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Summary. The goodness-of-fit of a parametric model for non-categorical 
data can be tested using the )~z statistic calculated after grouping the data 
into a finite number of disjoint cells. Work of Watson, Cebygev, Moore and 
others shows that the classical limit distributions still hold even for certain 
methods of grouping that depend on the data themselves. These results are 
generalised to cover a much wider class of methods of grouping; the 
parameters can be estimated from either the grouped or the ungrouped data. 
The proofs use a Central Limit Theorem for Empirical Measures due to 
Dudley. The grouping cells are allowed to come from any Donsker class for 
the underlying sampling distribution. 

w 1. Introduction 

Although the Z 2 goodness-of-fit test is formally a method for testing a hy- 
pothesis specifying the cell probabilities of a multinomial distribution, it can 
also be applied to non-categorical data. For example, to test wheRaer a sample 
of independent observations could have come from some specified distribution 
P on the real line, a partition of the line into disjoint sets C1, ..., C k can be used 
to group the data into categories. If these sets were determined independently of 
the data, and if they were held fixed throughout the sampling, the problem 
would be reduced to testing the fit of a multinomial distribution with cell 
probabilities P(C1), ...,P(Ck). If the specification of P involved unknown pa- 
rameters, which were estimated from the grouped data, the classical theory for 
the 7~ 2 test would be applicable. 

Watson (1959) argued, however, that in practice the Ci's are not fixed: their 
choice is to some extent dependent on the data. For certain types of data- 
dependence, he outlined a proof showing that, when s parameters are estimated 
from the grouped data, the test statistic still has a limiting )~2_s_ ~ distribution. 
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Another problem aries with the estimation of the unknown parameters from 
the grouped data. It is usually simpler to construct estimates from the un- 
grouped data. Chernoff and Lehmann (1954) proved that, for fixed cells, these 
estimators lead to a limiting distribution of the form Z 2  S_ 1 +'~1)~ 2 +)~aZ 2 + . . .  
+2sX2: a linear combination of independent 7~ 2 variates, with the weights )~ 
lying between zero and one. In general, these 2i's will depend on the true value 
of the unknown parameter. Watson (1957, 1958, 1959) and Roy (unpublished 
work described by Watson (1959)) considered the same problem with data- 
dependent cells: the limit distribution is the same. This extension is significant if 
the unknown parameters are those of scale and location, for then the data- 
dependent cells can be chosen to ensure that the 2~'s depend only on the shape 
of the family (for example, normal or exponential), and not on the values of the 
unknown parameters. For a rigorous derivation of these results - using the 
theory of weak convergence - see the papers by Ceby~ev (1971), Moore (1971), 
and Moore and Spruill (1975). 

The cells treated by Cebygev were random intervals of the real line; Moore 
(and Moore and Spruill) allowed rectangles in IR m with edges parallel to the 
coordinate axes for use with multivariate data. Recently Moore and Stubblebine 
(1978) have proposed using data-dependent cells whose boundaries are hyper- 
ellipses in a test for multivariate normality; but their cited references do not 
seem to provide the necessary theory for such cells. Indeed all of the results to 
date appear tied to the use of rectangular cells, or cells that might be trans- 
formed into rectangles - the available theory for the weak convergence of em- 
pirical distribution functions can be applied for rectangular cells. With a very 
general form of Central Limit Theorem for empirical measures due to Dudley 
(1978) these limitations on the cell shape can be removed. 

Dudley's results will be applied in this paper in considering Z z tests with 
data-dependent cells that are not necessarily rectangular. The analogues of the 
results just discussed, where estimates are based on the ungrouped data, carry 
over readily (Sect. 5). The related problem where the estimators are calculated 
from the grouped data is also solved. To avoid overburdening the proof with 
details that might obscure the main idea, I consider first (Sect. 2) the case where 
the cells are fixed. The method is a refinement of an approach due to Birch 
(1964). The proof for data-dependent cells is spread between two sections: 
precise formulation of assumptions and results in Sect. 3, and details of the proof 
in Sect. 4. 

It is assumed that the data are grouped into (possibly data dependent) cells 
FN1 , . . . ,  FNk that converge in an appropriate sense to fixed cells F~, F2, ..., F k - the 
assumption usually made in the literature. The proof follows the usual plan of 
showing that calculation of the )(z statistics with the cells F m is asymptotically 
equivalent to using the cells F~, but this is done more for simplicity of exposition, 
rather than of necessity: as outlined in Sect. 6, the methods in this paper could 
be used to prove a more general result where no convergence of the cells FN~ 
need be assumed. As the extension is straightforward, I have contented myself in 
this paper with the simpler result proved under unnecessarily restrictive con- 
ditions. 
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w 2. The Goodness-of-fit Test with Fixed Cells 

The Z 2 test has a long history. It was first proposed by Pearson (1900); but he 
incorrectly specified the limit distribution for the case where parameters must be 
estimated. The correct result was established by Fisher in a series of papers 
beginning with Fisher (1922a). Cram6r (1946) gave a proof under precisely stated 
regularity conditions; but when the likelihood equation has multiple roots, his 
proof runs into difficulties with selection of a consistent root. Completely 
rigorous proofs are due to Birch (1964) and Rao (1965, w 5e). The argument to be 
developed in this section is adapted from the work of Birch and Rao, and from 
refinements of Birch's method due to Dudley (1976); the notation has been 
chosen to facilitate the generalisation to data dependent cells. 

Independent observations are classified according to which of k disjoint cells 
C1, C 2 . . . .  , C k they fall into: write pN(i) for the proportion of the first N 
observations that lands in C i. A model specifies the underlying cell probabilities 
p(i, O) up to an unknown parameter 0, which ranges over a subset O of IR s. For 
each 0, these cell probabilities sum to one. The maximum likelihood estimate of 
0 is obtained by maximising ~ Npu(i ) log p(i, 0). Equivalently we may choose an 
estimator 0N to minimise 

k 

Lu(O ) = 2N ~ pN(i) log [pu(i)/p(i, 0)]. 
i=1 

Evaluating the function 

k 
X2(O) =N ~ [pu(i)-p(i, O)]2/p(i, O) 

i=1 

at 0 = 0  N gives us the usual )~2 goodness-of-fit statistic. (As we shall see later, 
minimising L u is asymptotically equivalent to minimising X~.) 

For ease of notation, form the cell frequencies pN(i) into a k x 1 column 
vector PN, and the probabilities p(i,O) into a vector p(0). Since Npu has a 
multinomial distribution based on cell probabilities p(0o) - the true unknown 
value of 0 is denoted by 0 o - the multivariate version of the Central Limit 

Theorem (Breiman 1968, p. 238) ensures asymptotic normality of ]/N[PN 
--p(0o)] as N tends to infinity. For a more precise statement, write r for the k x 1 

column vector with elements ~ ,  and A for the k • k diagonal matrix 

diag [ p ] /~ ,  0o) . . . .  , p ] /~ ,  0o) ]. Then 

MCLT: v N =]~-(pN--p(00))- ~ ,  N(0, V), 

where V =A 2 -P(0o)P(0o)' =AUk--rr')A. Writing the covariance matrix in this 
form emphasises the role to be played by the matrix I k - r r '  , which represents 
the projection onto the orthogonal complement of the one dimensional space 
spanned by the unit vector r. 

Birch's (1964) assumptions were: 



320 D. Pollard 

AI: the true value 00 is an interior point of O; 
A2: for every neighbourhood U of 00, 

inf{I]p(O)-p(Oo)l[" O@V} >0; 

A3: each component of p(0o) is strictly positive; 
A4: the map 0~--,p(0) is differentiable at 00, i.e. there exists a k x s matrix D 

for which 

p(O)=p(Oo)+D(O-Oo)-l-o([]O-OoLI) near 0o; 

A5: the matrix D has full rank, i.e. rank (D)=s. 

To avoid minor measurability problems, let us add to this list: 
A6: the map 0~--~p(0) is continuous. 

In view of A4, this hardly reduces the generality of the theorem. The Op, op 
notation of Mann and Wald will be used; the advantages of this notation have 
been detailed by Chernoff (1956). 

Theorem 1. Let O N be any sequence of estimators satisfying LN(ON)=inf {LN(O): 
0~O} +Op(1). Then, if assumptions A1 to A6 hold, 

x ,(ON) , 

The first step of the proof will be to prove that p(0N)-P(00) is of order 
Op(1/lfN): this will be deduced from MCLT and some inequalities (Lemma 1) 
undoubtedly well known in Information Theory. Assumption A2 will then 
imply that 0N-00 is of order Op(1). Inequalities derived using A4 and A5 
(Lemma 2) will strengthen this t o  Op(l/]//-N) so that only values of 0 in an 

Op(1/l/N) neighbourhood of 0 o need be considered. Over such a neigh- 
bourhood, both LN(.) and X2(.) will be approximated by a simple quadratic 
QN(') in 0 - 0 o ,  whose minimum can be found explicitly. The Continuous 
Mapping Theorem will give the limiting distribution of this minimum. 

The first of the lemmas gives bounds on, and approximations to, what is 
sometimes called the/-divergence (cf. Csiszfir (1975)) between two distributions. 
If x and y are two k x 1 vectors of non-negative real numbers summing to one, 

k 
define I(x,y)= ~ x ilog (xi/yl), with 01og(0/y) defined to be zero for every y. 

i--1 
Then by consideration of the Taylor expansion of xilogx i about Yl, the 
inequality log(1 +z)<z, and the Taylor expansion of (1 +8) log  (1+6i) for h i 
=(xi-Yi)/Yi, one obtains the three results of the first lemma (cf. Birch (1964) or 
Rao (1965, w 

Lemma 1. 
(i) l l l x - y H 2  =<I(x, y) 

(ii) I(x, y) <=~(x~-y)2/y i 
(iii) for each positive ~, there exists a constant C (depending on z and k) such 

that 
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]I(x, y) - �89 ~, (x i - yi)2/yi] < C I]x - y ]]a 

whenever Yi > e for i = 1, 2, ..., k. 

Lemma 2. There exist positive real numbers 6, m and M such that, whenever JlO 
-Oo[I <6:  

(i) mllO-Ooll < Hp(0)-p(00)l] ; 
(ii) ]lp(0)-p(0o)H < M  rl0-00fJ. 

Proof. For (i) take 2m--inf{]lDtJp: ]lt][ = 1}, where D is the derivative matrix of 
A4. This is strictly positive because of A5. When I]0-0orl is small enough, D(O 
-0o )  dominates the error term in A4. The proof of (ii) is similar. []  

Proof of Theorem 1. Apply Lemma 1 (i) with X=pN and y=p(0N) to get NHPN 
--p(ON)drZ<LN(O~v); then apply Lemma 1 (ii) with x=pN and y=p(0o) to get 

Lu(Oo)<2X2(Oo). By MCLT, the difference pN--p(0o) iS of order Op(1/l/N); 
together with A3 this guarantees that X2(Oo) is of order Op(1). Thus NNPN 
--p(Ox)lr2<Lu(Ou)<LN(Oo)+Op(1)=Op(1), which implies that pN--p(0N) iS of 
order Ov(1/]/N ). It follows that p(ON)-p(Oo)=Op(1/]/-N ). This is more than 
enough to prove that I P { 0 N e U } ~ I  for any neighbourhood of 0 o. Apply 
this to the open ball with radius equal to the 6 of Lemma 2. With probability 
tending to one, therefore, the inequality ][ON--Ool I <m l]fp(0N)--p(0o)]f will be 
satisfied. Consequently 0N-0o  must be of order Op(1/]fN). 

The next step in the argument involves showing that X2(O) and LN(O ) are 
close for 0 near 0o. This is a very old idea introduced by Fisher (1922b). 
Similarly, replacing p(0) by p(Oo)+D(O-Oo) in the numerator, and by p(00) in 
the denominator, we obtain a quadratic function QN(') of 0-- 00 approximating 
X~(-) near 0o. To be able to deduce from these approximations that X~(0u), 
L~(0s) and the minimum of Qu( ' )  are close, we need the approximation to hold 
uniformly well in a region containing 0 N and the point where QN(') is mini- 
raised. This requires closer attention to the remainder terms in the approxi- 
mations. 

Consider the random neighbourhood BN={O~O: []0--0011 <PN} of 0 o. The 
radius PN is a random variable of order Op(1/1/N ) to be specified more precisely 
presently; for the moment we need only that pN> I[0N-0ol I. 

From Lemma 2 (ii), sup { lip(0)-p(00)]l : OeBN} = Op(1/]fN). Thus, with prob- 
ability tending to one, p(i, O) will be uniformly bounded away from 0 throughout 
BN; Lemma 1 (iii) with x~=pN(i ) and yi=p(i,  0) therefore provides the bound 

sup {/X~(0) --LN(O)]" OeBu} = Op(1/]fN) = %(1). 

Similarly, if the i th component of the vector D(O-0o) is written as [D(O-0o)]i, 
then 

sup {tX~(0) - N ~ (PN(i) -- p(i, 00) -- [D(O-- Oo)31)2/p(i, 0o) I" O~BN} = %(1). 
i 
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This is easier to comprehend in matrix notation. Set 

QN(O) = N [PN -- p(00) -- D (0 -- 0o) 3' A-  2 [PN -- p(00) -- D (0 -- 0o) ] 

= IIA-lvN--A-1DI/N(O--Oo)I[ 2 

Regard QN(') as a function whose domain is not just 0,  but the whole of IR ~. 
Then 

sup {[Xg(0)- QN(O)I: OeBN} = op(1). 

Now PN can be specified. Let 0* be the value of 0 at which QN(') achieves its 
global minimum bI/TA-~vNll 2, where /7  denotes the projection onto the ortho- 

gonal complement of the column space of A-1D.  Because 1 /N(0*-0o)  is a 

linear function of VN, it must be of order Op(1), Choose PN as any Op(1/l/N ) 
quantity bigger than both LION-0oI[ and [10*-0ol I. As long as 0"~O - which will 
happen with probability tending to one, since 0 o is an interior point of O - such 
a choice for PN ensures that QN(" ) achieves its global minimum at a point of B N. 
Hence 

inf {QN(0): OeBN} = HHA- 1 vN II 2 + op(1). 

Over the random neighbourhood BN, the functions LN(- ) and QN(') lie 
within a band of uniform op(1) width around X~(') .  Thus 

x~(O~) = C~(O~) + o.(1) 
= inf {LN(0 ): 0 ~ BN} + op(1) 

= inf {QN(0): OeBN} + Op(1) 

= IlIIA-lvNl[e+op(1). 

The Continuous Mapping Theorem and MCLT give 

X~(ON)2--. LIHA-lvH a 

where A - I v a N ( O ,  Ik - r r ' ) .  This limit distribution is the same as that of H/7(I k 
- r r ' )Zl[  2, with Z a N(O, lk) variable. Since r ' A - 1 D = I ' D = O  ', the matrix /7(I k 
- r r ' )  represents the orthogonal projection onto the k - s - 1  dimensional space 
orthogonal to the space spanned by r and the columns of A-  ~ D. It follows that 
X~(~JN) has the desired Z 2 k-s-1 limit distribution. 

w 3. Data-Dependent Cells: Notation and Statement of Theorem 

The model prescribes a family {P(. ,0):  0~O} of probability measures on a 
measure space (~r, ~ ) ;  once again, O is a subset of IR s. Independent observations 
are taken on the distribution P(. ,0o),  where 0 o is fixed but unknown. It is 
assumed that each P( . ,  0) is absolutely continuous with respect to a fixed a- 
finite measure # on ~ .  It will prove convenient to work with 3( ', 0), the square 
root of the density function, because these functions are elements of the Hilbert 
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space L2(#). For  example, to avoid measurability problems it will suffice to 
assume that the map 0--, ~(' ,  0) from O into L2(#) is continuous. 

As the analogue to A4, it will be assumed that ~ is differentiable in L2(#) 
mean at 0 o. That is, assume that there exists an s x  1 column vector ~ of 
functions in L2(#) such that the L2(#) norm of ~ ( . , 0 ) - ~ ( . , 0 o ) - ~ ' ( 0 - 0 o )  is of 
order o(ll0-0011) near 00. By several applications of the Schwarz inequality, it 
can be shown (Example 2.3 of Pollard 1980) that the vector measure A(') ,  
defined by 

A (F) = 2 [. ~(x) ~(x, 0o) #(dx), 
F 

plays the role of a derivative ~oP(.,  0); that is 

sup {]P(F, O)-P(F, Oo)-A(F)'(O-Oo)]: FE2}  =o(]10-0ol/) near 0 o. 

The set • is to be partitioned into k disjoint cells - k is fixed throughout the 
paper - and a Z 2 test performed on the number of observations falling into 
these cells. The cells are to be chosen from a class ~ g ~ .  Equip cg with the 
topology generated by the L2(p( ", 0o) ) norm, and with the corresponding Borel 
structure. The partitions of f into cg cells correspond to elements of the class 

k 

= {7 ~cgk: 71, ..., 7k disjoint and U 7 i=S} ;  here 71, ..., 7k denote the components 
1 

of 7. Equip N with its product topology and Borel structure. A partition of 
into data-dependent cells Ful, ..., FNk determines a map F N from the underlying 
probability space into N. Call F N a random element of N if it is a measurable 
map. 

From the sample of size N on the distribution P(. ,  0o) , an empirical measure 
PN(") can be constructed. For  each fixed 7s(r there is a vector PN(~) of cell 
frequencies; to the PN of Sect. 2 corresponds the vector Pu(Fu). Similarly, as 
analogues of X~(O) and Lu(O ) we have 

k 

X~(?, O)=N ~ [PN(Ti)-P(7i, O)]2/p(Y~, 0), 
i = 1  

k 

Lu( ~, O) = 2N ~, PN(~/i) log [Pu(yi)/P(y~, 0)]. 
i = 1  

The estimate 0 u should be chosen to minimise LN(FN, "); the desired asymptotic 
distribution for 2 XCv(F u, Ou) is then 2 Zk-,-a. Precise conditions under which this 
holds will be given in Theorem 2 below. 

Corresponding to the matrix D of A4 is the k x s matrix D(?), defined for 
each 7eN, having rows A (70', .... A (Yk)'. Norm differentiability of 4(' ,  0) ensures 
the existence of a non-negative function c~(-), of order o(1) near zero, for which 

sup { I/P(?, O)-P(y, Oo)-D(y)(O-Oo)l]: yefq} < IlO- OoJ I - a(j/O- Ooll). 

Without loss of generality, we may assume c~ to be continuous and strictly 
increasing; this ensures that it has a continuous inverse a -a ( ' ) .  Since the 
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random cells F N will be assumed to converge in probability (in the sense of the 
topology on ~) to a set of fixed ceils F~fr that is P(Fm\FiwFi\FNi, Oo)3-+O, 
only the behaviour of D(-) near F will be of interest: by analogy with A5, we 
shall need D(F) to be of full rank. 

Finally, to replace MCLT, it will be necessary to assume that VN(') 

=I/N-(PN(')-P( ' ,0o)),  regarded as a random element of the function space 
Do(Z, P(. ,  00) ) defined by Dudley (1978), converges in distribution to a Gaussian 
process v(.) in the sense of Dudley's Central Limit Theorem for Empirical 
Measures: it will be assumed that cg is a Donsker class for P(-, 00). Theorems 5.1 
and 5.7, and Proposition 7.12 of Dudley (1978) help to identify many Donsker 
classes relevant to Z 2 tests with random cells when X is an Euclidean space. 
For example, for any fixed m, the class of all sets expressible as intersections of 
at most m open or closed half-spaces is a Donsker class for any probability 
measure on any IR'; regions generated as differences of hyperellipsoids have the 
same property - this is needed to complete the arguments of Moore and 
Stubblebine (1978). The Donsker class property will ensure that VN(FN) con- 
vergences in distribution to v(F), and that sup {llvN(y)]l : 7~fq} = Op(1). 

Theorem 2. Suppose that ON is a consistent estimate for 0 satisfying 

LN (F~, ON) = inf { LN (FN, 0): 0 ~ 0 } + o. (1) 

where: 

(a) {FN} is a sequence of random elements of ~ converging in probability to a 
f ixed F e ~ ; 

(b) the true value 0 o is an interior point of O; 

" (c) each component of P(F, 0o) is positive; 
(d) ~(', 0), the square root of the density, is diffeeentiable in L2(/~) mean at 0o, 

with derived vector 4; 

(e) the k x s matrix D (F)--2 ~ ~(x, 0o)F ~(x)' #(dx) has rank s; 

(t) the class ~ from which the random cells are chosen is a Donsker class for 
P(', Oo). 
T h e n  2 ~ ~ 2 XN(C,, G)  ~ Zk-~- J. 

The integrand in (e) is the k • s matrix whose (i,j)th element is the product of 
the L2 (#) function 3(', 0o), the indicator function of ~, and the L2(~) function that 
is the jth component of ~; the elements of this matrix are therefore integrable 
with respect to #. The differentiability condition (d) is borrowed from LeCam 
(1970), who showed that it is weaker than the differentiability conditions usually 
encountered in proofs of asymptotic normality of maximum likelihood esti- 
mators. It is easy to check that the convergence condition (a) is weaker than the 
assumptions of Watson (1959), or Moore and Spruill (1975). Consistency of ~N is 
assumed, in preference to imposing a messy condition analogous to A2. As the 
discussion in Sect. 5 will show, such consistency is an unimportant consideration 
in the application of the theorem; 0 N would not be obtained by direct minimi- 
sation, anyway. 
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The proof of Theorem 2 follows closely on the pattern established for 
Theorem 1. In essence, the idea is that a maximum likelihood estimate 0N(7) 
could be calculated for each fixed TeN by minimising LN(7,-). Theorem 1 would 
show that X2(7,0N(7))--* Z2s_ l  for each such 7 satisfying the requirements of 
that theorem. Use of the estimate ~JN=tJN(FN) should therefore be equivalent, in 
the limit, to mixing over a family of Z~-~-a distributions, provided F N is 
asymptotically independent of X~(FN, 00) in some sense; convergence in proba- 
bility of F N is just one way of achieving this asymptotic independence (see 
Sect, 6). The details in the proof of Theorem 2 are aimed at showing that each of 
the approximation arguments of Sect. 2 can be made uniform with respect to 
in some shrinking neighbourhood of F. 

The theorem could be extended to include asymptotic results under se- 
quences of alternatives - results along the lines of those described by Moore and 
Spruill (1975) - by following the procedure sketched in Sect. 6 of Pollard (1980). 

w 4. Proof of Theorem 2 

To simplify the proof slightly, we can assume that F N takes values in 

go = {TEN: rank D(7)=s and P(vi, 00)>0 for each i}. 

This is an open subset of N which, because of (c) and (e), contains F. Condition 
(a) would ensure that F N lies in -~0 with probability tending to one in any case. 

The ]fiN-consistency of 0 s is obtained from a uniform analogue of Lemma 2. 

Lemma 3. There exist continuous, positive functions m(-), M(-) and g(') on go 
for which: 

/f ![0-0oJ[<6(7) then 

m(7) I[O-Oolj < lIP(7, o)-P(7, oo)ld _-<M(7)H0- 0oi/. 

Proof. The matrix D(7) is a continuous function of 7, since the vector measure 
A(F)=2 ~ ~(x, Oo)~(x)#(dx ) is absolutely continuous with respect to P(F, Oo) 

F 

= ~ ~(x, 0o) 2 #(dx). Thus the function 
F 

2m(7)=inf{]]D(7)tJl: ]ltj] = 1} 

is continuous and positive on go. Define 6(7 ) to be ~-1(m(7)) , with ~ as defined 
in Sect. 3. 

If [jO-Oof ] <6(~) then r and so 

lIP(Y, O) - P(7, 0o)I] > lID (7)(0- 0o)]l - ]J 0 - 0 o I] "(I] O-  0 o ii) 
_->m(7) [10-0olr. 

The function m ( ' )  can be defined by M(7)--sup {[]D(7)tll: I[t]l = 1} +m(7 ). [] 



326 D. Pollard 

As with Theorem 1, the proof begins with two applications of Lemma 1 to 
obtain the inequalities 

N liPs(G)-P(FN, 0s) l] : <----LN(FN, ON) 
< LN(G, 0o) + %(1) 
<__ 2 x~(rN, 0o) + op(1). 

By conditions (a) and (c), P(F~i, 0o)-~ , P(F/, 0o)>0; thus P(F m, 00) -1 is Op(1) 
for each i. Each of the terms in the numerators of the summands is bounded by 

2 II vN(G)II 2 
<2sup {[IvN(,,,)[12: ~ o }  
,2sup  {l[v(;Ol]2: 7 ~ o }  

by the Continuous Mapping Theorem. It follows that I[]/-N[PN(FN) 

--P(FN,0N)][] 2 is bounded by a quantity of order 0p(1). Since ]/N[-PN(~) 
--P(FN, Oo)-I=vN(FN)=Op(1), we can conclude that P(FN, ON)--P(FN, Oo) 
=Op(1/ l~ ). Continuity of m(.) and condition (a) imply that m(FN) -1 =Op(1). 

Lemma 3 completes the proof that 0 N-  0 o = O p ( 1 / l ~  ). 
Define the random neighbourhood B N of 00 as in the proof of Theorem 1. 

The steps leading to the bound 

sup {IX)~(FN, O)--LN(G, 0)1: OEBN} = %(1) 

then parallel those followed before. 

For 7~fg0 define the k x k matrix A(y)--- diag [ ~  00) . . . .  ,l/P(Tk, 0o)], and 

the quadratic QN(~,O)=IIA(~)-lvN(~)--CNA(~)-ID(~)(O--Oo)II 2. It is easy to 
show that A(.), and hence A(.)-ID('),  is continuous on go. The matrix //(7) 
for projection onto the 0rthogonal complement of the column space of 
A(y) 1D(~) is therefore continuous on No - use the full rank assumption built into 
the definition of fq o. Once again the global minimum of Qg(F N, ") occurs within 

Ov(1/l/N ) of 0o; the radius of B N can be chosen to take this into account. No 
essentially new features enter the argument from now until we reach the 
conclusion that 

X~(F N, O N) -- II//(F~r A(FN)- ~ vN(G)[I 2 + %(1). 

At that stage we need the full force of condition (f) to conclude that the right 
hand side of this last expression converges in distribution to 
Ih H(F)A(F)-1 v(F)ll 2. This follows by an application of the Continuous Mapping 
Theorem using the functional h(z,~,)= HH(~)A(y)-I z(y) l[2, defined on 
Do(CG P( ' ,  0o))| No, applied to the random elements (v~, FN) - the measurability 
difficulties associated with non-separability can be overcome as in the argument 
in Theorem 5.6 of Pollard (1980), in modifying Theorem 4.4 of Billingsley (1968) 
to prove that (v N, FN) e , (v, F). The remainder of the proof then follows that for 
Theorem 1; we are essentially back in the situation of working with fixed cells F. 
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w 5. Calculation of O N - Analogues of the Chernoff-Lehmann Result 

Direct calculation of the 0N to minimise LN(FN, ") would usually prove trouble- 
some - it would involve calculating P(FN, O) for many different values of 0. One 
way of avoiding such problems is the Method of Scoring (Rao i965, w - an 

iterative procedure for calculating 0N starting with a preliminary l~--consistent 
estimate 0, ,  such as the maximum likelihood estimator based on the ungrouped 
data. A similar method was suggested by Watson (1959, p. 451); it corresponds 
to the modified Z 2 statistics of Dzhaparidze and Nikulin (1974) and Dudley 
(1976). An equivalent geometrical way of viewing these prodedures, when 
applied to finding a 0 N for general random cells, is described in this section. The 
theoretical justification for the assertions to be made is similar in detail to the 
proofs of Sect. 4; to avoid tedious repetitions, I leave these details to the reader. 

The idea is to find a quadratic approximation to X~(/~N , 0~) by making 
Taylor expansions about 0, ,  instead of about 00. This can be justified if ~(0) is 
continuously differentiable in L2(#) norm in a neighbourhood of 0o, with the 
L 2(ix) norm of 4(0 + t ) -  4(0)-~(0)' t uniformly of order o(t) as t tends to zero. By 
analogy with Sect. 3, define matrices D (7, O) = 2 S ~ (x, O) y ~ (x, 0)' ix (dx) and A (7, 0) 

= d i a g [ ~ ,  ..., PI/P~k, 0)]. Notice that D(7,0o)=D(y ) and A(7, 0)=A(7 ). 

Then for values of 0 in any random neighbourhood of radius Ov(1/1/-k7 ) about 
00, both Xs~(FN, 0) and LN(FN, O) can be uniformly approximated within on(1 ) by 

, , 2 Q, (0) = g II A (FN, o*)-  5 [PN (Fu) - P (IN, 0,) - D (l sv , ON) (0 - 0N) Jl 

The radius should be chosen so that, with probability tending to one, the random 
neighbourhood covers the region where LN(FN, .), X2(FN, .) and Q*(-) come close 
to their infima. The test statistic is to be approximated by the global minimum 
of Q*(.), which takes the form 2 . ZN(Ox) = IIH* A(Fu, 0,)-1 lf~-[pN(Fu ) 
-P(FN, 0*)][] 2 where /7* denotes the projection onto the orthogonal comple- 
ment of the column space of A(F N, O*)-ID(Fsv, 0,). This corresponds to a single 
iteration of the Method of Scoring to find a 0 N to minimise Xs~(FN, .), starting at 
0,  and using Q,( . )  as the approximation to Xs~(FN, .). Since 2 . Zx(ON) can be 
calculated directly from the data, it is a convenient goodness-of-fit statistic. 
What is more, the methods of Sect. 4 show that Z~(O,) -  I[H(FN)A(Fsv)-1 vsv(Fu ) I[ 2 

Z~T(ON) does indeed have the desired 2 limit distribu- =Op(1); the statistic 2 . ~k--s-  1 
tion. 

The alternative measure of fit, 2 XN(FN, O~) , investigated by Watson (1958, 
2 * 1959) and others (see Sect. 1) has the same form as ZN(0N) , except that the 

projection matr ix/7* is omitted. The resulting asymptotic distribution need no 
longer be 2 Zk_~-~ - indeed, extra assumptions have to be made about 0,  before 
an asymptotic distribution can be shown to exist. It is usually assumed (see, for 
example, Moore (1971)) that 

l f -~ (O*-Oo)=J- ' ( l l l /N)  ~ ~--~logf(xi, O)lo=oo +Ov(1); 
i = 1  



328 D. Pollard 

generally J is the information matrix. With such a choice for J, this asymptotic 
form may be written more compactly in our notation as 

V ~ ( O ,  _ Oo ) = j -1  VN(2 r (0o)) + Op(1) ; 

with J being the variance matrix of 2~/~(0o) calculated under the distribution 
P( ' ,  0o). That is 

J = y 4~ ' /~(0o)  2 dP(', 0o) 

since 

2 ~/~(0o)dP( ", 0o) 
=j" 2 ~ ~(0o)d# 
= 0 .  

[As an dement of L2(#), the function ~(0) is of constant length one; thus it is 
orthogonal to its derivative.] 

We can therefore approximate 

V~EPN(G) - P(F N, 0~)] 

= v N (FN) + ] fN  IF (FN, 0 o) -- P (FN, 0~)] 

by 

VN(r~)-- D(r~, 0~)~/-N (07~ - 0o) 
= v N (FN)- D (FN, 0")d--1V N (2 ~/~ (00)) -~- Op (1). 

This gives the asymptotic form 

2 XN(FN, 0}) = ]]h N H 2 + %(1), 

where 

hN = A (IN, 0})-  1 [ 'N (rN) - D (FN, 0") J -1  YN (2 ~/~ (0 0))]" 

As H} projects orthogonal to the columns of A(FN, O*)-ID(FN, O*), we can 
decompose 2 , XN(FN, ON) as a sum 

I[ H*hNII 2 + ]l(Ik -- [I*)hN ]l 2 + op(l) 
2 , 2 =ZN(ON)+ II(Ik--II~'v)BN[ I +%(1). 

It is the middle term here that contributes the additional terms, which were 
identified by Chernoff and Lehmann (1954), in the limit distribution. The 
limiting joint behaviour of these components is obtained by the same method as 
that used at the end of Sect. 4. 

The results of Dudley (1978) can be modified to show that 

[VN('), VN(2~/~(Oo))] ~ ,  [v('), v(2~/~(Oo))] 
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- this amounts to proving that ~ augmented by the components of 2~/~(00), 
which are all square integrable with respect to P( ' ,  00), forms a Donsker class (of 
functions). Since H* converges in probability to FI(F), the projection orthogonal 
to the columns of A(F)-ID(F),  a Continuous Mapping Theorem argument 
shows that 

In} hN, (Ik-/~}) hN] ~ [u(r) h, (Ik- f/(r)) hi 

where 

h :  A (Y) -1  [ ~ (F) - D (Y) J -1  v (2 ~/~ (0 0))1. 

As v(') is a zero mean Gaussian process with covariance kernel coy Iv(f1) , v(f2) ] 
=P( f i f2 ,  Oo)-P(f l ,0o)P(f2,0o)  (see p. 900 of Dudley (1978)), the covariance 
structure of h can be determined explicitly. For this it is convenient to introduce 
the vector g = A(F)-  1D(F)J- 1 v(2~/~(0o)), because 

coy [h, g] = A(F)-  I coy Iv(F), v(2 ~/~(00))] J -  1D(F)' A (F)- I 

- A (F)- i  D (F) J -1  var Iv (2 ~/~ (0o))1 J -1D (F)' A (F)-I 

= A(F) -~ D(F) J -1  D(F)' A(F)- I  

- A(F)-I D(F) Y-1 j j - ~  D(F)' A(F)-I 
=0. 

This means that h and g are independent, and 

var [hi = var [h + g] - var [g] 
=I  k -  r r ' -  A(F)-  I D(F) J -  ~ D(F)' A(F)-  I 

with r ' = ( P 1 / ~ , 0 o )  , ...,]/P(Fk, 0~) as before. Knowing var [hi, we can deduce 
that cov[H(F)h, (Ik-H(F))h]=O , because H(F) commutes with (Ik-rr),  and 
H(F) A(F)- 1D(F)= 0. The limit distribution of X~(F~, 0") is therefore the sum of 
two independent components, one of which is Z~-s-~ distributed, the other the 
quadratic form I[(I k-FI(F)) hi[2 in the zero-mean normal vector h. By a suitable 
rotation, this second comPonent can be cast into the form ~2f  )12, a linear 
combination of independent Z~ variates. The 2is are the eigenvalues of the 
variance matrix of ( Ik- I I (F))h  which, using the expression for var[h] just 
obtained, reduces to I k - FI(F) - A (F)- 1D (F) J -  1D (F)' A (F)- 1. The eigenvalues 
are, therefore, all non-negative and less than the corresponding eigenvalues of I k 
-H(F) .  As this last matrix represents a projection onto an s dimensional space, 
we have found a geometric interpretation for the result of Chernoff and 
Lehmann (1954): all except s of the eigenvalues 2~ are zero, and the non-zero 
eigenvalues all lie between zero and one. 

w 6. Convergence of the Random Cells is Unnecessary 

The convergence in probability of F:v to F played two distinct roles. On the one 
hand, it ensured that quantities such as m(FN) -1 and A(FN) -1 were of order 
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Op(1), and that QN(FN, ") achieved its global minimum within some Op(1/]/N-) 
neighbourhood of 0o. This enabled the arguments of Sect. 2 to be carried over to 
show that X2(Fu, 0N)= 1I/7(FN)A(F~)-IvN(Fu)]I 2 +%(1). On the other hand, con- 
vergence of r N was used to prove that (vN(') ,FN)~(v( ') ,F),  in order that a 
Continuous Mapping Theorem would give the limiting distribution for 
U(rN) A(rN) -1 vN(rN). 

In its first role, convergence of F N could have been replaced by a uniform 
tightness condition: for each e > 0  there exists a compact subset ~ of ~o such 
that IP{FNs~} > 1 - ~  for all N large enough. Continuity on No of maps such as 
~ r n ( ~ )  -1 and 7~--~/7(~) would then have secured the required boundedness 
conditions. 

In its second role, convergence of F N to a fixed, non-random F imposed a 
form of asymptotic independence between vu(" ) and Fu. Clearly, if F N were 
actually independent of vN('), the conditional distribution 
H(Fu)A(FN) -1 vN(FN)]FN=~ could be analysed using the results of Sect. 2 for 
H(?)A(?)-lvN(?); the limit distribution would come out as a mixture of X2s_ l  
distributions - which is again Z~_ s_ ~. (This can be proved by applying a result 
of Wichura (1970) to find a version vN(') of the empirical process that converges 
uniformly with respect to cal. The processes H(~)A(?)- t vN(?) converge uniformly 
on compact subsets of ~o. If the distributions of the FN'S are uniformly tight, 
Theorem 5.5 of Billingsley (1968) then justifies integrating out with respect to 
these distributions.) Asymptotic independence between VN(" ) and F N has the 
same effect, at least when asymptotic independence is interpreted in the sense 
that (VN('),FN) behave asymptotically like the pair (v(.),F). Such an inde- 
pendence concept still makes sense even when F is not constant. Theorem2 
could be strengthened by requiring only that F N converges in probability to a 
(possibly random) element of ~o. The convergence in Dudley's (1978) Central 
Limit Theorem for Empirical Measures can be strengthened to convergence in 
the mixing sense of R6nyi (cf. the argument in Theorem 16.3 of Billingsley 
(1968)), from which it again follows (cf. Theorem 4.5 of Billingsley (1968)) that 
(vN('),FN) ~ , (v( ' ), F*), where v(.) and F* are independent and F* has the 
same distribution as F. It would be more interesting though to find an 
asymptotic independence condition that put no convergence requirements on 
FN, but under which Theorem 2 continued to hold. 
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