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Recurrent and Transient Sets for 3-dimensional Random Walks
By
R. A. Doxgy

Abstract. Before IT0 and McKuaw characterized the recurrent and transient sets for the
simple random walk in 3 dimensions, it was thought that a condition of the form

{4) 2f()) =
beB

might be necessary and sufficient for B to be recurrent. Their characterization has been
extended to hold for an arbitrary 3-dimensional aperiodic random walk with zero mean and
finite second moments; in this paper it is used to show that for such a random walk no condition
of type (A) can be necessary and sufficient for B to be recurrent, and to find the best possible
conditions of type (A) which are necessary or sufficient for B to be recurrent.

§1

In what follows a, b, ¢, will be members of the 3-dimensional lattice Lz of
points with integer coordinates and S, will denote the position at time » of a
particle performing an aperiodic random walk on L. It is known (BLACKWELL [1])
that for any subset B of Lz P {S, € B for an infinite number of values of n[Sg
= a} = P*(DB) is independent of o and can take only the values 0 or 1, and B is
said to be recurrent or transient according as P*(B) is 1 or 0. For the simple
random walk I16 and McKEAN proved

(1.1) > 2-n0(By) = +oo <> P*(B) == 1,

where

= zP{SrgéBn,allrgl]SO:b}

beBn
is the discrete capacity of By, the intersection of B and the spherical shell {27 < |a|
< 271}, (1.1) actually decides the issue for every aperiodic 3-dimensional random
walk with zero mean and finite second moments, for SprzER ([4] p. 321) has
established that a subset B of Lj is either recurrent for each such random walk or
transient for each such walk.
Since ITo and McKEaN showed that

(1.2)* k10(A) < O(4) < ks C(A),

where C (f’l\) is the Newtonian capacity of the set A derived from the subset 4 of
L3 by centreing at each point of 4 a unit cube with edges parallel to the coordinate

axes, we may replace 6’(Bn) by O(En) in (1.1), and it is this version of (1.1) that
we shall use.

* k1, k2, ... denote positive constants.

18*
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The following facts about the capacities of certain solids are easily checked:

Lemma 1.3. The capacity of any solid consisting of n non-intersecting unit cubes
18 not less than kant/3.

Lemma 1.4. If C% is the capacity of a rectangular block of dimensions f X B X Pa,

B g 2B
k410g0€ 0 k51—0g—a for 0621.

Lemma 1.5. The capacity of a solid consisting of n unit cubes whose cenires are
collinear and equally spaced at a distance 2 + 2 apart and whose faces are parallel
is not less than ken provided p > log n.

‘We also need some information about series of positive terms:

Lemma 1.6. Given an arbitrary monotone sequence (1) of positive terms with
lim Ay == 4-oo there exists for each o > 1 (B,) with

n—>-4o00

(1.7) 0=p.=1,

(1.8) > Bn < oo,
n=1

(1.9) > Bidy = +too.
n=1

Proof. Let mp =0 and m; for j =1 be the first n for which 1, > j* and
1
my > my_1. Let B, = 3155 when n = m; and fy = 0 when n =+ m; for any j.
Then (1.7} is clearly satisfied and since

(1.8) and (1.9) are also satisfied for each choice of §in 0 << § < a~1.

Lemma 1.10. Given an arbitrary monotone sequence (An) of positive terms with
lim 4, = O there exists an increasing sequence of positive inlegers (n;) with

N—>00

1

.]_ = s

(1.11) ]Zl o = o
= an

(1.12) ;Tj < 4oo.

Proof. Let I, be the first value of n for which A, < 1/r, let mp = ko = 0 and
define ky and m, inductively forr = 1 by

(1.13) my = max {27, L, my_3 + bp1 + 1},
hrt+1
1 1
. —< -
(1.14) Z (WH) FE 2
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Now let (n;) consist of all integers of the form m, + s, 0 < s < h,, arranged in
increasing order. Then (1.12) holds, for by (1.13) and (1.14),

o An oo Mr+hy s 0 hy oo
Z?izz Z Tézlm,z éZ’z‘
j=1 "7 r=1 s=m, r=1 s=0 " r=1
Also we have m, = 27, from (1.13), and therefore
B 1 _h,§+:1 1 1 - 1
s=0(m7+s) §=0 (mr + 3) (mr + by 4 1) 2r’

whence,

N8
M

Z

1
K rlsO r=1

7

so that (1.11) holds.
§2

In this section we prove that there is no positive valued function f with the
property
2.1) D f(b) = 4o P*B)=1.

beB
(According to BREIMAN [2], this has been proved by P. Erpés and B. H. MurpocH
[unpublished]).
We use a 3-dimensional version of the argument by which BRemax [2] proved
the same proposition for a 1-dimensional random walk.
Let Ay be {a:27 < |a| < 2241}, and I(n, m, «) be the rectangular block of
lattice points

{@:27 +m <ayg =221 L @) + m, 0 < ag < 27g, —2n~1 < g3 < 2n-1}

where a1, a2, and ag are the coordinates of a.
We have

(o]
Lemma 2.2. If I =\ I, where I, = I(ny, my, ay) and (n,) is an increasing
r=1
sequence of positive integers, (my) @ sequence of non-negative integers and (o) @
sequence of real numbers satisfying, for eachr = 1,

(2.3) I,CA4, and 2"g>1,

then

(2.4) > {100 aL}—l = foo< P¥(I)=1.
r=1

Proof. Note that «, is necessarily less than § /3 (otherwise I, ¢ 4,,) and f, isa
solid rectangular block [2" ay] X [2™ ] X 2% (where [x] denotes the largest

$ -~
integer < ). Lemma 1.4 tells us that » 2= C(I,) converges together with

r=1
8

ny Y- . L _
z {log 2_3} 1 , and this plainly converges together with z {log air} 1; thus
r=1

= [27r

(2.4) is a consequence of (1.1) and (1.2).



256 R. A. DovEY:

We now argue by contradiction, and assume the existence of a positive f
satisfying (2.1). Writing

F(n,m,o) = Zf(a) R
ael (n,m,o)
we define for 0 < o =< «p ’

(2.5) g(«) = lim inf {

n— +oo

inf F (n, m, o)
m:I(n,m,a)C Ay
where 4 /3 = ag = sup {a:foreveryn = 13m with I(n,m,a)CAn}>0.

Lemma 2.6. Within ils range of definition g(a) s non-decreasing and g(« -+ f)
= g(@) + g(B). Alsog(o) < oo for 0 < a =< for some y > 0, and hence g («) =< ko
tn this range.

Proof. The first assertion is obvious. As for the second, take « > 0, # > 0, such
that « + B =< wo and write m’ = m -+ [27«]. Then, since I (n, m, &) and I (n, m’, B)
are disjoint subsets of I (n, m, & -~ §),

(2.7) Fn,m,a+ B)=F(n,m,a)+ F(n,m', g) forallnandm.

Now {m:I(n,m,a + B) C Az} C{m:I(n, m, o) C An}, {m':1(n, m, o« + §)C An}
C{m' :I(n,m, B) C Ay}, so for each n,
2.8) inf F(n, m, «) inf F(n, m, o)

' m:I(n,m,a--p)CAp m:I(n,ma)C A,

inf F(n, m’, ) - inf F (n, m, B)
m:I(m,myo+P)C Ay m:I(n,m, B)CAy

(2.7), (2.8) and (2.9) in (2.5) yield

1\

(2.9)

g(x+ f) = lim inf inf F(n,m, o) inf F(n,m, p)
:n—> +o00 m:I(n,m,oc)gAn mI(n,m,ﬂ)gAn

=g +g9(f).
Suppose now that g(x) = -+ oo for all « & (0, ag). Then given any o, € <0, o)

with Z {log ai}_l < - oo we see that F(n, 0, oy) — + co asn —> -}- oo foreach r,
r=1% 7T

We can thus find an increasing sequence of positive integers (n,) such that

9 g, > 1 and F(n, 0, a;) = kg > 0 for all » = n,. Then by Lemma 2.2

I= U I (ny, 0, ary) is transient yet Z fla)y= ZF (nr, 0, o;) = -+ oo: this contra-
r=1 ael r=1
diction of (2.1) implies that g(y) < -+ oo for some y > 0. Taking any « € (0,
y) write y = no - f#, where 0 < B < o. Then the first assertion of the Lemma gi-
ves g(y) = g(na) = ng(x), and therefore
g _ 9 _ 290)

= = =k7<°°-
o 7o y

Plainly we can find «, €0, ) such that Z {log ,:_}_1: & oo and Zocr < -+ oo.
r=1 d r=1

o5

Lemma 2.6 then implies the existence of (n,), (my) such that I = UI (ny, My, oty)

r=1
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satisfies the conditions of Lemma 2.2 and F(n,, my, op) = 2kq o for all r. The

conclusion of Lemma 2.2 is that P*([) = 1 and yet zf(a) = ZF (g, My, otr)
ael r=1
< - oo, which is the required contradiction.

§3
Our sufficient condition is { >’ denotes > }
beB beB:|b| >0
, 1
beB
To prove (3.1), let B, = B, 4, have N points, and Z ]b|3 = -l 0. Then since
beB
each b € By has |b| = 27, anZ_% = -+ oo, and therefore ZN1/32 " — | oo.
n=1 n=1
By Lemma 1.3 C(B,) = ks N1/%, so that > 2-#C(By) = + oo, and P*(B) = 1.

n=1
(3.1) is the best possible sufficient condition of type (A) in the following sense:
given an arbitrary positive-valued function f with lim f(x) = + oo, there is a set B
with z’f([bl)/]b|3 = 4 oo and P*(B)=10. * T
beB

To establish this, notice that we can take the given function f to be monotone:
for if not, g (x) = inf f (y) is monotone, and any transient set with z g(|b])/]b]3

Y=z

= -+ oo necessarily has 2 'T(J6])/|b]® = + oo. Putting A, = f(2”) and o« = 3

in Lemma 1.6 yields a sequence (Bn) with

(3.2) 0=,

(3:3) S Bu< + oo,
n=1

(3.4) iﬂi’mzn) — 4 oo

Letting B; be the set of all lattice points lying within a sphere of radius 8,271
centred at the point (3.22-1, 0, 0), it is easy to see that B = U By, is transient.

n=1
For Bn is certainly contained within a sphere of radius $,27-1 -~ 1, so that

C(By) < pp271 4 1 and, by (3.3)
22_nC(Bn gz Bn+ 2" <+ oo,
n=1 n=1

Moreover N, = kg, (221 3,)3 so that, by (3.4)

Srqepifel? =S N, (272918 = k64 S f27(21) = + oo
eR #n=1 n=1
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Our necessary condition is
(3.5) =1= Z
beB

This, of course, is equivalent to

1
beB
For a random walk of the type we are considering, it is known that Z P(8,=0b)

n=1

converges for each b, and SPITZER ([4], p. 308) has shown that |b| Z P(8,=05) is

n=

bounded for all large enough |b|. Thus when Z < 4 oo, z P8,eB)<
so that P*(B) = 0.

(3.5) is also best possible of its type. For given arbitrary nonnegative f with
lim f(z) = 0, there is a set B with Z’f‘,'i’,“ < + oo and P*(B) = 1.
%—>+ 00 beB

Again we may take f(x) to be monotone (otherwise consider g(x) = sup f(y)),

y=x

but this time we put 4, = f(27) in Lemma 1.10 and get a sequence of increasing
positive integers (n;) with

3.7 1w,

(3.7) ;m +

(3.8) i%ﬂ<+w.
=1 "

Let By be empty if » ¢ (ny): let By for n = 5y consist of all points of the form
(2% 4 2rn,0,0) with 0 = r = [%} — 1. Plainly Lemma 1.5 will apply to ﬁnj

provided that log[ } < n; — 1. This is the case if n; = 2, so by Lemma 1.5
and (3.7)

S 2-n0(B,) = k622—nj[ 2 ] SIS S
However, "' j=2 2y =
R ) = fem)
bgB Ibl =]'gl 2 n; 2n; = 2 jgl 2 n; ’

so by (3.8) B=|_J By is the required recurrent set with » ' g (I!bb II <+ oo
n=1 beR
Naturally we can improve (3.1)if we impose conditions on the set B: for exam-

ple (see [5])

3.9) Z = -+ oo and B a set of coplanar points
beB
= P*(B)=1,
(3.10) z ! ITIII@Z’T + oo and B a set of collinear points
= P*(B)=1.

(3.9) and (3.10) are again best possible of their type.
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