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1. Introduction 

Let d?~(x)=K~_i(xl/Z)/xi/2K~(xl/2), where K~(u)is the modified Bessel function, 
as defined, e.g., in [6J and [1]. It has been shown by Kelker [5] and by Ismail 
and Kelker [4] that the complete monotonicityof ~bv(x ) is the necessary and suffi- 
cient condition for the infinite divisibility of the Student t-distribution with k = 2v 
degrees of freedom, and also for that of Yk- 2 -2 -(Xk) , where Z~ is a chi-square 
variable with k degrees of freedom. Ismail and Kelker conjectured that ~b~(x) is, 
in fact, completely monotonic for all real v > 0. From this conjecture would follow 
the infinite divisibility of the mentioned distributions for odd k=2n+l,  by 
taking v = n +  1//2, and for even k=2n, by taking v=n, 

It is the purpose of this paper to prove a theorem which is somewhat stron- 
ger than, and implies that conjecture. For the particular case of k = 2 n + l ,  the 
conjecture has already been proved in [3J. That case of odd k is also covered by 
the present work, but the connection between the results proved here and those 
of [3] is not entirely trivial. The link is provided by Corollary 3 (Section 6). 

The notations for Bessel functions are the standard ones, as used, e.g., in [1], 
or [6]. Whenever a needed formula occurs in [1], it will be quoted by its number 
there. So, e.g., [1 ; 29.3.37] will recall that 

c.q~-l((sl/2 +a)-l)=(rct)-l/Z-aea2~erfc(atl/2), etc. 

Here and in the rest of the paper f - 1  stands for the inverse Laplace transform, 
while S stands for the direct one. The reference for complete monotonicity is [7J, 
that for general properties of Bessel functions is [6]. 

While working on this problem I have benefited greatly from conversations and 
correspondence with interested colleagues, in particular with S. Kotz and B. 
Epstein. A referee also made a useful suggestion. I take this opportunity to grate- 
fully acknowledge my indebtedness to them all. 
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2. Main Results 

Theorem. For real v > O, the function 

4) ~(x) = K~ -1 (x1/2)/X1/2 K v ( X 1 / 2 )  (1) 

is the Stieltjes transform of the function 

g~(x) = 2 {~2 x ( g  (x li~) + Y) (x'/2))} -1. 

Corollary 1. q~(x) is the Laplace transform of a completely monotonic function, 
positive for x > 0. 

Corollary 2. The Student t-distribution and the distribution Yk (defined in Section 1) 
are infinitely divisible for all degrees of freedom k. 

Corollary 3. For x > 0, 

j2+ l12(X112)_{_12 [vl/2)__ O,rr--l v--(n+1/2) ~[n (X_I~O~2] 
~  I - ~ ' v  ~ l I j = l \  ~ j! 

the product being taken over all the zeros ~s ~ Kn+!/2(u)" 

Corollary 4. For v >= O, t > 0 

4 ~o tdx 2 00 tdx K~_l(t ) 
~ ~; x(J2(x)+ Yf(x))(xZ + t 2 ) = ~  ~; x(JZ(xl/Z)+ YZ(xa/Z))(x + t 2 ) -  K~(t) " 

The proof of the theorem is given in Section 3-5. Corollary 1 follows from the 
fact that the Stieltjes transform is the iterated Laplace transform, so that the theorem 
is equivalent to the statement 

-1 (qL) = ~e(g0 = G~(t). 

By Bernstein's Theorem (see [7], pp. 160-161), G~(t) is completely monotonic, 
because it is the Laplace transform of the positive function g~(x); in particular, 
Gv(t)>0 for t>0 .  

Corollary 2 follows from Corollary 1, on account of the quoted results of [5, 4] 
and Bernstein's Theorem. 

Corollary 4 follows from the Theorem, if we write ~b~(x) as a Stieltjes transform 
of g~(x) and then replace x 1/2 by t. 

Corollary 3 follows almost trivially, by comparing (1) with the results of [3]. 
In fact, Corollary 3 may well be known, but as it could not be located in the litera- 
ture, a simple, direct proof of it is provided in Section 6. By using it, the main result 
of [3] follows also from the present theorem. 

3. Two Lemmas 

We recall the following known facts that can be found in Chapter X V  of [6]. 
The functions K~(u), while in general not uniform in the complex plane, become 
uniform in the plane cut along the negative real axis ("cut plane", for short) 
(see [1], p. 358). For v - 1 / 2  not an integer they have infinitely many zeros 
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�9 <-~" exactly 2m simple zeros have cg(j= 1, 2, ..). None of these has larg c~jl= 2, 
~< ]arg eli < ~, while all other zeros have larg ~j] > n. Here 2m is the even integer 
closest to v - 1/2. If v - 1/2 = n, an integer, then K~(u) has exactly n zeros. In partic- 
ular, for n odd (i.e., for v._=2k-1/2, KsZ+), K~(u) has an odd number of zeros, 
of which exactly one is real and negative. In all other cases with real v > 0, the 
zeros c~] of K~(u) with ~/2 < large it <~  occur in pairs of complex conjugate ones. 

Lemma 1. The function Kv_l (u)/u K~(u)- ~Y21 {~Zj(~j--U)}--1 is single-valued and 
holomorphic in the cut plane. 

Proof Define the function O(u)= 0~(u) by O (u) = K~_ I (u)/u K~ (u) - ~Y21 A j (u -  ~)-1 
where Aj(u-~])  is the principal part of K~_l(u)/uK,(u ) at the simple pole u=c~j. 
Here and in what follows, the subscript v will be suppressed, whenever possible. 
Then O(u) is single-valued in the cut plane because the functions that define it are; 
it also is holomorphic there because at each c~j the poles of ~b(u) are cancelled by 
the pole of Aj(u-~j ) .  In order to find A j, we observe that 

lira {(u - ~z;) g~ _ 1 (u)/u g v(u)} = gv_ 1 (~;)/czj K; (~j) = - K~ _ t (~)/~; K~ _ 1 (~;) 
u~ctj ~ --C(J I' 

by use of [1; 916.26]. Hence, At= _e j - i  and Lemma 1 follows. 
Let e > 0 be arbitrarily small and select a > e; also, let T, X and q be (arbitrarily 

large) real and positive. Consider the following set of points, defined by their 
cartesian coordinates: 

c iTZ B 

- - - •  

$2 

A(a, - T), B(a, T), C ( -  X, T), D ( -  X, eq), E ( -  e, eq), F(e, 0), G ( -  e, - eq), 
H( - X, - ~q), K ( -  X, - T). The contour ~, passing through these points, consists 



106 E. Grosswald 

of the straight line segments AB, BC, CD and DE; the arc of circle EFG with center 
at the origin and radius e; and the straight line segments GH, H K  and KA. We 
shall integrate various functions around cg and then take the limits as q~oo,  
X--, 0% T--+ o% e--+ 0, in that order, in as far as the order is relevant. In the limit, 
the segments DE and HG become the negative real axis and DE should be consider- 
ed as running along the upper rim, and HG along the lower rim of the cut plane. 
The functions K~(u), K~_l(u ) and 0(u) are single-valued in the closed, simply 
connected portion of the complex plane enclosed by cg, that we shall denote by 
f2. 

Lemma 2. For z = r e i~ with 0~10[<Tz, define 21/2 by ztl2 = rl/2 ei~ single-valued 
in f2; then 

I =  5~eO(Z)e=' dz=O 

Proof. As ~b(z) is single-valued in the cut plane, hence in ~, it follows from Lemma 1 
that 

I -  f ' l ' (zi/21eZtdz-a-~'2m - - ~ ' ~  , -/_,j=1% j ~(c~J-zl/2) -let~dz" 

The first integral vanishes, because the integrand is single-valued and holomorphic 
in ~2. The same is true also of the other integrals, because e j - z  ~/2 =t=0 in f2. Indeed, 
there [arg zl/21 < ~, while larg c~j[ > ~ for all j = 1, 2, . . . ,  2m. The proof of Lemma 2 
is complete. One may remark that the proof is valid even in the case of v -  1/2 = 
2 n - l ,  an odd integer; indeed, the simple, real, negative zero % of K~(u)= 
K 2 . _ l / 2 ( u  ) falls outside cg. 

4. Parenthetical Remark 

It is worthwhile to verify computationally that ~(o~-zl /2)- le 'Zdz=O for e=e~ 
(j= 1, 2 . . . .  , n), because the same pattern of proof will be used in the somewhat 
more difficult, but analogous, computation of S~dp(z)e=tdz. 

Let q--+ 0% X--+ 0% T ~  oo and observe that first the integrals along CD and 
HK, then those along BC and KA vanish in the limit, while the integral along 
AB becomes 2hi  S -~ ((~-z~/2)-~); the latter is easily computed by use of [1; 
29.3.3 7] and equals - 2 7t i {(n t)-*/2 + e e==~erfc ( _ c~ t ~/2)}. The equality to be veri- 
fied now reduces to 

{SD~+5~v~+SGu}(c~--zl/Z)-let=dz=2r~i{(nt)-l/2+~e=~terfc(--c~tl/2)}. (2) 

1/2-1 51zl=~dz=0 and the first member of (2) For e--+O, 5~vG(e-z ) etZdz--+e -1 
reduces to 

5~ ~ {(o~--irl/2) -a -(~: +ir*/2)- l}e-~tdr=2i  S~~ +~2)-l  e-rtdr 
=2 i  5~'(rl/g(r +o~2)-a). 
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By using [1;29.3.114 and 29.2.9], with (C(2) 1/2= - -~  (needed for Re(c~2)l/2>0), 
we find that 

d f ~X2t 2 00 t 

= rc c~ e~:t erfc ( - c~ t 1/2) + (To~t) 1/2 

and the left hand side of (2) becomes 2izca/2t- t /z+2~ic~e~terfc(-et~/2),  i.e., 
precisely the right hand side; equality (2) is proved. 

5. Proof of the Theorem 

By Lemma2,  I=S~O(z)eZtdz=O. For [u]~0, largu[<3~/2, it follows from [1; 
9.7.2] that Kv(u ) ~ (zc/2 u) I/2 e-"; hence, the integrand of /becomes  (1 + o(1))z-1/2e ~t. 
It follows, in particular, that 

15ff ~(z) eZt dzl = I S~ (o(z)et= dz[ =(1 + o(l))(zt/2) I/2 ST x -1/2 e -  X' dy 

= (1 + 0 (1)) (7~/2) a/2 TX-1/2  e-Xt ~ 0  

for t>_0, any T > 0  and X-~  or. The integral 5CO(z)e'~dz now becomes 

5a- o~ O(x + i T) et(~ +ir) dx 

and 

I[C~(z)eZ'dzl = ]5~(z)eZ'dz] <(1 + o(1))(zc/2) */2 T -1/2 S~_~e-~tdx 
<= C(T1/2t) -1 ~ 0  

for any t > 0  and r ~ o e .  By observing also that (2zci) -1 5.~(a(z)et~dz~S-1((~), 
it follows that 

-~(4) +~l~Z ~- 0(0 = 0 (3) S 

where 

0 (t) = @E + ~EvG + ~Gt~) 0 (Z) e '~ dz. (4) 

We shall evaluate the integrals in (4) and prove 

Lemma 3. O(t) = - 4 izc-1 y ( { x ( # ( x l / 2 )  + y~ (xt/2))} -1). 

If we substitute this in (3), we obtain that  

-1 ((~(Z)) = 27C -2  ~O({X(J2 (X1/2) + y Z(xl/2)} -1). 

This finishes the proof of (1). 
In order to estimate the integrals in (4), we first observe that, by [1; 9.6.9] 

as Izl ~ 0 ,  K ~ ( z ) ~ l  F(z)(2/z) ~, so that ~b(z)=(1 +o(1)) (F(v-  1)/F(v))(z/2)z -a = 
(1 +o(1))(2(v-  1)) * and 

1+o(1) ~_~et~e,OieeiOdO~ 0 as e ~ 0 .  S~r~ 4)(z) e'~ clz = 2 ( v -  1) 
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Next, with z=  re i'~, 

K (rl/2 ,i=/2,,~-,t Kv_l(ei=/Zr2/Z)e-rt 
5D~(o(z)et~dz ~o ~ - l ,  ~ :~ i,~. ~o dr. 

= j o o ~ = ~ e T ~ / z )  e ar=j6 (ir212)Kv(ei~/2rl/2) 

Similarly, 

Kv-l(e- i~/zrl /2)  -rt-- 
5ff 4J(z)d:dz= -~g ( _ ~ / 2 )  e ar 

and their sum is 

{Kv_1(-ir 1/2) Kv_l(ir2/2)~ e -t" 
- i ~ g  \ ~(~ , (~r l  ~ ~ K,,(ir2/2) ] r-i7Tar" 

We now replace the K,(+_ i r 1/2) by H~S)(r 1/2) (s = 1, 2), by using [1; 9.6.4] and obtain 

[H~2)_i(rl/2 ) H~2)l(r2/2)] e -'r 
- f g  \ ~ H~2)(r2/2)l r-i~ dr 

or, replacing the Hankel functions by J,,(r 1/2) +i  Yv(r 1/2) (see [1;9.1.3 and 9.1.4]) 

(:/2)+i Y -2 (:/2) J -2 Y -2 e-" 
-f~ ~ t ~(r~)~y~(r-~i~ J~(rl/2)-iY~(r 1:2) J-Y 7-dr 

= - 2 i ~o ~ s~ (r1/2) Yv -2 (rli2) -- a~ -1 ( r212) Yv (rl/2) e - t '  
j 7  (rl/2) + y2 (rl/Z) rl/2 �9 

By using [1;9.1.16] the last expression is seen to equal 

4i e -t" 
0O 

n 5; r{aZ(r2/2)+ y2(ra/2)} dr. 

With this, Lemma 3 is proved. 
It is clear that g(x)=2{n2x(af f (x l /2)+y~(x2/2))}- l>O for x>0 .  Hence, 

G(t )=~(g)=5~~ is positive for t > 0  and completely monotone. 
Consequently, also 4)(x) = S (G)  = .f~ e-  ~t G(t) dt is positive for x > 0 and completely 
monotone. In both cases one may (but hardly needs to) invoke the easier half of 
Bernstein's theorem ([7], pp. 160-161). The proof of the Theorem is complete. 

6. Discussion of Corollary 3 

For any non-negative integer n, set 

P, (u) = (2 u/n) 1/2 e" u" K,, +1/2 (u); (5) 

then (see [6] or [1], Chapter 9) P,(u) is a polynomial of exact degree n. In fact, 
it is the Bessel Polynomial of degree n in Burchnall's normalization (see [2]). 

It follows that if v = n + 1/2, 

qb. +Uz(X) = K.  1/2 (x212)1 xli2 Kn +!/2 (xl/2) = P, -i (xalZ)IPn(xl/2) 
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and it is in this representation of ~bv(x ), for v half an odd integer, that the problem 
was formulated in [4] and solved, in that particular case of odd k = 2 v = 2 n + 1, 
in [3]. 

The result obtained there is equivalent to 

-1 (q~n + 1 / 2 ) =  =~(~ -1  X n -1 /2  I ~ J = l  (X "~ ~ 2 ) - 1 ) .  (6) 

Corollary 3 now follows by comparing (1) and (6), while also taking into account 
the uniqueness of the Laplace transform. 

On the other hand, if one can prove Corollary 3 directly, then the result of [3] 
is an immediate consequence of (2). It is quite likely that Corollary 3 is, in fact, 
known. However, as no proof of it could be located in the literature and in view 
of its simplicity, a direct poof is given here for completeness. 

The zeros of P~(u) and of Kn+a/2(U ) a r e  the same and the leading coefficient 
of P,(u)is one; hence, P,(u)=l-I~=l(u-ej), it follows that ~(ixllZ)P~(-ixll2)= 
I-I~=l (x + cd), or, by using (5), 

2 ~z-i x" +,/2 K,  +i/2 (i x 1/2) K, +,12 ( -  i xl/2) = ~ = 1  (X -I'- g2). (7) 

According to [1; 9.6.4], we may replace Kn+uz(ixl/2 ) by 

__l  l~ie-(1/2)~ri(n + l/2) gl(2) =,n + l l2 (X 1/2) 

and K,,+l lz( - ix  a/z) by !'w;'~(l/2)~zi(n+!/2)Ll(l)2~c **n+l/Zt~t'~l/2~j, and then **,+1/2t ~ i r 4 ( v )  t~-l/2hj 
(v = 1, 2) by J,+l12 (xl/2) + ( -  1) ~-1i Y,+112 (x1/2) �9 After these substitutions the left 
hand side of (7) becomes 1 n+1/2 y 2  (xli2~t ; ~ g X  {J2+l12(x! /2 )+ n + l / Z t  ,O, or, by [1 9.1.2], 
1 ,rr ~ n + l / 2  .f12 [yl12] 5 . . . .  tOn+!/2t .~ j ~-J2(n+l/2)(x1/2)} and this finishes the proof of the Corollary. 
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