Z. Wahrscheinlichkeitstheorie verw. Geb. 4, 253-259 (1965)

Recurrent and Transient Sets for 3-dimensional Random Walks

By

R. A. Doney

Abstract. Before ITô and MCKEAN characterized the recurrent and transient sets for the simple random walk in 3 dimensions, it was thought that a condition of the form

(A)
$$\sum_{b \in B} f(|b|) = +\infty$$

might be necessary and sufficient for B to be recurrent. Their characterization has been extended to hold for an arbitrary 3-dimensional aperiodic random walk with zero mean and finite second moments; in this paper it is used to show that for such a random walk no condition of type (A) can be necessary and sufficient for B to be recurrent, and to find the best possible conditions of type (A) which are necessary or sufficient for B to be recurrent.

§1

In what follows a, b, c, will be members of the 3-dimensional lattice L_3 of points with integer coordinates and S_n will denote the position at time n of a particle performing an aperiodic random walk on L_3 . It is known (BLACKWELL [1]) that for any subset B of $L_3 P\{S_n \in B \text{ for an infinite number of values of } n | S_0 = a\} = P^*(B)$ is independent of a and can take only the values 0 or 1, and B is said to be recurrent or transient according as $P^*(B)$ is 1 or 0. For the simple random walk ITô and MCKEAN proved

(1.1)
$$\sum_{n=1}^{\infty} 2^{-n} \widehat{C}(B_n) = +\infty \Leftrightarrow P^*(B) = 1,$$

where

$$\hat{C}(B_n) = \sum_{b \in B_n} P\{S_r \notin B_n, \text{ all } r \ge 1 \mid S_0 = b\}$$

is the discrete capacity of B_n , the intersection of B and the spherical shell $\{2^n \leq |a| < 2^{n+1}\}$. (1.1) actually decides the issue for every aperiodic 3-dimensional random walk with zero mean and finite second moments, for SPITZER ([4] p. 321) has established that a subset B of L_3 is either recurrent for each such random walk or transient for each such walk.

Since ITô and MCKEAN showed that

(1.2) *
$$k_1 C(\hat{A}) \leq \hat{C}(A) \leq k_2 C(\hat{A}),$$

where $C(\hat{A})$ is the Newtonian capacity of the set \hat{A} derived from the subset A of L_3 by centreing at each point of A a unit cube with edges parallel to the coordinate axes, we may replace $\hat{C}(B_n)$ by $C(\hat{B}_n)$ in (1.1), and it is this version of (1.1) that we shall use.

^{*} k_1, k_2, \ldots denote positive constants.

R. A. DONEY:

The following facts about the capacities of certain solids are easily checked:

Lemma 1.3. The capacity of any solid consisting of n non-intersecting unit cubes is not less than $k_3 n^{1/3}$.

Lemma 1.4. If C^{β}_{α} is the capacity of a rectangular block of dimensions $\beta \times \beta \times \beta \alpha$,

$$k_4 rac{lpha eta}{\log lpha} \leq C^{eta}_{lpha} \leq k_5 rac{lpha eta}{\log lpha} \quad ext{for} \quad lpha \geq 1 \; .$$

Lemma 1.5. The capacity of a solid consisting of n unit cubes whose centres are collinear and equally spaced at a distance $2\beta + 2$ apart and whose faces are parallel is not less than $k_6 n$ provided $\beta > \log n$.

We also need some information about series of positive terms:

Lemma 1.6. Given an arbitrary monotone sequence (λ_n) of positive terms with $\lim_{n \to +\infty} \lambda_n = +\infty$ there exists for each $\alpha > 1$ (β_n) with

$$(1.7) 0 \leq \beta_n \leq 1,$$

(1.8)
$$\sum_{n=1}^{\infty}\beta_n < +\infty,$$

(1.9)
$$\sum_{n=1}^{\infty} \beta_n^{\alpha} \lambda_n = +\infty \,.$$

Proof. Let $m_0 = 0$ and m_j for $j \ge 1$ be the first *n* for which $\lambda_n > j^{\alpha}$ and $m_j > m_{j-1}$. Let $\beta_n = \frac{1}{2j^{1+\delta}}$ when $n = m_j$ and $\beta_n = 0$ when $n \neq m_j$ for any *j*. Then (1.7) is clearly satisfied and since

$$\sum_{n=1}^{\infty} \beta_n = \sum_{j=1}^{\infty} \frac{1}{2 j^{1+\delta}} ,$$

 $\sum_{n=1}^{\infty} \beta_n^{\alpha} \lambda_n = \sum_{j=1}^{\infty} \frac{1}{2^{\alpha} j^{\alpha} \delta} ,$

(1.8) and (1.9) are also satisfied for each choice of δ in $0 < \delta < \alpha^{-1}$.

Lemma 1.10. Given an arbitrary monotone sequence (λ_n) of positive terms with $\lim_{n\to\infty} \lambda_n = 0$ there exists an increasing sequence of positive integers (n_j) with

(1.11)
$$\sum_{j=1}^{\infty} \frac{1}{n_j} = +\infty$$
,

(1.12)
$$\sum_{j=1}^{\infty} \frac{\lambda n_j}{n_j} < +\infty.$$

Proof. Let l_r be the first value of n for which $\lambda_n < 1/r$, let $m_0 = h_0 = 0$ and define h_r and m_r inductively for $r \ge 1$ by

(1.13)
$$m_r = \max\{2r, l_r, m_{r-1} + h_{r-1} + 1\},\$$

(1.14)
$$\sum_{s=0}^{h_r} \frac{1}{(m_r+s)} < \frac{1}{r} \leq \sum_{s=0}^{h_r+1} \frac{1}{(m_r+s)}.$$

Now let (n_j) consist of all integers of the form $m_r + s$, $0 \leq s \leq h_r$, arranged in increasing order. Then (1.12) holds, for by (1.13) and (1.14),

$$\sum_{i=1}^{\infty} \frac{\lambda_{n_i}}{n_j} = \sum_{r=1}^{\infty} \sum_{s=m_r}^{m_r+h_r} \frac{\lambda_s}{s} \leq \sum_{r=1}^{\infty} \lambda_{m_r} \sum_{s=0}^{h_r} \frac{1}{m_r+s} \leq \sum_{r=1}^{\infty} \frac{1}{r^2} \cdot$$

Also we have $m_r \ge 2r$, from (1.13), and therefore

$$\sum_{s=0}^{h_r} \frac{1}{(m_r+s)} = \sum_{s=0}^{h_r+1} \frac{1}{(m_r+s)} - \frac{1}{(m_r+h_r+1)} > \frac{1}{2r},$$

whence,

$$\sum_{i=1}^{\infty} \frac{1}{n_i} = \sum_{r=1}^{\infty} \sum_{s=0}^{h_r} \frac{1}{(m_r+s)} > \frac{1}{2} \sum_{r=1}^{\infty} \frac{1}{r},$$

so that (1.11) holds.

§ 2

In this section we prove that there is no positive valued function f with the property

(2.1)
$$\sum_{b\in B} f(b) = +\infty \Leftrightarrow P^*(B) = 1.$$

(According to BREIMAN [2], this has been proved by P. ERDÖS and B. H. MURDOCH [unpublished]).

We use a 3-dimensional version of the argument by which BREIMAN [2] proved the same proposition for a 1-dimensional random walk.

Let A_n be $\{a: 2^n \leq |a| < 2^{n+1}\}$, and $I(n, m, \alpha)$ be the rectangular block of lattice points

$$\{a: 2^n + m < a_1 \leq 2^n(1 + \alpha) + m, 0 < a_2 \leq 2^n \alpha, -2^{n-1} < a_3 \leq 2^{n-1}\}$$

where a_1 , a_2 , and a_3 are the coordinates of a.

We have

Lemma 2.2. If $I = \bigcup_{r=1}^{\infty} I_r$, where $I_r = I(n_r, m_r, \alpha_r)$ and (n_r) is an increasing sequence of positive integers, (m_r) a sequence of non-negative integers and (α_r) a sequence of real numbers satisfying, for each $r \ge 1$,

$$(2.3) I_r \subseteq A_{n_r} \quad \text{and} \quad 2^{n_r} \alpha_r > 1 \,,$$

then

(2.4)
$$\sum_{r=1}^{\infty} \left\{ \log \frac{1}{\alpha_r} \right\}^{-1} = +\infty \Leftrightarrow P^*(I) = 1.$$

Proof. Note that α_r is necessarily less than $\frac{1}{2} |\sqrt{3}$ (otherwise $I_r \notin A_{n,r}$) and \hat{I}_r is a solid rectangular block $[2^{n_r} \alpha_r] \times [2^{n_r} \alpha_r] \times 2^{n_r}$ (where [x] denotes the largest integer $\leq x$). Lemma 1.4 tells us that $\sum_{r=1}^{s} 2^{-n_r} C(\hat{I}_r)$ converges together with $\sum_{r=1}^{s} \left\{ \log \frac{2^{n_r}}{[2^{n_r} \alpha_r]} \right\}^{-1}$, and this plainly converges together with $\sum_{r=1}^{s} \left\{ \log \frac{1}{\alpha_r} \right\}^{-1}$; thus (2.4) is a consequence of (1.1) and (1.2).

We now argue by contradiction, and assume the existence of a positive f satisfying (2.1). Writing

$$F(n, m, \alpha) = \sum_{a \in J(n, m, \alpha)} f(a) ,$$

we define for $0 \leq \alpha \leq \alpha_0$

(2.5)
$$g(\alpha) = \lim_{n \to +\infty} \inf_{+\infty} \left\{ \inf_{m: I(n, m, \alpha) \subseteq A_n} \right\}$$

where $\frac{1}{2}\sqrt{3} \ge \alpha_0 = \sup \{\alpha: \text{for every } n \ge 1 \exists m \text{ with } I(n, m, \alpha) \subseteq A_n\} > 0.$

Lemma 2.6. Within its range of definition $g(\alpha)$ is non-decreasing and $g(\alpha + \beta) \ge g(\alpha) + g(\beta)$. Also $g(\alpha) < \infty$ for $0 \le \alpha \le \gamma$ for some $\gamma > 0$, and hence $g(\alpha) \le k_7 \alpha$ in this range.

Proof. The first assertion is obvious. As for the second, take $\alpha > 0$, $\beta > 0$, such that $\alpha + \beta \leq \alpha_0$ and write $m' = m + [2^n \alpha]$. Then, since $I(n, m, \alpha)$ and $I(n, m', \beta)$ are disjoint subsets of $I(n, m, \alpha + \beta)$,

(2.7)
$$F(n, m, \alpha + \beta) \ge F(n, m, \alpha) + F(n, m', \beta) \text{ for all } n \text{ and } m.$$

Now $\{m: I(n, m, \alpha + \beta) \subseteq A_n\} \subseteq \{m: I(n, m, \alpha) \subseteq A_n\}, \{m': I(n, m, \alpha + \beta) \subseteq A_n\}$ $\subseteq \{m': I(n, m', \beta) \subseteq A_n\}$, so for each n,

(2.8)
$$\inf F(n, m, \alpha) \cong \inf F(n, m, \alpha) \\ m: I(n, m, \alpha + \beta) \subseteq A_n \cong \inf F(n, m, \alpha) \subseteq A_n$$

(2.9)
$$\inf F(n, m', \beta) = \inf F(n, m, \beta)$$
$$m: I(n, m, \alpha + \beta) \subseteq A_n \ge \inf F(n, m, \beta) \subseteq A$$

(2.7), (2.8) and (2.9) in (2.5) yield

$$g(\alpha + \beta) \ge \liminf_{n \to +\infty} \left\{ \inf_{m: I(n, m, \alpha)} F(n, m, \alpha) = A_n + \inf_{m: I(n, m, \beta)} F(n, m, \beta) = A_n \right\}$$
$$\ge g(\alpha) + g(\beta).$$

n

Suppose now that $g(\alpha) = +\infty$ for all $\alpha \in (0, \alpha_0)$. Then given any $\alpha_r \in \langle 0, \alpha_0 \rangle$ with $\sum_{r=1}^{\infty} \left\{ \log \frac{1}{\alpha_r} \right\}^{-1} < +\infty$ we see that $F(n, 0, \alpha_r) \to +\infty$ as $n \to +\infty$ for each r. We can thus find an increasing sequence of positive integers (n_r) such that $2^n \alpha_r > 1$ and $F(n, 0, \alpha_r) \ge k_8 > 0$ for all $n \ge n_r$. Then by Lemma 2.2 $I = \bigcup_{r=1}^{\infty} I(n_r, 0, \alpha_r)$ is transient yet $\sum_{a \in I} f(a) = \sum_{r=1}^{\infty} F(n_r, 0, \alpha_r) = +\infty$: this contradiction of (2.1) implies that $g(\gamma) < +\infty$ for some $\gamma > 0$. Taking any $\alpha \in (0, \gamma)$ write $\gamma = n\alpha + \beta$, where $0 \le \beta < \alpha$. Then the first assertion of the Lemma gives $g(\gamma) \ge g(n\alpha) \ge ng(\alpha)$, and therefore

$$\frac{g(\alpha)}{\alpha} \leq \frac{g(\gamma)}{n \alpha} \leq \frac{2 g(\gamma)}{\gamma} = k_7 < \infty \,.$$

Plainly we can find $\alpha_r \in \langle 0, \gamma \rangle$ such that $\sum_{r=1}^{\infty} \left\{ \log \frac{1}{\alpha_r} \right\}^{-1} = +\infty$ and $\sum_{r=1}^{\infty} \alpha_r < +\infty$. Lemma 2.6 then implies the existence of (n_r) , (m_r) such that $I = \bigcup_{r=1}^{\infty} I(n_r, m_r, \alpha_r)$.

256

satisfies the conditions of Lemma 2.2 and $F(n_r, m_r, \alpha_r) \leq 2k_7 \alpha_r$ for all r. The conclusion of Lemma 2.2 is that $P^*(I) = 1$ and yet $\sum_{a \in I} f(a) = \sum_{r=1}^{\infty} F(n_r, m_r, \alpha_r)$ $< +\infty$, which is the required contradiction.

§ 3

Our sufficient condition is $\{\sum_{b\in B} ' \text{ denotes } \sum_{b\in B: |b|>0} \}$

(3.1)
$$\sum_{b\in B}' \frac{1}{|b|^3} = +\infty \Rightarrow P^*(B) = 1.$$

To prove (3.1), let $B_n = B_{\wedge} A_n$ have N_n points, and $\sum_{b \in B} \frac{1}{|b|^3} = +\infty$. Then since each $b \in B_n$ has $|b| \ge 2^n$, $\sum_{n=1}^{\infty} N_n 2^{-3n} = +\infty$, and therefore $\sum_{n=1}^{\infty} N_n^{1/3} 2^{-n} = +\infty$. By Lemma 1.3 $C(\hat{B}_n) \ge k_3 N_n^{1/3}$, so that $\sum_{n=1}^{\infty} 2^{-n} C(\hat{B}_n) = +\infty$, and $P^*(B) = 1$. (3.1) is the best possible sufficient condition of type (A) in the following sense:

(3.1) is the best possible sufficient condition of type (A) in the following sense: given an arbitrary positive-valued function f with $\lim_{b \in B} f(x) = +\infty$, there is a set B with $\sum_{b \in B} f'(b|)/|b|^3 = +\infty$ and $P^*(B) = 0$.

To establish this, notice that we can take the given function f to be monotone: for if not, $g(x) = \inf_{\substack{y \ge x \\ y \ge x}} f(y)$ is monotone, and any transient set with $\sum_{b \in B} 'g(|b|)/|b|^3 = +\infty$ necessarily has $\sum_{b \in B} 'f(|b|)/|b|^3 = +\infty$. Putting $\lambda_n = f(2^n)$ and $\alpha = 3$ in Lemma 1.6 yields a sequence (β_n) with

$$(3.2) 0 \le \beta_n \le 1$$

$$(3.3) \qquad \qquad \sum_{n=1}^{\infty} \beta_n < +\infty,$$

(3.4)
$$\sum_{n=1}^{\infty} \beta_n^3 f(2^n) = +\infty.$$

Letting B_n be the set of all lattice points lying within a sphere of radius $\beta_n 2^{n-1}$ centred at the point $(3.2^{n-1}, 0, 0)$, it is easy to see that $B = \bigcup_{n=1}^{\infty} B_n$ is transient. For \hat{B}_n is certainly contained within a sphere of radius $\beta_n 2^{n-1} + 1$, so that $C(\hat{B}_n) \leq \beta_n 2^{n-1} + 1$ and, by (3.3)

$$\sum_{n=1}^{\infty} 2^{-n} C(\hat{B}_n) \leq \sum_{n=1}^{\infty} \frac{1}{2} \beta_n + 2^{-n} < +\infty.$$

Moreover $N_n \ge k_9 (2^{n-1}\beta_n)^3$ so that, by (3.4)

$$\sum_{b\in B} f(|b|)/|b|^3 \ge \sum_{n=1}^{\infty} N_n f(2^n) 2^{-3n-3} \ge k_9/64 \sum_{n=1}^{\infty} \beta_n^3 f(2^n) = +\infty.$$

Our necessary condition is

(3.5)
$$P^*(B) = 1 \Rightarrow \sum_{b \in B} \left(\frac{1}{|b|} = +\infty \right).$$

This, of course, is equivalent to

(3.6)
$$\sum_{b\in B} \frac{1}{|b|} < +\infty \Rightarrow P^*(B) = 0.$$

For a random walk of the type we are considering, it is known that $\sum_{n=1}^{\infty} P(S_n = b)$

converges for each b, and SPITZER ([4], p. 308) has shown that $|b| \sum_{n=1}^{\infty} P(S_n = b)$ is

bounded for all large enough |b|. Thus when $\sum_{b \in B} \frac{1}{|b|} < +\infty$, $\sum_{n=1}^{\infty} P(S_n \in B) < \infty$, so that $P^*(B) = 0$.

(3.5) is also best possible of its type. For given arbitrary nonnegative f with $\lim_{x \to +\infty} f(x) = 0$, there is a set B with $\sum_{b \in B} f(|b|) < +\infty$ and $P^*(B) = 1$.

Again we may take f(x) to be monotone (otherwise consider $g(x) = \sup_{\substack{y \ge x \\ y \ge x}} f(y)$), but this time we put $\lambda_n = f(2^n)$ in Lemma 1.10 and get a sequence of increasing positive integers (n_i) with

$$(3.7) \qquad \qquad \sum_{j=1}^{\infty} \frac{1}{n_j} = +\infty,$$

(3.8)
$$\sum_{j=1}^{\infty} \frac{f(2^{n_j})}{n_j} < +\infty.$$

Let B_n be empty if $n \notin (n_j)$: let B_n for $n = n_j$ consist of all points of the form $(2^n + 2rn, 0, 0)$ with $0 \leq r \leq \left[\frac{2^n}{2n}\right] - 1$. Plainly Lemma 1.5 will apply to \hat{B}_{n_j} provided that $\log\left[\frac{2^{n_j}}{2n_j}\right] < n_j - 1$. This is the case if $n_j \geq 2$, so by Lemma 1.5 and (3.7)

$$\sum_{n=1}^{\infty} 2^{-n} C(\hat{B}_n) \ge k_6 \sum_{j=2}^{\infty} 2^{-n_j} \left[\frac{2^{n_j}}{2 n_j} \right] \ge \frac{k_6}{4} \sum_{j=2}^{\infty} \frac{1}{n_j} = +\infty.$$

$$\sum_{b \in B} \frac{f(|b|)}{|b|} \le \sum_{j=1}^{\infty} \left[\frac{2^{n_j}}{2 n_j} \right] \frac{f(2^{n_j})}{2^{n_j}} \le \frac{1}{2} \sum_{j=1}^{\infty} \frac{f(2^{n_j})}{2 n_j},$$

However,

nle (see [5])

so by (3.8) $B = \bigcup_{n=1}^{\infty} B_n$ is the required recurrent set with $\sum_{b \in B} \frac{f(|b|)}{|b|} < +\infty$. Naturally we can improve (3.1) if we impose conditions on the set B: for exam-

(3.9)
$$\sum_{b \in B} \frac{1}{|b|^2} = +\infty \text{ and } B \text{ a set of coplanar points}$$

$$\Rightarrow P^*(B) = 1,$$
(3.10)
$$\sum_{b \in B} \frac{1}{|b| \log |b|} = + \infty \text{ and } B \text{ a set of collinear points}$$

$$\Rightarrow P^*(B) = 1.$$

(3.9) and (3.10) are again best possible of their type.

I am grateful to Professor G. E. H. REUTER for much helpful advice, and to the Department of Scientific and Industrial Research for financial support.

References

- [1] BLACKWELL, D.: On transient Markov processes with a countable number of states and stationary transition probabilities. Ann. math. Statistics 26, 654-658 (1955).
- [2] BREIMAN, L.: Transient atomic Markov chains with a denumerable number of states. Ann. math. Statistics 29, 212-218 (1958).
- [3] Irô, K., and H. P. MCKEAN, jr.: Potentials and the random walk. Illinois J. Math. 4, 119-132 (1960).
- [4] SPITZER, F.: Principles of random walk. New York: Van Nostrand 1964.
- [5] DONEY, R. A.: Thesis. Durham University, 1964.

Department of Mathematics Imperial College University of London London S. W. 7 (Great Britain)

(Received October 30, 1964)