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Summary. A Berry-Essen result and asymptotic expansions are derived for 
the distribution of bivariate yon Mises functionals under moment  and 
smoothness conditions. 

The results apply to the Cram6r-von Mises co 2 - statistic as well as to the 
Central Limit Theorem in Hilbert space, yielding a convergence rate O(n- 1 +~) 
for every e > 0 on centered ellipsoids. 

1. Introduction and Notations 

Let ( X , d , P )  be a probabili ty space. For  a symmetric function h : X  2 ~ I R  and 
(x 1 . . . .  , x,,)~X" let 

(1.1) w,,=n -1 ~ h(xi,xj) 
i , j ~ l  

denote a bivariate yon Mises functional. 
In this paper we investigate the asymptotic distribution of w n under Pn[~4~, 

assuming that 

(1.2) ~h(x , ' ) dP=O P-a.e. 

If this condition is violated, but ~ h d p 2 = 0 ,  then r t - 1 / 2 W  n is asymptotically 
normal. See H. Callacrt and P. Janssen (1978) and H. Callaert, P. Janssen and 
N. Veraverbeke (1978) for a Berry-Esseen Theorem and asymptotic expansions 
in this case. Note that (1.1) includes the so called U-statistics (up to an 
inessential difference in standardization) if we assume h(x, x)=-O. 

Assume that for some s > 3 

(1.3) /3 s = ~ [h(-,.)l s dP 2 + [, Ih(x, x)l~P(dx) 

is finite. 
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The limiting distribution function of w, under P"[~r say Z(x, h), xelR, was 
investigated by von Mises (1947). It has the c.f. 

(1.4) 2(t,h)=exp(it~h(x,x)P(dx)) [] [(1--2itZk) exp(2itZk)] -a/2 
k = l  

where 2> keN,  denote the eigenvalues of the Hilbert-Schmidt operator on 
L2(X,P) induced by the kernel h(.,'). The c.f. 2(t,h) is well defined and analytic 
on IR. (See N. Dunford and J.T. Schwartz (1963, XI, p. 1036, Theorem 26) and T. 
Carleman (1922).) If all eigenvalues Zk, keN,  have multiplicity 2, then 

)~(x,h)=l- ~ exp[-2;~x/2]H(1-2j2{~)  -1 for x>O. 
J .k>0 j * k  

See Remark (2.12). 
With Theorem (2.3) we prove that for s > 4  

(1.5) sup LP" {w, < z} - Z  (z, h)] = O(n-~tl,) 
gff~x 

where c(= 1 and t / ,=o(n ~) for every ~>0, provided that h(x,y) is not equal to a 
finite sum of functions f(x) g(y) where f, geL2(X,P). Furthermore, if h(x,y) fulfills 

(1.6) P{xeX: ]Sexp[ith(' ,x)]dPl>l-n-l~, for Jt]>~, 1} 

= O(n -(s- 21/2 (log n)- 1) 

with e,=3(s-2)logn and rl, defined in (2.5), then we prove with Theorem (2.9) 
the existence of an asymptotic expansion for P"{w,<x} up t o  O(n-(S-2)/2), say 
o-(")~x h ~ starting with Z (x, h). Zs t , ), 

For a more general but less applicable continuity condition see (2.8) and 
Remark (2.11). Unfortunately we are not able to give an explicit formula for )/~') 
in case of a general h(x, y), but its c.f. is given by 

(1.7) ~(')~t ( L(s-3)/21 ) 
zs t,h)=2(t,h) 1+ ~ n-~P2j(t,h) 

j = l  

where P2j(t,h) are meromorphic functions in t depending on the moments of h 
and the resolvent (Id-2itH) -~ of the operator H induced by the kernel h. See 
(1.10)-(1.14). 

Generally the inversion of (1.7) has to be done numerically. See e.g. (G.V. 
Martinov (1975)). 

These results apply to yon Mises' co2-statistic 

(1.8) c% 2=nS(Fn(t)-F(t))  zF(dt), 

where F(0 is a continuous d.f. on IR and F,(t) denotes the empirical d.f. of a 
random sample of size n distributed according to F", and the related statistic of 
Watson (1961) 

(1.9) U,=o~-nI- ( (U0-F(0)F(a0]  2. 
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In these cases we give in Examples (2.13) and (2.16) rapidly converging power 
series expansions for the distribution functions up to O(n-2). 

The limiting distribution of o)~ was investigated by N.V. Smirnov (1937) 
and T.W. Anderson and D.A. Darling (1952). The convergence rate has been 
investigated by several authors. N.P. Kandelaki (1965) proved (1.5) with c~ = 0, t/, 
= (log n)-1/4, followed by V.V. Sazonov (1968), (1969) with c~= 1/10, resp. c~= 1/6, 
W.A. Rosenkrantz (1969) with c~= 1/5, J. Kiefer (1972) and Y.Y. Nikitin (1972) 
with c~= 1/4, A.I. Orlov (1971) with c~= 1/3 and finally Orlov (1974) proved 
=1/2 and t/~ as in (1.5). S. Cs6rg6 (1976) proved c~=1/2 and ~7~=logn, con- 

jectured c~ = 1 and gave a formal expansion for the distribution of co 2. 
Finally, if X is a real separable Hilbert space, (1.5) applies to the Central 

Limit Theorem in X and improves the convergence rates of J. Kuelbs and T. 
Kurtz (1974) who proved c~ = 1/8 and r/n = 1 and V.I. Paulauskas who increased 
to 1/6. See Remark (2.7). 

Having introduced the necessary notations below we formulate the main 
results in Sect. 2. Section 3 contains the lemmas. Here, Lemma (3.30) may be of 
independent interest. The proof of the theorems can be found in Sect. 4. 

Notations 

Define 2, (t, h) = ~ exp (i t %) dP". 
Let c~=(i~ . . . .  ,i,,) resp. r=(rjk)j,k=~ ...... be a vector resp. a matrix of non- 

negative integers. Define 

(1.10) 

with 

,-1 [1R(t, h)(xj, xk)]rJ~ pm(dx) 
t= l  j , k = l  

(1.11) R(t,h)(x, y)=(2it){h(x, y) + 2it S h(x ,z)[( Id-  2it H )- l h(',y)](z) P(dz)} 

where ~* denotes summation over all m x m integer matrices (rjk)j,k = 1 ...... such 
that 

(1.12) ~ (rjk+rki)=ik, k = l , . . . , m .  
j = l  

Since h(x,')~L2(X,P) P-a.e., R(t,h)(x,y) is well defined p2-a.e, and P,d-a.e., 
where d: X - - , X  2 denotes the diagonal m a p x ~ ( x , x ) .  Furthermore, 7~(t,h) does 
not depend on the order of the components of the vector ct and vanishes identically 
if t~l = il + . . .  +im is odd. Replacing all monomials /7il ... fl~m in the one dimen- 
sional Edgeworth polynomial of order r, r>0,  say P~(fl), with cumulants ex- 
pressed in terms of moments fl~, i>2,  (see Bikjalis (1973, p. 153/5)) by the 
functions y(~ ...... ~,~)(, we , t h), obtain functions P,.(t,h), r>O. For example P0(t,h)_-- 1, 
P~ (t, h) - 0 and P2 (t, h) = ~(74 - 37(2, 2)) (t, h) + 7~7(3, 3)(t, h). Define the expansion of 
2,(t, h) by 
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s 3 

(1.13) (̂n) t )~ ( , h ) =  ~ n "/2P~(t,h)2(t,h) 
r = 0  

where P~(t,h)--O if r is odd. 
Especially we have 

(1,14) P2(t,h)=512~(3r2 , - 3 ( r l ~ r E 2 + 2 r } 2 ) ) + ~ ( 6 r 3 2 + 9 r l l r 1 2 r 2 2 )  ] dP 2 

with rjk(x 1 , x2) =R(t ,  h)(x~, Xk), j, k = 1,2. 
In order to avoid ambiguities let z 1/2, zeC,  denote the branch with positive 

real part (see (1.4)). 
For notational convenience we shall use the letter c as a generic positive 

constant which depends only on the length of the expansions. 

2. Results 

Assume that the eigenvalues 2k~0, ksN,  of the Hilbert-Schmidt operator on 
L2(X,P) pertaining to h are ordered according to their absolute values i.e. 
12k+ ~1 < ]2kl for every keN. Let ~,, s denote the monotone increasing sequence of 
real numbers determined by 

(2.1) ]2(o/ , ,s l2~J-l ,h)l=n -3(~-2) 

where s>3  and a ( s ) = 2 4 ( s - 2 ) + 5  if s > 4  and a(3)=31. For instance, 

)~k = k  ~,r 1 implies 7n, s<=C(S, OO [2~logn) 

(2.2) "~k = exp ( - kP), fl > 0 

implies ~ < c(s, fl) exp [(s(1 + fl- 1) log n) B/(1 + ~)] 

~ 2 2 <  =o(n ~) for every e>0. and [Rkl >0  for every k~N with oo implies 7,,s 
k = l  

(2.3) Theorem. Assume that h(x, y)fulf i l ls  condition (1.2). Furthermore, assume 
that 

(2.4) fls is finite and 2~(~)=t= 0 for s > 3. 

Then there exist constants c3, c 4 such that 

(2.5) szuplP"{w,<z~ ~z,h)l< (c3(f131)~(3)[-3)an-1/2 if s=3  
~--Zt  =lC4(fl4[.,~a(4)l-4)6rlnn 1 if S>4 

where t/, = (log n) 6 5 ~n,  4 �9 

(2.6) Remark. Let bi(z)= ~ Ih(',z)lidp, i s N .  If there exists a constant b > 0  such 
that b3(z)+b2(z) -1 <b P-a.e. and h fulfills (2.4) (with s=4), the factor qn on the 
r.h.s, of (2.5) can be replaced by 1. 
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(2.7) Remark. Consider the case where X is a real separable Hilbert space with 
scalar product ( ' , ' )  and P I ~  is a mean zero p-measure defined on the Borel a- 
field ~r with covariance operator, say C. Let h ( x , y ) = ( B x ,  y),  where B is a 
bounded, symmetric and positive semidefinite operator on X and denote with 
~blsr the mean zero Gaussian p-measure with covariance operator C. Further- 
more, define sn=n-1/a(xl q-...-~x,,), xieX and B~={xeX" (Bx ,  x )  <r}, r>O. 

In this case, the eigenvalues 2k, keN, pertaining to h are the eigenvalues of 
BC: X ~ X .  Since 

w , = ( B s , , s , )  and z(r,h)=cb(B~), r>O. 

Theorem (2.3) applies to the Central Limit Theorem in Hilbert space for the 
ellipsoids B,, r > 0. 

For the special case X=IR  k and C = B  being the k x k identity matrix, a 
result of C.G. Esseen (1945, p. 92, Theorem 1) yields c(k) fi~/2 nil(k+ 1) n- 1 as an 
upper bound for the 1.h.s. of (2.5) with lira c(k)= oo which is better than our 

k~oo 

bound in this case. 
In order to prove asymptotic expansions we need the following smoothness 

condition: 
There exists a constant a >0  such that 

(2.8) inf P"{xeXm: f~exp[ i th ( . , x ) ldP l>=l -enn  -1 for [tl~t/~ -~} 
l ~ 2 m < n  

< a n- (s- 2~/z (log n)- 1 

where en=3(s -2 ) logn  and h(',_.x)= ~, h(',xi). 
i - 1  

Obviously condition (1.6) implies condition (2.8). 

(2.9) Theorem. Assume that h fulfills condition (1.2), (2.8) and condition (2.4) with 
s> 4. Then we have with the notations of(1.13) 

n (2.10) supIP { ~ , < z } - "  (")~ (s-zl/z zs t~, h)l <Cs(fl~l)v~(~)J-S)6n - 

where c~ depends on s and the constant a of(2.8). 

(2.11) Remark. Let P I d  denote the uniform distribution on X = [ 0 ,  1]. Then 
(2.8) holds for every s => 4 if b 3 (x)< c P-a.e. (see (2.6)) and there exists constants 6, 
r 1 > 0 such that for P-a.a. xe[O, 1] there exists an interval 1~ ~ [0, 1] of length larger 
than t/with I#/~y h(y, x)l >->= 6 for every yeI~. 

(2.12) Remark. If all eigenvalues 2k, keN,  have an even multiplicity, then 
2(~")(t,h) is a meromorphic function on I12 with poles at t=2[~/(2i), keN .  Under 
the assumptions of Theorem (2.10) it is not hard to see that the calculs of residues 
applied to the inversion formula for the d.f. yields (with integration over the 
contour consisting of/R and an appropriately chosen semicircle in the half space 
I m t  < 0 with radius going to infinity) 

o~ h ) = l +  ~ exp(-2~-lx/2)(  ~ -i n pzi, k(x)) for x > 0  Z s t ,  
2k>O 0 < 2 i < s - 3  
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where P2i, k(X), keN, denotes a polynomial in x with coefficients depending on 
the eigenvalues 2j, j e N ,  their multiplicity 2mj, mieN, j eN ,  and moments of h. 
For the case s = 3 more details can be found in G.V. Martinov (1975, p. 788/9). 

(2.13) Example. Let P I d  denote the uniform distribution on [0,13. Cram6r- 
von Mises' co 2 statistic (1.8) is a statistic of type (1.1) with h(x,y)=�89 2) 
- max (x, y) + �89 We have 2k=(kg) -2, keN, pertaining to eigenvectors ek(t ) 
= 21/2 COS (rckx), xeE0 , 13. Hence 

(2.14) h(x,y)= ~ ek(x)ek(y)Tr-2k 2 

k = l  

See E.R. Hansen (1975, p. 266, 43.1.9). Since h(x,y) fulfills the conditions of 
Remark (2.11), the results (2.3) and (2.9) apply to this kernel for every s>4.  

Furthermore R (t, h) (x, y) = 1 - # sinh- 1 (/~) cosh [#(1 - max(x, y))] cosh [# min 
�9 (x,y)] where # = ( - 2 i 0  ~/2. See E.R. Hansen (1975, p. 243, 17.3.7). The 
relation (1.14) together with 2( t ,h)=(psinh-~#) ~/2 (see T.W. Anderson and 
D.A. Darling (1952, p. 200, 4.26)) imply after some elementary computations 

21")'t h)=(/z sinh- 1 #)1/2 [1 + n -  1 (1~2 - 1~4~#2 - ~6-# sinh- 1# 
1 2 - ~ #  sinh- 2 # - ~ / , t  coth #)]. 

Expanding sinh-k/2# in a power series in exp(--2#) and using the fact that 

S4exp[-(2z)l/2(2k+J~[ is the one sided Laplace Transform of 
k \ 2]1 

(2zt)-i/a2-~/ax-~/4 l e x p [ - ( 2 k + J ) 2 / 4 x ]  Dl+v/2[(2k+~)x-1/2], x~O, 

where D~(x) denotes the parabolic cylinder function (see F. Oberhettinger and L. 
Badii (1973, p. 259 (5.94))) we obtain 

k = 0  
2 2 

- n - t  2 2 Pk,~v(X)Uk,~v( x)} 
where ,,= o ~= 0 

Uk,,~ (X) = D_1/2 + ~ (Xk, u) exp ( -- x~, ~/4), 

Pk, O0 

Pk, t 1 

Pk, 22 

Xk,# =(2k+�89 1/2, 

Pk, oa =Pk, 21 = Z--fig x 

and pk,,,-O for the remaining indices #, v. 
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Note that the n~ in (2.15) is the power series of T.W. Anderson and 
D.A. Darling (1952, p. 202, (4.35)). 

(2.16) Example. Let U n denote the goodness-of-fit statistic (1.9) for a circle 
h x 1 x 1 2 y~[0, 1] considered by G.S. Watson (1961). Here ( ,y)=g([ - y J - 3 )  - ~ 4  for x, 

and P [ d  is the uniform distribution on 1-0, 1]. Furthermore, the eigenvalues 2 k 
= (2rck)- 2, k~N, have multiplicity 2 and 2(t, h) = 2 sinh- 1 2, where 2 = ( - it/2)1/2. 
This is the c.f. of the distribution function 03 (�89 27r ix), x > O, where 03 (s, 2zr ix)= 1 

+2  ~ exp(-27r2k2x)cos(2~zks) denotes the third Theta function. See G.S. 
k=l 

Watson (1961, p. 112, (22)). By Remark (2.11), the results (2.3) and (2.9) apply in 
this case for every s >4. Since sin (2~kx) and cos (27rkx) are both eigenfunctions 
pertaining to the eigenvalues 2 k we obtain by a Fourier expansion similarly as 
in Example (2.13): R(t, h)(x, y)=  1 - 2  sinh-1(2) cosh [(2 I x - y ] -  1))@ Hence, 
we obtain after some computations 

2~6,1(t,h)=2(t,h)(l +n-l{1[l_(2sinh- l  ))2] -56212}) 

which yields by the method of Remark (2.12) 

{ [ 9 1 2 0 2 ] )  
(2.17) Zc6"~(x,h)= l + n  -1 l~2(~2-5x)~-x-gx ff~x2]~O3(�89 x>O. 

Notice that Jacobi's identity for Theta functions implies 

03(�89 ~ exp[-(k+l)2/2x], x >0 .  
k=l 

See R. Bellman (1961, p. 26, (19.2)). This is a rapidly converging power series for 
small values of x. 

The following tables compare the percentage points of the expansion (2.17) 
with the exact values of the distribution of U, in Example (2.16) for various n 
obtained by Monte Carlo methods. See M.A. Stephens (1963, p. 311, Table 4 
and 1964, p. 394, Table 1). Unfortunately the exact percentage points in Table 1 
are accurate to three digits only. 

Table 1. Upper tail percentage points for U~ 
Significance level (~) 

n 0.5 1 2.5 5 10 

0.262 0.238 0.205 0.177 0.148 exact 5 0.267 0.243 0.208 0.179 0.148 Appr. 

0.283 0.254 0.213 0.182 0.150 exact 10 0.285 0.255 0.214 0.183 0.150 Appr. 

0.293 0.261 0.217 0.185 0.151 exact 20 0.294 0.261 0.218 0.185 0.151 Appr. 

o~ 0.302 0.267 0.221 0.187 0.152 
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Table 2. Lower tail percentage points for U, 
Significance level (~) 

F. G/Stze 

n 0.1 0.5 1 2.5 5 10 

0.01860 0 .02101 0 .02281 0 .02638 0 .03041 0.03610 exact 
5 0.01897 0 .02135 0 .02311 0 .02647 0 .03021 0.03573 Appr. 

0.01667 0 .01998 0.02200 - - - exact 
7 0.01723 0 .02009 0.02201 - - - Appr. 

oo 0.01429 0 .01763 0 .01971 0 .02340  0 . 2 7 3 6  0.03306 

3. Lemmas 

Let  hk: Xz--+IR, keN, be a sequence of  symmet r ic  funct ions 

k 

(3.1) hk(X,y)= ~ bij, klA,,~(X) lAj,~(y ) where  
i,j=l 

k 

bij, keiR , Ai, ked,  X =  ~.. Ai, k 
i - 1  

such that  

(3.2) h k converges  to h for k ~ o o  in the s t rong L~(X2, pE+p*d) 

topology,  where d(x)=(x, x)eX 2 and  s > 3 .  

Let  

(3.3) Tk (x )= ( l a , .~ -P (A , ,0 )~_  1 ..... k" 

Fu r the rmore ,  let Bk:=(b~a,k)i,j= ~ ..... k and  let ~kJM k denote  the k d imens iona l  
centered n o r m a l  d i s t r ibu t ion  with covar iance  Ck: = c o v ( P ,  Tk). 

Let  ( . ,  "> denote  the Euc l idean  scalar  p roduc t  in IR k. Using a s sumpt ion  (1.2) 
and  (3.2) we may  choose  h k (see the def ini t ion of  h' below) such tha t  in add i t i on  

to (3.1) and  (3.2) 

(3.4) S hk(x, y)P(dy)=O holds  for every xeX.  Hence,  

(3.5) h k ( ' , - ) = ( B  k Tk('), Tk(')>. 

F o r  a symmetr ic  funct ion h: X 2--,IR let  h"(x,y)=h(x,y)la,, where  
A. = {(x, y): Ih(x, Y)t <nile}. 

Define 

h'(x, y)=h"(x, y)-~ (h"(x, ")+h"(', y))dP + 5 h" dP 2. 

It  is no t  ha rd  to see tha t  (3.1), (3.2) and  (3.4) are fulfilled for h~( ' , - ) ,  kEN,  and  
tha t  there  exists a symmet r i c  k x k mat r ix  B~ such that  

t �9 ~ r (3.6) hk( , ) = ( B k T k ( ' ) ,  Tk(')>. 



Asymptotic Expansions for Bivariate von Mises Functionals 341 

Furthermore,  Cebygev's inequality together with (3.5) implies for every (x, y)~X 2 

, < ( r -  
�9 , ")11~+/~ ] (3.7) l h ( x , y ) - h ( x , y ) l = c n  ~/2[Ih(x,y)lr+l]h( x)[l;+llh(y, ~ ~/~ 

where IIh(', x)ll~=E~]h(', x)I~dP] ~/s. For  fi~ see (1.3). 
Note  that  (3.7) holds for h~ as well, since 

(3.8) ~lhk(.,.)[~dp2+~lhkod(.)lsdP<2fl~ for k > k  o. 

Finally note that  

(3.9) Ih'(x,y)l<4n 1/2 for every (x ,y )~X 2. 

The same relation holds for h~. 
For  reasons of simplicity we shall assume by now that fl~ = 1. 

3.10 

( i )  

(3.11) 

Lemma.  Let v~(Nk) ~, e__MR ~ and ~. v:=  L ei vi" Then 
i = 1  

exp [i t (B  k(u + e. v_), (u + e_. v))] @k (du) (P ,  Tk) m (dr_,) 

=)~(t, hk)jexp [~ L R(t, hk)(Xi, xj)eiej] P"(d_x) 
i , j = l  

where R(t, hk)(X, y) is defined in (1.11). 
(ii) for all t fulfilling Itl<n(~-2)/l~ we have 

12(t, h ) -2( t ,  h')l < c [tl (1 + rtff) n-  ~- 2t/2 I2(t, h)l. 

(iii) ~ l,~.~ t ,  h)l <c(1 + [tl 6(s- 3~)/2(t , h)[. 

(iv) ~(")~t h ~ t  3~+ Zs t ,  ) -L~ t ,h ' )[<c(l t l+lt l  6(~- 3 ) n - ( s - 2 ) / z J ' ~ ( t , h ) l  �9 

(3.12) Remark. lira 2~")(t, hk) =2 ]") (t, h). 
k ~ c o  

Proof. (i) Let I k denote the 1.h.s. of (3.11). For  Pm-a .a .  (x I . . . .  ,Xm) there exists a 

vector b~lR ~ such that ~ e~Tk(x~)=C~/2b. Introducing v = C # l / 2 u  as new 
i = 1  

variable we obtain (w.l.g. let C k be nonsingular) 

(3.13) I k = ~ exp [it <Dk(v + b), (v + b))] ~o~a(v ) d k v 

where D k = ~kcl/2 Bk C1/2k , dkv denotes the k-dimensional Lebesgue measure and 
DId(V) denotes the density of the k-dimensional s tandard normal  distribution. 
Assume that the symmetric matrix D k has eigenvalues #~, i = 1 . . . .  , k, and denote 
by z~ resp. a~, i =  1, ..., k, the coordinates of v, bMR with respect to an orthonor- 

k 

mal basis of eigenvectors of D k. Hence (Dk(V + b), (v + b)> = ~ gi(zi + ai) 2 and by 
i = 1  
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G.V. Mart inov (1975, p. 790, (18)) 

(3.14) 

F. G S t z e  

k - 1 / 2  

x e x p  # j ( 1 - 2 i t # j )  l a  . 
1 

The first factor of (3.14) is equal to exp [itShk(X , x)P(dx)]. (See (3.5).) Since #j0 
j = l , . . . , k ,  are the eigenvalues of the Hilbert-Schmidt  operator  Hk:L2(X, P ) ~  
with kernel h k we obtain 

(3.15) I k = 2(t, hk) exp [i t (Dk(1 -- 2 i tDk)- 1 b, b ) ] .  

Since by definition of D k and b (see (1.11)) 

(3.16) it (Dk(1 -- 2 itOk)- 1 b, b )  = it (Bk(1 -- 2 it C k Bk)- 1 ~kC1/2 b, C~/2 b) 

= ~ R(t, hk)(Xi, Xj)eiej, 
i , j =  1 

this together with (3.15) proves part  (i). 
(ii) Denote  by #), j =  1, . . . ,k,  the eigenvalues of the operator  on L2(X, P) 

induced by the kernel hk, k >  ko (see 3.8). Using [exp(x)-11 < Ix l exp(lx[), x~2 ,  we 
have 

(3.17) ])~(t, hk)-- ;~(t, h~)] <=lJklexp(lJk] ) ]2(hk, t)l 

where 

1 
[log(1 - 2 i t #i) - log(1 - 2 i t#'i) ] Jk=2 i=1 

= ( - i) i ~ [#i( 1 - 2 irui) -1 - #'i(1 - 2 ir#'i)- 1] dr 
0 i ~ 1  

1 i (3.18) - -  - ~ t -  ~ S (R (r, hk) - R (r, h'k)) (x, x) e(dx) dr. 
0 

Since by (1.11) 

(3.19) R(t, h)( ' ,  . ) = 2 i f f h ( ' ,  . ) + ~ h ( . ,  z)R(t,  h)(., z)P(dz)) 

we have 

(3.20) (R(t, h ) - R ( t ,  h'))(x, y)= 2 i t ( (h-h ' ) (x ,  y) 

+ ~ [R (t, h) (x, z) (h - h') (z, y) + R (t, h') (z, y) (h - h') (z, x) 

+ R(t, h)(x, z)(h -h ' ) (z ,  w) R(t, h')(w, y)] p2(dz, dw)): 
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Therefore (3.7) implies 

(3.21) 

343 

]5 (R (t, hk) -- R (t, h'k) ) (x, x) P(dx) l <= 12 t[ n-  (~-1)/2 

+ 12 t llj'(hk - h;,) (z, x) I-(R (t, hk) + R (t, h;,)) (z, x) 

+ R ( t ,  hk)(z, w)R(t, h~)(w, x)3 P3(dz, dw, dx)l 

< 12 tl I n - ( s -  2)/2 _~ H-(s-  2)/2 (~)s -}- ~'s -}- )'s ~)'s) ] 

where 7~=5 IR(t, hk)l*dP 2 and 7'fl=51R(t, h'k)lsdP 2. Here we have used (3.7) with r 
= s - 2 ,  (3.8) and H61der's inequality. 

Since rl(Id--2itHk)- ill < 1 for any symmetric operator, where II'[] denotes 
the supremum operator norm in the Hilbert space L2(X, P), it follows from 
(1.11) that 

(3.22) ]R(t, h)(x, y)[<lZt] Fh(x, y)]+12tl 2 ]lh(', x)lls Ilh(', Y)][s. 

Hence 

/~ + 7s<c Jtl(l + ltl). 

The relations (3.18) and (3.21) imply 

(3.23) IJkl<__cltl(l +[tl4)n -(~-2)/2 

thus proving part (ii) for h k and h;,, k__> ko. 
The relation lira 2 (t, hk)=2(t, h) can be proved along about the same line as 

(3.17)-(3.23), but it also follows from the continuity of h~2(t ,  h) in the strong 
L~(X 2, p2 +P,d)  topology. See N. Dunford and J.T. Schwarz (1963, XI, p. 1036, 
Theorem 2.6). This proves part (ii). 

From (3.17) with h ~ - 0  and h k replaced by h we obtain by (3.18) 

(3.24, ,2 ( t , / ) , -<exp[ -2 ' i l  ~ 22(1+4r2)o 2) lrdr].  
o j = l  

This proves after some elementary computations the examples (2.2). 
(iii) Let ~ = (gl .. . . .  %), 2 < cr i < s - 1, m < 3 (s - 2)/2 and 

(3.25) ~ (~i-2) =< s -  3. 
i=1 

Then it is sufficient to estimate ~(t, h) in (1.10). By the generalized H61der 
inequality we obtain after integration in x~ 

(3.26) lye(t, h ) [ < c ~ *  @ ~ l  I-[ R(t, h)(x~, xy'JI 
i , j~:l  

x ]JR(t, h)(x2, ")]l~ ~ + ~  ... IIR(t, h)(Xm, ")ll; ~ + ~ '  P~-  l(d_x) 

where c5~ =5 ]R(t, h)(xl, Xl)]~P(dxO. 
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Hence after m - 1  further integrations we obtain by (1.11) and (3.22) 

(3.27) 17~(t, h)l ~ C ( S s + T s )  I~1 ~C [tl I~1 (1 + Itl) I~j 

thus proving part (iii). 
(iv) By (1.11), part (ii) and (iii) it is sufficient to estimate 7~(t, h)-7~(t, h'). 
Hence, it is sufficient to consider the integrals 

(3.28) ~(R(t, h ) -R( t ,  h ) -R ( t ,  h'))(Xio , X~o)H* R(t, h)(x i, x~) v*j 

x 17"* R(t, h)(x i, x j) T'j pm(d_x) 

where ?ij, ~i;~No and H*,II** denote products over certain subsets of i,j 
= l , . . . , m .  

Using (3.20) and (3.7) with r = rain {s + 1 -  7i: i=  1,..., m} we may proceed as 
in (3.26)-(3.27) and obtain the following estimate for (3.28) 

c n  <~- ~/2 (itll~l + itl21~l+ ~). 
Since 7~(t, h) occurs in 2~"~(t, h) with coefficients of order n -~~ where 

~o = ~ (~zi - 2) < s - 3, and r + c% => s -  2, part (iv) is proved. 
i = 1  

Exactly in the same way one shows that lira y~(t, hk)=y~(t, h), thus proving 
k ~  o9 

Remark (3.12). 

The following three lemmas are basic for the proof of our results. 
Let H be a separable normed linear space. Let [I'll denote a continuous 

seminorm defined on H. 
Assume that there exists a constant y >0  such that for every integer n and 

vectors x ~, ..., x, ~ n  

(3.29) ~ I[th Xl +.. .  + ~nX, l[2X'(d~_)<7(l[x~ll2 +.. .  + llx,[12), 

where N I ~  ~ denotes the standard normal distribution on IR. (A Banach 
space is called convex of type 2 if its norm fulfills condition (3.29)) 

(3.30) Lemma. (i) Let ~1~ denote a centered Gaussian p-measure defined on the 
Borel a-field M of H. Then we have for all c~ > 0 

exp (e II x13 ~(dx) =< exp ( c 1 cte m2 + c2) with constants 0 < cl, ca < ez 7, 

where I1"11 denotes an arbitrary continuous seminorm and mi= ~ Ilxll g ~(dx), i= 1, 2. 
(ii) Assume that Qi IN are mean zero p-measures fulfilling Qi {x: Ilxll > b} = 0  

for i = l , . . . , n  and some b>0.  Furthermore, assume that condition (3.29) is 
fulfilled. Then there exists a constant 0 < c < exp (28) such that 

(3.31) ~ exp(c~ IIx 1 + . . .  + x ,  LI) Q~ (dxO... Q,(dx,) 

<exp(exp(cT~ 2 bZ) ~(llxlle + l)(Qa +...  +Q,)(dx)+ c), ~>0. 

Proof. (i) M.X. Fernique (1970) proved 

in q(u) ] (3.32) ~{x: Hxll >r}<=q(u)exp [--2-;4r2u -2 1--q(u)J 
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for r > u > 0  and q(u)=~){x:l[xl[<u}>l/2.  Let u=exp(13)m~/2, then q(u)>l  
- e x p  (-26).  By partial integration and (3.32) we have 

.l exp(er) dq(r) < 1 + ~ (lto,,](r) +(1 - q(u)) 1[,, ~(r)) c~ exp(c~r) dr 

< 1 + eu [exp (c~u) + ~ exp(c~ur - r 2) dr] 

< exp (c I m 2 cd + c2) 

for some constants 0 < c 1, c 2 < exp (27). 

(ii) Let ~ [ ~ " = Q 1  • ... • Q,['~" and denote the 1.h.s. of (3.31) by d,(~). Then 

(3.33) d,(7.)<~ exp((27z) 1/2 ~ 11171 X l  "~- . . .  ~-~]n x,[l)P~(d_x)N"(d~). 

In order to prove this inequality, let F I~ 1 denote the p-measure with F {g = _+ 1 } 
= 1/2. Since N x F {(t/, e): I~1 ~ < z} = N (~: ~ < z) for all zelR, we can replace the 
integration in (3.33) with respect to N" by N" x F". Therefore, Jensen's inequality 
together with ~ Ixl N(dx)= 2(2~)-1/2 imply that the r.h.s, of (3.33) is larger than 

exp(2 c~ 11~1 xl + . . .  + ~,x, ll) P~ (d x) F"(de). 

By f 14x+a[I Qi(dx)>= Ilall and Jensen's inequality we obtain for every n>>_k> 1 

(3.34) ~exp(2c~ Ilx 1 + . . .  +xk--xk+ 1... - x ,  II)P~(dx) 

>max  {~ exp(2c~ ]Ix 1 + ... + xk][) P~(dx), ~ exp(2 ~ ]lxk+ 1 + . . .  + x ,  ll)P~(d_x)}. 

By Jensen's inequality the r.h.s, of (3.34) is larger than d,(o:), thus proving the 
inequality (3.33). 

Let x 1 .... ,x,  denote fixed vectors in H. We apply part (i) of this Lemma to 
the Gaussian p-measure ~]N induced by N"]M" and the map ~ r h x l + . . .  
+r / ,x ,  and obtain by (3.33) and (3.29) 

d,(~)<~ exp(c ~ ~2(1[x~112 +. . .  + IIx, ll2)+c) P~(dx), c=27rc 1 +c  2. 

Hence, 

exp (c 7 ~2 [I x II 2) Q~(dx) =< 1 + exp (c 7 b 20'2) mz, i 

< exp (exp (c ~2b27) m2, i), 

where ma,~ = ~ IIx [I 2 Qr concludes the proof of part (ii). 

The assumption (3.29) holds for H = 1R k and the seminorm 

Ilxlls=(ffl(x, Bku)ls(p* Tk)(du)) l/s, s> 3 

with 7 depending only on s, since the spaces I2(X,P), s>2  are of type 2. See e.g. 
N.C. Jain (1975, p. 120, Corollary 3.3 and p. 118, Theorem 3.1). These remarks 
also apply to the seminorm II'll's which is defined by replacing B k by B~ in the 
definition above. 
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Let H ' I N k = H * t ,  IYJ k, where t , (x)=x if IlXlls<n 1/2 and t , (x)=0 otherwise, 
denote the truncation of a p-measure H I ~  k at n U2. 

Define QklNk=P* ~ 1 ~  k. Denote by Qk,,l~ k resp. Qk, nlM k the convolution of 
n copies of Q'k(n 1/2") IN k resp. Qk(na/2")l~ k. The following remark is a con- 

t ~ - sequence of Lemma (3.30) and of the inequality Ilm, ll~=n 1/2(2fl~)a/~ for k > k  o 
(see (3.8)), where m', denotes the mean of Qk" 

(3.35) Remark. For every integers p and s>  3 there exist constants c(p) and c(s), 
independent of n and k, such that for k > k 0 

(i) (Q1k, n q-~k){x~]Rk:  Ilxlj~>c(s)logn} = n  -6(s-2) 

A similar result holds for Ilxll's and Qk,,[M k. 

tp (ii) j[Ixlls (Qk,,+~k)(dx)<c(P) �9 

L e t / ~ l ~  k, /q(A)= ~ H2(dx, dy), denote the symmetrization and let H(v) 
x - y ~ A  

H(v)=~exp( i (v ,x ) )H(dx)  denote the c.f. of H l ~  k. Define 

(3.36))~i,,(t; k; e__)=S exp [it(B'k(u+e_" v), u +e_. v_.)] Fi,,(du ) 

(Qk -1- ~ k ) ( d  v 1) Q~n - 1 (d  v 2 , . . . ,  d/)m) 

where _v=(v 1, ..., vm)s(lRk) m, e__s[0, 1] m, e. v is defined as in Lemma (3.10)(i) and 
F~,,LN k, i=  0 .... , n, denotes the convolution of /copies  of Qk(na/2")[~ k with (n - i )  
copies of ~k(n 1/2 ")IN k. 

(3.37) Lemma. (i) Let HilN k, i= 1, 2, denote two p-measures. Then 

I j exp it (B k(u + w + v), u + w + v)) Hi (du) H 2 (d w)l < [j/41 (2tBk w) I i  2 (dw)] 1/4 

for every velR k, telR. 

Define 

2,, r( t, hk) 
= inf [~dk(2tn-aBk(Va+...+vp))r-VQ~(dva . . . . .  dvp)] a/2. 

1 <p<[r/2] 

(ii) Then we have for c~=(cq,...,%), 0<~i<s ,  i = l , . . . , m  and k > k o 

sup {ID~2~,,(t;k;n - 1/2ca, 0, ...,0)1: el 6[0, 1], i=0,  ..., n} 

--< c(Jt[l~' + ]t[21")[ 2"'~n/21(t' hk)l/2 + 2 (2' h~)[1/2]. 

(iii) For k > k o and S > 4 

12, (t, hk) --2,, (t, h;,)l < c n- (~- 2)/2 t 2 (1 + t 2) [2 . . . .  4( t, hk) 1/4 +Z .. . . .  4( t, hk) 1/4] 

Proof. (i) We shall prove a more general result than (i) by estimating the partial 



Asymptotic Expansions for Bivariate yon Mises Eunctionals 347 

derivatives with respect to e_e: 

D ~ [~ exp lit B k (u + w + e. v_}] H a (du) 1-12 (d w)] I~- (~ . .~ ,  0 ..... 0) 

where for reasons of simplicity Bk(u } = (Bku, u}. The derivative of the integrand 
is a sum of terms of the type 

(3.38) (n-t/2~l)"(it)'d(r,,) ~ (Bk(U+W),V,} ('~176176 ~ (BkV,,vj} l ! rij 

i = 1  i , j=l  

where r/,d(,.,j), r l yN0 ,  t76i, +~.i= ~ (rlj+r~i), i=1  .... ,m and 171/2<r<l@ 
j=0 

Hence, it is sufficient to estimate 

. . . . .  ' d w )  (3.39) (Bku, vi} (BkW, Vi} exp[itB'k(u+w+e__.v__}]H 1 x H2(du , 
i = 1  

By H/51der's inequality (3.39) is smaller than 

(3.40) [5 [M.(v_, w)l 2 Hz(dw)] 1/2 [5 H (B'kW, v~} 2s' H2 (dw)] ~/2 
i 

where M,(v, w) = ~ exp [itB' k (u + w +e__. v.V_}][[ (B'kU, ui} ri H I (du). Interchanging the 
i 

integrations in w and u in the first factor of (3.40) yields the following estimate of 
this factor 

B t t ri 2 1/2 (3.41) [5/q2(2tB~(ul-u2))0(Ul,U2 ,I))- [ I ( ( k u l , v i } ( B k u 2 , v i } )  Hl(dul,du2)3 
i 

where [O(ul, u2, _v){ = 1. 
Applying HSlder's inequality to (3.41) we obtain the estimate 

( 3 . 4 2 )  [~//2(2 tB'~u) I~ 1 (d bl)] 1/r  [~ ~ I  <BkU, ~)i> 2ri H 1 (du)] 1 / 2  

i 

For c~=0, this together with (3.40) and (3.41) proves part (i). 

(ii) Choosing Hi, j = 1, 2, equal to a convolution of an appropriate number of 
copies of Qk(n 1/2 .)[~k resp. q~k(n 1/2 .)]~k such that H 1 *H2[~k----F~,,I~ k we can 
estimate the first factor of (3.42) by 

2n, i(t,h~) 1/2 for i>[n/2] resp. 

(3.43) inf [5~bk(4tml/2n-l~ku) i-m~bk(dU)]l/4 
l <_m<_n-i 

<1)? t,h~ for i<[n/2] 

using I(~k(v)l < 1 and with the notations of 3.17 
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k 

(3.44) 5exp( 1 , , --~( CkBkX, Bgx})~k(dX)= 1~ (1 -}-t2#'i2) -1/2 
i = l  

= 2(2 ,  hk) 2 '  �9 

By (3.36), (3.38), (3.40) and (3.42) we have to estimate 

(3.45) 

where 

; rij (BkU, Vi) (Bkw, vi} 
i,j i 

H 1 (d u)H 2 (d w)] 112 (Qk + ~k)(d v l) Q~'- l(d v 2 . . . . .  d v~) 

and H i, i=1,2,  are chosen as in the previous argument. Consider first the 
integration in (3.45) with respect to Cl)k(dVl): 

(3.47) 5 I ]  (BkVl' , v \2(rl~+riO/B' \ k , Vl/\2rl (BkW, 251 ~k(dVl  ) 
i 

__<c Ilvill:2(rl'§ 2'' IIWH's 
i = 2  

using the generalized HSlder inequality together with 

(3.48) S<BkU, 2 . . . . .  ~k(dVl )=C<CkBkU,  BkU)  ~eNul[ sxr 

(see (3.35)) and 

(3.49) 5 (B'kvl,vl)2" ,I)k(dVl)<c(r). 

With the notations of (3.13) this integral can be written as 

5 #" X2 ~01d(~) dkX = 0-(~;  . . . . .  fi~). 
i_  

Since o-(.) is a symmetric homogenous polynomial of degree 2r in the variables 
#'~ .... , #~ and coefficients depending on 2r only, it is well known that o-(.) can be 
written as homogeneous polynomial with weighted degree 2 r and coefficients not 

k 

depending on k in the variables ~ 'P #, , p = 1 . . . . .  2r. Hence, 
i = 1  

~=~ #'f < [(5 (h'k ~ d)dP) 2 + 5 h'k 2 dp2] v/2, 

(3.7), (3.8) and fi~ = 1 imply (3.49). 
Using HSlder's inequality in (3.45) and (3.47), we integrate with respect to 

Hl(du ) and H2(dw ). These integrals are bounded by constants. See Remark 

k 

(3.46) ~. (rij+rig)+r~+si=~i+rl~$11 , i=1  ... .  ,m, 
j = l  
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(3.35)(ii). Hence, the second summand of (3.45) is smaller than 

(3.50) cn n/2SI I~ <B~vi,vj>r'JlirI Ilvill;rl~+'ilQ~-~(dv=,...,dvm) �9 
i, j4r l i 

Since n-t/el(B'kVi, vj> I resp. n -1/2 IIv~ll; are bounded, Q2 resp. Qk-a.e. by 4, the 
relation (3.50) together with c h < s for i = 1 .... , m implies as in the prof of Lemma 
(3.10)(iii) that this part of (3.45) can be estimated by a constant. 

Next consider integration in (3.45) with respect to Qk(dV~)... Qk(dv~). The 
inner integral in (3.45) with respect to H~(du) and It2(dw ) can be estimated for 
r > 1 with the help of 

/ 2 r  , 2 r - - 2  (3.51) ~(BkU, Vi > H l ( d U ) ~ c  ,2 Ilvills (1+ rlvill, ) Qk-a.e. 

If H, is a convolution of copies of Qk(n 1/2 .)I~ k this can be proved along about the 
line of F. G6tze and C. Hipp (1978, p. 76, Lemma 4.6) since I(B'kU, vi> l__<4n 1/2 
Q2-a.e. and 

< B'ku, vi) 2 Qk(du) < II v~ ]1; 2. 

If H~ is a convolution of copies of ~k(n ~/2 ") see (3.48). The mixed case can be 
obtained from the inequality 

la + bl 2~ < 22'- t(lal 2' + IblZ~). 

Finally, the integration with respect to Q'~(dv_) can be treated by the arguments 
used before. 

Counting the minimal and maximal number of factors Itl the estimation of 
(3.45) by a constant together with (3.42), (3.43) and (3.44) proves part (ii) of 
Lemma (3.37). 

(iii) Let i,j,m, lz{1 ... .  ,n} and define (i,j)<=(m, 1) iff i<m or i=m, and j<=l. 
Then 

(3.52) 2n(hk, ~)-2n(h~, t) 
n 

= ~ 2~l(xj, xl) [1 - exp (itn- ~(h' - h)(xj, xl))] e(dxj, dxl) 
j , l = l  

where 

21z(x;'xl)=~ exp itn-1 h,,p(xm,xp) [I  P(dxm) 
re, p= 1 m:l:j,l 

and 
h~ = ~ hk if (m, p) > (j,/) 

P [h~ otherwise. 

Consider first the case j = I. Then 

(3.53) ~ IS Z j j ( X j ,  X j) [ - 1  - -  exp (i tn- l(h'  - h ) (x j ,  Xj))]  P(dxj)] 
j = l  

( up ) S 12jj(Xj, Xj)l c l t [ r t - l n  - ( s - l ) / 2  
j - 1  
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using (3.7) with r=s  and I1-exp(x)l  ~lxl for xetl~, R e x = 0 .  The summands on 
the r.h.s, of (3.52) with j + l  can be estimated by 

(3.54) 1~ 2jt(x,y)(l + itn ~ ( h - h ' ) ( x , y ) - e x p [ i t n -  ~(h ' -h)(x ,y)])p2(dx,  dy) 

+ Itl 1~2jz(x, y) (h ' -  h)(x, y) p2(dx, dy)[. 

Since I1 + i a - e x p  (ia)l < a2/2 for aelR, the first summand in (3.54) is smaller than 

(3.55) csup[2jz(x,y)l itlEn- 2n-(~ 2)/2 
X, y 

using (3.7) with r = s -  2. 
h~p(.,.) Define the functions 2j, z(e, rl, xj, x l )by  replacing in the definition of 

emephmp(, ) with e~=e for re=j, era=t/ for m = l  and e ~ = l  2j, l(Xj,Xk) by jl . .  
otherwise. Note that 2~(1, 1, ",') =)~l(', '). Let f(e, ~) denote the second summand 
of (3.54) with 2~(', ") replaced by 2~t(e, t/,., .). Since (D(i'~ O)= (D(~ tl)=0 
for every e, t/MR and i=0,  1, 2 we obtain by twofold Taylor expansion 

(3.56) f(1, l) = (D (~' 1)f) (~, c]) + 1~ [(D(2,1)f) (~, c]*) -}- (D (~' 2)f)(~,, ~)] 

for some 0_<~* < 6 <  1. Using similar arguments as in the proof of part (i) in 
order to estimate (D~2j.z)(e, q,-,-) for c~=(1, 1), (2, 1) and (1,2) (for 4 < s < 6  use the 
H61der inequality in (3.42) with exponent �88 we obtain after some computations 

(3.57) If(l, 1)1 ~ cn-  2 t2(1 + t2) n- (~- 2)/2 [2n,,_ 4 (t, hk) ~/~ +2 . . . .  ,(t, h'k) 1/~] 

using (3.50), (3.7), (3.42) and the estimate [2 . . . .  ~(t, hk)2 +Z^ . . . .  4( t, hk ), 2] 1/8 for 

l 2 .=1  Bqpvp 

where Bqp =B  k resp. =B~ iff h~ = h k resp. = h i. These arguments applied to (3.53), 
(3.55) prove together with (3.57) and (3.54) part (iii) of Lemma (3.37). 

(3.58) Lemma. For all n e N  we have 

< (12(t/8, h)ll/Z+n-3(s 2)/2 for [tl<n 1Iv 
~n'n~ - 3(s-2)/2 for nl/V <[t[<n/tl,  

where In~21 < n o < n and tln = c (s log rt) 6 T5, s. 

Proof. Let Q'k[~ k denote the p-measure obtained by truncation of Qk[~ k at x~N k 
with [[xlls>m x/2, m e N .  (See (3.35).) Since for s=>3 and k>=k o (see 3.8) 

(}'k(v) < Ok (V) + 6 m s/2 we have 

^ A 

Qk(V) =cQk(v ) +c for every v~lR k (3.59) -' , ,<  - ,n m-m 

and similarly 

(3.60) Ok(V)"<cQ'k(V)+Cm-". 
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Using (3.59) in order to estimate the integrand in 2,,,no(t,h) we obtain by 
interchanging the integrations 

(3.61) 2,,~o(t, hk) 
^ 

n o -  m --t <c[~Qk(2tn-lBk(vl+...+V,,)) Qk(dvl .... ,dvm)]l/2+cm -m. 

Let HIM k denote a p-measure. Then for k>k o and 1 <p<n/2 and all r fulfilling 
[r[<_~(cslogn)-37~Zp a/2, y,~IR+, 7,>=2, we have 

(3.62) ~ (~k (rp- 1/2Bkx)P H(dx) < (pn(r) + ecpn(7,) + H {x: ]Ix [Is > cs log n} 

where ~o/~(r) = ~ IT(rBkx ) ~k(dx). 
In order to prove (3.62), we expand the c.f. of Qk around 0 and obtain the 

following inequality 

[~k(Bkx)12<__l_(CkBkx, Bkx) s 2 + [-~7. Ilx[l~] ~2 2 

since [Ixlls ~>~[(Bkx,a)[ 3Qk(dx) by H61der's inequality. Furthermore, 
(CkBkx, Bkx ) < IlXlls 2 and 1 - a < e x p ( - a )  for a__<~ imply 

(3.63) [Qk(rp- 1/2Bkx)[2p <exp(--�89 ( CkBkx, Bkx) ) 

for all r and x fulfilling Iv[ ][xll~<3722p 1/2 and x(~A,~E, where A,={x~lRk: 
(CkB kx, B kx) < 72 2} and E, = {x ~IRk: [[x [[~ > cs log n}. Splitting the domain of 
integration in (3.62) we obtain by (3,63) the following estimate for all r fulfilling 
the condition of (3.62) 

(1A,(X) + le,(X ) + Ck(rBkx) I~\A~\~, ) H(dx) 

_--< ~ exp [1 -- 7~ (CkBkx, Bkx)] H(dx) + H(E,) + (p~(r) 

by interchanging integrations. This immediately proves (3.62). We apply (3.62) 
with HlNk=Q'km(ml/2")[N k, P=no--m and r=tn - l (no-m)  1/2. By Remark 
(3.35)(i) with h replaced by h k we obtain for k>k o (see (3.8)) 

(3.64) 2 .... (t'hk)2<=n-6(s-2)§ tn- l(no--m)l/2m1/2) +elc~~ 

for all t fulfilling 

(3.65) I t[<3(cslogn)-3 7;2m -1/2n. 

In order to estimate on(r) in (3.64) apply (3.62) with HlNk=cbklN k and r 
=tn-1(no-m)1/2 n 1/2 resp. r=7 , .  Hence by (3.44) for k>=k o 

(3.66) 2,,,o( t, hk) 2 =< n- 6(s 2)_[_ C ] 2 ( t n -  l ( n  0 - -  m)l/2ml/2/2, hk)I 2 

+ e(e + 2) c 12(vj2,  hk)l 2 + (e + 1) ~bk(E,) + cm ~. 

Note that by Remark (3.35)(i) ~bk(E,)=n -6(s-2~ for k>k o. The estimate (3.66) 
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holds for all t, 7n and m fulfilling (3~65) and 

(3.67) [ t l < ~ ( c s l o g n ) - 3 7 2 2 n ( n o - m )  -1/2, 

17.1--< ~ (cs log n)- 3 72 2 roll2. 

We now choose the 'free' parameters  m and 7. in dependence of n and t. 
By (1.4) [tl~12(t, h)[ is mono tone  decreasing and 12a(~)l>0 implies [2(t, h)[ 

__<(1 +12o(J Itl) -24(~-2). Therefore the sequence 7.,~ defined by 

(3.68) 12(7.,~12.(~)l- l ,h ) l=n  - 3('- 2) 

is increasing with 7., ~ < c n 1Is. Let t. = 3 (cs log n)- 3 72, 2 nl/2. Choose  

[[n/4] if It[ < n 1/7 
- 2  2 (3,69) 7 .=7. ,s  and m = m t . . = ~ [ n t  7.,s] if n l /7<[t l<t .  �9 
- 2  2 l i n t .  7.,s] if [ t[>t .  

Then rn.. > m. = ~ (c s log n) 676, ~ for sufficiently large n implies rn?,y~," <__ c n -  6 r 2~ 
Fur thermore  condit ions (3.65) and (3.67) are fulfilled for [tl < t. and sufficiently 
large n. (For condit ion (3.65), use 7., ~ = O(nl/S) .) 

Hence, (3.66) together with Remark  (3.12) imply in the limit k ~ 

<~c[2(t/8,h)l~/Z+cn 3(s-2)/2 if [tl<n 1/7 
(3.70) 12 . . . .  ( t ,h) l l /2=[cn-3(s-2)/2 if nl /7~l t l<=tn  

The condition 

(3.71) t ,<[t[<3nX(cs log -3  2 n) 7n, s mnl /2=nl / r l .  

implies (3.65). In (3.64) the function r ~ on(r)  = ~ exp ( - �89 2 < CkBkx, Bkx)) H(dx)  
is nonincreasing for every k. Therefore ~o n ( t n -  a nl/2m~/2) < cn-  6(~- 2) for all [t[ > t. 
and k--.oo. Hence [2., .o(t ,h)l<cn -3~-2 )  for t fulfilling (3.71) which proves the 
lemma. 

It[ {(1 + [t] 6<s- 2))[2(ct, h)[ 1/2 
+( l  +[t[2)[2(ct, h)[1/4 +n  -3(s-2)/2} for ]tl~n 1/7 

12n(t, h) -)~")(t, h)[ < c. It[ (1 + t 6(s- 2))[)~(t, h){ 1/2 

n 3(s-2)/2 for nl/7<[ti<n/rl ,  

+ [2,,,(t, h)] 1/2 otherwise. 

Proof. From Theorem 3.1 in GStze (1979) applied with H = I R  k, Q = P * T g ,  ~=q)k  
and f ( x ) = e x p  [it(B'kx, x ) ]  and L e m m a  (3.10)(i) we obtain 

(3,73) ^ ' ~ n-J/2(Pj(D) exp R(t,h'k)(xm,xt)~me 1 
j = 0  m,l=l  e = 0  

eta ^ r < cn-  (~ 2)/2 sup {ID Zi,.(t, k, n-  1/2el, 0 . . . . .  0)1, ~1 el-0, 1],z(t, hk)[ 

1C~1=< 3 (S -- 2), C~i__--<S, i = l  . . . . .  p<=B(s--2)/2}. 

(3.72) Corollary. 
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Computing the derivatives with respect to e~,. . . ,% in (3.73) we obtain the 
expansion e(")tt h'~ defined in (3.10). Lemma (3.58) together with Lemma A s  \ ~ k]  

(3.37)(ii) imply (using lim~n,~o(t,h'k)=~,,o(t,h')) that the remainder term of 

(3.73) is smaller than 

^[t h, \ 1/2 (3.74) n-(~-2)/2c(t)(l+]t]6(s-e))(Zt ~, ] +n 3(~-2)/2). 

(Note that Lemma (3.58) holds for It] <n 1/7 and h', too.) 
Lemma (3.10)(ii) and (iv), Lemma (3.37)(iii) and Lemma (3.58) together imply 

Corollary (3.72)for ]tl<n 1/7. For Itl>n I/7 we have 

12,(t, h)-  r h)l <12~(t, h)[ +IZ~(") (t, h)[. 

Hence, Lemma (3.10)(iii) together with Lemma (3.37)(i) and Lemma (3.58) prove 
the Corollary for s > 4. 
For s=  3 we don't need truncation, Using an obvious modification of the proof 
of Lemma (3.37)(i), Lemma (3.37)(ii) holds for hk, too. By the same arguments as 
above the case s = 3 can be proved with the help of (3.73) where h~ is replaced by 
h k and Lemma (3.58). 

4. Proof  of  Theorems 

By a well known Theorem of Esseen on inversion of c.f. (see e.g.V.V. Petrov 
(1975, p. 109, Theorem 2)) we have 

(4.1) I=suplP~{wZ, <r} ~(n)lr h~J - - Z s  t ,  11 
r 

<cff lt_ r,,r~l(t)Itl- ll2,(t,h)-2~n)(r,h)l dt +cZ, -1 sup C~ h) 

for T n =n  (s-21/a. Note that Lemma (3.10)(iii) and (1.4) imply 

(4.2) Z~")(r,h) <c~lzs^(") (,h)[dt<c[2a(s)l -(6(s-3)+2). 

It is now a routine matter to estimate the first summand on the r.h.s, of (4.1) by 
means of Corollary (3.72), splitting the domain of integration [ - T,, Tn] into A n 
=[-n-1/V, nl/7], [-n/rl,,n/rl,]\A, and Bn=[-  T,, Tn]\[-n/tl,,n/tln], using 
Condition (2.8) which implies 2,,,(t, h) < n- (s- 2)/2 (log n)- 1 for t~B, together with 

S Itl 6(s- 2)t 2(t, h)l 1/2 dt N c t2a(s)l- 6(~- 2)- i 

and 

~[1An(t)ltl6(s-2)n (~-2)+l~,(t)ltl-1]dt<cslogn. 
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This together with (4.1) and (4.2) proves Theorem (2.9) for s > 4 and/~s = S Ihl S dP2 
+ S [hodlS dP= l. 

Similarly Theorem (2.3) is proved with T,=n/tln resp. T,,=n t/2. Note that 
I;~3al > 0  implies tln~n 1/2. 

If /~s+1 replace h by h/~ s 1/~. Hence 2 k is replaced by 2k/~ i 1/~ which proves 
together with 12kl-1/?~/s > 1 the remainder terms in Theorems (2.3) and (2.9). The 
Remark (2.6) can be proved with the help of Lemma 4 in Petrov (1975, p. 140) 
which shows 2,.,(t,h)=o(n -2) for t~B,, s = 4 .  (See (1.6) for ]t[<c.) 

Proof of Remark (2.7). Assume (3.2) for hk(x,y)=(TkBTkx, y), T k linear. Then 
Lemma (3.10)(i) with e__= 0 and Remark (3.12) with s = 3 apply to ~bld. Hence we 
obtain Sexp[it(Bx, x)] ~(dx) as limit of the 1.h.s. of (3.11) for k-> oe. Further- 
more, we have ~ (Bx, x)(~b-P)(dx)=O (use finite dimensional approximations 
and the Theorem of Monotone Convergence). Since the operators defined on 
L2(X,P) resp. Lz(x ,~)  pertaining to the kernel (Bx, y) have the same set of 
eigenvalues as BC: X->X, the limit of the r.h.s, of (3.11) for k ~  oc is equal to 
2(t, h) (defined in (1.4)), thus proving Remark (2.7). 

Proof of Remark (2.12). Since 

(4.3) IS exp(ith(',x))dPl<41~l-t6 -1 and P(Ix)> ~ 

after change of variables and partial integration, it is sufficient to consider the 
case where [tl is small. Hence the relation (1.6) follows from Petrov (1975, p. 140, 
Lemma4) together with the fact that (4.3) yields a positive lower bound 
for the variance of h(', x) uniformly for P-a.e. x~[0,  1]. 
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