Zeitschrift ffir Wahrscheinlichkeitstheorie und verwandte Gebiete 9 by Springer-Verlag 1976

The Student t-Distribution of Any Degree of Freedom is Infinitely Divisible

E. Grosswald

Department of Mathematics, Temple University, Philadelphia, Pa. 19121, USA

1. Introduction

Let $\phi_{\nu}(x)=K_{\nu-1}(x^{1/2})/x^{1/2}K_{\nu}(x^{1/2})$, where $K_{\nu}(u)$ is the modified Bessel function, as defined, e.g., in [6J and [1]. It has been shown by Kelker [5] and by Ismail and Kelker [4] that the complete monotonicity of $\phi_v(x)$ is the necessary and sufficient condition for the infinite divisibility of the Student *t*-distribution with $k = 2v$ degrees of freedom, and also for that of $Y_k = (\chi_k^2)^{-1}$, where χ_k^2 is a chi-square variable with k degrees of freedom. Ismail and Kelker conjectured that $\phi_{v}(x)$ is, in fact, completely monotonic for all real $v \ge 0$. From this conjecture would follow the infinite divisibility of the mentioned distributions for odd $k=2n+1$, by taking $v = n + 1/2$, and for even $k = 2n$, by taking $v = n$.

It is the purpose of this paper to prove a theorem which is somewhat stronger than, and implies that conjecture. For the particular case of $k=2n+1$, the conjecture has already been proved in [3]. That case of odd k is also covered by the present work, but the connection between the results proved here and those of [3] is not entirely trivial. The link is provided by Corollary 3 (Section 6).

The notations for Bessel functions are the standard ones, as used, e.g., in [1], or [6]. Whenever a needed formula occurs in [1], it will be quoted by its number there. So, e.g., $\lceil 1; 29.3.37 \rceil$ will recall that

$$
\mathcal{L}^{-1}((s^{1/2}+a)^{-1}) = (\pi t)^{-1/2} - a e^{a^2 t} \text{erfc}(at^{1/2}), \quad \text{etc.}
$$

Here and in the rest of the paper \mathscr{L}^{-1} stands for the inverse Laplace transform, while $\mathscr L$ stands for the direct one. The reference for complete monotonicity is [7], that for general properties of Bessel functions is [6].

While working on this problem I have benefited greatly from conversations and correspondence with interested colleagues, in particular with S. Kotz and B. Epstein. A referee also made a useful suggestion. I take this opportunity to gratefully acknowledge my indebtedness to them all.

2. Main Results

Theorem. For real $v \ge 0$, the function

$$
\phi_{\nu}(x) = K_{\nu - 1}(x^{1/2}) / x^{1/2} K_{\nu}(x^{1/2})
$$
\n(1)

is the Stieltjes transform of the function

 $g(x) = 2 \{ \pi^2 x (J_1^2(x^{1/2}) + Y_2^2(x^{1/2})) \}^{-1}.$

Corollary 1. $\phi_n(x)$ *is the Laplace transform of a completely monotonic function, positive for* $x > 0$.

Corollary 2. The Student t-distribution and the distribution Y_k (defined in Section 1) *are infinitely divisible for all degrees of freedom k.*

Corollary 3. *For x > 0,*

$$
J_{n+1/2}^{2}(x^{1/2})+J_{-(n+1/2)}^{2}(x^{1/2})=2\pi^{-1}x^{-(n+1/2)}\prod_{j=1}^{n}(x+\alpha_{j}^{2})
$$

the product being taken over all the zeros α_i *of* $K_{n+1/2}(u)$.

Corollary 4. *For* $v \ge 0$, $t > 0$

$$
\frac{4}{\pi^2} \int_0^\infty \frac{t \, dx}{x \, (J_v^2(x) + Y_v^2(x)) (x^2 + t^2)} = \frac{2}{\pi^2} \int_0^\infty \frac{t \, dx}{x \, (J_v^2(x^{1/2}) + Y_v^2(x^{1/2})) (x + t^2)} = \frac{K_{v-1}(t)}{K_v(t)}.
$$

The proof of the theorem is given in Section 3-5. Corollary 1 follows from the fact that the Stieltjes transform is the iterated Laplace transform, so that the theorem is equivalent to the statement

 $\mathscr{L}^{-1}(\phi_{n}) = \mathscr{L}(\mathfrak{g}_{n}) = G_{n}(t).$

By Bernstein's Theorem (see [7], pp. 160-161), $G_v(t)$ is completely monotonic, because it is the Laplace transform of the positive function $g_{\nu}(x)$; in particular, $G_v(t) > 0$ for $t > 0$.

Corollary 2 follows from Corollary 1, on account of the quoted results of [5, 4] and Bernstein's Theorem.

Corollary 4 follows from the Theorem, if we write $\phi_{\nu}(x)$ as a Stieltjes transform of $g_y(x)$ and then replace $x^{1/2}$ by t.

Corollary 3 follows almost trivially, by comparing (1) with the results of [3]. In fact, Corollary 3 may well be known, but as it could not be located in the literature, a simple, direct proof of it is provided in Section 6. By using it, the main result of [3] follows also from the present theorem.

3. Two Lemmas

We recall the following known facts that can be found in Chapter *XV* of [6]. The functions $K_v(u)$, while in general not uniform in the complex plane, become uniform in the plane cut along the negative real axis ("cut plane", for short) (see [1], p. 358). For $v-1/2$ not an integer they have infinitely many zeros

Infinite Divisibility of the Student *t*-Distribution 105

 α_i (*j* = 1, 2, ...). None of these has $|arg \alpha_i| \leq \frac{\pi}{2}$; exactly 2*m* simple zeros have $\frac{\pi}{2}$ arg α _i $\lt \pi$, while all other zeros have $\left|\arg \alpha\right| > \pi$. Here 2*m* is the even integer closest to $v - 1/2$. If $v - 1/2 = n$, an integer, then $K_v(u)$ has exactly *n* zeros. In particular, for *n* odd (i.e., for $v=2k-1/2$, $k\in\mathbb{Z}^+$), $K_v(u)$ has an odd number of zeros, of which exactly one is real and negative. In all other cases with real $v \ge 0$, the zeros α , of $K_v(u)$ with $\pi/2 < |arg \alpha_i| < \pi$ occur in pairs of complex conjugate ones.

Lemma 1. The function $K_{\nu-1}(u)/u K_{\nu}(u) - \sum_{j=1}^{2m} {\{\alpha_j(\alpha_j-u)\}}^{-1}$ is single-valued and *holomorphic in the cut plane.*

Proof. Define the function $\psi(u) = \psi_v(u)$ by $\psi(u) = K_{v-1}(u)/u K_v(u) - \sum_{j=1}^{2m} A_j(u-\alpha_j)^{-1}$ where $A_i/(u-\alpha_i)$ is the principal part of $K_{\nu-1}(u)/u K_{\nu}(u)$ at the simple pole $u=\alpha_i$. Here and in what follows, the subscript ν will be suppressed, whenever possible. Then $\psi(u)$ is single-valued in the cut plane because the functions that define it are; it also is holomorphic there because at each α_j the poles of $\phi(u)$ are cancelled by the pole of $A_j/(u-\alpha_j)$. In order to find A_j , we observe that

$$
\lim_{u\to\alpha_j} \{(u-\alpha_j)K_{\nu-1}(u)/u\,K_{\nu}(u)\}=K_{\nu-1}(\alpha_j)/\alpha_jK_{\nu}'(\alpha_j)=-K_{\nu-1}(\alpha_j)/\alpha_jK_{\nu-1}(\alpha_j)
$$

= -\alpha_i^{-1},

by use of [1; 9.6.26]. Hence, $A_i = -\alpha_i^{-1}$ and Lemma 1 follows.

Let $\varepsilon > 0$ be arbitrarily small and select $a > \varepsilon$; also, let T, X and q be (arbitrarily large) real and positive. Consider the following set of points, defined by their cartesian coordinates:

 $A(a, -T), B(a, T), C(-X, T), D(-X, \varepsilon^q), E(-\varepsilon, \varepsilon^q), F(\varepsilon, 0), G(-\varepsilon, -\varepsilon^q),$ $H(-X, -\varepsilon^q)$, $K(-X, -T)$. The contour \mathscr{C} , passing through these points, consists

of the straight line segments *AB, BC, CD* and *DE;* the arc of circle *EFG* with center at the origin and radius e; and the straight line segments *GH, HK* and *KA.* We shall integrate various functions around $\mathscr C$ and then take the limits as $q\rightarrow\infty$, $X\to\infty$, $T\to\infty$, $\varepsilon\to 0$, in that order, in as far as the order is relevant. In the limit, the segments *DE* and *HG* become the negative real axis and *DE* should be considered as running along the upper rim, and *HG* along the lower rim of the cut plane. The functions $K_v(u)$, $K_{v-1}(u)$ and $\psi(u)$ are single-valued in the closed, simply connected portion of the complex plane enclosed by \mathscr{C} , that we shall denote by Ω .

Lemma 2. For $z = re^{i\theta}$, with $0 \le |\theta| < \pi$, *define* $z^{1/2}$ *by* $z^{1/2} = r^{1/2} e^{i\theta/2}$, *single-valued* $in \Omega$; then

$$
I = \int_{\mathscr{C}} \phi(z) e^{zt} dz = 0
$$

Proof. As $\phi(z)$ is single-valued in the cut plane, hence in Ω , it follows from Lemma 1 that

$$
I = \int_{\mathscr{C}} \psi(z^{1/2}) e^{zt} dz + \sum_{j=1}^{2m} \alpha_j^{-1} \int_{\mathscr{C}} (\alpha_j - z^{1/2})^{-1} e^{iz} dz.
$$

The first integral vanishes, because the integrand is single-valued and holomorphic in Ω . The same is true also of the other integrals, because $\alpha_j - z^{1/2} \neq 0$ in Ω . Indeed, there $|\arg z^{1/2}| < \frac{\pi}{2}$, while $|\arg \alpha_i| > \frac{\pi}{2}$ for all $j = 1, 2, ..., 2m$. The proof of Lemma 2 is complete. One may remark that the proof is valid even in the case of $v-1/2 =$ $2n-1$, an odd integer; indeed, the simple, real, negative zero α_0 of $K_v(u)$ = $K_{2n-1/2}(u)$ falls outside \mathscr{C} .

4. Parenthetical Remark

It is worthwhile to verify computationally that $\int_{\mathscr{C}} (\alpha - z^{1/2})^{-1} e^{iz} dz = 0$ for $\alpha = \alpha_i$ $(j = 1, 2, \ldots, n)$, because the same pattern of proof will be used in the somewhat more difficult, but analogous, computation of $\int_{\mathscr{C}} \phi(z) e^{zt} dz$.

Let $q \to \infty$, $X \to \infty$, $T \to \infty$ and observe that first the integrals along *CD* and *HK,* then those along *BC* and *KA* vanish in the limit, while the integral along *AB* becomes $2\pi i \mathcal{L}^{-1}((\alpha - z^{1/2})^{-1})$; the latter is easily computed by use of [1; 29.3.37] and equals $-2\pi i \{(\pi t)^{-1/2} + \alpha e^{\alpha^2 t} \text{erfc }(-\alpha t^{1/2})\}$. The equality to be verified now reduces to

$$
\left\{ \int_{DE} + \int_{EFG} + \int_{GH} \right\} (\alpha - z^{1/2})^{-1} e^{iz} dz = 2\pi i \left\{ (\pi t)^{-1/2} + \alpha e^{\alpha^2 t} \text{erfc}(-\alpha t^{1/2}) \right\}. \tag{2}
$$

For $\varepsilon \to 0$, $\int_{EFG} (\alpha - z^{1/2})^{-1} e^{iz} dz \to \alpha^{-1} \int_{|z| = \varepsilon} dz = 0$ and the first member of (2) reduces to

$$
\int_0^\infty \{ (\alpha - ir^{1/2})^{-1} - (\alpha + ir^{1/2})^{-1} \} e^{-rt} dr = 2i \int_0^\infty r^{1/2} (r + \alpha^2)^{-1} e^{-rt} dr
$$

= $2i \mathcal{L} (r^{1/2} (r + \alpha^2)^{-1}).$

Infinite Divisibility of the Student *t*-Distribution 107

By using $[1; 29.3.114$ and 29.2.9], with $(\alpha^2)^{1/2} = -\alpha$ (needed for Re $(\alpha^2)^{1/2} > 0$), we find that

$$
\mathcal{L}(r^{1/2}(r+\alpha^2)^{-1}) = -\frac{d}{dt}\left\{e^{\alpha^2t} \cdot \frac{2}{\sqrt{\pi}}\int_{-\alpha t^{1/2}}^{\infty} e^{-u^2} du\right\} \cdot (-\pi/\alpha)
$$

$$
= \pi \alpha e^{\alpha^2t} \operatorname{erfc}(-\alpha t^{1/2}) + (\pi/t)^{1/2}
$$

and the left hand side of (2) becomes $2i\pi^{1/2}t^{-1/2}+2\pi i\alpha e^{\alpha^2t}$ erfc($-\alpha t^{1/2}$), i.e., precisely the right hand side; equality (2) is proved.

5. Proof of the Theorem

By Lemma 2, $I = \mathcal{L}_{\varphi} \phi(z)e^{zt} dz = 0$. For $|u| \to 0$, $|\arg u| < \frac{3\pi}{2}$, it follows from [1; 9.7.2] that $K_v(u) \sim (\pi/2 u)^{1/2} e^{-u}$; hence, the integrand of I becomes $(1 + o(1))z^{-1/2}e^{zt}$. It follows, in particular, that

$$
\begin{aligned} |\int_K^H \phi(z) e^{zt} dz| &= |\int_C^D \phi(z) e^{tz} dz| = (1 + o(1)) (\pi/2)^{1/2} \int_0^T X^{-1/2} e^{-Xt} dy \\ &= (1 + o(1)) (\pi/2)^{1/2} T X^{-1/2} e^{-Xt} \to 0 \end{aligned}
$$

for $t \ge 0$, any $T > 0$ and $X \to \infty$. The integral $\int_R^C \phi(z) e^{iz} dz$ now becomes

$$
\int_a^{-\infty} \phi(x+i\,T) e^{t(x+i\,T)} dx
$$

and

$$
\left| \int_{B}^{C} \phi(z) e^{zt} dz \right| = \left| \int_{A}^{K} \phi(z) e^{zt} dz \right| < (1 + o(1)) (\pi/2)^{1/2} T^{-1/2} \int_{-a}^{\infty} e^{-xt} dx
$$
\n
$$
\leq C (T^{1/2} t)^{-1} \to 0
$$

for any $t>0$ and $T\rightarrow\infty$. By observing also that $(2\pi i)^{-1} \int_A^B \phi(z) e^{iz} dz \rightarrow \mathcal{L}^{-1}(\phi)$, it follows that

$$
\mathcal{L}^{-1}(\phi) + \frac{1}{2\pi i} \psi(t) = 0 \tag{3}
$$

where

$$
\psi(t) = (\int_{DE} + \int_{EFG} + \int_{GH}) \phi(z) e^{iz} dz.
$$
\n(4)

We shall evaluate the integrals in (4) and prove

Lemma 3. $\psi(t) = -4i\pi^{-1}\mathcal{L}\left(\left\{x\left(J_v^2(x^{1/2}) + Y_v^2(x^{1/2})\right)\right\}^{-1}\right).$

If we substitute this in (3), we obtain that

$$
\mathcal{L}^{-1}(\phi(z)) = 2 \pi^{-2} \mathcal{L}(\{x(J_v^2(x^{1/2}) + Y_v^2(x^{1/2})\}^{-1}).
$$

This finishes the proof of (1).

In order to estimate the integrals in (4) , we first observe that, by $\lceil 1; 9.6.9 \rceil$ as $|z| \to 0$, $K_y(z) \sim \frac{1}{2} \Gamma(z)(2/z)^y$, so that $\phi(z)=(1+o(1))(F(y-1)/F(y))(z/2)z^{-1} =$ $(1+o(1))(2(v-1))^{-1}$ and

$$
\int_{EFG} \phi(z) e^{iz} dz = \frac{1 + o(1)}{2(v - 1)} \int_{-\pi}^{\pi} e^{i \varepsilon e^{i\theta}} i \varepsilon e^{i\theta} d\theta \to 0 \quad \text{as } \varepsilon \to 0.
$$

108 E. Orosswald

Next, with $z = re^{i\pi}$.

$$
\int_{DE} \phi(z) e^{iz} dz = \int_{\infty}^{0} \frac{K_{\nu-1}(r^{1/2} e^{i\pi/2}) e^{-rt}}{r^{1/2} e^{i\pi/2} K_{\nu}(r^{1/2} e^{i\pi/2})} e^{ix} dr = \int_{0}^{\infty} \frac{K_{\nu-1}(e^{i\pi/2} r^{1/2}) e^{-rt}}{(i r^{1/2}) K_{\nu}(e^{i\pi/2} r^{1/2})} dr.
$$

Similarly,

$$
\int_G^H \phi(z) e^{iz} dz = - \int_0^\infty \frac{K_{\nu-1} (e^{-i\pi/2} r^{1/2})}{(-i r^{1/2}) K_{\nu} (e^{-i\pi/2} r^{1/2})} e^{-rt} dr
$$

and their sum is

$$
- i \int_0^\infty \left(\frac{K_{\nu-1}(-ir^{1/2})}{K_{\nu}(-ir^{1/2})} + \frac{K_{\nu-1}(ir^{1/2})}{K_{\nu}(ir^{1/2})} \right) \frac{e^{-tr}}{r^{1/2}} dr.
$$

We now replace the $K_y(\pm i r^{1/2})$ by $H^{(s)}_y(r^{1/2})$ (s = 1, 2), by using [1; 9.6.4] and obtain

$$
-\int_0^\infty\left(\frac{H_{\nu-1}^{(1)}(r^{1/2})}{H_{\nu}^{(1)}(r^{1/2})}-\frac{H_{\nu-1}^{(2)}(r^{1/2})}{H_{\nu}^{(2)}(r^{1/2})}\right)\frac{e^{-i\tau}}{r^{1/2}}d\tau
$$

or, replacing the Hankel functions by $J_v(r^{1/2}) \pm i Y_v(r^{1/2})$ (see [1; 9.1.3 and 9.1.4])

$$
- \int_0^\infty \left\{ \frac{J_{\nu-1}(r^{1/2}) + i Y_{\nu-1}(r^{1/2})}{J_{\nu}(r^{1/2}) + i Y_{\nu}(r^{1/2})} - \frac{J_{\nu-1}(r^{1/2}) - i Y_{\nu-1}(r^{1/2})}{J_{\nu}(r^{1/2}) - i Y_{\nu}(r^{1/2})} \right\} \frac{e^{-tr}}{r^{1/2}} dr
$$

= $- 2i \int_0^\infty \frac{J_{\nu}(r^{1/2}) Y_{\nu-1}(r^{1/2}) - J_{\nu-1}(r^{1/2}) Y_{\nu}(r^{1/2})}{J_{\nu}^2(r^{1/2}) + Y_{\nu}^2(r^{1/2})} \frac{e^{-tr}}{r^{1/2}}.$

By using $\lceil 1; 9.1.16 \rceil$ the last expression is seen to equal

$$
-\frac{4i}{\pi}\int_0^\infty \frac{e^{-tr}}{r\{J_v^2(r^{1/2}) + Y_v^2(r^{1/2})\}} dr.
$$

With this, Lemma 3 is proved.

It is clear that $g(x)=2\{\pi^2x(J_v^2(x^{1/2})+Y_v^2(x^{1/2}))\}^{-1}>0$ for $x>0$. Hence, $G(t) = \mathcal{L}(g) = \int_0^\infty e^{-xt} g(x) dx$ is positive for $t > 0$ and completely monotone. Consequently, also $\phi(x) = \mathcal{L}(G) = \int_0^\infty e^{-xt} G(t) dt$ is positive for $x > 0$ and completely monotone. In both cases one may (but hardly needs to) invoke the easier half of Bernstein's theorem ([7], pp. 160–161). The proof of the Theorem is complete.

6. Discussion of Corollary 3

For any non-negative integer n , set

$$
P_n(u) = (2u/\pi)^{1/2} e^u u^n K_{n+1/2}(u); \tag{5}
$$

then (see [6] or [1], Chapter 9) $P_n(u)$ is a polynomial of exact degree *n*. In fact, it is the Bessel Polynomial of degree n in Burchnall's normalization (see [2]).

It follows that if $v = n + 1/2$,

$$
\phi_{n+1/2}(x) = K_{n-1/2}(x^{1/2})/x^{1/2} K_{n+1/2}(x^{1/2}) = P_{n-1}(x^{1/2})/P_n(x^{1/2})
$$

Infinite Divisibility of the Student t-Distribution 109

and it is in this representation of $\phi_v(x)$, for v half an odd integer, that the problem was formulated in [4] and solved, in that particular case of odd $k = 2v = 2n + 1$, in [3].

The result obtained there is equivalent to

$$
\mathcal{L}^{-1}(\phi_{n+1/2}) = \mathcal{L}(\pi^{-1} x^{n-1/2} \prod_{j=1}^{n} (x + \alpha_j^2)^{-1}).
$$
\n(6)

Corollary 3 now follows by comparing (1) and (6), while also taking into account the uniqueness of the Laplace transform.

On the other hand, if one can prove Corollary 3 directly, then the result of [3] is an immediate consequence of (2). It is quite likely that Corollary 3 is, in fact, known. However, as no proof of it could be located in the literature and in view of its simplicity, a direct poof is given here for completeness.

The zeros of $P_n(u)$ and of $K_{n+1/2}(u)$ are the same and the leading coefficient of $P_n(u)$ is one; hence, $P_n(u) = \prod_{i=1}^n (u-\alpha_i)$. It follows that $P_n(i x^{1/2})P_n(-i x^{1/2})=$ $\prod_{i=1}^{n} (x + \alpha_i^2)$, or, by using (5),

$$
2\pi^{-1} x^{n+1/2} K_{n+1/2} (i x^{1/2}) K_{n+1/2} (-i x^{1/2}) = \prod_{j=1}^{n} (x + \alpha_j^2).
$$
 (7)

According to [1; 9.6.4], we may replace $K_{n+1/2}(ix^{1/2})$ by

$$
-\frac{1}{2}\pi i e^{-(1/2)\pi i (n+1/2)}H^{(2)}_{n+1/2}(x^{1/2})
$$

and $K_{n+1/2}(-ix^{1/2})$ by $\frac{1}{2}\pi i e^{(1/2)\pi i(n+1/2)}H_{n+1/2}^{(1)}(x^{1/2})$, and then $H_{n+1/2}^{(v)}(x^{1/2})$ $(v=1, 2)$ by $J_{n+1/2}(x^{1/2})+(-1)^{v-1}iY_{n+1/2}(x^{1/2})$. After these substitutions the left hand side of (7) becomes $\frac{1}{2}\pi x^{n+1/2} \{J_{n+1/2}^2(x^{1/2})+Y_{n+1/2}^2(x^{1/2})\}$, or, by [1; 9.1.2], $\frac{1}{2}\pi x^{n+1/2} \{J_{n+1/2}^2(x^{1/2}) + J_{-(n+1/2)}^2(x^{1/2})\}$ and this finishes the proof of the Corollary.

References

- 1. Abramovitz, M., Segun, I.A.: Handbook of mathematical functions. New York: Dover 1968
- 2. Burchnall, J.L.: The Bessel polynomials. Canad. J. Math. 31, 62-68 (1951)
- 3. Grosswald, E.: The Student t-distribution of an odd number of degrees of freedom is infinitely divisible (to appear)
- 4. Ismail, M. E. H., Kelker, D. H.: The Bessel polynomials and the student t-distribution. Siam J. Math. Anal. 7, 82-91 (1976); see also the Abstract in the Notices of the A.M.S. 22, A-151 (1975)
- 5. Kelker, D.H.: Infinite divisibility and various mixtures of the normal distribution. Ann. Math. Statist. 42, 802-808 (1971)
- 6. Watson, G. N.: A treatise on the theory of Bessel functions. Second Edition. Cambridge: University Press 1962
- 7. Widder, D.V.: The Laplace transform. Princeton: University Press 1946

Received December 1, 1975