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Mixing for Markov Operators 

MICHAEL LIN e 

1. Definitions and Notations 

Let (X, Z, m)be a finite measure space with re(X)= 1. A positive linear con- 
traction on LI(X, Z, m) is called a Markov operator on L 1 and its adjoint, acting 
on L~ (X, S, m) is a Markov operator on L~.  P will be written to the right of 
its variable in L 1 and the adjoint in L~ will also be denoted by P and written 
to the left of its variable. Thus (uP, f )  = (u, P f )  for u~L 1 a n d f ~ L ~ .  Identify- 
ing La with the space of finite signed measures absolutely continuous with respect 
to m (via the Radon-Nikodym theorem) P acts on that space: #P(A)=~ P1A d# 
for #~m, A~Z. The same formula defines # P  for a o--finite positive measure 
#~m.  (X, Z, m, P) will be called a Markov process (and sometimes P alone will 
be written). If 2 is o--finite and 2 ~ m, (X, 2;, 2, P) is defined by the action of P on 
the space of finite signed measures ~ 2 ~ m .  )o is called subinvariant if 2 p <  2 and 
invariant if 2 P = 2. 2 will always denote either a finite invariant measure ,~ m 
or a a-finite subinvariant measure ~ m  (with 2(X)= o0). The adjoint process P* 
defined in LI(X, Z, 2) and its properties are described in [4, Chapter VI1]. The 
process is ergodic if Pf=fa .e .  a n d f a L ~  imply t h a t f  is a constant. The process 
is irreducible if L~ (A, 2; ca A) is not invariant under P for 0 ~ A 4: X [4, Example I.f], 
which is equivalent to P 18 < 1B ~ B is either X or 0. 

The decomposition of X into the conservative and dissipative parts is given 
in [4, Chapter II]. If the process is irreducible, it is either conservative or dissi- 
pative. 

2. Mixing with a Finite Invariant Measure 

Definition 2.1. Let P be a Markov process with a finite invariant measure 
2 ~ m. P is called mixing if for every A~S  the sequence {pn la} is weak-* convergent 
in L~ to 2(A)/2(X), i.e. (#,Pnla)--~#(X)2(A)/2(X) for every # ~ 2  or, equiv- 
alently, (u, Pnla)~(2(A)/2(X))(u, 1) for every usLl (2  ). (Integrations in this 
section are with respect to 2.) In this section we assume )L(X)= 1. In [4, Chap- 
ter VIII it is shown that P on L~ is also a contraction of L1(2 ), and hence also 
defines a contraction on L 2(2), again denoted by P. Clearly P is mixing if and 
only if for every A c S  Pnl A --~ 2(A) weakly in L2(2 ). 

Lemma 2.1. P is mixing if and only if the adjoint process P* is mixing. 
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Proof. If A, BeX and P is mixing (P*'IA,1B)=(1A,W1B)~(1A,2(B))= 
2(A) 2(B) and by standard approximation P*"I  A ~ 2(A) weakly in L2() O. The 
converse -  by symmetry. 

Lemma 2.2. Let {aij } be a bounded sequence of real numbers satisfying 

lim a i j = 0 .  Then lim 1 N N 
i= l  j = l  

The (very simple) proof is given in [lJ.  

Theorem 2.1. Let P be a Markov process with finite invariant probability 
measure 2,,,m. Then the following conditions are equivalent: 

(a) P is mixing. 

(b) All weak-* limit points in L ,  of {pn 1A } are constants. 

(c) For every u~Ll(2 ) with ~ u d 2 = 0  uPn--* 0 weakly in L1(2 ). 

(d) For every wLl() .  ) and any increasing subsequence {nl} 

1- i~__ lVPm- (2 ,  v )  1--+0. 

Proof. (b)~(c) .  It is enough to show that ( u P ' , I A ) ~ O  for every A~X. 
Suppose that (c) is false, i.e. for some ueLl(2  ) with ~ u d 2 = 0  and some AeX 
(uW, 1A) +-,0. Hence for a subsequence {ni} and some e>  0 we have (u, P'~ 1A) > 
(we may have to change u by -u). IffeLoo is a weak-* limit point of {W' 1A} it 
is a constant by (b) and ( u , f ) = 0 .  But {gELoo: I (u ,g) l<e}  is a weak-* open 
neighborhood off,  and must contain infinitely many {P" 1A}, which contradicts 
the choice of {ni}. Hence (c) is true. 

(c) ~ (a). If AeX we have, as 2 P = 2 ,  liP" 1AfII=~P n lad2=2(A).  Let vsLl(2  ) 
and define u = v - ( 2 ,  v). Since constants are in LI(2), ueLl(2) with ~ud2=0 .  

By (c) (v, P" 1A) - -  )~ (A) ()~, v )  = (u ,  P" 1A) = (U P", 1A) ---~ 0 

which shows that P'I  A is weak-* convergent in Lo~ to 2(A). Thus P is mixing. 

(d) ~ (b). (d) implies that if ueL~(2) with ~ u d 2 = 0  then ---, 0 for 
every subsequence {hi}. i=1 1 

Let A e Z  and suppose that {P'IA} has a non-constant function f e L ~  as a 
weak-* limit point. Clearly 0 < f <  1. We can find a function uEL 1 with ~ u d 2 = 0  
and ~ ufd2 > 0. But since f is a weak-* limit point of {P" 1A}, there exists a sub- 
sequence {ni} with (u, pnilA)--~ (u , f ) .  Hence 

up",1 A = E <u,W'la>--+<u,f>+O 
i=1 i=1 

which contradicts (d). Thus (b) must hold. 

( a ) ~  (d). Since 2 is invariant, P on Loo is also a contraction of L2(2 ), with 
adjoint P*. We use an argument of [4, Theorem VIII.A]: 

, k  k n n 2 , k  n+k 2 n+k 2 lIP P P f - P  fI[2=I[P P f [12-2[ IP  f[Iz+HP'f]]~ 

< I lP ' f  II 2 - Ilp"+gflt 2 . 
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P is a contraction, so NP'fN2 converges, hence NP*kPkP'f--PnfN 2 ~ 0 as n---, oo 
uniformly in k. Take A~N. 

I(pila, W1 A) --2(A):l =I(P*JWU-J1A, 1a)-- 2(A): I 

<= i( p ,  j pj pi- j 1A_ pi- j  1A ' 1A)l + l( pi- S 1A ' 1A ) _  2(A)21 

as i - j - ~  oo the first term tends to zero by the Hilbert space argument above, 
and the last tends to zero since P is mixing. Hence 

lim [(pilA, U1A)--).(A)2[ =0.  
[i-  jl~oo 

N N i 1 N N ~ P"IA-2(A)  = - ~  ~ ~ (P"IA--2(A),P'SlA--2(A)) 
i = l  i = i  j = l  

1 N N 
= N  2 ~ ~{(Pn'IA,pnJlA)--2(A)2}---~O. 

i=1 j = l  

The convergence to zero is by Lemma 2.2.2(X)= 1 implies that l e L  e and hence 

1 i~=lp,,1A_)~(A)1--+0. 

By linearity and standard approximation 

1 i~=lP,,u_Sud 2 1--+ 0 

for every ueL 1. 
By Lemma2.1 P* is also mixing, and applying the last result to P* yields 

1 S 

Ni~=lvrni--~ vdl~ i = "gi2=lP*niv--S vd~ 1 ~ + 0 .  

Remark. The definition of mixing coincides with (strong) mixing when P is 
induced by a point transformation. Theorems 2.1 and 2.2 generalize the results 
of Blum and Hanson [1] to the case when P is not necessarily induced by a point 
transformation. 

Theorem 2.2. Let P and 2 be as before. Then the following conditions are equiv- 
alent: 

(a) P is mixing. 

(b) For every 1 =<p< oo, f~Lp(2) and sequence {hi} 

N fd2  v 2 P " ' f - ~  ~ 0 .  
i=1 

(c) For some l < p < o o  we have: 

N 

for every f eLp and any increasing subsequence {hi}. 
16" 
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Proof. (a)~(b).  For p = l  (b) is proved in Theorem2.1 (a)~(d).  If Ae2;, 
P1A < I, SO 

1 N=I --2(A) i <  1 N 1A--2(A) 1 
- -  EP"IA E P"' -*0 
H i  i=1 

and by standard approximation (b) follows. 

(b) ~ (c) is obvious. 

( c )~  (a). Let A~Z be fixed. The given convergence implies that for every 
B~Z and any subsequence {ni} 

1 N 
- -  ~ <P"~I a, 1B> --+ 2(A) 2(B). 
mi=l 

Hence necessarily <P" 1A, 1R> ~ 2(A) 2(B) for every BeX, and P" 1A -~ 2(A) weakly 
in L2(2), so P is mixing. Q.E.D. 

For unaveraged convergence we have: 

Theorem 2.3. Let P and 2 be as before. Then the following conditions are equiv- 
alent: 

(a) For every l__<p<oo and f~LvO 0 I lP" f -~ f  d2llp-~,O. 

(b) For some 1 < Po < oo we have: I IP ' f -  S f d211po--, 0 for any f ~ Lvo (2). 

Proof. Clearly (a) ~ (b). To prove (b) ~ (a) we first show that we may assume 
p0 = 1. Let f~L~()~) be bounded. Then feLpo(2 ). Let q satisfy l /p0+ 1/q--- 1. By 
H61der's inequality 

Il P"f - S f dAl[~= ~ IP" f - ~ f dAI dR ~ [IP" f - ~ f dA,]lpo I]lllq ~ 0. 

Standard approximations show that (b) holds with Po = 1. IffeLp(2), for 1 < p < or, 
and f is bounded, we have 

liP"f- <3., f > l l ~  liP"f- <2, f>l[1 [IP"(f- <2, f>)l[~ -1 

<= [IP"f-~ f dAi]~ ]lf-~ f d,~ll~-* ~ 0 .  

Standard approximations complete the proof. 

Example 2.1. Mixing does not imply unaveraged convergence in Lv-norm. If 
P is invertible (e.g. induced by an invertible measure preserving transformation 
which is mixing) P* = P -  1 and II P" ( f -  <2, f ))II p --+ 0 implies f =  <2, f ). 

Example 2.2. The results of Theorem 2.3 hold for'P* but not for P. See [5, 
p.l16]. 

3. Mixing with a a-Finite Subinvariant Measure 

Definition 3.1. Let P be a Markov process with a a-finite subinvariant measure 
2 ~ m, and ,~ (X) = c~. P is called mixing if for every A ~ E with 2 (A) < ~ the sequence 
{P" 1A} is weak-* convergent in Lo~ to zero. 
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P on L~ defines a contraction on L2(,~ ) [4, Chapter VIII, and clearly P is 
mixing if and only if 2 (A) < oo implies P" 1A ~ 0 weakly in L 2 (2). 

All integrations in this section are with respect to 2, and we assume 2(X)= 0o. 

Lemma 3.1. P is mixing if and only if the adjoint process P* is mixing. 

Proof If A, BEX with finite 2-measure and P is mixing, then 

<P*" l a, 1,) = (ln, P" 1,) -~ 0 

and by standard approximation P * ' I  A --~ 0 weakly in L 2 (2), so P* is mixing. The 
converse-  by symmetry. 

The following well-known lemma gives a multitude of examples to which the 
following results can be applied. 

Lemma 3.2. I f  P is dissipative (with a-finite subinvariant measure 2~m) it is 
mixing. 

Proof. Let A ~ X  with 2(A)< oo. Then 1AeLI(2 ) and since P* is also dissipative 

[4, (7.2)] ~ Pnl~= ~ lAP*n< OO a.e., sO P" IA (x) ---, O a.e. 0 < P ' I A < I  a.e. Hence, 
n = l  n = l  

if 2(B)<oo ~IBP'IAd2---~0 by Lebesgue's dominated convergence theorem, 
whence P ' I  A-~ 0 weakly in L 2(2) and P is mixing. Q.E.D. 

We note that if P is dissipative it always has a ~-finite subinvariant measure 
2 ~, m see [4, Chapter II]. 

Theorem 3.1. Let P be a Markov process with ~-finite subinvariant'measure 
2 ~ m. Then the following conditions are equivalent: 

(a) P is mixing. 

(b) I f  2(A)< oo all weak-* limit points in L~ of {P'IA} are constants. 

(c) I f  u~Lx(2 ) satisfies ~ ud2=0 ,  then @P' ,  114> ---, O.for A~N with 2(A)< 2 .  

Proof ( a ) ~  (b) is obvious, by definition. 

(b) ~ (c). The proof is the same as in Theorem 2.1 (b) ~ (c), starting from the 
second sentence. 

(c)~(a).  Remember that 2(X)=oo. Let A~N with 2(A)<oo. If P ' I  A is not 
weak-* convergent to zero, there exist a set B with 0<2(B)<  o% an e > 0  and a 
sequence {hi} with <18, P'~ 1A> ~e.  ),(X)= oO implies 2 ( X - B ) =  o% and since 2 is 
~-finite, we may find a set E E 2  disjoint from B with 22(A)2(B)/e<2(E)< oo. 
Define u = 1B - (2 (B)/2 (E)) 1~. Then u e L~ (2) and ~ u d2 = 0. But < le, P'~ 1 a)  < 2 (A) 
so <u, P"  1A) = <1,, P"' IA> --(2(B)/2(E)) <1~, P'~ 1A> >e-)o(A)  2(B)/2(E)>e/2. 

Hence <u P', 1A> does not tend to zero, which contradicts (c). Hence P ' I  A ---, 0 
in L ,  weak-* topology. (This proof follows [8, Theorem 1.2].) Q.E.D. 

Remark. Part (b) of the theorem shows that the notion of mixing in this section 
generalizes that of the preceding section (Theorem 2.1(b)). For P induced by a 
point transformation our definition coincides with that of Krengel and Sucheston, 
by [-8, Theorem 1.3]. The next theorem carries over to the general operator a 
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result obtained in [-8-1 for P induced by a point transformation. It is the generaliza- 
tion of Theorem 2.2 for the a-finite subinvariant measure. 

Theorem 3.2. Let P and 2 be as before. Then the following conditions are equiv- 
alent: 

(a) P is mixing. 
(b) For every l < p <  oo, f~Lp(2) and sequence {ni} 

N 

N - I ~ P " ' f  ~ 0 .  
i=1 p 

N 

(c) For some l<Po<OO we have: N - X ~ P " ' f  --~Ofor everyfELpo(2) and 
any increasing subsequence {ni}. i=~ po 

Proof ( a ) ~  (b). It is enough to prove the assertion for f of the form 1 a with 
2(A)< oo, as the general result will follow for f simple function by linearity and 
for general f eLv(2)  by standard approximation. 

If p > 2 then, as P" 1 A ~ 1, 

N p N 2 

N - ' ~= IP"' I A d 2 < ~ N - a i~= xP"' l A dR 

and thus it is enough to prove the assertion for 1 < p < 2. Define c~ = p -  1. As P is 
mixing P" 1 a ~ 0 weakly in Lz(2), so (P" 1 A, la) ~ 0 .  Hence lira (pi 1A ' W 1A) =0  

Ii-jl~ o~ 
by the same arguments as in the proof of Theorem 2 .1(a)~(d)  (putting zero 
instead of 2(A) there). We proceed as in [8]. Given e>0,  fix e l > 0  such that 
e~ < e/2(A) and choose e a > 0 to satisfy 0 < e 2 < e 1 e. Let M be an integer such that 
l i - j l> M ~ (pi  lA,PJlA) <e 2. {ni} is increasing, so [i- j l> m=> Ini-njl > m. 

/ i=1 \ N  j = l  

N / 1 U \~ 
1 ZSp,,1A |__ Zp, ,1A | d2 

N i=1 \ N  j=l } 

= N  ZIP" ' la  E P"~IA d2 
i = i  [j-il<=M 

N 

_1 i~=1 ~P~,l A (_~ ~ WJIA ) d2. 

(,) 

The last inequality follows from 0 < 6 < 1, since for 0 < a, b and 0 < ~ < 1 (a + b) 6 < 
a6+ b 6. The first term is bounded by 

~= ~ P"' 1A((2M+ 1)/N) a d 2 = ( 2 M +  1) a 2 ( A ) / N ~ O  
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so the first term, as M is fixed, tends to zero. To bound the second term in (.), 
we define GNi={x:(1/N) y, P'~IA(x)>e,}. 

(l/N) ~ Phi]A>81 1G~ ,, so for each i: 

~P"IA(N- '  E P'JlA) ~d2= ~P"~IA( N-1 E P'~IA) zd2+ 
[j-- i] > M GNi ]j-- il > M X -  GN 

GNi 

< - - N - l e ~ l ~ n n ' l A  2 n ' J l A d 2 + e < = e 2 / e l + e < 2 e .  
] j - i]>M 

Since this is for each i, by averaging the second term in (,) is bounded by 2e, 
hence 

N -  N Pd2 < lira sup S 1 ~ p,~ 1A = 2 e 
N~Qo i=1 

and as ~ was arbitrary, ( a ) ~  (b) is proved. 

(b) ~ (c) is obvious. 

1/ 1 > (c) ~ (a). Let A z Z with 2(A)< ~ .  By (c) P'il  A, 1A ~ 0. Since this is 

for any subsequence {n;} we have necessarily <P'IA, 1A)--*0. By Theorem 3.1 of 
Foguel's [3J we have W1A--~0 weakly in L2(2 ). Since this is for any A r 1 6 3  with 
2(A)<oo, P is mixing. Q.E.D. 

Remarks. (1) For p = 1 the theorem is not true. This situation is discussed in 
the next section. 

(2) The results of Theorem 3.2 may be applied to P*, which is mixing when 
P is. 

(3) Mixing does not imply ergodicity when 2(X)= o0. For an example let P 
be the symmetric random walk on the integers with p(i, i+_ 1)=�89 P is ergodic 
and conservative, 2 {i} = 1 is invariant, p2 is not ergodic. P is mixing and hence 
so is p2. 

Theorem 3.3. Let P and 2 be as before. Then in the following conditions 
(a) ~ (b) ~ (c): 

(a) For every f e  L 1 (2) with ~ f d2  = 0 ]lP"f []1 ~ 0. 

(b) For every f ~ L  2 c~ L 1 with S f  d2 = 0 11P'f [I 2 ---' 0. 
(c) P is mixing. 

Proof (a) ~ (b). If f eL  2 c~ L 1 with ~fd2 = 0 and f is bounded, then 

]lP'frl~ =~ W f P ' f  dA<= HP"fI[1 IIP'fl[ ~ <= HP'fII, Irfl] ~o ~ 0. 

I f f  is not bounded, we w r i t e f = f  + - f -  and find sequences of simple functions 
{fj+} and {fj-} with 0< f~+Tf  +, 0 < f ~ - T f - .  Hence 5f jd2TSf+d2 and 
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5fj- d2T5 f -  d2. We may assume ~f~+ d2>Sf j -  d2 (by changing f with - f  and 
taking only a subsequence, if necessary). We define g~- = (11 f~-Ikl/ll fj§ II1)fj§ Hence 
f~-, g f  are simple and tend in L 1 and in L 2 t o i l -  a n d f  + respectively. 

I[P'f I] 2_ -< liP" I - f -  (gf - f j - ) ]  N 2 + IIP"(g + - - f j - - ) L [  2 " 

The first term can be made arbitrarily small by fixing j large enough. Then, as 
5 ( g f - f j - )  d 2 = 0  the second term tends to zero as n-~ oo by the beginning of 
the proof. Hence (b) holds. 

(b) ~ (c). By Theorem 3.1(c) we have to show that ( f ,  P*" la> ~ 0 for every 
AeS, with 2(A)< oo and a n y f e L  1 with ~ f d 2 = 0 ,  in order to conclude that P* 
is mixing, and P will be mixing by Lemma 3.1. Fix A e E  with 2(A)< oo. If f eL  1 
satisfies 5 fd2= 0 and f e L 2 ,  

}<f P*" 1A) I = I<Pnf, 1A) I ~ HPnfl[2 2 (A)~---~ 0. 

I f f ~ L  1 with ifd;~=o, b u t f 6 L 2 ,  definef~- and g f  as above, so t h a t f j = g j  + -f~-  
satisfies f~--~f in L1, f~ ~ L 1 c~ L 2 and ~ f~ d2 = 0. 

I<f, P*" 1A>I < II f-f~lll + I<f~, P*" 1A>I 

the first term is made small enough by taking a fixed j large enough and the 
second then tends to zero by the beginning of the proof of ( b ) ~  (c). Hence 
( f ,P* ' IA>-~0 .  Thus P is mixing. Q.E.D. 

Remark. The following examples show that we have no possibility of a complete 
extension of Theorem 2.3. 

Example 3.1. (b) does not imply (a) in Theorem 3.3. Let P be the symmetric 
random walk of remark (3) above. It is easy to check that P * = P .  Since p2 has 
an invariant set A (the even numbers), (a) cannot hold. Define 

K = {f: f e L  2 (2): II P " f  II 2 = II P*" f  Jl 2 = IJ f ]l 2 V n}. 

By [4, proof of Theorem VIII.D] K =  {0}, so by a theorem of Horowitz [6] 
IIP 'f  IL 2 -~ 0 for every f e L  2 and (b) holds. 

Example 3.2. Mixing does not imply conditions (b) of Theorem 3.3. 

Let T be a point transformation which is an infinite K-automorphism [10, 
p. 965]. T is invertible so the induced operator P is invertible with P * =  P-1, so 
(b) does not hold. By [10] P has countable Lebesgue spectrum and is mixing. 
(T can be chosen conservative and ergodic.) 

4. Complete Mixing and L1-Convergence to Zero 
Definition 4.1. A Markov process (X, Z, m, P) is called completely mixing if 

for every A ~ Z  all weak-* limit points in L~o of {PnlA} are constants. 
By Theorem 2.1(b) this definition generalizes the notion of mixing when there 

is an equivalent finite invariant measure. 

Theorem 4.1. Let P be a Markov process on L 1 (X, Z, m) having no finite invariant 
measure ~m. I f  O~-u~Ll(m ) satisfies uP' -~O weakly in L 1, then IluPn[l~-~0. 
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The proof of [8, Theorem 5.1] can be adapted to our situation, as indicated 
at w 5 of [8]. 

Theorem 4.2. Let P be a conservative (or an irreducible) Markov process. Then 
the following conditions are equivalent: 

(a) P is completely mixing. 

(b) For every u ~ L  1 (m) with ~ u dm = 0 u P n ~  0 weakly in L 1. 

(c) For every ueLl(m ) with ~ udm=O and any subsequence {hi} we have 

N up"i 1 limN N-~=~ 1 =0 .  

Proof ( a ) ~  (b). The same as ( b ) ~  (c) in Theorem 2.1. 

(b) ~ (c). We first show that P is ergodic. If Pf=J" for some non-constant 
f e L ~ ,  we may find a function u~Ll(m ) with ~udm=O and @ , f ) + O .  By (b) we 
get a contradiction, as 04= ( u , f )  = (u, P " f )  = ( u P ' , f )  --, O. Thus P is ergodic. 
By [4, Theorem II.B], if P is ergodic and conservative it is irreducible. Hence 
every invariant measure is equivalent to m (since S the support of an invariant 
measure defines an invariant subspace L 1(S, Z c~ S, m) of L l(m)). If there exists 
an invariant measure 2 ~ m  with 2(X)= 1, then for u~L~(m) with ~ udm=O we 
define d#=udm,  and v=d#/d2. Thus ~ vd2=#(X)=~  udm=O implies by Theo- 

N N uP n' 1 rem2.1(d) that N-li~=l#Pn' ~ 0 ,  so N-li~=l --->0. 

If there is no finite invariant measure equivalent to m, there is none at all, 
hence u P ' - ,  0 weakly in L~ implies JI u P"111 --' 0 by Theorem 4.1, hence (c) clearly 
holds. 

(c) ~ (a). Let f be a weak-* limit point of {P" 1A}. I f f  is not a constant, we 
may find a function ueLa(m ) with ~ udm=O and @,f):#O.  Sincef  is a weak-* 
limit point of {P" lx} there exists a sequence {nl} with @, P"~ 1A)--~ (U, f ) ,  hence 

-12Upni, 1A ~(u,f)4=O 
i=1 

which contradicts (c). Hence f is constant. 

Remarks. (1) Theorem 4.2 was conjectured in [8, w 5] for P induced by a point 
transformation. This limitation did not permit the use of P*, which was needed 
to get part (d) of Theorem 2.1. 

(2) (a) and (b) are equivalent without conservativity, nor irreducibility. 

(3) We do not know if a conservative completely mixing process has always 
a o--finite invariant measure. A finite one does not necessarily exist. 

Theorem 4.3. Let T be a contraction in a Banach space L and let S* be the 

closed unit sphere of the conjugate space L*. Define A* = ~ T* ~ S*. 
n=l 

(a) ueL  satisfies II r~ui]-+0 if and only if ( f  u)=O for every f eA* .  

(b) T* maps A* onto itself. 
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Proof. (a) Suppose first that [}T"ull--~O. If f cA* there is a sequence {f,} in 
S* with r*" f ,  = f 

I { f , u ) l = l ( r * " f , , u ) l = l ( f , ,  T"u) l<l l r"u l l~O.  

Suppose now that u satisfies ( f , u ) = 0  for every f eA* ,  and define A,-*- 
T*"S*. By Alaoglu's theorem S* is compact in the weak-* topology, and as T* 
is continuous in that topology, A* is compact. {A*} decreases to A*, which is 
thus compact. 

By [2, p. 65] for every n there is a n f . s S *  with 

Ilr"ull < [{f,, r"u ) l+  l~=l(r*" f , ,u ) l  -+-1 
n n 

Let f be a weak-* limit point of {T*"f,}. Clearly f eA* ,  and by hypothesis 
( f ,  u ) =  0. Hence there exists a sequence {hi} with (T*"~f,,, u) ~ 0, which implies 
Ilr"'ul]---, 0. Since H rll < 1, II T"ull converges, and thus the limit is zero. 

(b) A,+ 1 .  =T*A,* implies T*A*~_A*. I f f eA* ,  f = T * " f ,  for some sequence 
{f.} in S*. Let g be a weak-* limit point of T*"- l f , ,  which is clearly in A*. Since 
T* is continuous in the weak-* topology, T*g is a limit point of T*"f, ,  hence 
T * g = f ,  and T* is onto. Q.E.D. 

For the next theorem we define 

S = { f ' . f e L ~ ,  I l f l l~<l} ;  S+={feLoo: 0<f__<l}. 

Theorem 4.4. The following conditions are equivalent for a Markov process P: 

(a) []uP"kll---~O for every u~L 1 with ~ udm=O. 

(b) (~ P"S contains only constant functions. 
n = l  

(c) Every sequence {f,} in S satisfying P f , + l = f ,  (n= 1, 2, ...) contains only 
constants. 

(d) (~ P"S + contains only constant functions. 
n = l  

(e) Every sequence {f,} in S + satisfying Pf ,+l=f ,  contains only constant 
functions. 

Proof. ( b ) ~  (c) is immediate. 

( c ) ~  (b). By Theorem 4.3(b) P maps A =  (~ P"S onto itself. I f f e A ,  we put 
n = l  

fl = f  and there is an f2 cA with Pf2 =fl, f3 cA with Pf3 =fa and so on. By (c)ft 
is a constant. 

(b) <=~ (a) by Theorem 4.3 (a). 

(b) ~ (d) ~ (e) is obvious. 
(e) ~ (d). The proof of Theorem 4.3 (b) can easily be adapted to show that P 

maps ~ P"S + onto itself (S + is compact in the weak-* topology), and ( e )~  (d) 
by the proof of (c) ~ (b). 
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( d ) ~ ( a ) .  Let  # ,  be  defined by  d#,=uP"dm. Let  X = A ,  wB,  be the H a h n  
d e c o m p o s i t i o n  of  # , .  Hence  II # ,  It = # ,  ( A , ) -  # ,  (B,). I t  is enough to show # , (A, ) - - ,  0, 
#,(B,)---,  0, which is done  in the  same way  as in the  p r o o f  of  T he o re m 4.3(a) by  
cons ider ing  weak-* l imit  poin ts  of  {P" 1A,}, which are  cons tan ts  by (d). 

Remark. F o r  the case tha t  P is given by  a t r ans i t ion  p robab i l i t y  and is con- 
s idered as an o p e r a t o r  on the space of  all finite measures  on (X, 2;) this result  
is due to J amison  and  Orey  [7],  who  gave a p robab i l i s t i c  proof.  

Corol la ry  4.1. Let P be induced by the point transformation T ( i. e. P f (x)= f ( Tx) 
a.e.). A necessary and sufficient condition for the convergence II (#-v)P"ll--~ 0 for 

any two probability measures ~m is that ~ T - " Z =  {0, X}. 
n = l  

Proof Define Z , =  T-"2 ; .  Then  1;, is a a -a lgebra ,  which is the smal les t  with 

respect  to which all the  funct ions P"f  are  measurable .  If  A ~  (~ 1~,, then A =  
n = l  

T-"A, ,  or P" 1 A =  1 a.  Thus  by  Theo rem 4.4 the cond i t i on  is c lear ly  necessary.  
If  f e  N P" S, then f is 1; , -measurable,  so the cond i t i on  impl ies  tha t  f is a constant .  
Hence  by  T h e o r e m  4.4 ( # -  v) (X) = 0 implies  Jl ( # -  v) P" IJ --~ 0. 

Remark. A p r o o f  of  Coro l l a ry  4.1 using the M a r t i nga l e  convergence  theo rem 
can be found  in [6]  (a slight modi f i ca t ion  is needed to d ispose  of  the a s sumpt ion  
of  a finite invar ian t  measure) .  The  results  of  1-8] imply  the t heo rem only  when 
there is no finite invar ian t  measure  ~ m. 

Acknowledgment and Remarks (added March ,  1971) 

It is a pleasure to thank Professors Krengel and Sucheston for their comments on the manuscript 
and for sending me preprints of some of their work. These lead to the following remarks. 

1. The proof of Theorem 2.1 can be used to show that if P is a contraction on a Hilbert space H, 
then P"f~O weakly iff N-12P"~f--.O strongly for every increasing {hi}. This result was proved 
independently by Akcoglu and Sucheston (" On operator convergence in Hilbert space and in Lebesgue 
space", to appear in Periodica Math, Hungarica). 

2. Theorem 4.2 was proved independently (in essentially the same way) by Mr. Winkler at the 
Ohio State University. Akcoglu and Sucheston (loc. cit.) have then proved it, without assuming con- 
servativity (or irreducibility), as a corollary of a more general theorem. (It should be mentioned that 
an indication of a proof for point transformations, much less elementary when the space is not a 
Lebesgue space, is given in [8].) 

3. A conservative completely mixing process does not necessarily have a a-finite invariant measure. 
If PI is a conservative ergodic operator without invariant measure, then P = 61 + (1 -fi)P1 is completely 
mixing for 0<fi < 1 (Ornstein and Sucheston, "An operator theorem on L~ convergence to zero", 
Ann. Math. Stat. 41, 1631-1639 (1970)),and is conservative without invariant measure [4, p.94]. 
(Example due to Sucheston.) 

4. The author has proved that an irreducible process is completely mixing if and only if its cartesian 
square is completely mixing. 
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