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Summary. A Berry-Essen result and asymptotic expansions are derived for
the distribution of bivariate von Mises functionals under moment and
smoothness conditions.

The results apply to the Cramér-von Mises w? - statistic as well as to the
Central Limit Theorem in Hilbert space, yielding a convergence rate O(n~ ")
for every ¢>0 on centered ellipsoids.

1. Introduction and Notations

Let (X,.sZ, P) be a probability space. For a symmetric function h: X? —» IR and
(xq,...,x,)eX" let

(11 w,=n"" Y h(x;,x))
i,j=1
denote a bivariate von Mises functional.

In this paper we investigate the asymptotic distribution of w, under P"|.«/",
assuming that

(12) [h(x,-)dP=0 P-ae.

If this condition is violated, but [hdP?*=0, then n~'?w, is asymptotically
normal. See H. Callaert and P. Janssen (1978) and H. Callaert, P. Janssen and
N. Veraverbeke (1978) for a Berry-Esseen Theorem and asymptotic expansions
in this case. Note that (1.1) includes the so called U-statistics (up to an
inessential difference in standardization) if we assume h(x, x)=0.

Assume that for some s=3

(13) B,=[Ih(-")I dP?+ [ lh(x, x)P P(dx)

is finite.
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The limiting distribution function of w, under P"|.9¢/", say x(x,h), xeR, was
investigated by von Mises (1947). It has the c.f.

(L4 2(t, hy=exp (it | h(x, x) P(dx)) ﬁ (1 —2ith,) exp(2itA)]~ 172
k=1

where /,, keN, denote the eigenvalues of the Hilbert-Schmidt operator on
I?(X, P) induced by the kernel h(-,*). The c.f. 7(t, k) is well defined and analytic
on IR. (See N. Dunford and J.T. Schwartz (1963, XI, p. 1036, Theorem 26) and T.
Carleman (1922).) If all eigenvalues /,, k€N, have multiplicity 2, then

xoh=1—=% exp[—A4 'x/2] [] A =44, 1)~ for x>0.
Ar>0 JFk
See Remark (2.12).
With Theorem (2.3) we prove that for s=4

(L.5) suﬂg |P*{w, <z} —x(z,W)|=0(n""*n,)

where a=1 and #,=o0(n’) for every >0, provided that h(x,y) is not equal to a
finite sum of functions f(x)g(y) where f, geI*(X, P). Furthermore, if h(x, y) fulfills

(1.6) P{xeX:|[exp[ith(-,x)]dP|=z1—n""¢, for |t|=n, '}
=0(n"“-22(ogn)"

with ¢,=3(s—2)logn and #, defined in (2.5), then we prove with Theorem (2.9)
the existence of an asymptotic expansion for P*{w, <x} up to O(n~¢~2/?) say
1"(x, h), starting with  (x, h).

For a more general but less applicable continuity condition see (2.8) and
Remark (2.11). Unfortunately we are not able to give an explicit formula for X
in case of a general h(x,y), but its c.f. is given by

[s—3)/2]
(1.7) 2™t hy=3(t, h) (1+ Y nTiBt, h))
j=1

where P,(t, h) are meromorphic functions in ¢ depending on the moments of &
and the resolvent (Id—2itH)~* of the operator H induced by the kernel h. See
(1.10)-(1.14).

Generally the inversion of (1.7) has to be done numericalily. See e.g. (G.V.
Martinov (1975)).

These results apply to von Mises’ w?-statistic

(18) w=n|(E(®—F0)*F(d),

where F(t) is a continuous d.f. on R and E,(f) denotes the empirical d.f. of a
random sample of size n distributed according to F”, and the related statistic of
Watson (1961)

(L9) U=, ~nl[(E@)—F (@) Fdn)*.
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In these cases we give in Examples (2.13) and (2.16) rapidly converging power
series expansions for the distribution functions up to O(n~2).

The limiting distribution of w? was investigated by N.V. Smirnov (1937)
and T.W. Anderson and D.A. Darling (1952). The convergence rate has been
investigated by several authors. N.P. Kandelaki (1965) proved (1.5) with a=0, #,,
=(logn)~ 14, followed by V.V. Sazonov (1968), (1969) with o=1/10, resp. «=1/6,
W.A. Rosenkrantz (1969) with a=1/5, J. Kiefer (1972) and Y.Y. Nikitin (1972)
with ¢=1/4, AL Orlov (1971) with ¢=1/3 and finally Orlov (1974) proved «
=1/2 and 7, as in (1.5). S.Csorgd (1976) proved «=1/2 and 5,=logn, con-
jectured «=1 and gave a formal expansion for the distribution of w?2.

Finally, if X is a real separable Hilbert space, (1.5) applies to the Central
Limit Theorem in X and improves the convergence rates of J. Kuelbs and T.
Kurtz (1974) who proved «=1/8 and #,=1 and V.I. Paulauskas who increased «
to 1/6. See Remark (2.7).

Having introduced the necessary notations below we formulate the main
resutlts in Sect. 2. Section 3 contains the lemmas. Here, Lemma (3.30) may be of
independent interest. The proof of the theorems can be found in Sect. 4.

Notations

Define #,(t, h)=[exp(itw,)dP".
Let a=(i,,...,1,) resp. r=(r;); r_1, . . D€ @ vector resp. a matrix of non-
negative integers. Define

m

(110) v (th)= Z*nh'f ﬂ ri! T R (), x )] P (dx)

j k=
with

(L11)  R(t, h)(x, y) =(2i0){h(x, y)+2it [ h(x,z)[(Id —2itH)~ " h(, )](2) P(dz)}

where ) * denotes summation over all m x m integer matrices (r;); ,_;,._, Such
that

(112) S (rp+r)=i, k=1,...m.
j=1

Since h(x,*)el*(X,P) P-ae., R(t,h)(x,y) is well defined P*ae. and Pxd-a.c.
where d: X — X? denotes the diagonal map x —(x, x). Furthermore, v,(t, h) does
not depend on the order of the components of the vector o and vanishes identically
if jo/=i, +...+1i, is odd. Replacing all monomials f; ... §; in the one dimen-
sional Edgeworth polynomial of order r, =0, say P(B), with cumulants ex-
pressed in terms of moments f,, i=2, (see Bikjalis (1973, p. 153/5)) by the
functions y,, ., (f,h), we obtain functions E(t,h), ¥ =0. For example P,(z, h) =1,
P(t,h)=0and By (t, 1) =37(7, =372, 2))(, B) + 7573, 3(t, h). Deline the expansion of
2(t, 1) by
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s—3
(1.13) g0 y= 3 n "2 B(t,h) 2(t, h)
r=0

where P(t,h)=0 if r is odd.
Especially we have

(1.14) B, h)ZHﬁ(:}”’%l —3(ry 1720 +277 ) +75(673, + 97 7y 75, ] dP?

with 7, (x;, x,) =R(t, h)(x;, x;), j, k=1,2.

In order to avoid ambiguities let z'/2, ze C, denote the branch with positive
real part (see (1.4)).

For notational convenience we shall use the letter ¢ as a generic positive
constant which depends only on the length of the expansions.

2. Results

Assume that the eigenvalues A, #0, kelN, of the Hilbert-Schmidt operator on
I*}(X,P) pertaining to h are ordered according to their absolute values i.e.
1Ay 11214 for every kelN. Let 7, ; denote the monotone increasing sequence of
real numbers determined by

(21) Ii(’yn,sb’{a(s)l_l’h)I:n_ 3-2)

where s=3 and a(s)=24(s—2)+5 if s=4 and a(3)=31. For instance,

Ae=k™% a>7 implies y, (Sc(s, ) (ilog n)
(22) i.=exp(—kF), p>0
implies 7, ;< c(s, ) exp [(s(1+ B~ 1) logm)P/*+P]

and |4,|>0 for every keN with ) A7 <oco implies y, ;=0(n%) for every e>0.
k=1

(2.3) Theorem. Assume that h(x,y) fulfills condition (1.2). Furthermore, assume
that

(2.4) B, is finite and A,,#+0 for s=3.
Then there exist constants c;, ¢, such that

{Cs(ﬁ3ua(3)l\3)3n_l/2 if §=3

" — <
(25) sup |P {Wn<Z} X(Z, h)': C4(ﬂ4lia(4)l\4)611,,n7 1 if 324

zeR

where 17, =(logn)°y, ,.

(2.6) Remark. Let b,(z)={|h(-,z)l'dP, ieN. If there exists a constant b>0 such
that b,(z) +b,(z) ' <b P-a.c. and h fulfills (2.4) (with s=4), the factor #, on the
r.h.s. of (2.5) can be replaced by 1.
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(2.7y Remark. Consider the case where X is a real separable Hilbert space with
scalar product {*,*> and P|</ is a mean zero p-measure defined on the Borel o-
field o/ with covariance operator, say C. Let h(x,y)={Bx,y), where B is a
bounded, symmetric and positive semidefinite operator on X and denote with
®|./ the mean zero Gaussian p-measure with covariance operator C. Further-
more, define s,=n""2(x, +...+x,), x,€X and B,={xeX: (Bx, x) <r}, r=0.

In this case, the eigenvalues 4,, keN, pertaining to A are the eigenvalues of
BC: X —X. Since

w,=<{Bs,,s,> and yx(r,h)=®(B,), r=0.

Theorem (2.3) applies to the Central Limit Theorem in Hilbert space for the
ellipsoids B,, r=0.

For the special case X =R* and C=B being the k x k identity matrix, a
result of C.G. Esseen (1945, p. 92, Theorem 1) yields c(k) B3*n*/*+Yn~1 as an
upper bound for the Lh.s. of (2.5) with lim ¢(k)=co which is better than our

k- oo
bound in this case.
In order to prove asymptotic expansions we need the following smoothness
condition:
There exists a constant a >0 such that

(2.8)  inf P"{xeX™:|{exp[ith(-,x)]dP|=1—¢,n" " for [t|=n, '}

1£2msn
<an - 22(logn)~!

where ¢, =3(s—2)logn and h(-,x)= Z h(-, x,).
Obviously condition (1.6) 1mpl1es condltlon (2.8).

(2.9) Theorem. Assume that h fulfills condition (1.2), (2.8) and condition (2.4) with
sz 4. Then we have with the notations of (1.13)

(2.10)  sup |P"{w, <z} (2, ()l S ¢, (Bl gy =) =272

zeR
where c, depends on s and the constant a of (2.8).

(2.11) Remark. Let P|s/ denote the uniform distribution on X =[0,1]. Then
(2.8) holds for every s=4 if b;(x) <c P-a.e. (see (2.6)) and there exists constants 4,
1n>0such that for P-a.a. xe[0, 1] there exists an interval I_<[0, 1] of length larger
than n with |8/0y h(y, x)| 2 6 for every yel,.

(2.12) Remark. If all eigenvalues 4,, k€N, have an even multiplicity, then

71, h) is a meromorphic function on € with poles at t=4-'/(2i), keN. Under
the assumptions of Theorem (2.10) it is not hard to see that the calculs of residues
applied to the inversion formula for the d.f. yields (with integration over the
contour consisting of R and an appropriately chosen semicircle in the half space
Im ¢ <0 with radius going to infinity)

WP =14+ 3 exp(—4;'x/2)( Y n7ip,,(x) for x>0

Arc>0 0=<2i=s-3
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where p,; (x), k€N, denotes a polynomial in x with coefficients depending on
the eigenvalues 4;, jeNN, their multiplicity 2m;, m;eN, jeN, and moments of h.
For the case s=3 more details can be found in G.V. Martinov (1975, p. 788/9).
(2.13) Example. Let P|/ denote the uniform distribution on [0,1]. Cramér-
von Mises’ w? statistic (1.8) is a statistic of type (1.1) with h(x,y)=3(x*+y?)
—max(x,y)+3. We have 4, =(kn)~2, keN, pertaining to eigenvectors e, (t)
=212 cos(mkx), xe[0,1]. Hence

o0

2.14) h(x.y)= ) e el)n 2k 2

k=1

See E.R. Hansen (1975, p. 266, 43.1.9). Since h(x,y) fulfills the conditions of
Remark (2.11), the results (2.3) and (2.9) apply to this kernel for every s=4.

Furthermore R(t,h)(x,y)=1—pusinh~*(u) cosh [ u(1 —max(x, y))] cosh [ 4 min
-(x,y)] where pu=(—2it)"%2. See E.R. Hansen (1975, p. 243, 17.3.7). The
relation (1.14) together with #(z,h)=(usinh~! w)*'? (see T.W. Anderson and
D.A. Darling (1952, p.200, 4.26)) imply after some elementary computations

266, By =(usinh~* W"*[1 4" ! (f5—rgap’ —36usinh ™' p
— 5 u?sinh~? u—sl=ucoth wy].
Expanding sinh~*?y in a power series in exp(—2p) and using the fact that

2% exp [—(22)” 2 (2k +J—;)] is the one sided Laplace Transform of

s .
(2n)_1/224v/4x_v/4—1exp[—(2k+J§> /4x] D, .» [(2k+%) x—uz], x=0,

where D, (x) denotes the parabolic cylinder function (see F. Oberhettinger and L.
Badii (1973, p. 259 (5.94))) we obtain

(2.15) W (x,hy=n"2x~ 14 i (=1 {1ty 00() (“i/2>

2 2

=17 Y Y P () U (X))

where . d=0 v=0
Ue (=D 10y (4 )exp (=5 /4), X, =Qk+i+px 2,
P, 00 =~ﬁ(~;/2), pk,01=pk,21=2—2—8x*”2(—z/2>,
o = (), et (7).

()

and p, ,,=0 for the remaining indices x4, v.

Dy, 22
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Note that the n°-term in (2.15) is the power series of T.W. Anderson and
D.A. Darling (1952, p. 202, (4.35)).

(2.16) Example. Let U, denote the goodness-of-fit statistic (1.9) for a circle
considered by G.S. Watson (1961). Here h(x, y)=4(lx — y| —3)* — 34 for x, ye[0,1]
and P|.s/ is the uniform distribution on [0, 1]. Furthermore, the eigenvalues 4,
=(2nk)~2, keN, have multiplicity 2 and #(¢,h)= isinh~ ' J, where A=(~—it/2)"/2.
This is the c.f. of the distribution function 05(3,27ix), x =0, where #5(s, 2mix)=1

+2 Y exp(—2n*k*x)cos(2nks) denotes the third Theta function. See G.S.
k

=1
Watson (1961, p. 112, (22)). By Remark (2.11), the results (2.3) and (2.9) apply in
this case for every s=4. Since sin{2nkx) and cos(2nkx) are both eigenfunctions
pertaining to the eigenvalues 4, we obtain by a Fourier expansion similarly as
in Example (2.13): R(t,h)(x,y)=1—Asinh~*(1)cosh[(2|x—y|—1)4i]. Hence,
we obtain after some computations

20t h)y=2(t, h) (1 +n~*{F[1—(Isinh~ ' )*] —342})
which yields by the method of Remark (2.12)

0 02
(2.17) xP(x,h) ={1 +n1! [ﬁ(ﬁ—Sx)&—%xza—xz]}03(%,27'cix), x=0.

Notice that Jacobr’s identity for Theta functions implies

0,4, 2mix)=(2mx)" 22 Y exp[—(k+H%2x], x>0.

k=1

See R. Bellman (1961, p. 26, (19.2)). This is a rapidly converging power series for
small values of x.

The following tables compare the percentage points of the expansion (2.17)
with the exact values of the distribution of U, in Example (2.16) for various n
obtained by Monte Carlo methods. See M.A. Stephens (1963, p. 311, Table 4
and 1964, p. 394, Table 1). Unfortunately the exact percentage points in Table 1
are accurate to three digits only.

Table 1. Upper tail percentage points for U,
Significance level (%)

n 0.5 1 25 5 10
s 0.262 0238 0205 0.177 0.148 exact
0.267 0.243 0.208 0.179 0.148 Appr.
0 0.283 0.254 0213 0.182 0.150 exact
0.285 0255 0.214 0.183 0.150 Appr.
” 0.293 0261 0217 0.185 0.151 exact
0.294 0.261 0218 0.185 0.151 Appr.

o 0.302 0.267 0.221 0.187 0.152
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Table 2. Lower tail percentage points for U,

Significance level (%)

n 0.1 0.5 1 2.5 5 10

5 0.01860 0.02101 0.02281 0.02638 0.03041 0.03610 exact
0.01897 0.02135 0.02311 0.02647 0.03021 0.03573 Appr.

7 0.01667 0.01998 0.02200 - — - exact
0.01723 0.02009 0.02201 - - - Appr.

o0 0.01429 0.01763 0.01971 0.02340 0.2736 0.03306

3. Lemmas

Let h,: X*> R, ke, be a sequence of symmetric functions
k

B1) h(x,y)= bijx 1,,,.(x) lAj,k(y) where

i,j=1

k
bR, A e, X=3 A,

i=1
such that

(3.2) I, converges to h for k— o in the strong (X2, P*+ P xd)
topology, where d(x)=(x, x)eX? and s=3.

Let

(3.3) ’I;c(x)z(lAi,k*P(Ai,k))i:1,...,k

Furthermore, let B,:=(b;; ), ;_1..., and let & |%"* denote the k dimensional

centered normal distribution with covariance C,:=cov(P*T)).

Let ¢+, > denote the Euclidean scalar product in R*. Using assumption (1.2)
and (3.2) we may choose &, (see the definition of &’ below) such that in addition

to (3.1) and (3.2)
3.4 jhk(x, ) P(dy)=0 holds for every xeX. Hence,
(3.5) h(r,)=<BT(), T.()>.

For a symmetric function h: X?—R let i'(x,y)=h(x,y)1, , where

A, ={(x, y): lh(x, )l <n'?}.
Define

W (x, ) =h"(x, ¥)— | (0" (x, )+ H"(, )) AP+ b dP.

It is not hard to see that (3.1), (3.2) and (3.4) are fulfilled for h; (-,
that there exists a symmetric k x k matrix B; such that

(3-6) (. )=(B. L(*). T.())-

+), kelN, and
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Furthermore, Cebysev’s inequality together with (3.5) implies for every (x, y)eX?

(3.7 1h(x, )=k (x, YISen™ D2 [h(x, y)I+ I, )5+ [, )+ 7]

where ||h(+, x)[l;=[[Ih(-, x)[FdP]"~. For B see (1.3).
Note that (3.7) holds for h;, as well, since

f[h ISdPZ-l—ﬂh od(*)*dP=2f, for kzk,.
Finally note that
(3.9) W (x, »<4n'*  for every (x, y)eX2

The same relation holds for A
For reasons of simplicity we shall assume by now that §,=1.

3.10 Lemma. Let ve(IR*)™, ecR™ and §-y::_i &, v;. Then
(0 )
(3.11) fexp [it{B(u+e-v), (u+e-v)>] P, (du)(P+T,)"(dy)
=3(t, hy) f exp [ Zl R(t, b)(x;, x)) isj] P™(dx)

where R(t, hy)(x, y) is defined in (1.11).
(i) for all ¢ fulfilling |t| <n®~ 2% we have

20t =2 I cld L+t n= 223, h)l.
(i) 1257 (6 W= e(L -+ (@, hl.
(iv) (2P ) =20 (& )| S et +1e°C 93 n= =22 (e, h|.

(3.12) Remark. lim 3 (t, hy)=5 " (z, h).

k— 0

Proof. (i) Let I, denote the l.h.s. of (3.11). For P"—a.a. (x,...,x,,) there exists a

vector heR* such that Z g; T,(x)=C}?b. Introducing v=C;*?u as new
i=1
variable we obtain (w.lL.g. let C, be nonsingular)

(3.13) I,=[exp[it{Dy(v+Db), (v+b)>] p(v)d*v

where D, =C,’* B, C;/%, d*v denotes the k-dimensional Lebesgue measure and

¢ (v) denotes the density of the k-dimensional standard normal distribution.

Assume that the symmetric matrix D, has eigenvalues y;, i=1,..., k, and denote

by z; resp. a;, i=1,...,k, the coordinates of v, belR with respect to an orthonor-
k

mal basis of eigenvectors of D,. Hence <D, (v+b), (v+b)> = ) u(z;+a;)* and by

i=1
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G.V. Martinov (1975, p. 790, (18))

—1/2

k k
(3.14) I —exp [it 5 uj] [ﬂ (1——2it,uj)exp(2it,uj)]
j=1 j=1
k
X eXp [it Y ,LLj(1—2it,uj)’1af].
j=1
The first factor of (3.14) is equal to exp [it |k (x, x) P(dx)]. (See (3.5).) Since K

.,k, are the eigenvalues of the Hilbert-Schmidt operator H,:I*(X, P)=
w1th kernel h, we obtain

(3.15) I, =(t. h)exp[it{D,(1—2itD,)~'b, b)].
Since by definition of D, and b (see (1.11))
(3.16) it{D,(1—=2itD,) *b, by =it(B,(1—=2it C,B)~* C1/2b, CL1*b)

= Y R(, h) (%, X)) €85,

i,j=1

this together with (3.15) proves part (i).

(i) Denote by uj, j=1,...,k, the eigenvalues of the operator on L*(X, P)
induced by the kernel h;, k= k, (see 3.8). Using |exp(x)— 1| = |x|exp(|x[), xeC, we
have

(B.17) 1246, h) = 208, B SV lexp (i) [z Ay, 0]

where

1 k
=5 .Z [log(1—2itp)~log(l —2it )]

k

=(=)| ¥ [ =2irp)~ ' —uw(1=2irg)~ 1] dr

0i=1
(3.18) = —% ! if(R(r, h)—R(r, b)) (x, x) P(dx) dr.
0

Since by (1.11)

(3.19) R(t, h)(-,*)=2it(h(*,*)+[h(-, 2) R(t, h) (-, z) P(dz))
we have
(320) (R(t, h)—R(t, W) (x, )=2it(h—N)(x, »)

+J[R(E ) (x, 2) (h—K) (2, ) + R (&, ) (2, y) (h—F) (2, %)
+R(t, h)(x, 2) (h—H') (z, w) R(2, ') (w, YY1 P2(dz, dw)).
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Therefore (3.7) implies

(321) |f(R(t, h)—R(t 1)) (x, x) P(dx)| = [2¢[n=C~ 172
+ |2t| |j(hk _hl/c) (Z’ x) [(R(ta hk) +R(t= hl/c)) (Z: X)
+R(t, ) (z, w)R(t, hy) (w, x)] P*(dz, dw, dx)]|
<28 [n= 22 enm SR () by 9, 9)]
where yS=[|R(t, h)|"dP? and y,*=[|R(t, h)|’ dP*. Here we have used (3.7) with r
=g5—2, (3.8) and Holder’s inequality.
Since |(Id—2itH,)~'||<1 for any symmetric operator, where |{-|| denotes

the supremum operator norm in the Hilbert space [*(X, P), it follows from
(1.11) that

(322) IRt W) (x, I 22l hx, »I+126 [R(, %) MR, 9.
Hence
Yot rssclel (1 +]z)).
The relations (3.18) and (3.21) imply
(323) Vyl=Scll(L+[efH)n-6-272
thus proving part (ii) for h, and h;, k=k,.

The relation lim § (¢, h,)=4(t, h) can be proved along about the same line as

k— oo
(3.17)-(3.23), but it also follows from the continuity of h—#(¢t, h) in the strong
I5(X?, P? + Pxd) topology. See N. Dunford and J.T. Schwarz (1963, X1, p. 1036,
Theorem 2.6). This proves part (ii).
From (3.17) with h, =0 and %, replaced by h we obtain by (3.18)

ft] w0
(3.24) f;z(t,h)I§eXp[—2j Z;bf(1+4r2)b})*1rdr].
0 j=1

This proves after some elementary computations the examples (2.2).
(iii) Let o=(ctyy...,0,), 250y, =5s—1, m=3(s—2)/2 and

(3.25) i (4, —2)<s—3.

Then it is sufficient to estimate y,(t, 4) in (1.10). By the generalized Hdlder
inequality we obtain after integration in x,

(326) Iy, (e WIScX* 8 fI T] R(E b (xi, %))

i,j*+1

X”R(_t» h) (eg, 5270 R (e, B) (g <) [[5 7me P (d )
where 8= [|R(t, h)(x,, x,)" P(dx).
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Hence after m— 1 further integrations we obtain by (1.11) and (3.22)
(327) Iyt WIS c(@+y ) Sclt (1 +]e))

thus proving part (iii).
(iv) By (1.11), part (ii) and (iii} it is sufficient to estimate y,(t, h)—y,(t, A).
Hence, it is sufficient to consider the integrals

(328) [(R(t, h—R(t, h)—R(t, W) (x;,, x;,) IT* R(t, h)(x;, x;*

X IT** R(t, ) (x,, %, P"(d)
where 7,;, 7,;eN, and II* IT** denote products over certain subsets of i,j
=1,...,m.

Using (3.20) and (3.7) with r=min {s+1 —a;: i=1,...,m} we may proceed as
in (3.26)-(3.27) and obtain the following estimate for (3.28)

cen— @12 (|t||°¢| + |t|2|d|+3).

—wo/2

Since 7,(t, h) occurs in 2% (¢, h) with coefficients of order n where

xo= > (&;—2)<s—3, and r+o,=5—2, part (iv) is proved.
i=1
Exactly in the same way one shows that lim y,(t, h)=7,(t, h), thus proving

k— oo
Remark (3.12).

The following three lemmas are basic for the proof of our results.

Let H be a separable normed linear space. Let |*|| denote a continuous
seminorm defined on H.

Assume that there exists a constant y>0 such that for every integer » and
vectors X ,...,x,€H

(329) [ limy xy oo 0,12 N (@) S (e 17+ 4 Dx,12),

where N|#' denotes the standard normal distribution on R. (A Banach
space is called convex of type 2 if its norm fulfills condition (3.29))

(3.30) Lemma. (i) Let ®|% denote a centered Gaussian p-measure defined on the
Borel o-field B of H. Then we have for all az0

[ exp(a | x|) @(dx) S exp(c, o?m, +c,) with constants 0<c,, ¢, <e?’,

where ||+|| denotes an arbitrary continuous seminorm and m;= | || x|’ ®(dx), i=1, 2.

(ii) Assume that Q,|# are mean zero p-measures fulfilling Q;{x: x| 2b}=0
for i=1,...,n and some b>0. Furthermore, assume that condition (3.29) is
fulfilled. Then there exists a constant 0 <c<exp(28) such that

(331) fexp(afx;+...+x,])Q,(dx,)... Q,(dx,)
Zexp(exp(cya®b?) [(IIx[2+1)(Q, +... +@,)(dx) +¢c), 2=0.
Proof. (i) M.X. Fernique (1970) proved

632 @(x: i =r} gt exp [~ fortu= ng 0]
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for r>u>0 and gq(u)=®{x:|x||Su}>1/2. Let u=exp(13)m}/?, then gq(u)=1
—exp (—26). By partial integration and (3.32) we have
Jexp(ar) dq(r) 1+ § (10,4 (r) + (1 = q@)) 1y, o)) explar) dr
<1+oulexp(ou)+ | exp(aur —r?)dr]

<exp(c,m,0*+c,)
for some constants 0 <c,, ¢, <exp (27).
(ii) Let P|#"=Q, x... xQ,| %" and denote the Lh.s. of (3.31) by d,(x). Then
(333) d,(@=[exp(@m)? x i, x, +... +1,x,]) B(dx) N"(dn)

In order to prove this inequality, let F|4' denote the p-measure with F {e= £ 1}
=1/2. Since N xF{(n,8): [nle<z}=N{n:n<z} for all zeR, we can replace the
integration in (3.33) with respect to N” by N" x F”. Therefore, Jensen’s inequality
together with {{x| N(dx)=2(27)~ '/* imply that the r.hus. of (3.33) is larger than

fexpalle; x, +... +&,x,]) B(dx) F*(de).
By [lix+all Q;(dx)= ||a| and Jensen’s inequality we obtain for every n=k=1

(3.34) fexpRafx;+... +x,— X, 1... —x,[) P(dx)
>max {{expQu [ x; +... +x,]) B(dx), fexpalx,, {+...+x,[) Bdx)}.

By Jensen’s inequality the r.h.s. of (3.34) is larger than d,(x), thus proving the
inequality (3.33).

Let x4,...,x, denote fixed vectors in H. We apply part (i) of this Lemma to
the Gaussian p-measure ¢|# induced by N"|#" and the map n—n, x,+...
+1, x, and obtain by (3.33) and (3.29) -

d(@)Z [ expleyod® (x| +... +|Ix,[*) +¢) B(dx), c=27c, +c,.
Hence,
fexplcya?|x[|?) Q;(dx) <1 +exp(cyb’a?ym, ;
Sexp(exp (ca’b?y)m, ),
where m, ;= | | x||* Q;(dx), concludes the proof of part (ii).

The assumption (3.29) holds for H=R* and the seminorm
x| = IKx, BuudF(P+ T (du)) s, 523

with y depending only on s, since the spaces (X, P), s=2 are of type 2. See e.g.
N.C. Jain (1975, p. 120, Corollary 3.3 and p. 118, Theorem 3.1). These remarks
also apply to the seminorm | - {; which is defined by replacing B, by B, in the
definition above.
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Let H'|#*=Hxt,|#*, where t,(x)=x if ||x|,<n'? and t,(x)=0 otherwise,
denote the truncation of a p-measure H|%* at nl.

Define Q,|#* =P« T,| %" Denote by Q; ,|%" resp. Q, ,|B* the convolution of
n copies of Qj(n'/*- )|%’" resp. Q,(n"/?+)|%*. The following remark is a con-
sequence of Lemma (3.30) and of the inequality |m[,<n='*(2B)'" for k=k,
(see (3.8)), where m, denotes the mean of Q.

(3.35) Remark. For every integers p and s=3 there exist constants ¢(p) and c(s),
independent of n and k, such that for k= k,

() (Qh,+ B ixeR:: [x],>c(s)logn} Sn=5¢=2,
A similar result holds for ||x||; and Qk,nl,%".

(D) JlIx12Qy, + P(dx) Zc(p).

Let H| %", H(A)= [ H?(dx,dy), denote the symmetrization and let H(v)
x—yed

H(v)=[exp(i{v,x)) H(dx) denote the c.f. of H|#*. Define
(336) 2..(:k;e)={exp[it(B(u+g-v),ute-v>]F ,(du)
(Qk'*“pk)(d%)Qf*l(dUm---advm)

where v=(v,,...,1,)e(R™, £€[0,1]™, ¢-v is defined as in Lemma (3.10)(i) and
F_|#" i=0,...,n, denotes the convolution of i copies of Q,(n"/? )| #* with (n—i)
copies of ciik(n”2 )| B*.

(3.37) Lemma. (i) Let H,|%#", i=1,2, denote two p-measures. Then
|f exp it{ B, (u+w+v),u+w-+v)y H (du) Hy(dw) é[jlLfl(ZtBkw)Hz(alw)]”‘L
for every veR¥, teR.

Define

/?n,r(tﬂ hk)
— inf [[Q,Q2tn 'By(v;+...+v,)) PO¥(dvy,....,dv,) ]2

15ps0/2]
(ii) Then we have for a=(uy,...,,), 0Sa s, i=1,...,m and k=k,

sup {ID*?; ,(t; k 2¢,.,0,...,0): ¢,€[0,1],i=0,...,n}

1/2
2 (5=”’<) ]

‘Xn(t h ) (t h,)| <Cl’l 6 2)/2t (1+t )[Xn n— 4(t hk)1/4 +Xn n— 4-(t hk) ]

gc(m'a'+|z|2'“')[;zn.[n,2](z, 2 +

(iii) For kzk, and 524

Proof. (i) We shall prove a more general result than (i) by estimating the partial
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derivatives with respect to g:
D*[[exp[itB, u+w+e-v)]H,(duyH,(dw)] ez ein-12,0,...,0)

where for reasons of simplicity B, {u)> =(B, u,u). The derivative of the integrand
is a sum of terms of the type

(3.38) (n~ g )ity (r,>ﬂ {Bi(u+w), b,y For+ro ]’[ (Byv, v,

i,j=1
where 1,d,,, ,, 1,,€No, 76;, +o,= Z (r;+ry), i=1,...,mand /2 r <o,
=0

iz
Hence, it is sufficient to estimate
(3.39) | J] By, vp"(Byw,vp%exp[itB{u+w+e-v)]H, x Hy(du,dw).
i=1

By Holder’s inequality (3.39) is smaller than
(3.40) [fIM, (v, w)|* Hy(dw)]'? [fﬂ(B’ v 2% Hy (dw)]'?

where M, (v, w)=[exp[itB,u+w+e- v>]ﬂ {Byu,v;»""H,(du). Interchanging the

integrations in w and u in the first factor of (3.40) yields the following estimate of
this factor

(341 [f H,(2tB; (1, —u,)) (uy, u,, v) H (KBytiy, v, < Byuy, v 0¥  Hi(duy, duy)]?

where |0(u,,u,, v)l=L.
Applying Hdlder’s inequality to (3.41) we obtain the estimate

(342) [J H,(2tByu) H, (] [ TT< By, 007 H, (du)] 2

For a=0, this together with (3.40) and (3.41) proves part (i).

(i) Choosing H;, j=1,2, equal to a convolution of an appropriate number of
copies of Q,(n'/?+)|B* resp. @, (n'/*+)|#* such that H,«H,|B*=F, |B* we can
estimate the first factor of (3.42) by

Qe iLH)Y? for i=[n/2] resp.
(3.43) inf [[@(4tm? >0~ BLuy " @, (du)]*

1=msn—i

t
<17 (5.4

using |0, (v)| <1 and with the notations of 3.17

1/2

for i<[n/2]
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k
(344) fexp(—3<C,Bx, Byx)) @y (dx)=[] (1 + 2 %)~ 17

o1
)
By (3.36), (3.38), (3.40) and (3.42) we have to estimate
(3.45) n="? [T <{Byv, v [ [ [<{ By, 0> { Byw, ;2"
ij i
H, (du) Hy(dw)]**(Q, + @) (dv,) Or~ '(dv,, ...,dv,)

2

where
k

(346) Y (r+r)triAs,=o+nd,, i=1,..m,
=1

and H,, i=1,2, are chosen as in the previous argument. Consider first the
integration in (3.45) with respect to @, (dv,):

(347) [T <Bioy, v 0 B v, 52 (Byw, 0,2 @, (dv,)
i
m
<c [T ol 207 fufl 2 w2
i=2

using the generalized Holder inequality together with
(348) [ (Byu,v,>¥ &y(dv,)=c{ C,Byu, Byuy <cllul
(see (3.35)) and

(349) [(Bivy,v )7 & (dv)Zc(r).

With the notations of (3.13) this integral can be written as

k 2r
f(y Néxiz) Pr@)dx=0(, ..., ).
i=1

Since o(-) is a symmetric homogenous polynomial of degree 27 in the variables
U, .., 4 and coefficients depending on 2r only, it is well known that ¢(+) can be
written as homogeneous polynomial with weighted degree 2r and coefficients not
k
depending on k in the variables ) u?, p=1,...,2r. Hence,
i=1

=

k
> Ut
i=1
(3.7), (3.8) and p,=1 imply (3.49).

Using Holder’s inequality in (3.45) and (3.47), we integrate with respect to
H,(du) and H,(dw). These integrals are bounded by constants. See Remark

<[(f (o d)dP)* + [ Hi2 dP?]7,
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(3.35)(ii). Hence, the second summand of (3.45) is smaller than

(3.50) en "2 (| ] <B'l,,>“4IIHvH”“+’“Q$ Ydvy,...,dv,).

ij*1

Since n~ "2 |(B,v;,v,5| resp. n~ 2 ||v||; are bounded, Q? resp. Q,-a.e. by 4, the

relation (3.50) together with o, <s for i=1,...,m implies as in the prof of Lemma
(3.10)(iii) that this part of (3.45) can be estimated by a constant.

Next consider integration in (3.45) with respect to Q,(dv,)... Q,(dv,,). The
inner integral in (3.45) with respect to H,(du) and H,(dw) can be estimated for
rz1 with the help of

(351 [{Buu,vp* Hidu)=c|ol2(1+ v, 7%)  Qpae.

If H, is a convolution of copies of Q,(n'/*+)|%* this can be proved along about the
line of F. Gotze and C. Hipp (1978, p. 76, Lemma 4.6) since [{Bj,u,v,>|<4n'?
Q7-a.e. and

J<Biu,v,? Oy (du) < JlvyI;.

If I, is a convolution of copies of &, (n
obtained from the inequality

1/2.) see (3.48). The mixed case can be

|a+b|2r§22r~ 1(|a|2r + |b|2r)

Finally, the integration with respect to Qy(dv) can be treated by the arguments
used before.

Counting the minimal and maximal number of factors jt| the estimation of
(3.45) by a constant together with (3.42), (3.43) and (3.44) proves part (ii) of
Lemma (3.37).

(iii) Let ij,m, le{l,...,n} and define (i,/)<(m,l) iff i<m or i=m, and j<I
Then

(3.52) 2.l t)=2,(hy, 1)

= ). Aulxpx)[1—exp(itn™ (' —h)(x;, x)))] P(dx;, dx,)

Ji=1
where
£a(x;,x)=exp [itn Z W (X, X p] [T P(dx,)
m,p=1 m*j,1
and

hjl :{hk lf (m7p)g(.]’l)

P |k, otherwise.

Consider first the case j=[. Then
(3.53) Z 1255065 x D[ —exp (ien™ (' —h)(x;, x,))] P(dx,)|

= (Z Supb?jj(xj, J)|) c|[|n~ O 12
J

j=1 Xxj
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using (3.7) with r=s and |1 —exp (x)| £|x| for xeC, Rex=0. The summands on
the r.hs. of (3.52) with j=! can be estimated by

(3.54) 12,0, +itn™ (h—R)(x,y)—exp[itn™ ' (W —h)(x, )]) P*(dx, dy)
+HIe[ 1§ 2 6x, (B —B)(x, y) P2 (dx, dy)).

Since |1 +ia—exp (ia)| £a?/2 for acR, the first summand in (3.54) is smaller than

(3.55) csup 7, (x, ) [t12n=2n= 6272
X, ¥

using (3.7) with r=s—2.

Define the functions 7 ; ,(e, 7, x;, x;) by replacing hﬁp(-,-) in the definition of
25.1(x;,%) by e,e,hi (+,)) with ¢,=¢ for m=j, ¢,=n for m=Il and e,=1
otherwise. Note that £ ;(1,1,+,-)=7;(*,*). Let f(e,n) denote the second summand
of (3.54) with 7 (-, ) replaced by 7,,(,%,°, ). Since (D% f)(e, 0)=(D*? £)(0, 7)) =0
for every ¢,nelR and i=0,1,2 we obtain by twofold Taylor expansion

(3.36) f(1,1)=(D"f)(8,8)+30[(D™ f)(,6%) + (D 2 £)(6*,0)]
for some 0<0*<d0<1. Using similar arguments as in the proof of part (i) in

order to estimate (D*{ y)(e, n,",") for «=(1,1), (2,1) and (1,2) (for 4<5<6 use the
Holder inequality in (3.42) with exponent 5) we obtain after some computations

(357 L YSen 22+ =22 [, (1) 447, o (6B

using (3.50), (3.7), (3.42) and the estimate [2, ,_ 4(t 1> + o v (¢, B)?TV® for

inf [f [T |0 (2tn*1 Y quvp)
qg=1 p=1

2<mz<n
where B, ,= B, resp.=B; iff hf1'§,=hk resp. =h,. These arguments applied to (3.53),
(3.55) prove together with (3.57) and (3.54) part (iii) of Lemma (3.37).

4 1/8
ﬁ‘m(dul,...,dvn_m)]

(3.58) Lemma. For all nelN we have

N 1/2 ~3(s—2)/2 17
o g AUBPI DR or fin
n,no\"> = n_3(s‘2)/2 for n1/7§|t|§n/nn

where [n/2] <ny<n and n,=c(slogn)®y, ..

Proof. Let Q}|#* denote the p-measure obtained by truncation of Q,|#* at xeR*
with [lx|,>m'?, meN. (See (3.35).) Since for s=3 and k=k, (see 3.8)

0,(®) <0, (v) +6m * we have
(3.59) O4(o)"<cQ, ()" +em™  for every veR*
and similarly

(3.60) O, ()" <cQ,(v)+cm™™.
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Using (3.59) in order to estimate the integrand in £, (5,h) we obtain by
interchanging the integrations

(3.61)  F ot )
<c[fQ,2tn *B(v +...+0,))° " Qi ldvy,....dv, )] > +cm™™,

Let H|#"* denote a p-measure. Then for k=k, and 1<p=<n/2 and all r fulfilling

I<3(cslogn)=3y, 2p'% y,€R,, v,22, we have

(362) [0, (rp~ V2 Bx)? HAX) S0y (1) +epy(y)+ H {x: | x]|,>cslogn}

where ¢ (r)= | H(rB,x) ®,(dx).
In order to prove (3.62), we expand the c.f. of 0, around O and obtain the
following inequality

10, (Byx)12<1—< CBx, Byx) +[292 |x) 317, 2

since | x||7=[KB,x,a)]*Q,(dx) by Holder’s inequality. Furthermore,
(C,B,x,B,x><|x|% and 1 —a<exp(—a) for a<3 imply

(3.63) |0, (rp~ 2B, x)|** Sexp(—1r*{C,B,x, B,x))

for all r and x fulfilling |r| |x|2<3y; 2p'? and x¢A,UE, where A,={xeR*:
{C.B,x,B,xy<y;?} and E,={xeR*: |x|,>cslogn}. Splitting the domain of
integration in (3.62) we obtain by (3.63) the following estimate for all r fulfilling
the condition of (3.62)

§ (14,0 + 1, () + By (r BX) L 1,) H(dX)
<fexp[1—7;<C,;Byx, B, x)]1 H(dx)+ H(E,)+ @y (r)

by interchanging integrations. This immediately proves (3.62). We apply (3.62)
with H|g#*=Q,"(m'*+)|#*, p=n,—m and r=tn"'(ny—m)'?. By Remark
(3.35)(i) with h replaced by h, we obtain for k=k, (see (3.8))

(B.64) 7, Eh) <R D rem mrepp(tnT H(ng—m)'Pm'?) +elcoy(y,)
for all ¢ fulfilling
(3.65) [t|<3(cslogn)=3y 2m~2n,

In order to estimate ¢4(r) in (3.64) apply (3.62) with H|#*=&,|%#* and r
=tn~'(n,—m)"* n*'?* resp. r=y,. Hence by (3.44) for k=k,

(3.66) 7, (6, B)* <= Dtelp(en Nng—m)' 2m/2/2, h)*
+e(e+2)clR(r,/2. B +(e+1) B (E,) +cm™™.

Note that by Remark (3.35)(i) ®,(E,)=n"°%“"% for k>k,. The estimate (3.66)
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holds for all ¢,y, and m fulfilling (3.65) and

(3.67) Jt|=%(cslogn)~ 3y 2n(n,—m)~ 112,

7] <Z(cslogn) 3y 2m'2

We now choose the ‘free’ parameters m and y, in dependence of n and .
By (1.4) [t]—[7(t, h)| is monotone decreasing and |4,/ >0 implies |£(t, h)|
S(L 4[4yl 1t)~24¢=2. Therefore the sequence v, , defined by

(3.68) 12, slAal ™" I =n7 3672
is increasing with y, ;<cn'/®. Let 1,=3(cslogn)~*y, 2n'/%. Choose

[n/4] if |t <n'l”
(3.69) y,=y,, and m=m,_,={[nt"2y2 ] if n'7 <[t <,

[ty *ynd  if ld>1,
Then m, ,=m,=2%(cslogn)®y¢ | for sufficiently large n implies m; " <cn= 6=,
Furthermore conditions (3.65) and (3.67) are fulfilled for |t|<t, and sufficiently

large n. (For condition (3.65), use y, ,=0(n"/®).)
Hence, (3.66) together with Remark (3.12) imply in the limit k— o

B90) 17 (o[RBT +en 36722 if i <nt?
. Xn,no ? = cn_3(s*2)/2 lf n1/7§|t|§tn

The condition
(371) t,<[d<3n'(cslogn)®y, 2m; 2 =n/y,

implies (3.65). In (3.64) the function r > ¢, (r)= [ exp (—37* < C, B, X, B, x)) H(dx)
is nonincreasing for every k. Therefore @y (tn~*n'?ml?)<cn=*¢~2 for all [t| >,
and k— oo. Hence |3, ., (&, W <cn32¢~2 for ¢ fulfilling (3.71) which proves the
lemma.

(3.72) Corollary.
|t {(1 + [¢]°¢= 2) [ % (ct, )| /2
F( )Rt )+ for i <n'l7
7,6, h) =20 IS ef [el(1+ 256 2) | 7z, )|V

n-3e=212 for n7 <L\tlSn/y,
+{ |2, u(t, W|'7* otherwise.

Proof. From The-orem 3.1 in Gotze (1979) applied with H=R*, Q=P+ T,, ?=,
and f(x)=exp[it{B,x,x>] and Lemma (3.10)(i) we obtain

s—3 p
673 [B(eh)~ T B [3 Y RO 5] )

m,l=1 g=

écnw(S72)/2 Sup {'Daii,n(t> kan_ 1/281a Oa -~-’0)|981€[0’ 1]55{([5 h;€)|
le] <3(s—2), &, <5, i=1,...,p=3(s—2)/2}.
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Computing the derivatives with respect to &,,...,¢, in (3.73) we obtain the

expansion 7™ (t,h;) defined in (3.10). Lemma (3.58) together with Lemma

(3.37)(ii) imply (using lim ¥, , (t, /) =1, .,(t,h) that the remainder term of
k-0

(3.73) is smaller than

t 1/2
sl h/
* (8’ )
(Note that Lemma (3.58) holds for |t <n'/” and ¥, too.)

Lemma (3.10)(ii) and (iv), Lemma (3.37)(iii) and Lemma (3.58) together imply
Corollary (3.72) for || <n*7. For |t|>n"" we have

[a(ts =320 (&, D 17, (2, W) +12 (2, b,

Hence, Lemma (3.10)(iii) together with Lemma (3.37)(i) and Lemma (3.58) prove
the Corollary for s=4.

For s=3 we don’t need truncation. Using an obvious modification of the proof
of Lemma (3.37)(i), Lemma (3.37)(ii) holds for h,, too. By the same arguments as
above the case =3 can be proved with the help of (3.73) where #; is replaced by
h, and Lemma (3.58).

(3.74) n—<s—2>/2c(z)(1+|t|6<s—2>)(

+n- 3(s— 2)/2).

4. Proof of Theorems

By a well known Theorem of Esseen on inversion of c.f. (see e.g. V.V. Petrov
(1975, p. 109, Theorem 2)) we have

(4.1) I—suplP” w2 <r} =5 (r, h)|

Scfli g, pg@ LG =2, Wl dt +c T, sup

)

mp b
ks (0 )\
for T,=n""?"2, Note that Lemma (3.10)(iii) and (1.4) imply
4.2)

2P B ScfIFP (e )l dt<cli, )=~ 3+2),

;

It is now a routine matter to estimate the first summand on the r. h s. of (4.1) by
means of Corollary (3.72), splitting the domain of 1ntegrat10n [—T,T] into A4,

=[—n" Y7071, [-nfn,.n/m\A4, and B,=[-T, TI\[-n/n,,n/n,], using
Condition (2.8) which implies 7, ,(t, )) Sn~“~*(logn)~' for teB, together with

FIICC=DNt B dE S cld gyl =06 P!
and

JIL, NS~ n= =241, ()]~ "] dtZcslogn.
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This together with (4.1) and (4.2) proves Theorem (2.9) for s=4 and f,={|h[* dP?
+ [ lhodl*dP=1.

Similarly Theorem (2.3) is proved with T,=n/n, resp. T,=n'/?. Note that
|A3,1>0 implies 5, <n'/2

If B,+1 replace h by hf; ' Hence 4, is replaced by 4,f; !/* which proves
together with |4,|~ !B =1 the remainder terms in Theorems (2.3) and (2.9). The
Remark (2.6) can be proved with the help of Lemma 4 in Petrov (1975, p. 140)

which shows %, ,(t, h)=o0(n~?) for teB,, s=4. (See (1.6) for |t|<c.)

Proof of Remark (2.7). Assume (3.2) for h(x,y)=<{T,BT,x,y), T, linear. Then
Lemma (3.10)(i) with ¢=0 and Remark (3.12) with s=3 apply to &|</. Hence we
obtain [exp[it{Bx,x)] ®(dx) as limit of the Lh.s. of (3.11) for k— co. Further-
more, we have [{Bx,x)(®—P)(dx)=0 (use finite dimensional approximations
and the Theorem of Monotone Convergence). Since the operators defined on
I*(X,P) resp. I?(X,®) pertaining to the kernel {Bx,y) have the same set of
eigenvalues as BC: X — X, the limit of the r.h.s. of (3.11) for k— <o is equal to
% (t, h) (defined in (1.4)), thus proving Remark (2.7).

Proof of Remark (2.12). Since

(43) |f exp(ith(-,x))dP|<4[]~'6~" and P(L)=7n
I.

after change of variables and partial integration, it is sufficient to consider the
case where |t} is small. Hence the relation (1.6) follows from Petrov (1975, p. 140,
Lemma4) together with the fact that (4.3) yields a positive lower bound
for the variance of h(+, x) uniformly for P-a.e. xe[0, 1].
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