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Summary. Limit theorems with a non-Gaussian limiting distribution have 
been obtained, under appropriate conditions for partial sums of instan- 
taneous nonlinear functions of stationary Gaussian sequences with long 
range dependence by a number of people. The normalization has typically 
been n ~, with 1<  e < 1 where n is the sample size. Here examples of limit 
theorems are given for quadratic functions with long range memory (not 
instantaneous) with a normalization n ~, 0<  e <�89 

Introduction. Let {Xj;j . . . .  , - 1, 0, 1,...} be a strictly stationary sequence with 
mean E(Xj)-O and variance 0 < a z ( x j ) <  oe. A great deal of research has been 
devoted to determining the domain of the central limit theorem (asymptotic 
normality for partial sums) for such processes using measures of asymptotic 
independence like, for example, strong mixing (see [2]). However, one can even 
have asymptotic normality under special circumstances with long range de- 
pendence [4]. A clear picture of the limits of the domain of the central limit 
theorem is not yet available. However, a number of results have been obtained 
on limit theorems outside of this domain with, of course, nonnormal limiting 
distributions. The following class of processes has drawn special attention. Let 
{ Y j , j = . . . , - 1 , 0 , 1  .. . .  } be a stationary Gaussian sequence with E(Yj)---0, 
a2(Yj) - 1. Consider a function G with E[GZ(Y)] < oO where Y is N(0, 1). Let 

Xj = G(Y~), EXj =_ O, (1) 

be the process {X j} generated by the function G. Limiting distributions are then 
considered for 

G(Yj) (2) 
j = l  
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appropriately normalized or limiting (weak) processes for 

[ntl 

j=1 
(3) 

appropriately normalized (see [1, 3,5,6-8]). Here [x] denotes the greatest in- 
teger less than or equal to x. In all the cases in which non-Gaussian limiting 
distributions have been derived, the normalization has been of the form n~L(n), 
� 8 9  with L( . )  a slowly varying function. Here, we restrict ourselves to 
quadratic functions of a stationary Gaussian sequence. By allowing nonin- 
stantaneous functions, we obtain limit laws with a normalization of form n ~ with 
0<~<�89 

It should be noted that the limiting (weakly) processes Z(t) obtained have the 
following self-similarity property if the normalization is nL The processes Z(t) 
and c - ' Z ( c  t) have the same distribution for each c>0.  

Limit Theorems. The first result is a proposition on the limiting behavior in 
distribution of covariance estimates when the spectral density has appropriate 
singular behavior at zero. 

Proposition. Let  {Yk} be a stationary Gaussian sequence with EYk=O and co- 
variances 

rk=EYo Yk ~ k  - 2' (4) 

as [kJ---,oo with 0<~<�88  Then the differences of  the random quantities 

n-i+2' Z (YjYj+~-r~), ~=0,1  . . . .  ,s, (5) 
j=* 

tend to zero in probability as n ~ o o  and the common limiting distribution has 
characteristic function 

(2  k = 2 (2 i t) k Ck/k } (6) 

with the constants 

1 

c~ = j'... j" Ix,-  x21- 2'1x2 - x 3 l -  2,... Ixk - x l l -  2~ dxl.., dx~. 
0 

(7) 

This implies that partial sums of  a quadratic polynomial of  finite range 

I~l=<s 

and its shifts j - - 1  . . . .  , n have the same limiting distribution when normalized by an 
appropriate scalar multiple o f  n 1- 2~ as n--+ oo. 
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The  a rgumen t  is basically that  given in [3]. Suppose  we consider the joint  
character is t ic  function of 

j = l  

The  joint  characterist ic function can be writ ten as 

] I -  2iRA] ~ 

where R is the n by n covar iance  matr ix  of  the process { Y~} and 

A = n  -1+2~ ~ tkJ  k 
k = 0  

where 

1:11) 0 1 
J ~  "-. %~ 

Except  for a constant,  a typical k th cross-cumulant ,  k > 1, looks like 

n-k+2~k ~, rjklct k jlrjl+o:l--j2"''t'jk-t+o:k_l--jk 
Ju= 1 

u=  1 , . . . , k  

where % , . . . ,  % take on values 0, 1, . . . ,  s. As n ~ oo all these k th order  terms have 
the same limit 

1 

Ck = 5""  ~ {Xi -- X2]- 21' IX 2 __ X3 [- 2~... IX k __ Xl [- 2,, d x , . . ,  dx  k 
0 

and the propos i t ion  follows. 
After  a pre l iminary  r emark  we shall give a class of  s ta t ionary  processes 

which are quadra t ic  forms in Gauss ian  variables and such that  normal iza t ion  of 
part ial  sums by n ~, 0 < a < � 8 9  yields a nontr ivial  non-Gauss ian  limit as n ~ o o .  
First  note  that  

• n "sinnx~x"-lF(1-q)cosl~ct l  (8) 

as x ~ 0 +  for 0 < t / < 2  (see p. 186, v o l u m e l ,  Z y g m u n d  [9]). Let  {Yk} be a 
s ta t ionary  Gauss ian  sequence, EYk=0, satisfying (4) with r o = 1. Set 

X k = Yk2 --1 
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and let the process 

Um=~akXm_k 
k 

(9) 

where 

O if k=O 

ak= k -~-1 if k>O 

( - ] k [  -~-1 if k<O, 

Now 

m = l  m = l  k 

$ 

/~>0. 

(10) 

(11) 

where 
n - - s  

%(n)= Z ak" 
k=l--s  

(12) 

Notice that with s = u a continuous variable (i) if 

u<0,  %(n)~-l [(1-u)-P-(n-u) -~] 
P 

if u is large in absolute value, (ii) if 

n 1 
~ > u > 0 ,  G(n)~-~[(u-1)-~-(n-u) -~] 

?1 
when u, ~ - u  are large, (iii) if 

n 1 n>u>p [-(u 71)-  +(n-u)-e3 

when n -  u is large, (iv) if 

u>n, %(n)~-~[-(u-n)-P +(u-1) -~] 

when u-n  is large. Our object is to look at the asymptotic distribution of (11) 
appropriately normalized. The variance of (11) is 

2 ~ O~j(n) O~k(Yl ) r 2 k  "~ 2 n 2-2 fl-- 4"2 IS O~(X) o~(y)IX -- y ] -  4 , /dx  dy (13) 
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as n--,oo if 2 - 2 / / - 4 7 > 0 .  Here 

[ ~ [ ] x l - ~ - l l - x l - q  if x < 0  

o:(x)=J1//[x-r -a] if O<x<�89 

i [ - X  e + ] l - x I - e l  if 1<X<1 

[ - ( X - 1 ) - e + X - q  i f x > l .  

(14) 

The spectral density of {X~} in the neighborhood of 2=0 looks like 12142.1 and 
we require 0 <47 < 1. On the other hand 2//> 1 -47  or 2fi + 47 > 1 is required so 
that the spectral density of { Us} near 2 = 0 looks like [212a +~e-~. However 2 > 2// 
+47 is also required so that (13) will diverge as n~oo.  The normalization of 
(11) will be of the form n ~ with e=  1 - / / - 2 7  and �89 Notice that under the 
assumptions we have made the integral on the right of (13) is finite. The 
characteristic function of 

is 

n ~ i U m  
m = l  

lI-2itn-~RAl-~exp{-itn ~ ~ c%(n)} (15) 
s 

with R the covariance matrix of the Gaussian process { Yk} and A the diagonal 
matrix with the entries a k. The characteristic function of the limiting distribution 
is (6) with 

ck=~... ~ ~(x~)lxl-x21-22~(~91x2-x31-22 
. . .  O~( X k ) [ X  k - -  X I [ -  2Y d X l  . . .  d x  k . (16) 

Theorem. Consider the process {Urn} (9) quadratic in Gaussian stationary vari- 
ables { I'm} whose covariances satisfy (4). Then 

n-~ i G, (17) 
m = l  

0<c~=1-f l - -27<�89 has a limiting distribution as n~oo with characteristic 
function (6) and the Ck'S (16). 

The expression given by the characteristic function (6) and constants (16) is 
well defined since it is analytic in a neighborhood of zero. This follows from 
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certain bounds on the cumulants which we will now obtain. If k is even, using 
the Schwarz inequality, we find 

fc~l _-< I-j" ... 5 Ic~(x OI Ix~ - x ~ l -  ~'r.(x~)l f~(x~)l 

Ix 3 - x , , [ -  4y I~(x,,)l  . - .  I~(xk_ 1)1 

Ix~_ 1 - x~l- 4~ Ic~(xOI axe,,, dxkl ~ 
[5"" ~ [O~(Xk)l [Xk --Xl[-4~ [O~(X 1)110C(X2)[ IX2 -- X31- 4"~10~(X3) [ 

Ic~(x~)l[x~-xsI-  '*~[~(xs)l-.. 

I~ 2)1 [Xk- 2 -- Xk- 1]- 4'[C~(Xk- J)l dx  l . . " dXk] ~ 

= (5 [~(Xl)l IX1 -- x2[- 4~ ic~(X2)[ dx  1 dxz)k/2 (18) 

and the integral on the extreme right of (18) is finite. Consider now the case of k 
odd. Since 

(~-~)(~k_~-~)-x~_~-x~ xl-x~ ~ _ ~ - ~  

if x 1 :~:Xk_ 1 it follows that 

S Ix, - xkl- 2, fxk_ 1 - xkl- 2~ I~(x0J dxk 

<= ]x l - Xk- 1[- 2~ 22~ {5 IX1 -- Xk[-- 2~le(Xk) J dx  k 

"~ f IXk - 1 - -  X k l -  2e [~(Xk) [ dXk}" (19) 

Further 

5 Ix, - x k f - ~ l ~ ( x k ) l  dxk < C(1 + Ix,I) - e  (20 )  

for some constant C. Inequalities (19) and (20) together with an argument like 
that leading to (18) for k even imply that 

C k ~ C ' (S  [~(x 1)[ Ix1 -- x2[-  4y [~(x2) [ d x  I d x 2 ) ( k -  1)/2 (21) 

for k odd with C' an appropriate constant. The bounds (18) and (21) imply that 
the characteristic function is analytic in a neighborhood of the origin. 

Let 
[nt] 

S , ( t ) = n  -~ ~ U m, 0 < ~ = 1 - f l - 2 7 < � 8 9  (22) 
m = l  

The following corollary describes the limiting distribution of S, ( t l )  . . . .  ,S,(tk) 
O < t > . . . , t k ,  as n--+c~ and the proof is basically that of the Theorem given 
above. 

Corollary 1. The asymptot ic  distribution o f  S,(tl), ..., S,(tk) (see (22)) as n-+ co has 
jo in t  characteristic func t ion  

{ 1 ~~ ( 2 i ) ~ 2  j=2 ~ J ~ ' k ! z ~ ' . . . z ' ~ c ( z ( k ) ) } ,  (23) 4(z l  zk)=exp 
ml, ...,mk >= o m 1 . . . .  m k , 
m l+. . .mk=j  
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where @k)~---("C1,'C2, ...,Tk) with the first m I Zi'S equal to ti,  the n e x t  m2 zi 's  equal to 
t2, . . . ,  and the last mk"Ci'S equal to tk, and 

c(~(k~) = ~ ... S ~(x l ,  ~ l)lx ~ - ~:1- :~ ~(~:,  ~:) 

Ix2- x3l- 2~.. ~(xk, ~)[xk-x~l- 2~ d x ~ . .  dXk (24) 

with 

c~(x , z )=~z -~(x / z )  if z ~ 0  (25) 
(0 if z = 0 .  

The joint characteristic function q~(zi,..., Zk) is analytic in the variables z i for Izil 
sufficiently small, i = 1 . . . . .  k. 

By applying Theorem 2.1 of  Taqqu  [6] we obtain the following Corol lary  on 
weak convergence of  S,(t). 

Corollary 2. The sequence S,(t), 0 <= t <= 1, converges weakly as n -~ oo to a process 
S(t), 0_<t_<l, with continuous sample functions. The joint distribution of 
S(tl) . . . .  , S(tk) has characteristic function (23). 

The discussion in [8] suggests that  aside from a constant  S(t) has the form 

S(t)=Sa(s,t)  i ( S -~ l ) -~ -~dB(~ i )  ~ (s -~2)-~-~dB(~2)  
- - o o  - - o 0  

where B(.)  is a Brownian motion.  

Comment. The proposi t ion and theorem can be generalized, without  any essen- 
tial change in the proof, to the case in which 

r k ~ k -  2.~ L(k) 

with L( . )  a slowly varying function and the normal izat ion n 1- 2~L(n). A result 
related to the theorem can be obtained by using Theorem 3 of  the as yet still 
unpublished paper:  Dobrushin,  R.L., Major,  P., Noncent ra l  limit theorems for 
non-l inear  fnnctionals of  Gaussian fields. I thank a referee for his remarks. 
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