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1. Introduction 

Consider a Markov chain given by a transition probability P on some measur- 
able state space (E, g). For an initial probability distribution # on E let #P" 
denote the resulting distribution in period n. If P is an aperiodic Harris chain 
then Orey's theorem implies 

(1.1) lira I]#P"-vP"ll~=O 
n 

for all initial distributions #, v, where H- lie denotes the variational distance for 
probability measures on & By well known results of Blackwell, Orey et al., this 
asymptotic loss of memory can be characterized in various equivalent ways. In 
potential theoretic terms it means that all bounded space-time harmonic func- 
tions are constant. In the canonical model (f2, (X,), (Pu)) where f2 is the space of 
all trajectories on E and P, is the measure on O induced by the initial 
distribution #, it is equivalent to the mixing condition 

(1.2) P , = 0 - 1  on d 

for each initial #, where d = ~ ~ / X ~  l(g) is the a-field of asymptotic events. 
n k e n  

The purpose of this paper is to adapt these results to models for the time 
evolution of infinite particle systems where the state space is an infinite product 
space; see for example [2, 3]. In these models, the chain is typically not a Harris 
chain, and property (1.2) is too restrictive. We shall therefore look at suitable 
modifications of (1.2), prove the corresponding versions of the Blackwell-Orey 
equivalence, and give conditions of Dobrushin-Wasserstein type which guaran- 
tee that these modified properties do hold. 

To this end, we first consider a general Markov chain and prove the 
following extension of the Blackwell-Orey equivalence. Let d l  be a sub-e-field 
of d and denote by ~1 the class of bounded space-time harmonic functions h 
=(h,),~ 0 associated to all ;  see (2.10). For  each event A ~ d  1 there is a function h 
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= ( h , ) e ~  1 such that 

(1.3) P~,[AIXo,...,X,]=h,(X,). 

It is therefore of interest to clarify the measurability properties of the functions 
in ~1: They show which information is needed in order to make predictions on 
d 1. Let go be a sub-a-field of g, and let us say that h = (h,) is doo-measurable if 
each h, is doo-measurable. Denote by d o = ('] ~/X~-1 (go) the sub-a-field of d 

n k ~ n  

corresponding to go, and consider the following conditions: 

(1.4) # = v  on doo~P=P~ on ~ ,  

(1.5) sO, = d  o m o d P  u for all initial #, 

(1.6) Each he~,'f 1 is g0-measurable. 

Theorem (2.11) shows that these conditions are essentially equivalent. For doo 
={r and d ~ = d ,  condition (1.4) is equivalent to (1.1), and the theorem 
reduces to the classical case. 

Sections 3 and 4 contain applications to the infinite particle case. Here the 
state space is of the form (E, d ~ = [ I  (E~, g~), where I is a countable set of sites 

i s I  

and (Ei, do~) is an individual state space for site isI. We denote by ~U the class of 
finite subsets of I, by dov the a-field on E generated by the coordinates in V s ~  
and by d r =  ~ ~/X~ *(gv) the a-field on ~2 which describes the asymptotic 

n k ~ n  

behavior of the sites in V. The first application consists in localizing the mixing 
condition (1.2). We obtain different characterizations of the condition that 

(1.7) P ~ = 0 - 1  on d,o ~= V dv  
Ve~K 

for each initial #, taking go={r f2} and dl=dlo  o in (1.4); see Theorem (3.2). 
Local mixing in the sense of (1.7) is stronger than local convergence 

(1.8) lim [l#P"-vP"Hev=O (VeY/') 
n 

where II- I/ev denotes the variational distance between probability measures on 
dov. Let a,k measure the influence of site i on site k; see (3.6) below. Wasserstein 
[8] has shown that the Dobrushin condition 

(1.9) sup ~ alk< 1 
k i 

implies local convergence, and that it is actually enough to require 

(1.10) lira V ,~(")= 0 (keI) d.., ~ i k  
n i 

for .the powers of the matrix (aik). Theorem (3.11) shows that the Dobrushin 
condition even implies local mixing, and here it is enough to require 

(1.111 Y al )<c  (keI). 
i ,k 
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The second application concerns the  boundary process which arises if we 
observe the process (X,) only via the a-field ,z = ~ gt_ v of events which do not 

V ~ f  

depend on any finite number of sites. Let s f  be the corresponding boundary tail 
field. Taking go = ~ and s~r = ~ / i n  (1.5), we obtain different characterizations of 
the condition that 

(1.12) ~v/= ~ m o d  P u 

for any initial #; see Theorem (4.4). Here, the analogue of condition (1.1) is 

(1.13) # = v  on ~ l i m l l # P ' - v P " ] l ~ = 0 .  
n 

The potential theoretic version says that the best prediction of any asymptotic 
event does not require the detailed description of the present state X, but only 
the boundary information. Theorem (4.6) shows that the process does have these 
properties if the dual version 

(1.14) lim V ,,( ')=0 (i~I) 
n k 

of the Wasserstein condition (1.10) holds. 

In part, the resuIts were obtained during a visit at CornelI, and thanks are due to E.B. Dynkin, 
H. Kesten and F. Spitzer for several discussions. 

2. An Extension of the Blackwell-Orey Equivalence 

Let (E, ,#) be a measurable space. We denote by gb the class of bounded C- 
measurable functions on E and by Jr the class of probability measures on g. 
For  f~gb  we write 

r] f ]1 = sup if(x)l, 
x6E 

and for/~, v~/~ we define 

rJ # - v ]1 ~ -- sup J/~(A)- v (A)f= (# - v)~ (E) 
As6*  

where ( # - v ) ~  is the positive part in the Hahn decomposition of the signed 
measure # - v  on g. 

(2.1) Remark. Suppose we have a-fields S,_~e* which either decrease to E~ 
= 0 g, or increase to g~ = ~/g, .  Then 

n n 

(2.2) lim ] l # -v l r~ - - I [# -vr l~ .  

Here is a short proof (a more involved argument appears in [41): Defining 7 
=�89 + v) and denoting by (p, and 0,  the densities of # and v relative to 7 on g~, 
we have 

I1~-~11~--~(~.-~,,) ~d~ ( n = l  .... ,00), 
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and (2.2) is now obvious by martingale convergence backwards respectively 
~forwards. 

A transition probability from (E, g) to some measurable space (E', g') is a 
map P: E x g' ~ [0, 1] such that 

i) P(x, .) is a probability measure on g' (xeE), 
ii) P(., A)Eg b (Aeg'). 

For # e ~ '  and f~(&)b we denote by #P the induced probability measure 
#P(.)=~#(dx)P(x,.) on g' and by Pf  the induced function Pf(.) 
= ~ P(., dy) f (y)e# b. 

Let P be a transition probability on (E, #), and let us recall the canonical 
model for the associated Markov chain. Define the set f2=E ~~ 1,...~ of all 
trajectories co: {0,1, ...} ~ E  and for each n > 0  the coordinate mapX,  with 
X,(co)=co(n). Introduce the a-fields 

~n"~a(Xo, "", Xn), ~n* "~a(Xn, Xn+l, ""), 

g =  V g,, d =  (~ ~.* 
n n 

on f2. d is called the o--field of asymptotic events or the tail field. For each 
#s  J / ,  the stochastic evolution starting with # and governed by P is then given 
by the unique probability measure P~ on (f2, J~) such that 

i) P~,[Xo~A]=#(A ) (As#), 
ii) P,[Xn+I~A[~,]=P(X,,A ) (A~g,n>O). 

E,[ . ]  resp. Ex[.] will denote the expectation with respect to P, resp. Px =P~x. Let 
us also introduce the class 

= {h---(hn),~ o I hnE# b, h,=Ph~+ l(n>O), sup ]Lh,[ I < oe} 
n 

of all bounded space-time harmonic functions of P. Then we have the following 
well known characterization of asymptotic loss of memory; see [6] or [7] 
Chaps. 6, 3.4. 

(2.3) Theorem (Blackwell, Orey et al.). The following conditions are equivalent: 

(a) #, w J / t ~ l i m  LI#P"-vP"][e=O, 
(b) #, v e ~ f ~ = f ~  on d ,  
(c) gso / / / /~Pu=0-  1 on d ,  
(d) Each hs~s is constant. 

(2.4) Remarks. 1) One usually proves (a)-~(c)ce-(d). But the Markov property 
implies 

(2.5) II#P"-vP"Hr = IIP,-P~ll~(x,)= IlP,-P~llg~., 

and so the equivalence of (a) and (b) is clear from (2.2). 
2) Let us recall for later purposes the correspondence between space-time 

harmonic functions h e ~  and functions cp~d b which is behind the equivalence 
(c),~-(d). Let O, be the shift map on f2 defined by (O, co)(k)=co(n+k). For each 
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~oSd b there are functions qo,ed  b such that 

(2.6) ~o = (p, o 0,, q0,+~ o 0=~o, (n=0, 1, ...). 

Defining 

(2.7) h~(x)=Ex[cpJ (xeE, n>O) 

we obtain a space-time harmonic function hOeJg such that 

(2.8) q)=limh,~(X,) Pu-a.s. (/~e~r 

and each heg/g is of that form; see e.g. [7] Chaps. 6, 2.3. 
In view of applications to the infinite particle case let us now generalize the 

equivalence (b)<=>(c)~=~(d) in (2.3). Let g0 be a sub-a-field of g which is saturated 
with respect to some equivalence relation ~ on E; cf. [1]. This means that for 
any function f s g b  we have 

(2.9) fegbo~=>[x~y~f(x)=f(y)  ]. 

It is shown in [1] that countably generated sub-a-fields of a standard Borel 
space, tail fields, invariant fields, symmetric fields are of this type. Let 

d o = 0  V X~-l(go)-- - d  
n k>=n 

be the corresponding tail field on f2. Let dl___d be some other a-field of 
asymptotic events which is stable with respect to the representation (2.6), i.e., for 
(p~d~ and n > 0  there exists (p, ed~  b such that (p=q~,o 0,. Let 

(2.10) 2/g~ = {hO6 2# I cp6d~} 

be the class of bounded space-time harmonic functions associated to sr in the 
sense of (2.7). 

(2.11) Theorem. Consider the following conditions: 

(b) t~, v ~ ,  I~=V on g 0 ~ g = P ~  on ~1, 
(c) # ~ s r  =sr modP., 
(d) Each h ~  is go-measurable. 

We have (b)<=~(d)~(c), and if P is a transition probability on (E, 0%) then all three 
conditions are equivalent. 

(2.12) Remark. For go = {r ~2} and ~ = d  (2.11) together with (2.5) reduces to 
the classical result (2.3). Example (3.15) shows that (c)~(d) does not hold in 
general. 

Proof 1) For h = ( h , ) e ~  and n > 0  we have h,(x)=E~[cp,](xeE) for some 
(p.ed~. If x ~ y  then ex=ey on go so that (b) implies h,(x)=h,(y). Thus (b) 
implies h, Ego b due to (2.9), and this is (d). 
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2) Take ~0ed~ and the associated 
=(h~)~f~, For any #EJg we have 

E~ [q0] = E,  [Exo [~oJ] = ~ #(dx) h~ (x). 

Thus (d) implies (b). 
3) Let us show (d)~(c). Take q)~d b and the associated hoe Jr,. We have 

q0 =l im sup h~(X.) P,-a.s. ( # ~ )  
t l  

due to (2.8). But under (d) the right side is do-measurable, and this yields (c). 
4) In order to show (c)~(d) we have to assume 

(2.13) A~go~P( . ,  A)sg~. 

For h ~  and n > 0  we have h,(x)=E~[q%] (x~E) for some % ~ r  Take x, y~E. 
Condition (c) with /~=�89 implies that there is some O, esJo b with h,(x) 
= E x [~,,] and h,(y) = Ey [~,]. But (2.13) guarantees that the function z ~ E, [0,]  
is go-measurable. This implies h,(x)=h,(y) for x~y ,  and so we have shown 
h,~g~ due to (2.9). 

H. F611mer 

space-time harmonic function h ~ 

3. Local Mixing 

Let I be a countable set of sites or particles, and let ~U denote the class of finite 
subsets V___I. Suppose that each ieI can assume states in some measurable state 
space (Ei, d~i), and introduce the microscopic state space 

(E, g) = I ]  (E~, g~). 
i e l  

For each V ~ I  we denote by Nv the a-field on E generated by the projection 
maps x ~x(i) (i~V). 

In the sequel we fix a transition probability P on this product space (E, 6). 

(3.1) Example. Suppose that for each i~I we have a transition probability P/ 
from (E, g) to (Ei, gl) which describes the behavior of particle ieI in reaction to 
its environment. The corresponding synchronous interaction is the kernel P on 
(E, g) which to each x~E associates the product measure 

P(x, .)= FI .). 

See for example [2, 3]. Often each ieI has some "neighborhood" N~___I, and P~ is 
in fact a kernel from (E, gnu) to (Ei, gl). If N~ is finite for each ieI then the 
interaction is local in the passive sense as defined in (3.9) below. If the set 
U li~Ns} is finite for each ieI, then the interaction is local in the active sense as 
defined in (4.2). 

Our purpose is to investigate two different versions of loss of memory for the 
Markov chain associated to P. Both versions will coincide with the classical 
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condition (2.3) if I is finite. In this section we are going to localize (2.3). For 
V_~ I we define the o-fields 

o< - ~/ x ;~ (g~) ,  ~ *  - V x ; ~ ( ~ v ) ,  r l ,  V - -  n ,  V - -  
k=O k ~ n  

n, V 

on s The o-field 

~oo= V dv 
Ve~ 

will be called the local tailfield. Let us also introduce the class ~oc of all space- 
time harmonic functions h ~  which correspond to some ~ b o o  in the sense of 
(2.7). 

(3.2) Theorem. The following conditions are equivalent: 
(a) #, v~d/ /~ l im [IPu-P~jr~, ,V=0 (V~/r), 
(b) #, v ~ P ,  =P, on dloo, 
(c) # E ~ P . = 0 - 1  on  d~oo, 
(d) Each hEYt~oc is constant. 

Let us say that P is locally mixing if these conditions hold. 

(3.3) Remark. Condition (a) implies local convergence in the sense that 

(3.4) #, ve/Cd~lim ]]#P"-vP"]j~v=O ( V ~ ) .  

But (3.4) does not imply condition (a) as in the classical version (2.3); see 
example (3.15). 

Proof. Recalling (2.2) we see that (a) is equivalent to P~=P~ on Wv for each V ~  
and this is equivalent to (b). The rest follows from (2.11), taking go--{0, f2} and 
d l =  d~oo. We have only to check that d~o ~ is stable. But the class 

o - -  {~o ~ dl~oo I ,p = q) o 0~ ~o.~ dl~oo (n_--> 0)} 

is a linear space closed under pointwise convergence, and it contains the class 

O0= ~ ~'v b 
Ve~ 

since each ~'v is stable. This implies �9 = ~/lboo by [5] I, T20. 
The usual convergence theorems for interactive Markov chains give criteria 

for local convergence (3.4), and this is weaker than local mixing (3.2). Let us now 
look specifically at the convergence theorem of Wasserstein [8], and let us turn 
it into a criterium for local mixing. For f e d  ~b define the oscillation coefficients 

p(f) = sup {[f(x)-f(y)[  ] x, y~E}, 

Pi(f) = sup {If(x) -f(Y)ll x, y~E, x(j) = y(j') 0 '* i)}, 

p ~ (f)  = infsup { ]f(x) --f(Y)] I x, yeE, x(j) --- y(j') (j~ V)}. 
VE~ 
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Then we have 

(3.5) p(f )< ~, &(f) (f~8b). 
i~Iw{oo} 

(3.6) 
for P 

Definition. A matrix A = ( a i k ) i ~ l  ' kElu{oo} will be called a Wasserstein matrix 
if 

(3.7) fEgb~pi (Pf )< ~ aikpk(f ) (iE1). 
kEIu{oo} 

(3.8) Example. For a synchronous interaction as in (3.1) define 

aik=SUp ]]Pk( x, ")--Pk(Y, ")H~k (i, k~I) 

where the supremum is taken over all x, yeE with x( j ) -y( j )  (j4:i), and 

ai~ = infsup ]]P(x, . ) - P ( y ,  .)118~ v 
V e ~  

where the supremum is taken over all x, yeE with x(j)=y(j) (j4:i). The argu- 
ments in [8] show that this gives us a Wasserstein matrix for P. The coefficients 
ai~ are actually irrelevant for this section because here we shall apply (3.6) only 
to functions f with poo(f)=0. For general kernels P there are various ways of 
constructing a Wasserstein matrix; one such construction is given in [8]. 

In the sequel we fix a Wasserstein matrix A for P. Let us say that the 
interaction is local in the passive sense if P has the Feller property 

(3.9) f6C(E)~Pf~C(E)  

where C(E)={f~gbip~(f)=O} (=  the class of all continuous functions with 
respect to the compact product topology if each E i is finite). Under (3.9), 
Wasserstein [8] has shown that we have local convergence (3.4) as soon as 

(3.10) lim ~, al~)=0 (k~I) 
n i~l 

where ~ki'~(")~J is the n-th power of the matrix (a~k)~, k~*" Note that the Dobrushin 
condition (1.9) implies both (3.10) and the following condition (3.12). 

(3.11) Theorem. Suppose that P satisfies (3.9) and 

(3.12) ~,,C,) ~-m,k_ oo (kEI). 
n, i 

Then we have local mixing in the sense of (3.2). 

Proof We shall verify condition (a) of (3.2). Take V ~ , ,  #, v~Jr n, p > 0  and 

.,~--/n + P 1 1 b 
q~ [~_V X~- (Cv) �9 Due to (2.3) (in the case of increasing a-fields) it is enough to 

show that 

(3.13) IE.[q)]-E~[cp]l<-p(~o)C..v 

where %, v does not depend on ~o and p and satisfies lira %, v = 0. 
n 
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1) We have ( p = 0 o 0 ,  for some ~e@v b. Let us def ine f (x)=Ex[O] (xeE). By 
induction on p the Feller property of P yieldsfEC(E),  and so we get 

[E~ [qo~ - E ,  [~ol[ = I~ P nfdg  - ~ P ' fdv[  

< p (Wf)  < 2 Pi(Wf) < Z a}~ ) Pk (f)  
i i , k  

due to (3.5) and (3.7). But (3.14) below implies 

P 

Pi(f) < ~ Z a}~')P(~~ �9 
m =  0 k ~ V  

This yields (3.13) with 

C,, v= 2 2 V,~,,) 
k ~ V  m > n  i 

and we have lira G,v=O due to (3.12). 
n 

2) Let us show, by induction on p, that 

p 

(3.14) pi(Ex[g(Xo, ... , Xp)])<= ~ ~V ~ik'~(~) P(km)(g) 
r e = O k  

(mOo for each gs  ~v where p~)(g) is the oscillation coefficient of g for space- 

time coordinate (k, m). For p = 0  both sides reduce to p~(g). Now take p >  1 and 
suppose that (3.14) holds for p -  1. Note that 

E~[g(Xo, ..., X~)] =Ex[h(Xo,  ..., X~_ ~)3 

with 

h(x o . . . .  , xp_ i) = ~ P(xp_ 17 d y) g(Xo, ... , xp_ 1, Y), 
p~m)(h)<p(km)(g ) ( 0 < m < p - -  1), 

p~-'(h) =< p(~- ~(g) + y, % p~ (g). 
J 

Applying (3.14) for p -  1 and h, we obtain (3.14) for p and g. 

(3.15) Example (see e.g. [8]). Take I = Z ,  Ei={0, 1} (i~I) and the synchronous 
interaction P(x, . )= HP/(x, .) where P/is defined by 

i e l  

pi(x,{1})={~i_pi if x ( i + l ) = l  
if x ( i+  1)=0 

1 with some p~ (5, 1). It is easy to check 
measure v r on E with 

vr Ix(i)= 13 =�89 [ I  (2p j -  1)(r- �89 
j__>i 

that for each re[0, 1] the product 
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is invariant for P. These measures all coincide with the coin tossing measure v~ 
if and only if 

(3.16) 1~ (2pj- 1)=0, 
j=>o 

and this is just the Wasserstein condition (3.10). Let us now show that this is not 
enough for local mixing. Let/~o resp. #1 be the Dirac measure on the state x - 0  
resp. x ~  1. The 0-coordinates (X,,o) of the chain (X,) are independent both 
under P,o and Pu~" Define 

a.=Pul[X.,o=l], b.=P.o[X.,o=l]. 

Then we have 

a . -  b.-- [I (2Pk-- 1) (n > 1), 
O<~k<n 

and so (3.16) holds if and only if a, -b ,  goes to 0. Now construct (p,) such that 
a, -b ,  goes to 0 so slowly that P,o and P,1 are singular on the a-field ~{0} 
generated by the process (X,,o)n>__ 1 (recall Kakutani's Criterium for the singu- 
larity of product measures). Then Pro and Pul must also be singular to each other 
on ~4{0}, and this contradicts local mixing. 

4. Sufficiency of the Boundary Process 

Let us introduce the boundary (E, g) where 

Ve~ 

is the spatial tail field on E, and the corresponding a-fields 

k=O k=n 

.~=V ~ 
n t l  

on ~2. Each coordinate map co--co(n) may be viewed as a measurable map from 
(f2, @,) to (E, o~), and in that case we denote it by 3~,. (J(,),~0, as an adapted 
process over (~2, ~ (~,,), (Pu)) with values in (E, d), may be called the boundary 
process associated to the underlying microscopic process (X~),_> o with values in 
(E, ?). Note that the boundary process is again a Markov chain if 

(4.1) P is a transition probability on (E, d), 

i.e., if P(., A) is g-measurable for each AEd s. 

(4.2) Remarks. 1) Condition (4.1) means that the interaction is local in the active 
sense: no individual particle can influence the boundary situation in one step. 
This implies that it also won't be able to influence events in the boundary tail 
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field s~  Nevertheless it may influence events in the a-field 

(4.3) do~= (~ d , _ v ;  
Vef  

see example (4.8). Such a long run effect is excluded by the conditions of the 
following theorem. 

2) Recall the coefficients a~o~ defined in (3.8) and note that the definition 
makes sense for a general P. If a ~  = 0  for each ieI then the boundary process 
has the Markov property (4.1). 

(4.4) Theorem. Consider the following conditions." 

(a) #, w J ~ ,  # = v  on ~ l i m  I[#P=-vPnlIE=0 , 
n 

(b) #. v ~ [ .  #=v  on ~ P , = P .  on ~4. 
(c) #e  Jd  ~ d  =~4^mod P~, 
(d) Each he2/( is o~-measurable. 

We have (a)~=>(b)~=>(d)~(c), and under (4.1) all four conditions are equivalent. 

Proof The equivalence of (a) and (b) is clear from (2.2) and (2.5). The rest follows 
from (2.11), taking d 1 = d and go = ~. 

(4.5) Remark. Condition (d) implies 

E,ZeIg,.]=E,.[q~IN.] (~sd b, #e/N), 

i.e., it is sufficient to observe the boundary process in order to make the best 
predictions for the asymptotic behavior of the underlying microscopic process. 
Let us say that the boundary process is sufficient if all conditions hold. 

Let us now show that the boundary process is indeed sufficient if a dual 
version of the Wasserstein condition (3.10) holds. 

(4.6) Theorem. Let A be a Wasserstein matrix for P with ai~ =O for each isI. I f  

(4.7) lira ~ ~ik'~(')--n-- ~ (ieI) 
n k ~ l  

then all conditions in (4.4) are satisfied. 

Proof. Let us verify condition (d). Iterating (3.7) we obtain 

Pi(Wf) < ~_, (") = aik Pk(f) (i~I) 
k ~ I  

for any f e &  b. Now take h = ( h , ) e ~ .  For iE1 and m, n > 0  we get 

p~(h~)-p~(p h,,+,)< ~ (') __ n ailc p k ( h m + . )  

k ~ I  

k ~ I  P 

Thus (4.7) implies pi(hm)=0 (i~I), hence h m ~  b. 

(4.8) Examples. 1) In example (3.15) our condition (4.7) is equivalent to 
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(4.9) I-I (2pk-  1)=0, 
k < 0  

and this is also necessary for property (d) of (4.4): For c~[0, 1] define 

c. =�89 I-I (2pk- 1)(c-1) 
k,<n 

and h,(x)=c_, resp. = l - c  , if x ( - n ) = l  resp. =0. Then h=(h,) is in ~ ,  but 
not g-measurable if c + ! and if (4.9) does not hold. This shows, by the way, that 2 

the a-field d ~  defined in (4.3) does not coincide with ~g since q~=limh,(X,) is 
sJ~-but not ~4~measurable. The criteria (4.9) and (3.16) show that local mixing 
and sufficiency of the boundary process are independent of one another: each 
can appear with or without the other one. 

2) Let us show that without (4.1) our condition (c) in (4.4) is not enough to 
guarantee condition (d). Consider the synchronous interaction with I = {0, 1, ... }, 
El=  {0, 1} and Pi(x, .)=gx(o) for i4=0, E0={0,�89 1} and 

x(~ , if x(0)~{0, 1} 

( s t e 0 + ~ . e l )  if x(0) =�89 

Then P(x, . )= 1~[ Pi(x, .) depends only on the 0-coordinate x(0), and this implies 
i e I  

_ b h,-Ph,+ legr each h=(h,)EJF. For instance, h=(h,) with h,(x)=x(O) is in 
24 ~ but not g-measurable so that (d) does not hold. Now let us verify condition 
(c). For any x~E we have 

n - - 1  

p(y)=lim -1 ~ y(k)=x(O) 
n k ~ O  

for P(x, .)-almost all yeE. Take ~ d  b. The associated h~e~t ~ is of the form h~(x) 
=f~(x(0)), and so we have 

~=limh~(X~)=lim f~(p(X~+ O) P~-a.s. 

for a n y / ~ .  But the right side is ~-measurable,  
Let us finally mention some further applications of (2.11). Taking go = ~ and 

d I = clio o so that condition (b) becomes 

(4.10) #, vEJ~, ~t=v on g~P~=P~ on dloo, 

we obtain a theorem which characterizes local sufficiency of the boundary 
process. A modification of the proof of (3.11) shows that (4.10) does hold if the 
Wasserstein matrix satisfies 

(4.11) ~ afT,) < ~ (i, kEI), 
n 

assuming either the Feller property (3.9) or the dual condition ai~ = 0  for each 
i~I. 

We can also replace in these three variants the a-fields ~r succor, sr by the 
corresponding a-fields d ,  Jloo, d of invariant events, and the classes ~ ,  ~1o~, 
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by the corresponding classes of harmonic functions. Taking for example &0 = 6~ 
and d I = ~oc in (2.11), we get a characterization of the condition 

(4.12) #, v ~ ,  # = v  on d~Pu=P~ on  Jloc, 

This last (and weakest) condition is related to the following question discussed 
by Dawson [2]. Suppose that r is invariant under P for i= 1, 2. Under 
which conditions are we able to conclude 

(4.13) # l = # z  on d ' ~ # 1 = # 2  ? 

Since #i is invariant, the ergodic theorem yields 

yfd#i=Eu~ lim ~ f(Xk) ] (fagb). 
k=0 J 

For V ~U and f ~ 6 ~  the integrand is ~oo-measurable. Thus condition (4.12) 
allows to conclude ~fdyl=yfd#2, and this implies #a=#~.  The argument in 
[2] seems to suggest (in identifying S a n d  0 ~ that even condition (b) of 

v~'f 
(4.4) is automatic for synchronous interactions of a type including example 
(3.15). We have seen that this is not so, and so the argument does need some 
additional assumption. 
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