 2 , = n ;  q~=N. 

Example2. 4)(z(" ))= inf {u : z(u)= sup z(v) or z ( u -  )= sup z(v)}; 2 , = n ;  
O<_v<_A O<_v<_A 

(b = min {m: S(m) = max S(j)}. 
O<j<=N 

Example3. 4)(z(.))= sup z(u); )~,=c,; ~b= max S(m) 
O<-u<_A O<_m<_N 

Example4. 4)(z(" ))=lz(A)l; 2 ,=c , ;  ~=IS(N)I. 

Example5. 4)(z(. ))= A~lz(A)l~; 2 =n~ {c(n)} ~ (7>0, 6>0);  ~= NT IS(N)I ~. 
A N 

Example6. 4)(z(. ))= S {z(u)}~ du; 2,=nc~; ~b=~{S(m)} ~ (~>0). 
0 1 

The following result follows immediately from our Theorem: 

Corollary 1. Suppose that for i= 1,2, 4)(o belongs to ~ with norming sequence 
)L (i) Then for each y > 0 n �9 

p {(p(2) > y 2~2)] (#(1) > 2(.1)} _~ p {4)(z) { W(A~I))} > y}, (3.2) 

P { (b(1) > y 2(.a) [ ~ (2) > 2~ 2)} --* P {4 )(1) { W (Af)) } > y}. (3.3) 

In the case that c~=2 and 4)(1)(z(. ))=A(z) is the functional of Example 1, the 
process w(Ail))= W + is known as scaled Brownian Meander. It has been stud- 
ied by various authors (see [4, 8, 12, 13J) and many of its properties are 
known. For example, the distribution of sup W+(t) is known (see, e.g. (2.3) of 

0_<t_<l 
[SJ). From this, the R.H.S. of (3.2) can be deduced when 4)(2)(z(-))= sup z(u) 

O<_u<_A 

is the functional of Example 3. (See [5], where an explicit version of (3.3) in 
this special case is also given.) For certain other choices of 4)(2) (e.g. that of Ex- 
ample 2) less explicit formulae for R.H.S. of (3.2) can be deduced from the re- 
sults of Imhof (l-13J, w In other cases, particularly for ~=#2, there seems little 
hope of computing these limit distributions. Nevertheless Corollary 1 still 
yields some useful information. To see this, note that if both the R.H.S. of (3.2) 
and the R.H.S. of (3.3) are positive when y = l  and A(1)={A(z)>I}, then 
P{N>n}=P{~(1)>2(.I)}~cP{~(2)>2~2)}. (c here denotes a generic finite posi- 
tive constant.) In case a=2 ,  V a r ( X 0 < o  % it is known that P { N > n } ~ c n  -~, 
and in all other cases that nPP{N>n} is slowly varying (s.v.) as n ~  0% (see, 

e.g. Rogozin [18J) where p=P{W(1)<O}=�89 if ~=2, = � 8 9  l ~ t a n - l ( f i t a n ~ )  
if 0<c~<2. ~ 

Corollary2. Let W + denote the limiting process in our theorem when A 
={z:A(z)>l} and suppose 4 ) ~  is such that P{4) (W+)>I}>0  and 
P{A(W(A~))>I}>O. Then if c~=2 and E(X2)<o% n�89 and in all 
other cases nP P {q~>2,} is s.v. at oo. 

In all examples of interest, 2, is regularly varying (r.v.) with positive index, 
/~ say, so it then follows from Corollary2 that P{q~>n} is r.v. with index 
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- p / g ,  and we can conclude that ~ D ( p / # , 2 )  if p/#<2.  Since c, is r.v. with in- 
dex l/a, this is the case in Examples 2-6, and it is also easy to check that the 
other conditions hold for these examples, except for Example 4 and Example 5 
in case c~=2, when 95(W+)-=0. It therefore follows, with the above exceptions, 
that the functionals in these examples belong to domains of attractions with in- 
dices p (Example 2), p ~ (Examples 3, 4), p c~/( 7 ~ + 3) (Example 5), p cq(c~ + ~) (Ex- 
ample 6). 

In certain cases it is possible to improve on Corollary 2 by finding the as- 
ymptotic behaviour of the s.v. function that appears there. To see this, recall 
that under assumption 2.1, NeD(p,  1) and Z =  -S(N)~D(c~p, 1) if ~p < 1, and if 
a p =  1, Z is relatively stable. Let a(n), b(n) denote the norming constants for N 
and Z respectively, which are asymptotically unique and determined by the re- 
lation nP{N>a(n ) }  ~ 1, nP{Z>b(n ) }  ~ 1, when ap~a 1. 

Lemma. c(a(n))~c" b(n) as n --* or. 

Proof. This result is implicit in the proof of Corollary 3.3 of [101. In the case 
ccp=~ 1, it can also be deduced from P{Z>c(n)}  ~ c P { N > n } .  As an example of 
the way this can be applied, let M = max S(m) denote the ~ of Example 3. 

l<_m<_N 

Corollary 3. (i) n P { M > b ( n) } ~ c as n ~ ~ in all cases. 
(ii) I f  ~=2  and E(X2)< ~ ,  n P { M > n }  ~c .  

(iii) I f  c~<1 or 1 < ~ < 2  and fl~-l, ~ p < l  and MED(ctp, 1) with norming con- 
stants b(n). 

(iv) I f  1 <c~<2 and fl= 1, so that ~ p = l ,  M is relatively stable. Furthermore, 

n P {M > n} ~ c iff E(Z) < ~ iff ~ x -  1 R(x) dx < ~ ,  where R(x) = P {X < - x} /P {X > x}. 
1 

Proof. (i) This follows from P { M > c ( a ( n ) ) } ~ c P { N > a ( n ) } ~ c n  -1 and use of 
the 1emma. 

(ii) In this case E(Z)<  ~ and we can take b(n)=n. 
(iii) In this case the lemma gives b(n) r.v. of index ~p, and the result fol- 

lows. 
(iv) In case ~p = 1, (i) says that P {M > n} is r.v. with index - 1 ,  which im- 

plies that M is relatively stable. Furthermore b(n)~c.n i f fE(Z)<  ~ ,  and the 
second equivalence follows from Corollary 3 of [61. 

Note. (ii) and (iv) have been established by Pakes [161, in the special case of 
left-continuous random walk. A direct proof of (ii) in the general case is avail- 
able in [51, where it is also shown that c = E(Z). 

w 

Remark 1. In the special case a--2,  our theorem should be compared with that 
of Shimura [191. Although his context is slightly more general his result is es- 
sentially the same as ours, but his assumptions are somewhat different and in 
one respect appear to be inadequate. Specifically, instead of 0CA he makes the 
weaker assumption that P {EA(W ) has no finite limit point} = 1. It appears that, 
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in the a rgument  corresponding to our  L e m m a  5 (which is only sketched in 
[191), the possibility that  "Co=V 0 has been overlooked. (This has been con- 
firmed by Shimura, in a private communicat ion.)  

Remark2. Again  in case e = 2 ,  Greenwood  and Perkins [9] have a result 
(Theorem 9) which essentially contains ours. Their me thod  is quite different, 
and is applied to the si tuation where N is replaced by " the  time of  first exit 
from a curved boundary" .  It should also be ment ioned that  they deduce a 
functional limit theorem for the randomly  normed  process (Ws(.),T,), con- 
dit ioned on I~,~A (a special case of this is Theorem 2 of  Hooghiemis t ra  [111), 
and exactly the same argument  works in our  case. 

Remark3. The fact that  a weak limit for W <A) exists when A = { z :  A(z)> 1} has 
been proved by Durre t t  [7], again using different methods.  

Remark 4. In the special case of  left-continuous r.w., note that  N coincides with 
NB, the first hitting time of the set B, when B = { - 1 } .  Belkin ([1, 21) has stud- 
ied (wnlgB>n)  for integer-valued, aperiodic r.w. His main  results specifically 
exclude the case of  left-continuous r.w., but  in w 5 of [11 he calculates the char- 
acteristic function 7t~(t) of the limit distribution of  (W,(1)INR>n) for left-con- 
t inuous r.w. satisfying (2.1b), which by our  theorem must  coincide with 
E(e itw+<l)) in case 1 <c~<2, f l=  + 1. However  there is an error in his calculation, 
which arises because he assumes that the p roof  of his Theorem3.1  goes 
th rough  unchanged in this case. In fact the second term in his Eq. (3.3) does 
not  tend to zero, and the correct result is that  if E(emW)~l))= ~)~(t) then 

1 1 1 

7J~ (t) = 1 - b  ltl ~ ~ x - 7  qS~(t (1 - x ) ~  dx + ik t ~b~(t) (4.1) 
0 

for some constant  k. [(4.1) can also be established in a similar way to that  used 
by Pechinkin [17] in case e = 2 ,  starting from his Eq. (10).] In principle (4.1) 
determines the distribution of W+(1) in this case, and then the finite-dimen- 
sional distributions of  W + are also determined, as in Belkin ([21, Eq. (3.1)). 
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