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1. Introduction

Let ¢,(x)=K, ,(x}/?)/x'"? K (x'/?), where K, (u) is the modified Bessel function,
as defined, e.g,, in [6] and [1]. It has been shown by Kelker [5] and by Ismail
and Kelker [4] that the complete monotonicityof ¢,(x) is the necessary and suffi-
cient condition for the infinite divisibility of the Student ¢-distribution with k=2v
degrees of freedom, and also for that of Y, =(y?) %, where y? is a chi-square
variable with k degrees of freedom. Ismail and Kelker conjectured that ¢ (x) is,
in fact, completely monotonic for all real v = 0. From this conjecture would follow
the infinite divisibility of the mentioned distributions for odd k=2n+1, by
taking v=n+1/2, and for even k=2n, by taking v=n.

It is the purpose of this paper to prove a theorem which is somewhat stron-
ger than, and implies that conjecture. For the particular case of k=2n+1, the
conjecture has already been proved in [3]. That case of odd k is also covered by
the present work, but the connection between the results proved here and those
of [3] is not entirely trivial. The link is provided by Corollary 3 (Section 6).

The notations for Bessel functions are the standard ones, as used, e.g., in [1],
or [6]. Whenever a needed formula occurs in [1], it will be quoted by its number
there. So, e.g., [1;29.3.37] will recall that

(2 ra) ) =(nt) V2 —ae¥terfc (at'?), et

Here and in the rest of the paper .# ! stands for the inverse Laplace transform,
while . stands for the direct one. The reference for complete monotonicity is [ 7],
that for general properties of Bessel functions is [6].

While working on this problem I have benefited greatly from conversations and
correspondence with interested colleagues, in particular with S.Kotz and B.
Epstein. A referee also made a useful suggestion. I take this opportunity to grate-
fully acknowledge my indebtedness to them all.
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2. Main Results

Theorem. For real v=0, the function

¢, () =K, (x'2)/x K, (x}?) 1)
is the Stieltjes transform of the function

g,()=2{m> x(J2 (') + Y2 (x"2)} .

Corollary 1. ¢ (x) is the Laplace transform of a completely monotonic function,
positive for x>0. .

Corollary 2. The Student t-distribution and the distribution Y, (defined in Section 1)
are infinitely divisible for all degrees of freedom k.

Corollary 3. For x>0,

erz+1/2(x1/2)+Ji(n+1/2)(x1/2)=2775_1 x ot ]_[:'l=1 (x—f—ocf)
the product being taken over all the zeros u; of K, > (u).
Corollary 4. For v=0,:>0

tdx 2 .. tdx K, ;0
2j° X2+ YRR+ W X(JIP) YR (x+12) T K0

The proof of the theorem is given in Section 3-5. Corollary 1 follows from the
fact that the Stieltjes transform is the iterated Laplace transform, so that the theorem
is equivalent to the statement

=2 (8)=G\(1).

By Bernstein’s Theorem (see [7], pp. 160-161), G (t) is completely monotonic,
because it is the Laplace transform of the positive function g,(x); in particular,
G (6)>0 for t>0.

Corollary 2 follows from Corollary 1, on account of the quoted results of [5, 4]
and Bernstein’s Theorem.

Corollary 4 follows from the Theorem, if we write ¢, (x) as a Stieltjes transform
of g,(x) and then replace x'/2 by .

Corollary 3 follows almost trivially, by comparing (1) with the results of [3].
In fact, Corollary 3 may well be known, but as it could not be located in the litera-
ture, a simple, direct proof of it is provided in Section 6. By using it, the main result
of [3] follows also from the present theorem.

3. Two Lemmas

We recall the following known facts that can be found in Chapter XV of [6].
The functions K (u), while in general not uniform in the complex plane, become
uniform in the plane cut along the negative real axis (“cut plane”, for short)
(see [17, p.358). For v—1/2 not an integer they have infinitely many zeros
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a;(j=1,2,...). None of these has |arga|=<%; exactly 2m simple zeros have
Z<larg o] <m, while all other zeros have |arg o;|>n. Here 2m is the even integer
closest to v—1/2. If v—1/2=n, an integer, then K (u) has exactly n zeros. In partic-
ular, for n odd (ie., for v=2k—1/2, ke Z*), K, (u) has an odd number of zeros,
of which exactly one is real and negative. In all other cases with real v=0, the
zeros o; of K, (u) with /2 <l|arg | <= occur in pairs of complex conjugate ones.

Lemma 1. The function K, _ (w)/uK,@w)—Y 2" {o,(a;—u)} " is single-valued and
holomorphic in the cut plane.

Proof. Define the function ¥ (u) =y ,(w) by y(u) =K, _, w)/uK, (u)— J?;"l Ajlu—a)!
where A4 ;/(u— o) is the principal part of K, , (u)/uK (u) at the simple pole u=o;.
Here and in what follows, the subscript v will be suppressed, whenever possible.
Then y(u) is single-valued in the cut plane because the functions that define it are;
it also is holomorphic there because at each «; the poles of ¢(u) are cancelled by
the pole of A;/(u—a;). In order to find 4;, we observe that

l}ifil_{(u_“j)qu(“)/”Kv(“)} =K, (aj)/ajK;(aj) = ‘—Kv_1(°‘j)/°5ij_1(0‘j)
3 - d;l,
by use of [1; 9.6.26]. Hence, 4;= —«; ' and Lemma 1 follows.
Let ¢ 0 be arbitrarily small and select a>¢; also, let T, X and g be (arbitrarily
large) real and positive. Consider the following set of points, defined by their
cartesian coordinates:

\
C iT B
2
E
ok A)ela
H G\ j X
€
K -iT A

A(aﬂ - T)? B(aa T)’ C(_ X7 T)’ D(_ Xa gq): E(_’Ss 861), F(S’ O)a G(-—E, —84)7
H(—X, —¢%, K(— X, —T). The contour %, passing through these points, consists
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of the straight line segments AB, BC, CD and DE; the arc of circle EFG with center
at the origin and radius ¢; and the straight line segments GH, HK and KA. We
shall integrate various functions around ¥ and then take the limits as g— oo,
X -0, T- oo, e—0, in that order, in as far as the order is relevant. In the limit,
the segments DE and HG become the negative real axis and DE should be consider-
ed as running along the upper rim, and HG along the lower rim of the cut plane.
The functions K, (), K,_,(u) and () are single-valued in the closed, simply
connected portion of the complex plane enclosed by €, that we shall denote by
Q.

Lemma 2. For z=re'®, with 0<|0| <x, define z*/? by z1/2=r*2¢"%2, single-valued
in Q; then

I={,¢(z)e dz=0

Proof. As ¢(z) is single-valued in the cut plane, hence in £, it follows from Lemma 1
that

IT={ (2P e  dz+ ™ a7 fola;—2"%) et dz.

The first integral vanishes, because the integrand is single-valued and holomorphic
in Q. The same is true also of the other integrals, because «;— 2z %0 in Q. Indeed,
there |arg z'/%| <3, while larga|> % for all j=1,2,...,2m. The proof of Lemma 2
is complete. One may remark that the proof is Vahd even in the case of v—1/2=
2n—1, an odd integer; indeed, the simple, real, negative zero o, of K, (u)=
K, 15w falls outside %.

4. Parenthetical Remark

It is worthwhile to verify computationally that {,(x—z'/?)"'e'*dz=0 for a=uq,
(j=1,2,...,n), because the same pattern of proof will be used in the somewhat
more difficult, but analogous, computation of [, ¢(z)e*'dz.

Let g— o0, X » 00, T— o0 and observe that first the integrals along CD and
HK, then those along BC and KA vanish in the limit, while the integral along
AB becomes 2ni & ! ((a—z'?)7?); the latter is easily computed by use of [1;
29.3.37] and equals —27i{(nt) "2 +ae* erfc (—at'/?)}. The equality to be veri-
fied now reduces to

{pr+ fsre + fon} (0 — 21 " Le = dz=2mi{(nt) 2+ oe  erfc(—at'/?)}. @

For e—0, [grgla—2"?) " e*dz—a™" |, _,dz=0 and the first member of (2)
reduces to
f& {o—ir D) —(a+irtA) e M dr=2i [ (r+o®)te"dr
=2i L2 (r+a®) ).
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By using [1;29.3.114 and 29.2.9], with (¢?)"?= —« (needed for Re(x?)'?>0),
we find that

L (r+a?) = —Ed; {e“zt- % [ une™ du} (—m/a)
T

=nae* terfc(—ott?)+ (/1)

and the left hand side of (2) becomes 2in'/2¢t~Y2 4 2mige* erfc(—at!’?), ie.,
precisely the right hand side; equality (2) is proved.

5. Proof of the Theorem

By Lemma 2, I={,¢(z)e**dz=0. For |u] >0, |argu|<37/2, it follows from [1;
9.7.2] that K ,(u) ~ (n/2 u)*/* e ~*; hence, the integrand of I becomes (1 +o0(1))z /2 ¢,
It follows, in particular, that

K p2)e dzl=|[C p(z)e"* dzl =(1 +o(1))(m/2)? |§ X /2 e *dy
=1 +o(M)(m2)'?TX e " >0

for 120, any T>0 and X — oo. The integral [ ¢(z)e'*dz now becomes
o p(x+iT)e™ T Ddx
and

I[§ p(z)e” dzi=|[f p(2)e* dz| <(1+o(L))(m/2)Y2 T 1/ [= e *dx
§C(T1/2t) 15,0

for any t>0 and T—co. By observing also that 2zi)™! {2 $(z)e*dz —» L ~1(¢),
it follows that

LG4 YD=0 o)
where
l//(t):(jDE+j.EFG+§GH)¢(Z)etde' “4)

We shall evaluate the integrals in (4) and prove
Lemma 3. y(t)= —4in =t P{x(J2(x"?)+ Y2 (')} ).
If we substitute this in (3), we obtain that

LN P2) =272 L((x(T2 () + Y2} ).

This finishes the proof of (1).
In order to estimate the integrals in (4), we first observe that, by [1;9.6.9]
as |z] >0, K,(2)~3T(2)(2/2)", so that ¢(z2)=(1+o()T(— /T ¥)(z/2)z7" =
(1+o(1)2(r—1))"* and
1+ 0(1)
20—

IEFGQS(Z) Pdz=

j_ ¢*iee®d >0 as ¢—0.
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Next, with z=re'",

1/2 in/Z —rt i1r/2 1/2 —rt
r e e
fDEd)(Z Jedz= [, 1/2v 11,52 12) —jo _—(_*)—“'d
K (7’ / m/Z) (l?’l/z)K (eln/Z 1/2)
Similarly,
Kvﬂl(e—in/zrl/Z)

e "dr

j{;l P(z)e*dz= —fgo (—ir?)K (e 21T
and their sum is

K, (=) K, (i) e
—ify ( K. (=ir) K‘,(lrl/z) ) VP dr.

We now replace the K (+ir'/?) by H¥(+*/?) (s=1, 2), by using [1; 9.6.4] and obtain

H(l) (;,1/2) H( ( 1/2) et
- (H(n 72 H(Z’(r1/2)> T A
or, replacing the Hankel functions by J,(r}/%)+i Y,(r'/?) (see [1;9.1.3 and 9.1.47)

Jy_ (VA HIY,_ (M) T, 1(1/2)‘1Y_1(1/2)
-k J, VM +iY (1% a J,(rH)—iY,(r?) }Wdr

Y0P ) e
=-2if3 207+ sz ) Az

By using [1;9.1.16] the last expression is seen to equal

4i e
—"j r{JZ(r1/2)+Y2(r1/2)}

With this, Lemma 3 is proved.
It is clear that g(x)=2{n’x(J2(x}*)+ Y2 (x!*)}"1>0 for x>0. Hence,
G()=%(g)=|y e *g(x)dx is positive for t>0 and completely monotone.
Consequently, also ¢(x)=Z(G)= [ e~ G(f)dt is positive for x>0 and completely
monotone. In both cases one may (but hardly needs to) invoke the easier half of
Bernstein’s theorem ([ 7], pp. 160-161). The proof of the Theorem is complete.

6. Discussion of Corollary 3
For any non-negative integer n, set
Pu)=Qu/n)"?e*u" K, ., u); (5)

then (see [6] or [1], Chapter 9) P(u) is a polynomial of exact degree n. In fact,
it is the Bessel Polynomial of degree n in Burchnall’s normalization (see [2]).
It follows that f v=n+1/2,

¢n+1/2(x) K, 1) (x!/2)/x1 2 K12 (x"2) =B _, (x"?)/B(x?)
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and it is in this representation of ¢ (x), for v half an odd integer, that the problem
was formulated in [4] and solved, in that particular case of odd k=2v=2n+1,

m [3].
The result obtained there is equivalent to
LM Ppirp) =L X Ti (e+ad) ). (6)

Corollary 3 now follows by comparing (1) and (6), while also taking into account
the uniqueness of the Laplace transform.

On the other hand, if one can prove Corollary 3 directly, then the result of [3]
is an immediate consequence of (2). It is quite likely that Corollary 3 is, in fact,
known. However, as no proof of it could be located in the literature and in view
of its simplicity, a direct poof is given here for completeness.

The zeros of P(u) and of K, ,,(u) are the same and the leading coefficient
of B(u) is one; hence, B(u)=[]1_;(u—a). It follows that P(ix'?)P(—ix"?)=
[Ti=: (x+0a3), or, by using (5),

277! xn+1'/2Kn+1/2(ix1/2)Kn+1_/2(_ixl/z)zn'}:l(x‘*‘%z')' (7)
According to [1; 9.6.4], we may replace K, , (ix'/?) by
—dmiemWARHIDHR)  (x112)

and K,.,,(—ix"?) by $riet@™0HUDHY O (x12), and then H{,,(x'"?)
(0=1,2) by J, 1,2+ (=110, ,(x"'?). After these substitutions the left
hand side of (7) becomes 3rx"*12{J2 ) (x"?)+ Y2 |, (x"*)}, or, by [1;9.1.2],

Fax"MLI2 L (M) 4T 4y (x!7?)} and this finishes the proof of the Corollary.
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