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Summary. We study minimal symbolic dynamical systems which are orbit 
closures of Toeplitz sequences. We construct 0 - 1  subshifts of this type for 
which the set of ergodic invariant measures has any given finite cardinality, 
is countably infinite or has cardinality of the continuum. 

The first example of a minimal flow which is not uniquely ergodic was found 
by Markov (cf. Nemytskii and Stepanov, 1960, p. 512). A paper of Oxtoby 
(1952) includes a particularly elegant example of such a flow, obtained as the 
orbit closure of a point in {0, 1} z. Later Jacobs and Keane (1969) defined a 
class of almost periodic 0-1 sequences, called Toeplitz sequences, which in- 
cludes Oxtoby's sequence. Although the orbit closure of a regular Toeplitz 
sequence (see Sect. 2) is always uniquely ergodic, Markley and Paul (1979) 
have shown that in a certain sense most non-regular Toeplitz sequences yield 
minimal flows which are not uniquely ergodic. 

We consider the problem of describing the invariant measures on the orbit- 
closure of a Toeplitz sequence. We generalize the definition of Toeplitz se- 
quences to sequences in a compact symbol space s In Sect. 2 we identify the 
maximal equicontinuous factor of the flow; this was done by Eberlein (1970) 
for regular Toeplitz 0-1 sequences. In Sect. 3, we determine the ergodic mea- 
sures for Oxtoby's flow; there are exactly two. We construct analogous flows in 
2 :  for which the set of ergodic measures has the same cardinality as S. In 
Sect. 4 we construct Toeplitz 0-1 sequences for which the orbit closure has the 
measure structure of a skew product, with the maximal equicontinuous factor 
as base and a freely chosen subshift of {0, 1} e as fiber. This construction yields 
minimal flows for which the set of ergodic measures has any given finite 
cardinality, is countably infinite or has cardinality of the continuum. 

The last section contains computations of entropy for our examples. We 
find Toeplitz flows with entropy arbitrarily close to log 2. Markley and Paul 
(1979) show that a non-regular Toeplitz flow "usually" has positive entropy. 
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deeply grateful to Shizuo Kakutani for his direction and teaching. I also wish to thank John 
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1. Preliminaries 

We summarize some basic definitions and results; we refer the reader to 
Oxtoby (1952) and Ellis (1969) for more details. 

By flow we will mean a pair (X, T) where X is a compact  metrizable space 
and T is a homeomorphism of X to itself. (X,T)  is minimal if X has no 
proper closed T-invariant subset. N(X) will denote the a-algebra of Borel sets 
of X. An invariant measure for (X, T) is a probability measure ~ on N(X) with 
/~(T 1B)=#(B) for all BEN(X); the measure is ergodic if every T-invariant 
Borel set has measure 0 or 1. The invariant measures for (X, T) form a non- 
empty closed set, and the ergodic measures are exactly the extreme points of 
this set. The flows is uniquely ergodic if it admits only one (ergodic) invariant 
measure. 

A compact  topological group G is monothetic if some g s G  generates a 
dense subgroup of G; g is called a (topological) generator of G. G is 
necessarily abelian. We also denote by g the translation h~-*h+g on G. Then 
(G, g) is a minimal flow, and the Haar  measure on G is the unique invariant 
measure. 

The flow (Y, S) is a factor of (X, T) if there is a continuous map rc of X 
onto Y with ~o T=Sozr ;  if 7r is a homeomorphism then (X, T) and (Y, S) are 
isomorphic as flows. Every minimal flow (X, T ) h a s  a maximal equicontinuous 
factor (Ellis and Gottschalk, 1960). This can be characterized (up to flow 
isomorphism) as a factor ~z: (X, T)--* (G, g), G a compact  metrizable monothetic 
group with generator g, such that for any other such factor re': (X, T)---~(G', g') 
we have a factor map q0: (G, g) ~ (G', g') with cp orc = 7z'. 

The importance of the maximal equicontinuous factor to the problem of 
determining the invariant measures on (X, T) can be seen as follows: if/~ is an 
invariant measure on (X, T) then # o ~ -  i is an invariant measure on (G, g), so it 
must be equal to the Haar  measure m. If B~Tr-I(N(G)), then #(B) 
= #  o re-J(lr(B))=m(~(B)). Thus the invariant measures on (X, T) all coincide on 
the a-algebra 7r-I(N(G))~ N(X). 

We will use the following fact from Paul (1976). 

Proposition 1.1. Let (X, T) be a minimal flow and re: (X, T )~(G,  g) a factor 
map, with G a compact metrizable monothetic group with generator g. I f  for 
some x~X  we have rc-i(Tr(X))={x}, then (G,g) is the maximal equicontinuous 
factor of (X, r). 

2. Toeplitz Sequences 

We will generalize the usual definition of Toeplitz 0 - 1 sequences to sequences 
in X = X  z, where X is a compact  metric space. We write elements of X as x 
= (x(n)). The metric 
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Ix, Yl = ~ 2-1"llx(n),y(n)l 
~ =  - o o  

gives the product topology on X. S will denote the left shift homeomorphism, 
Sx(n)=x(n+ 1). The orbit of x is O(x)= {S"x: neZ}. 

For x e X ,  p e n  and a e Z  we set 

Perp(X, a) = {neZ: x(n') = a for all n' - n rood p} 

Perp(X) = U Perp(x, a) 

Aper(x) = Z \ (  ~j Perp(X)). 
p e n  

By the p-skeleton of x we will mean the part of x which is periodic with period 
p. To make this precise, we define the p-skeleton to be the sequence obtained 
from x by replacing x(n) by a new symbol " " for all nCPerp(X). 

Definition. The sequence q e X is a Toeplitz sequence if Aper(~/)= ~. 

It is not hard to extend the basic results of Jacobs and Keane (1969) and 
Eberlein (1970) to this setting. We include proofs in this section for complete- 
ness and to introduce ideas we will use later. 

Periodic sequences are Toeplitz sequences. Every Toeplitz sequence is al- 
most periodic: that is, every block occuring in q appears with bounded gap 
between sucessive occurences. (In fact, every block in q is in the p-skeleton of q 
for some p.) Hence (6(~), S) is a minimal flow (Oxtoby, 1952). From now on we 
will consider only non-periodic Toeplitz sequences. 

If Plq then Perp(X)~ Perq(x). We call p an essential period of x, pe~(x) ,  if 
Plq for every q satisfying Perp(X, a )=  Perp(X, a ) - q  for all a~Z. Thus pe~(x)  if 
and only if the p-skeleton of x is not periodic with any smaller period. The 
following is easily verified: 

Proposition 2.1. I f  p and q are essential periods of x, so is their least common 
multiple. 

Definition. A period structure for a non-periodic Toeplitz sequence q is an 
increasing sequence (Pl)i~ of natural numbers satisfying 

(i) pi is an essential period of ~/for all i, 

(ii) PilPi+ 1' 
oo 

(iii) ~J Perp~(t/)=2g. 
i = 1  

Every non-periodic Toeplitz sequence has a period structure. For  example, 
order the elements o f f ( t / )  and let q /be  the least common multiple of the first i 
elements of ~(t/). A period structure is obtained by deleting repeated terms 
from the sequence (qi). 

We can now describe the maximal equicontinuous factor of the flow 
(g(t/), S). Fix a period structure (Pi) for t/. Since PilPi+ 1, we have a sequence of 
group homomorphisms 



98 S. Williams 

where ~0~(r/) is the residue of n modulo p~. We let G be the inverse limit group, 
G = li, m_mZ/piZ. That is, 

G =  {(ni): ni67Z/pi~E and n j -n  i modpi for i<j} 

and (nl)+(mi)=(ni+mi), where n i+mi is taken modulo pi. We denote by i the 
element (1) in G, and r~=n.T for n~2g. The metric 

'(ni), (m~)l=max { i ~  : n~ + m~ } 

gives the usual inverse limit topology on G. G is a compact monothetic group 
with generator i. 

Theorem 2.2. (G, "1) is the maximal equicontinuous factor of (C(tl), S). 

Remark. It can be seen algebraically that G is independent of the choice of 
period structure (p~). In fact, G can be obtained without resorting to period 
structures as lim Z/pZ, where the inverse limit is taken over all p~ ( r l ) ,  

4------- 

respecting the homomorphisms Z/q2g--.Z/p2g for p[q (cf. Jacobson, 1980, p. 72- 
74). 

For each ioN, n~Z/plZ we set Ai,= {smt/: m=n modpi }. 

Lemma 2.3. (i) ~ i  is exactly the set of all co6C(tl) with the same pj-skeleton as 
S"t/. 

(ii) {AI,: n~Z/piZ } is a partition of 6(rl) into relatively open sets. 
(iii) ~i  ~ ~ for i <j and m-- n rood pi. 

(iv) SA',= A',+ 1. 

Proof. Let co~/l~,; we will show co has the same p~-skeleton as Snt/. Clearly 
Perp,(co, a )=  Perp,(Snt/, o-) for all a ~ .  Suppose k~ Perp,(co, a)\Perp,(Snt/, a); then 
we can find k'=k mod Pi, j> i  and r + a  with k'ePerpj(Sn~l,z). Then for any 
co'~Ai,, co'(k")=z for some k"=k rood Pi, O<k"<pj. Since co(k")=a for all 
k"--k mod pz, we obtain 

[co, co'[ __> 2-vJ]o-, ~l for all co'cA,.i 

This contradicts co~.~,. 
A similar argument shows that if n # m  mod p~ then A~n and A~ are a 

positive distance apart. For S"r/ and smt/ must have different p~-skeletons since 
p~ is an essential period of t/. We can find k~Perv,(S"t/, a)c~Perp~(Snr/, z), with 
i<j and a4=z; We deduce as above that [co,~'l>=2-~la, r I for all ~o~A~ and 

, i i ,  co cA,. Since {A n. n ~ / p ~ }  is a finite partition of C(tl), (ii) is true and the rest 
of (i) follows. Parts (iii) and (iv) are immediate. 

Proof of Theorem 2.2. For g=(ni)~G we set 

Ag (~ -~ = A n l  �9 
i = 0  
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By L e m m a  2.3, Ag is the intersection of a nested sequence of closed sets, so it is 
closed and non-empty.  It also follows from the lemma that  {Ag: g~G} is a 
part i t ion of (5(t/), and SAg=Ag+i .  We define the factor map  ~' ((9(r/), S ) ~ ( G ,  i)  

J - {(nl)eG: nj=m} are by 7c-l(g)=Ag. The  map ~ is cont inuous because sets B m -  
a basis for G, and -1 j _ - j  7~ (Bm)-A,~. 

To prove that (G, [) is the maximal  equicont inuous factor, we show 
7: i(u(t/))={t/} and apply Proposi t ion 1.1. If c~A6=7~-l(7~(t/)), then o)eA~ for 
all i, and so (9 has the same pi-skeleton as t/ for all i. Since t/ is a Toepli tz  
sequence, co = t/. 

Corollary 2.4. 7~(o~)=7:(c#)/f and only if ~o and ~o' have the same pi-skeleton for 
all i~N.  In particular, ~ is one-to-one on the set of  Toeplitz sequences in 6(tl). 

We now turn to the problem of determining the invariant  measure on ((5(t/), S). 
We let m denote  the Haa r  measure on G. As we observed in Sect. 1, any 
invariant  Borel measure on (~(t/) coincides with m o n  on u - l (~ (G) ) .  For  i eN ,  

1 
nEZ/p i we have ~ i ~  I(~(G)) ' and -i -i m o ~ ( A , ) = - -  since {A,' n~TZ/pi2~ } is a 
part i t ion of (9(r/) and SA ~, = A',+ 1 . Pi 

Since Perp,(t/) is periodic, it has a density in Z given by 

d i= 1_. {nEZ/piZ : n~ Perw(r/)}. 
Pi 

The d i are increasing; we set d =  lim d~. 

Definition. The Toepl i tz  sequence t / is  regular if d = 1. 

We let 5 ' -= J-(r/) denote  the set of Toepli tz  sequences in g(t/), and C = C(r/) 
= {cg~(~(t/): 0CAper(co)}. 

Proposition 2.5. C, 3 - e n - I ( N ( G ) ) .  We have m o rc(C)=d, and 

{10 if d = l  
m o ~(3-) = if d < 1. 

Proof. For  i e N  we set Ci={oge6(tl): 0ePerp~(co)}. Then  C i is the union of 
those ~ i  for which 0ePerp~(S~r/), that  is, nePerv~(t/). Hence Cie~-l(J j (G))  and 

oo 

m o n ( C i ) = d  i. Then C =  U Cien- l (N(G));  since the C i are nested, mo~(C)  
i = 1  

= lim d~=d. We have ~ - =  ~ S"Cezc ~(N(G)). If d =  1, mo ~ ( J - ) =  1; if d <  1 then 
i ~  oe neT/  

m o ~ (C)<  1, so m o ~ ( J ) =  0 since ~- is shift invariant. 

Theorem 2.6. (Jacobs and Keane). I f  r 1 is a regular Toeplitz sequence then 
(O(rl), S) is uniquely ergodic. 

Pro@ Let # be an invariant  measure on (g(t/), S). For  BeN((~(t/)) we write B 
= (B c~ r ~ ( B \ J ) .  Since ~ is 1 - 1 on W, B c~ ~- = ~ -  ~ (rc(B c~ J ) )  and #(B c~ J )  
= m o  ~ ( B c ~ - ) .  Since # ( J - ) = m o  r e ( J ) =  1, # ( B \ J - ) = 0 .  Thus # ( B ) = m o  n(B\~- ) .  
This determines # uniquely. 
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3. Oxtoby Sequences 

We construct Toeplitz sequences in Z z analogous to Oxtoby's example. For 2 
= {0, 1} our construction differs slightly from Oxtoby's; the change was made 
for notational convenience and does not materially affect any results or proofs. 

Construction. Let (Pl)i~ be a fixed sequence of natural numbers with PilP~+ 1 

and p~>3, P~+1>3 for all i~N. Fix a dense sequence (o-~)i~ in 2; with the 
Pi 

property that every element of the sequence appears infinitely often in the 
sequence. (For s  {0, 1 .. . .  , r - 1 }  we may take a~-i mod r.) 

We define the sequence t/~Z Z by inductive steps. The first step is to set t/(n) 
=a~ for all n - - 1  or 0 mod p~. For each k~Z we set J(1, k)=[kpl+l ,  (k 

+ l ) p l - 1  ). Step 2 is to set ~/(n)=cr 2 for all neJ(1,k) with k -  - 1  or 0 mod P~. 
Pl 

In general, for i eN  we let J(i, k) denote the set of nE[kp~, (k+l)pi)  for which 
t/(n) has not yet been defined at the end of the ith step. The (i+1) th step is to 

set r/(n)=a~+~ for rl6J(i, k) with k -  = - 1  or 0 mod Pi+l 
Pl 

Sequences r/ defined as above will be called Oxtoby sequences. Note that 
after the ith step r/is defined on all of [ -p~_z,  p~]. The construction is periodic 
at each step, so r/is a Toeplitz sequence. For i<j and me2g, J(j, m) is a union of 
sets of the from J(i, k). Perp,(~/) is exactly the set on which ~ is defined at the 
end of the i th step, since the sets J(i, k) are translates of one another by 
multiplies of p~ and are filled with different symbols at different stages of the 
construction. It is clear that the p~-skeleton is not periodic with any smaller 
period, so (Pi) is a period structure for r/. 

We continue to use the notation of Sect. 2. In particular, n: (g(~/), S)---, (G, 1) 
is the maximal equicontinuous factor. 

Proposition 3.1. The Oxtoby sequence ~1 is regular if and only if 

Pi diverges. 
i=1 Pi+l 

1 2 
Proof. Recall that d~=--~ ~ {tlE2g/p~2g: t/ePerp ~/}. Then d 1 = - - .  For i>  1, 

Pi Pl 

2p~ 
di+ l=di+(1-di)  - 

Pi+ 1 

since 2pi is the proportion of [0, Pi+ 1)\Perp,(t/) which is in Perp,. l(tl). Hence 
Pi+ 1 

1-d i+  , = ( 1 - d l )  ( 1 -  2pi ] 
\ Pi+l!  

= ( 1 - 2 )  f i  ( 1 - 2 p j )  
j=l \ Pj+I 
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by induction. Thus lim d i = l  if and only if this product tends to 0, which 
i~oo 

happens exactly when ~ Pi diverges. 
i - 1  Pi+l 

Theorem 3.2. I f  the Oxtoby sequence tl is not regular, then the set of ergodic 
invariant measures on (C(tl), S) is in one-to-one correspondence with Z. 

Before proving this theorem, we must establish some notation and two 
lemmas. 

Notation. By Corollary 2.4, for each geG the sets Perp~(co) and Aper(co) are 
independent of the choice of coe~r-l(g). We will sometimes denote these sets 
Perp,(g) and Aper(g). 

Lemma 3.3. (i) For  all coe6(t/), co(n) is constant on Aper(co). 
(ii) For each geG and ~eZ there is an coerc l(g) with co(n)=o- for all 

neAper(g). 

Pro@ (i) Let ~(co)=g=(ni). For  each i, co has the same pi-keleton as S"ir/ and 
so [-ni ,Pi-ni)~Aper(co)c[-ni ,pi-ni) \Perpi(Snit l)=J(i ,O)-ni .  If smtI~AI,~ 
then m=n~+kpi for some keZ;  then Smtl(n) is constant on J(i,O)-n~ since r/(n) 
is constant on J(i,k). Since -i coeA,,,, co(n) must also be constant on J(i,O)-ni. 
Hence co(n) is constant on [-n~,p~-ni)c~Aper(co) for all i. If - n ~ - c ~  and 
pi-n~+oo we can conclude that co(n) is constant on Aper(co). If either of these 
conditions fail, it is easy to see that g=rfi for some meig; then co=Star/ and 
Aper (co) = 0. 

(ii) Let g=(ni)eG and o-e2. The sequences S"'t/ all have the same pj- 
skeleton for i>j, so for each neAper(g), S"~rl(n) is eventually constant. S"~rl(n) 
=ai+ 1 for nea(i,O)-ni, which contains [-ni,pi-ni)c~Aper(g). We choose 

ni i 1< i2<  ... <ij < . . .  with o-~j-~o'. Then S J-it /  converges to the desired co as 
j----~ 00. 

Set Z = G x  S, with the product topology. We define a flow T on Z by 
T(g, a) = (g + 1, a). The ergodic measures on (Z, T) are exactly those of the form 
m, =m x ~ ,  where m is the Haar measure on G and 6o is the point measure on 
2;, ~,({o-})=1. We define a map ~0: Z ~ g ( t / )  by mapping (g, a) to the unique 
coez-J(g) with co(n)=a for all neAper(g). The map qo is 1 - 1  except on 
q0-~(J), and ~oo T=Socp. It can be seen that (p is not continuous, but we do 
have: 

Lemma 3.4. (p is bimeasurable. 

Proof. First we show (p is measurable. Sets of the form 

u =  U(G, s)= {coEg(~): Ico(0), ~1 <s} 

and their translates by powers of S form a sub-basis for .~(g(t/)), so it suffices 
to show qo I(U)eN(Z). We write U=(Uc~C)u(U\C).  (Recall C={coeg(t/): 
0~Aper(co)}erc- I(N(G)).) For  j = 0 ,  1 .... we set 

Vj= {coeg(r/): 0ePerp,(co, aj) for some i} 

U --i . {A,. 0ePerp,(S"t/, sj)}erc- *(N(G)). 
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~0 I(U(~ C):7c(U(~ C) x ~@N(Z) 

u \ c  = {co' Ico(0), al < ~ } \ c  

~(u\c) = (a \~(C))  • { ~ '  I~, ~rl < ~ } ~ ( Z )  

and so q)-I(U)~N(Z).  
To show q~ ~ is measurable ,  we note  that  sets of the form 

W= W(i,n,a,O=~(Ai,)  x {r: Io-, zl <e} 

generate  N(Z).  If  we set B = U \ C ,  where U and C are as above,  then 

SIB = {coeg(~/): / tAper(co)  and [a, co(/)l <~} 

~o (w) = X ~, a [J-~ (~) S'B)] ~ ~ (8 (~ ) ) .  

Proof of Theorem 3.2. For  each a e X  we define # .  on N((J(tl) ) by #.(B) 
=m.(~0-I(B)) .  It  is easy to see that  # .  is an ergodic measure  on ((~(t/), S) with 
#~(~o(G x {a}))= 1. If  ~ 4: o- then 

~0(a x {~}) n~0(6 x {:})= J ;  

since # ~ ( J ) =  #~(g'-)= 0, #~ and #: are distinct measures.  
Finally, suppose that  # is an ergodic measure  on (g(t/), S). The  formula  v(A) 

=#(~0(A)) defines an ergodic measure  on (Z, T). Hence  v=m~ for some aeZ.  If 
BeN((F(t/)) then B \ ~ - =  ~0(~0-~(B\J))  and 

#(B) = # ( B \ Y )  = v(q~- ~(B\~-)) = m.(q) i ( B \ Y ) )  

= # ~ ( B \ J ) =  #~(B). 

Thus  # = #~. 

4. Toeplitz Sequences Constructed from Subshifts 

In Sect. 3 we obta ined  min imal  flows with arbi t rar i ly  m a n y  ergodic measures  
at the expense of working  with an arbi t rary  compac t  symbol  space s In this 
section we show how to do this while remaining in {0, 1 }z= X. 

Let  (Y, S) be a subshift of  (X, S) containing at least two points. For  r ~ N  we 
let Blr(Y ) denote  the set of r-blocks occurr ing in Y, and fir its cardinality.  In 
the construct ion of t/ which follows, if b=blb2. . .br~Blr(Y)  and J 
= { n l , n  2 . . . . .  n r } C Z  with nl <n2< ... <nr, then by filling the set J with the 
block b we shall mean  setting t l (n l )=b  1 . . . . .  t / (nr)=b r. 

Construction. As with Oxtoby  sequences, we construct  t / in  steps. 

Step 1. Choose  p l > 2  and set t / (n)=0 for n -  - 1  m o d  p~, t /(n)= 1 for n - 0  m o d  

Pl" 
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Step 2. We let J(1, k )=  [kpl + 1, (k + 1 ) P l -  1) for k6Z.  J(1, k) has cardinali ty rl 
= p l - 2 .  For  k =  - 1 , 0  . . . .  , / ~ r l - 2  we fill each J(1, k) with a different e lement  of 

Blrl(Y ). We choose p 2 > p i ~ , ,  PllP2. For  k'=-k m o d  P2, k a [ _ l , / ~ r l _ 2  ] we fill 
Pl 

J(1, k') with the b lock that  was used to fill J(1, k), so that  ~/ has per iod P2 
where it is defined. (Since p a > p a ~ ,  tl remains  undefined on some sets J(1, k).) 

Step i + 1 .  Let  J(i,k) be the set of n~[kp~, (k+l )p~)  for which t/ has not  been 
defined after the i th step, with ~ J(i, k)=  r i. Fo r  k = -  1, 0 . . . .  , /~r~-2 we fill each 
J(i, k) with a different b lock in BI~,(Y). We then choose P~+I>P~r,,P~IP~+I and 

fill J(i, k') in the same way as J(i, k) for k'---k m o d  Pi+l ,  k ~ [ - 1 , / ~ -  23. 
Pi 

Since /~, > 2 for all i, after the i th step t/ is defined on [- - Pi, Pi]" If 1 < j  < r i 
there are at  least two r~-blocks of  Y which differ in the jth coordinate,  so the jth 
place in J(i, k) is not  filled with the same element  of {0, 1} for all k. I t  follows 
that  Perp~(tl) is exactly the set of  integers on which t/ is defined by the end of 
the  i th step. Thus  (p~) is a per iod structure for the Toepl i tz  sequence tl. 

Proposi t ion 4.1. The sequence tl is regular if and only if 

i - 1  Pi+l 
diverges. 

We omit  the proof,  which is similar to that  of Propos i t ion  3.1. No te  that  
for any Y, we can choose (p~) to m a k e  this sum converge. Fo r  the rest of the 
section t/ will be a non-regular  Toepl i tz  sequence constructed as above. 
G, ~, J- ,  C are as defined in Sect. 2. We set 

D = {co~(5(t/): Aper(co) is a 2-sided infinite sequence} 

= g01) \ ( l im inf S k C u lim i n f S -  k C)~ ~ ~(N(G)). 

L e m m a  4.2. For t t non-regular, m o re(D)= 1. 

Proof. Since lim inf SkC is an S- invariant  set in ~ - I (N(G)) ,  it mus t  have m o ~- 
measure  0 or 1. Fo r  t/ non-regular ,  m(rc(C))=d<l, so mo~( l im  inf SkC)=0 .  
The  same holds for lira inf S k C. 

Let  Z = G x  Y with the p roduc t  topology,  and let 0: G-->{0,1} be the 
indicator  function of G \ ~ ( C ) ;  that  is 0 ( g ) = l  if 0~Aper(g)  and 0 ( g ) = 0  other-  
wise. We define a m a p  T: Z ~ Z by 

T(g, y) = (g + 1, S~ 

Thus  T is a "piecewise p o w e r "  skew product .  (See Belinskaya, 1974.) T is a 
b imeasurab le  bijection. (It is not  a homeomorph i sm. )  

We define ~o: Z - +  {0, 1} z by sending (g, y) to the sequence x defined as 
follows. For  n ~ Z \ A p e r ( g )  we let x(n)=co(n) where co6~z-l(g). (This is inde- 
pendent  of the choice of co.) For  neAper(g) ,  we set i(n)=rn~Nw {0} if n is the 
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(m + 1) th smallest  e lement  of  Aper(g)  c~ (N u {0}), and i(n) = - m ~ Z -  if n is the 
m th greatest  e lement  of Aper  (8)~ 7/-.  We then set x(n)=yi(n)). Thus  we have "fil- 
led" Aper(g) with as much  o f y  as will fit. I f g e n ( D )  all o f y  is used, so (p is 1 - 1 on 
n(D) x Y. We have posi t ioned y in Aper(g)  so that  y(0) fills the first non- 
negat ive place in Aper(g). It  is not  hard to see that  S x = q ) ( g + i , y )  if 
0~Aper(g)  and S x = c p ( g + [ ,  Sy) if 0~Aper(g) ;  that  is, So qo= (p o T. 

Lemma 4.3. ~o(Z)= g(~/). 

Proof. The p roof  is similar to that  of  L e m m a  3.3. We first show ~o(Z)~(~(t/). If  
e ) e Y ,  n(o))=g, then qo(g,y)=co for all yeY. If  co~Y, n(~o)=g=(ni), then the 
intervals [ -n~ ,p i -n i )  increase to fill •. For  each i, [ - n i ,  pi-n~)c~Aper(co) is 
either empty  or equal  to [ - n ~ ,  p~-n~)\Perp,(e)). The  lat ter  set is filled by an r i- 

m i block of Y in each S t/eA~i, since it is of the fo rm J(i, k ) - m  for some ks2~. 
Hence  it is filled by an r~-block of Y in -i coeA, .  It  follows that  Aper(co) is filled 
by a sequence, or par t  of  a sequence, in Y. 

N o w  let x=q) (g ,y )  with g=(n~)eG,  y~Y. For  each i e N  we pick ki~E so that  
the rl-block of Y which fills J(i, ki) in t/ matches  the r~-block of y which fills 
[ - h i ,  pi-ni)\Perv~(g) in x. Set mi=kiPi+ni; then S'~i t l~x and  xe(~(r/). 

Lemma 4.4. ~o is bimeasurable. 

We omit  the proof,  which is similar to that  of  L e m m a  3.4. 

Theorem 4.5. Let 11 be a non-regular Toeplitz sequence constructed as above from 
(Y,S). There is a one-to-one correspondence between the ergodic T-invariant 
Borel measures v on Z and the ergodic measures on (J(~), S) Given by w-*vo ~o -1. 

Proof. If v is a T-invariant Bore1 measure  on Z then vo~o -1 is an invar iant  mea-  
sure on ((~(t/),S). Since q) is one- to-one on ~o-l(D) and v(qo l (D))=v(n(D)x Z) 
=mort(D)=1, voq) -1 is ergodic if and only if v is. If  vo~o ~=v'o~o -~, then 
for B s N(Z),  v (B) = v (B c~ ~o- I(D))= V o q)- l((p (B) c~ D) = V o ~o- l(q)(B) c~ D) = v'(B), 
so v = v'. Finally, if g is an invar iant  measure  on (g(t/), S) then v = #  o (p is a T- 
invar iant  Borel measure  on Z and # = v o (p-~. 

Remark. For  each invar iant  Borel measure  v on Z, (p is a conjugacy between 
the measure- theore t ic  dynamica l  systems (Z,N(Z) ,v ,  T) and ((~(t/), ~((~(t/)), 
voqo ~S). 

If 2 is an invar iant  measure  on (Y, S) then m x 2 is a T-invariant  Borel 
measure  on Z. If  2 is ergodic, m x,~ need not  be. (See Example  4.7.) Dist inct  
ergodic measures  2, 2' on (Y, S) are mutual ly  singular, so m x 2 and m x 2' are 
mutual ly  singular and can be decomposed  into mutual ly  singular ergodic 
measures.  Hence  Z always admits  at least as m a n y  ergodic measures  as Y. 

Example 4.6. Take  Y={0,  1} e. The  set of ergodic measures  on (Y,S) has 
cardinali ty of  the cont inuum,  so the same is true for (g(t/), S). 

Remark. For  n e N  we set 
n - - 1  

0,(g)= ~ 0(g+/$) 
k = O  
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for geG. Then 
T'(g, y) = (g + d, S~ 

for all (g, y)eZ. 0,(g) is simply the cardinality of Aper(g)n[0 ,  n). If geA~o then 
Aper(g) c~ [0, Pi)is either J(i, 0) or 0, and Op,(g)=r i or 0. 

Example 4.7. Let 1 < r e N .  Define y,e{0, 1} z by yr(n) = 1 if rln, y~(n)=0 other- 
wise. We set Y=(9(y~)=g(yr); (Y,S) is a cyclic permutation of r points and is 
uniquely ergodic. We construct a Toeplitz sequence r] from (Y, S), choosing pa 
= r  +2  so that rz = r. We claim that ((~(tl), S) admits exactly r ergodic measures. 

For  k=0,  1 , . . . , r - 1  we set 

Fk '  = F~ w T F~ u . . .  u T ; ~ - i Fk  . 

If z=(g,y)eFk, then by the remark above Tmz=(g+l~,Sry)  or (g+/Y~,y). 
Hence TP~Fk=Fk, and each F{ is a closed T-invariant subset of Z. The sets F{ 
partition Z. It is not hard to see that F k' supports a unique ergodic measure v k 
given by 

Vk(B ) = m(rc o qo (B c~ Fd)). 

Thus ((9(~/), S) has exactly r ergodic measures. 

Example 4.8. We let s l~N  and si+ 1 =Si'2 s~+i for i~N. Let ys~{O, 1} z be defined 
as in Example 4.7, and set 

where yo(n)=0 for all nsZ.  Y is a closed shift-invariant set. We construct t/ 
from the subshift (KS);  we take p 1 = s l + 2  and at the (i+1) th step we shoose 
pi+l=&(2s'+i-fi,). A little calculation shows that for this choice of (pi), s~ 
= ~ J(i, k)= r i for all i. We have 

~ Pifi,., ~ fi~ ~=1 1 
- -  r i+i  ~ 21 ~.  00  i=l pi+l i=12 --Pr~ "= - 1  

since fir, < 2r', so t/ is not regular. 

We can partition Z into T-invariant closed sets E i where Eo--G x {Yo}, E~ 
= G x (9(G) for i~N. Following Example 4.7, for each iEN we set 

F/- {S yJ  
F~'=F~w TFdw ... w TP~- I F~ 

for k=0 ,  1 . . . .  ,s i -  1. The F~' partition El, and each supports a unique ergodic 
measure. Thus Z admits countably many ergodic T-invariant Borei measures, 
and the set of ergodic measures on ((9(t/), S) is countably infinite. 
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5. Calculation of Entropy 

From our analysis it is easy to compute the topological entropy of each of the 
flows we have constructed. First, we use the well-known variational principle 
of Dinaburg (1970) and Goodman (1971) that the topological entropy h(X, T) 
of a flow (X, T) is the supremum over all invariant measures v of the metric 
entropy hv(X, T). For each of our flows t/, we have a map q0: Z-~g( t / )  (where 
Z = G  xI ;  for the examples of Sect. 3 and Z = G x  Y for Sect. 4) which for 
each T-invariant measure v is an isomorphism of the measure-theoretic 
dynamical systems (Z, ~(Z), v, T) and (6(r/), ~((~(t/)), v o (p-l,  S), and so pre- 
serves metric entropy. Since w--~voqo -1 is a one-to-one correspondence of 
invariant measures, we must have h(Z, T) = h(g(tl), S). 

Each of the flows (Z, T) described in Sect. 3 is a product of the flow (G, 1) 
and the trivial flow on Z z. The entropy of a product is the sum of the entropies 
of the factors, and translation on a compact group has entropy 0. Hence the 
flows in Sect. 3 all have 0 entropy. 

Formulas for the entropy of a piecewise power skew product appear in 
Belinskaya (1974) and Newton (1969). The version which is most convenient 
for us is in a more recent paper of Marcus and Newhouse (1979). We state a 
special case of the theorem to avoid making new definitions. 

Theorem 5.1. Let (X, R) and (Y, S) be flows with finite topological entropy, and 
let T: X x Y - ~ X  x Y be given by T ( x , y ) = ( R x ,  S~ where 0 is a Borel- 
measurable integer-valued function on X. Let re1: X x Y--~ X denote the natural 
projection. I f  v is invariant on (X, R), 

sup h,(X x Y, T) = h,(X, R) + h(Y, S)IS O(x) dr] 

where the sup is taken over all T-invariant measures # with ~1(#)= v. 

We apply this to the flows of Sect. 4, taking (X, R) = (G, 1) and Y, S, 0 as in 
Sect. 4. Then for every T-invariant ~t, nl(~)=m, the Haar measure on G. Thus 
Theorem 5.1 reduces to 

h(Z, T)= h,~( G, "l ) + h( g, S)[ S O(x) din] 

=0  + h(Y, s) m(G\~(C)) 
=(1 - d )  h(Y, S). 

Hence the flows of Examples 4.7 and 4.8 have entropy 0. The flow of Example 
4.6 has entropy ( l - d )  log 2. It is possible to make d arbitrarily small by 
choosing a rapidly increasing period structure (Pi) in the construction. This 
yields: 

Corollary 5.2. There exist Toeplitz O - 1  sequences with entropy arbitrarily close 
to log 2. 
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