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Y X; <Kn'* (all n=1) is ob-
j=1

tained for a strictly stationary strong mixing sequence {X;}. The convergence
of rth(r>2) absolute moments in the central limit theorem for stationary ¢-
mixing and strong mixing sequences is also studied.

Summary. For an r>2 and a finite K, E

1. Introduction

For an r>2 and a finite K,

a+n

> X

j=a+1

¥

E <Kn'?  (all a=0, n>1) (1.1)

has been studied for various classes of random variables {X,,j=1}. And it has
been obtained that if either {X} is

(i) a sequence of mutually independent random variables;

(1) a stationary Markov sequence satisfying Doeblin’s condition;

(iii) a strictly stationary ¢-mixing sequence; or

(iv) a martingale difference sequence,
then (1.1) holds. Detailed discussion may be found in Brillinger [4], von Bahr
[1], Doob [8] p. 225, Ibragimov [10] and Stout [15] p. 213. This type of bound
has proved to be of considerable use in obtaining several types of limit laws,
notably central limit theorems and strong laws: see e.g., Lemma 7.4, p.225 of
Doob [8] and Theorem 3.7.7, p. 211 of Stout [15].

The main purpose of this paper is to show that (1.1) holds for a strictly

stationary strong mixing sequence. This result is stated in Theorems 1 and 2 of
Sect. 3.

Ibragimov’s [10] proof for ¢-mixing is based on Doob’s argument (see [8],
pp. 225-227) which is difficult to extend straightforwards to the strong mixing
case. This difficulty occurs from the difference between the basic inequalities
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(2.3) and (2.4) below. We shall show how Doob’s argument can be adapted to
our special case.

In Sect. 5, using Ibragimov’s [10] Lemma 1.9 and our Theorems 1 and 2, we
try to find sufficient conditions for the convergence of rth(r>2) absolute
moments in the central limit theorem for strictly stationary ¢-mixing and strong
mixing sequences. For sums of independent random variables Bernstein [2] (an
alternative proof was given by Brown [5,6]), and for martingales Hall [9]
presented necessary and sufficient conditions for such convergence of moments.

2. Mixing Conditions

Let {X;,j=1} be a strictly stationary ¢-mixing or strong mixing sequence. Thus,
the condition (¢-mixing)

1
AEMIS’%EM?” PiA) |[P(AnB)—~P(A) P(B)| =¢(m)i0  (n—0) 2.1

or (strong mixing)

sup IP(ANB)—P(A)P(B)|£a(m)|0 (n—w0) (2.2)
Ae s, Bete,
holds, where .#? denotes the o-field generated by X;(a<j=<b). Clearly ¢-mixing
sequence is strong mixing.
The following two basic inequalities (2.3) and (2.4) are used repeatedly; for
their proofs we refer to Ibragimov [10] and Davydov [7]. Let ¢ and # be
measurable with respect to 4§ and .47, respectively, then if (2.1) holds,

\E(€m—EQ@EMIZ21&,inll,Lom)]"" (2.3)
for all 1<p, g< oo with p~'+g~'=1, and if (2.2) holds,
JE(En) —E(Q) Em)|S12)1E)), Inll, [o(n)] ' (2.4)

for all 1<p, q, s< oo with p~t+g~1+s"1=1.
Assume that EX, =0 and EX{<o0. Set §,=X,+...+X,, 02=ES? and ¢?

=EX{+2 ) EX X, and assume throughout ¢=0. Where no confusion is
j=2

possible K, K, etc., denote generic constants.

3. Moment Bounds for Strong Mixing Sequences

Theorem 1. Let {X} be a strictly stationary strong mixing sequence with EX =0
and E\X,["*°< o0 for some r>2 and §>0. If

i+ 172~ ()] < o, (3.1)

18

i=0
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then there exists a constant K such that
EIS|'<Kn'? —nzl. (3.2)

Theorem 2. Let {X} be a strictly stationary strong mixing sequence with EX; =0
and | X,|£C<w as. If

o0

Y (i+ 12 (i) < oo, (3.3)

i=0
then (3.2) holds.

Remark. If {X;} is a strictly stationary ¢-mixing sequence, (3.2) holds under less
restrictive assumptions EX, =0, E|X,|"< o0 and ¢Z=¢*n(1+o0(1)) (see Lemma
1.9 of [10]).

The following corollaries are due to Serfling ([13], Theorem B and [14],
Theorem 3.1). (See also [15], Theorems 3.7.5-3.7.7.)

Corollary 1. Suppose that the assumptions of Theorem 1 or 2 hold. Then there
exists a constant K such that

E(max |S,[)SKn?, nzl

1=k=Zn
Corollary 2. Suppose that the assumptions of Theorem 1 or 2 hold. Then, as n—

S, /[n*?*(log n)*’*(loglogm)*"1—0 a.s.

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. This theorem will be proved in three cases;
(i) r=2m m=23, ...
(i) r=2m+em=1,2,...,0<e<1.
(i) r=2m+em=1,2,..., 1<e<2.

Proof of (i). Here we shall prove specifically that for m=1,
ES;" <KX 3masn™  nzl, (4.1)

where K, depends only on o and m. The proof is based on Lemma 3.1 of Sen
[12]. Let us write

[r9)

A @)=Y (i+ D)7 [a®@)]¥e+o.

i=0
Then, A4,(x)<oo implies 4, (x)<co for g<r. We denote by Zn,j the summation
over all 1<i,<...<i;<n, and let )%, 1 <h<j, be the components of Y., ; for
which r,=max {ry,...,r;}, where r,=i,—i,_, and i,=1. Then we have

ESZ<[2m)InY, 2 1B, X, . X, )

T iam—t
2m—1

<[em!1 ) YV, EX X, ... X, )}
K=1
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Using (2.4), we obtain that if 4,(a) < co then
nY . [E(X, X)) S120) X3, ,4,(), (4.2)
and if A,(¢) < oo then
nZn,z |E(X1Xi1Xi2)l §24””XH2+5A4(°‘): (4.3)
nZn,s IE(X1Xi1Xi2Xi3)|
<36n* | X |4, ;AL (0)+288n7 | X153 ;[ A4,(0)]?
éKa’3||X\|i+5n2, (44)

where X =X, (cf. [3], p. 196). In view of (4.2)-(4.4), we assume inductively that
under the condition 4,,, ,(x) <o,

+1+6

”Zn,le(X1Xi1---Xij)1§K ANXET ', nzxl, (4.5)

for 1 £j<2m—3, where j* =k for j=2k or 2k—1. Then we shall show that (4.5)
also holds for j=2m—2 and 2m—1, under the condition 4,, (x) <. Applying
(2.4) with p=02m+d)/h and g=(2m+8)/2m—h), for each h, 1<h<2m—1,

nY B X X, )
éanfﬁ’Zm JEXG X JEX, X )
+12n Zg:)zmA X - Xih_lH(Zm-f—é)/h X o Xy s N amasym—n
- Lo, (4.6)
and the second term on the right-hand side (rhs) of (4.6) is bounded by

n—1
120 X127 5 S (4122 [a(r,)]2m

rp=0

<12n’"HX||2m+5 (0.

The first term on the rhs of (4.6) vanishes for h=1and 2m—1, and for 2<h<2m
—2, it follows along the same line as that of Lemma 3.1 in [12] that

”Zﬁnh)Zm 1 WXL DEX X Bl

SKL X5 s 1 X150 h+an2 0
i=1

<K:xl hllX‘l2m+an(h 1)*+(2m*1#h)*’

where (h—1)*+(2m~—1—h)* equals m or m—1 according as h is even or odd.
The case where j=2m—2 follows similarly, and thus we get (4.1).

Proof of (ii). For simplicity we introduce the following notation:

N 2n+k
S,= > X;, ¢, =EIS,|]" and
j=n+k+1

A, (o, k)= i (i 172 =L [a(i)]P0 9,

i=k+1
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We shall show that for &, >0 there exist K and k such that
E|S,+S 'S +e) e, +Kn"?  nxzl.

Then the proof of (ii) follows from that of Lemma 7.4 in [8]. Because of the
stationarity,

E|S,+S," SES,+85,)°" (IS, +1S,)

~2e, ek 5 () susiesire 3 () sisimrsef
=0 \J =1 \J
so it is sufficient to prove that for 0<j<2m—1,

|E(S] 1S, :S2m D] <6y e, + Kn%, nzl, (4.7)
and for 1 <j<2m,

|E(SIS2m—118 || <e,c,+Kn'?,  nxl. 4.8
n~n n 1%n

We only prove (4.8); expanding S2"~7, (4.7) follows similarly. We note that by
the assumption (3.1), ¢? exists and ¢2=¢?n(1+o0(1)) (cf. [11], Theorem 18.5.3).
Thus, there is n, such that

n 2 2

1
<%0

for all n=n,, and so for such n,
1.2 2 2
zo’nso,sc (4.9)

We also note that the following inequalities hold; from the proof of (i), for
25j=2m,

Zn,le(Xi1 Xij)|§nzn,j—1 |E(X X, .. Xijwl)'

<K, ([IX[4,m72,  nzl, (4.10)
i B X X )=Y,  [EX, X, X, )
<K, IXH sn2h nzl (4.11)

To obtain (4.8), we show that for each j, 15j<2m, there exist K;, and k; such
that

|E(Si82m—3|S, 19 S ey c,+ K ;yn'"? (4.12)
for all n=(ng, k;). Write ¥ =82"=/|S |. Then, by (4.1),
E|YI|S(ES2Me-M2m <K (| X |0 4n" P2 pz 1 (4.13)

(We do not use (4.13) when j=1, so it is also applicable to the case (iii).) We
have for 1<j<2m,
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[ES- Y)I<j Y, | E(X, . X, Y

j
<i Y YOIEX, - X T, (4.14)
h=1
where Y%, 1<h<j, are the components of ), ; for which r,=max {r,, ..., r;},

where r, =14, , —i,and i, =n+k+ L Usmg(24),

YO IEX,, .. X YHISYWIEX,, ... X,) E(X, ... X, Y))
H12YNXG XX, X Y T )] (4.15)

1Jn

where p=(r+90)/h, g=r(r+90)/[r(r—h)+(r—j) ] and s=r(r+6)/jé. For 1<h<j,
by Holder’s inequality, the second term on the rhs of (4.15) is bounded by
n+k

IR e SR S 10 ey

i=k+1
n+k

(r =i
S12|X |, 5[ A, (o, k)] [ Y (@+1)~* ”’/2(’*")] . (4.16)

i=k+1

By (4.9), the rhs of (4.16) is bounded by
K1 X0, seu[A, (o KT, (4.17)

if n=(n,, k), where K; does not depend on k. For h=1, the first term on the rhs
of (4.15) vanishes, and for h=j (= 2), by (4.10) and (4.13), is bounded by

E\YJ1 Y, JEX, - X SKPX |, 072, nzl (4.18)
Since A4,{(a, k) -0 as k— oo, choosing k, and k, so that
K1 X1, s[4, k)1 <ey, 4K, | X112, 504, (2, k)1 <e,

(4.12) holds for j=1 and 2 with K;,=0 and K, =2K%|X]|;,,. In order to
prove (4.12) for general 3<j<2m, m=2, we shall show that for 1<I<j—2 and
all n=k,

|E(X;, .

i1 °

X, YDISK, X |25 a0, (4.19)

where K, ; does not depend on k. For 3<j<2m,
Y i+ 122 [a(i)] < o, (4.20)
i=0

where t=(—¢)/2m—(j—2)/(r + ). Indeed, since
tHr+9)/o=(—¢e)2m~+[r(j—&)—2m(j—2)1/2mdé>(j—2&)/2m,

by Holder’s inequality,

n

Y i+ P2 La@I £ Y (41722 [a()]0-992me+d
=0 =0 n+1 ](r—j)/Zm
i~ ,

S[A @103

i=1
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where s=1—¢/2+(r—¢)/(r—j)>1 (which is also true for 1 <g<?2), thus the series
in (4.20) converges. Let t;=(j—¢)2m—1/(r+9) for 1<I<j—2. Then t=t;_,.
Using (2.4) with p=r+6 and q=2m/(r —)), if j= 3, by (4.10), (4.13) and (4.20),

Zn 1 ’E(X11 n)|
n+k

120X, HESTM N [l

i=k+1
n—1
S 120X, . 5(ESy™T2mal2 ¥ (i 4+ 12 2 [a(i)]’
i=0

SK GIXI ot tab=ithiz s p> 1, 4.21)
If j =4, using (2.4) with p=r+0, g=2m(r+ 0)/[(r + O)(r —j)+ 2m],

Yo |G X, Y
S12| X7, H(ESFmO- 2 T (4 D[]

i=k+1 n+k

SL20X|7, JESTMC 2 k1) Y (122 [a(i)T,

and with p=(r+9)/2, g=2m/(r —}j), -
IIEX X, YSEIY] Y, 2 |E(X, X))
+H12|X |7, J(ESTmC - nik i+ D[]
so that we have o

Zn 2|E( 12 n)l<(z(1) Z(Z) IE(X XuYnj)I
<K2,HX!|' JEamIeAR 2k (4.22)

Let us now assume that for 1 </<j—4, (4.19) holds. Then we shall show that
(4.19) also holds for I=j—3 and j—2. We only prove the case of I=j—2 (the
other case follows similarly). We have

j—2
DISTEPY 1210 SR, SRS £)] gh; Y LIEX,, ... X, Yl (4.23)
Applying (2.4) with p=(r+9)/h and q=2 m(r +3)/[(r + )(r —j) + 2m(j—2—h)],

W EX, X s YJ)

n, j—2

<Y EX,, . X)EX, X, YD)
n+k
+ 120 X[ FEST Nz N i+ 1Y ¥ [a()], (4.24)
i=k+1

and the second term on the rhs of (4.24) is bounded by

n+k
L2 X3 (EST M2 4 ke+ 121 50 (i+ 17272 [a(i)]'
i=k-+1
<K; X200 =22 k. (4.25)
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For h=1, the first term on the rhs of (4.24) vanishes, and for h=j—2, is bounded
by

EIYJ1Y, i HlEX, ... X, )SK] , X |772n=22 px1. (4.26)

l] 2

For 2<h<j—3, 15j—2—-h=<j—4, and by (4.11) and the assumption made,
W _LIEX,, ... X)) E(X;

n,j—2 ihe1 """ IJ 2 n)|

Z Dt B, XY 2 B, - X, VDI

in=1

éKHX“:Ig”(Fz_h)/Z Z 2=t (K:Ka,h—l'Kj-Z—h,j)

i=1

<K®, | X|[I572nt P2 pxk, (4.27)

i=2,j
From (4.23) through (4.27), we have thus proved that (4.19) holds for [=j—2.
Using then (4.21) and (4.22), the proof of {4.19) follows by the method of
induction.
We return to the proof of (4.12). For 2<h<j—1, 1<j—h=<j-—2, and by
(4.11) and (4.19),

SO B, X,) E(X, . X, Y
§i§1 Dt B o XD sl ECG, - X, YD1
SK|X|;, snt=h02 i 2=t (K=K, 1K )
i=1
<KD |X|7, 07 nzk (428)

Combining (4.14)—(4.18) and (4.28), we obtain for 1< j<2m,
|E(S]- YN SH UK IX I 5e,0A, (o, )P + Z K®IX |y, n7%, (4.29)

if n=(n,, k). Thus, (4.12) holds by properly choosing K ;) and k; as this has been
already made for j=1 and 2. Let Kzmax{Kg,,...,Kpy,, and k
=max {k, ..., k,,}. Then (4.8) holds for n=(n,, k). But we can choose K so that
(4.8) holds also for n<(ng, k), thus (4.8) is proved.

Proof of (iii). Since 1 <e<?2,
E|S,+8," <27 E(S,+ S, (IS,1° 15,19
2m—1 2 ) N ) 2m 2 R R
=2£cn+25“1E{ y ( ',") SIS, [2§2m=i 1 ¥ ( T”)S;,S,fm—qsnr}
j=0 \J j=1\]

It follows similarly to the proof of (ii) that for ¢, >0, there exist K and k such
that

E|S,+8,<(2+¢,)c,+Kn"%, nx=1.



Moment Bounds for Stationary Mixing Sequences 53

For m>1, 26<2@m+e2 (see (7.12) in [8], p. 227), so that the proof also follows
along the same line as in Lemma 7.4 in [8]. Thus the proof of Theorem 1 is
complete.

Proof of Theorem 2. Theorem 2 can be proved using the arguments used in the
proof of Theorem 1 with a few changes. Using (2.4) with p=g = oo, the proof for
r=2m, m=1,2, ..., 1s similar to that of (4.1). Note that, under the assumptions of
Theorem 2, ¢* exists and o?=0%n(1+0(1)), and thus (4.9) holds (cf [11],
Theorem 18.5.4). Choosing p= oo, g =r/(r—j) and s=r/j, the second term on the
rhs of (4.15) is bounded by

n+k
Kelr=r 5 i+ 1y ("
i=k+1
) o] Jir n+k ) ) r—j)r
chf,H)/'[ y (i+1)'/2‘loc(i)J [ y (i—i—l)“””/z(””] ,
i=k+1 i=k+1

and so (4.17) holds. Let t=(j—e¢)/2m, 3=<j<2m. Then the serics in (4.20)
converges, so that (4.19) is also obtained by using (2.4) with p=cc and g =2m/(r
—j). The remaining changes should be obvious.

5. Convergence of Moments in the Central Limit Theorem

Theorem 3. Let {X;} be a strictly stationary ¢-mixing sequence with EX, =0 and
EiX,["<oo for some r>2. If

_i [$ ()] <o, | (5.1)

then as n—co

E|Sn/an1/2|r~—>ﬁr, (5.2)
where [, is the rth absolute moment of (0, 1).
Proof. Under the assumptions of Theorem 3 the central limit theorem

S jon'* 25 47(0,1) (5.3)

holds (cf. [11], Theorem 18.5.2), and thus it is sufficient to prove that {|S,/n'/?|",
nz1} is uniformly integrable. Let fy(x)=x if [x|SN; =0 if [x[>N, and gy(x)
=x—fy(x), and put fi(x)=fy(x)—E(/y(X), gv(x)=gy(x)—E(gy(X,)). Then,
both {fy(X;)} and {gy(X))} are ¢-mixing with mixing coefficients <¢(n). Let

ﬁv(Xj)a V= Z ‘ZN(X,'):

Jj=1 j=1

s

U:’Vn =

Il

then S,=Uy,+Vy,. Denote by E (X) the integral of X over the set {X =a}.
Since [S,[" 2" (| Uy, " +[Vy,|") and E(U + W £2{E,,(U)+E(V)}, we have

E,|S,/n*r S27{E .| Uy, /n' 2| + E [Vy,/n' T} (54)
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Let
PN =E(RXP+2 X, EGRX)A (X))

Then o*(N)—>¢* as N - o0, and thus for N sufficiently large (N = N,, say),

c*(N)=36?>0.
For such N, since f(X ;) is bounded, by the remark following Theorem 2,

Epypr | Uya/n'2" £27E | Uy,/n' 21 fa

=Ky/a, nzl (5.5)

To complete the proof we show the following
Lemma. For t>0, there is N, for which

E|Vy, I stn’? (5.6)
for allnz1 and Nz N,
Proof of Lemma. By (2.3),

EVNﬁgn{1+4 5 [qb(i)]l“}E(gN(Xl»z.
i=1

Since E(gy(X,))*—0 as N — oo, the lemma is true for r=2. So it is sufficient to
assume that the lemma is true if » is an integer m=2 and prove that it is then
true if r =m+¢, where 0<e <1, Let us write

N 2n+k

V= Z gn(X)),  cxa=ElVyl"

Jj=n+k+1

Using (2.3), and arguing as in [8], pp. 225-226, we obtain that for &, >0, there
exist K and k such that

EVyu+ Vaal SQ+ey) ey, +Ken'?, (5.7)

for all n=1 and N=N,, where K depends on r alone. Also we obtain that for
g,>0,

Cn.2n S48 ey, +2Kin? (5.8)
for all n=1 and N=N,. Indeed, we have
Cx.2an {2 +&y) ey + Ktn 2] 4 2k}
=(1+e3) [(2+e)) ey, + Ktn''?],
(see {81, p. 226), where since ¢y, <2"E|X, [,

£3=2kcl/I/[(2+8,) cynt+ Kin' /200
4k X (KtnY" 50 as n—oo.
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Thus, choosing ¢, sufficiently small and n, not depending on N sufficiently large,
for nzn,,

(I4e)(2+e)=24¢,, K(l+4e)<2K,

then (5.8) holds for n=n,. For each n, ¢y,—0 as N—oo, and so for some
redefined (if necessary) N,, we have

ey s S2K 0T

for all n<n, and N =N,, thus establishing (5.8). Applying (5.8) and the fact that
cy1—0as N— oo it follows as in the proof of Lemma 7.4 in [8] that there is K|
not depending on N and ¢ such that

E|Vy, ' SK tn'?

for all n=1 and N = N, (increase N, if necessary), which is (5.6) except for the
constant K.

We return to the proof of Theorem 3. For any ¢, >0, if we choose ¢ in (5.6) so
that t<e,/2"*', then for N large enough, 2"E|Vy,/n*?|"<e,/2. For such
N(=N,), choose a so that Ky/a<e,/2"**, then from (5.4) and (5.5), for all n> 1,

E, IS, /n'? <e,,
which asserts that {|S,/n’/?["} is uniformly integrable. This completes the proof
of Theorem 3.

Theorem 4. Let {X;} be a strong mixing sequence. If (i) the assumptions of
Theorem 1 are satisfied; or (i) EX, =0, |X,|SC<w as. and

Z i+ y()<oo (F>r>2),

then (5.2) holds.

Proof. We use the same notation as defined in the previous proofs. Note that the
central limit theorem (5.3) holds under the assumptions of Theorem 4 (cf. [11],
Theorems 18.5.3-4). We first assume (i). Let s=2+(r—2)(r+95)/d (>r). If (3.1)
holds, then

e8]

Z l+1 s/2 — 1 Z l+1)’/2“1[oc(i)]‘s/"+5)}(’+’5)/é<oo,

so from Theorem 2, for all N sufficiently large,

By [ Un,/n" 21" SE| Uy, /2 /2=
SKyjas=r pzl.

In view of the proof of Theorem 3, it is sufficient to prove that (5.6) holds under
the assumption (i). When r=2m, by (4.1),

EVyy SK (Elgy(X,)Prmeoyme@m+opm  p21.

Thus since E|gy(X,)|*™*%—0 as N — oo (5.6) holds.
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Now we assume that r=2m-+¢, 0<e<2. To prove (5.6) for such r, we show
that there exist K, not depending on N, and N, such that

ey, SKn'l? (5.9)

for all n>1 and N=N,. Let ¢2(N)=EU},. Then since E|fy(X)P<2PE|X|P
(p21),

6—3,(1N)—62(N>k
1 o ©
=210 L G- DEGX )X+ D B f(X)
§96|X|\%+5{% 'S e+ 3 [oc(i)]a/(2+‘7)}~>()

as n—oo (cf. [11], p. 348). So there is n, not depending on N such that

n

o7 (N)
n

—JZ(N)‘<%0'Z (5.10)

for all n=zn, and N =0. On the other hand, there is N, such that
lo*(N)—0c?|<ia? (5.11)
for all N=N,. Combining (5.10) and (5.11), we have

cr(N)
n

o’ <%a?

for all nzn, and N2 N, and so for such n and N,
Jo?n<ol(N)sd! (5.12)

where dy,=E|Uy,l". Applying (5.12) it is easy to obtain as in the proof of
Theorem 1 that for ¢, >0, there exist K and k, both not depending on N, such
that

E|Uy,+ Uy, 2% +e,)dy, + Kn'?

for all n=>1 and N=N,, where 2*=2 if O0<e=1; =2° if 1<e<2. Hence, it
follows similarly to the proof of the lemma that there exist K, not depending on
N, and N, such that

dy,SKn''? (5.13)

for all n>1 and N 2 N,. From Theorem 1, (5.13) and the inequality ¢y, <2""(c,
+dy,), we get (5.9). Combining (5.9) and the fact that E|gy(X ) *°—0as N>
with (4.16) and (4.29) (setting k=0), we obtain that for ¢t >0, there is N, such that

% ¥ 2
cN,2n§2 Cy,HitH
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for all n=1 and N=N,. So the proof of (5.6) also follows from Lemma 7.4 in
[8]. When the assumption (ii) holds, using Theorem 2, the uniform integrability
of {|S,/n'/?"} follows immediately from

Ea |Sn/n1/2|r:<:E ISn/n1/2|r'/a(r'*r)/r

<K/a" 7" nxl.

Thus the proof of Theorem 4 is complete.
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