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Recurrent and Transient Sets for 3-dimensional Random Walks 
By 

R. A. D o ~ Y  

Abstraet. Before IT8 and McK~A~ characterized the recurrent and transient, sets for the 
simple random walk in 3 dimensions, it was thought that a condition of the form 

(A) }~f([b]) = + co 
b~B 

might be necessary and sufficient for B to be recurrent. Their characterization has been 
extended to hold for an arbitrary 3-dimensionM aperiodic random walk with zero mean and 
finite second moments; in this paper it is used to show that for such a random walk no condition 
of type (A) can be necessary and sufficient for B to be recurrent, and to find the best possib]e 
conditions of type (A) which are necessary or sufficient for B to be recurrent. 

(1.1) 

where 

w  

I n  w h a t  follows a, b, c, will be members  of  the  3-dimensional  la t t ice  L 3 of  
poin ts  wi th  in teger  coordinates  and  Sn will denote  the  posi t ion a t  t ime  n of  a 
par t ic le  per forming  an aper iodic  r andom walk  on La. I t  is known (BLAcXWELL [1]) 
t h a t  for a n y  subset  B of  L3 P {Sn ~ B for an  infini te number  of  values of n I So 
= a} = P *  (B) is i ndependen t  of  a and  can t ake  only  the  values  0 or 1, and  B is 
said to  be recur ren t  or t r ans ien t  according as P *  (B) is 1 or 0. F o r  the  simple 
r a n d o m  walk IT~ and  McK~Ax p roved  

5(B~) = ~ P{S~ ~ Bn, all r => ~lS0 = b} 
beBn 

is the  discrete  capac i ty  of Bn, the  in tersec t ion  of  B and  the  spherical  shell (2 n _<~ I a I 
< 2n+1}. (].1) ac tua l ly  decides the  issue for every  aper iodic  3-dimensional  r a n d o m  
walk wi th  zero mean  and  finite second moments ,  for SPI~Z~R ([4] p. 321) has  
es tab l i shed  t h a t  a subset  B of  La is e i ther  recur ren t  for each such r a n d o m  walk or 
t r ans i en t  for each such walk.  

Since IT~ and McKEAN showed that 

(1.2)* ~ l C ( A )  < C(A) --< k 2 C ( A ) ,  

where C (A) is the  N e w t o n i a n  capac i ty  of the  set A der ived  from the  subset  A of 
L3 b y  centre ing a t  each po in t  of A a uni t  cube with  edges paral le l  to  the  coordinate  

axes, we m a y  replace C(Bn) b y  C(Bn) in (1.1), and  i t  is this  version of  (1.1) t h a t  
we shall  use. 

* ]cl, k2 . . . .  d e n o t e  positive c o n s t a n t s .  

18" 
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The following facts about  the capacities of  certain solids are easily checked: 

Lemma 1.3. The capacity o] any solid consisting o] n non-intersecting unit cubes 
is not less than kan 1/8. 

Lemma 1.4. I/C~ is the capacity o[ a rectangular block o/dimensions f • f • Big, 

kal~g~<:C~<ka for ~ > 1 .  

Lemma 1.5. The capacity o] a solid consisting o / n  unit cubes whose centres are 
collinear and equally spaced at a distance 2 fl + 2 apart and whose ]aces are parallel 
is not less than k6 n provided fi > log n. 

We also need some information about  series of positive terms:  

Lemma 1.6. Given an arbitrary monotone sequence (2n) o] positive terms with 
lira 2n = + c~ there exists ]or each g > 1 (fin) with 
n-.-~. + o o  

(1.7) 0 _< 8. -<- 1, 

(1.8) ~ fn < +r 
n=l 

(L9) ~ f ~ .  = + ~ .  
n = [  

Proo]. Let  m0 = 0 and mj for j > 1 be the first n for which 2n > j~ and 
1 

mj > mi_1. Let  f in - -  2j l+e when n = mj and fin = 0 when n # mj for any  j .  

Then (1.7) is clearly satisfied and since 

r  c o  1 

Sf~ .+o 
= ] = 1  

c o  c o  1 

(1.8) and (1.9) arc also satisfied for each choice of 5 in 0 < ~ < g-1. 

Lemma 1.10. Given an arbitrary monotone sequence (~n) o] positive terms with 
lim ~n = 0 there exists an increasing sequence o/positive integers (ny) with 
~-.->00 

(1.11) ~ __1 = -~-r 
i=1 nj 

(1.12) ~ ~ns < +co. 
j=l  nj 

Proo]. Let  lr be the first value of  n for which 2n < l/r, let m0 = h0 = 0 and 
define hr and mr inductively for r > 1 by  

(1.13) mr = max {2r, 4, mr-1 ~- hr-1 -t- 1}, 

h~ h~+l 
(1.14) Z 1 1 s=~o 1 

s=o(mr+s) < r  =< = (mr+s)"  
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Now let (nj) consist of all integers of the form mr -1- s, 0 <<-s ~ hr, arranged in 
increasing order. Then (1.12) holds, for by (1.13) and (1.14), 

/=1 ni r = l  S=mr r = l  s=0 

Also we have mr > 2r, from (1.13), and therefore 

h~ h~ + i 

(mr+S) (mr+S) ( m r + h r +  1) > 2 r '  
s = O  = 

whence, 

so that  (1.11) holds. 

h. 1 I~ ! 
j = l  nl r = l . - -  

w 
In this section we prove that  there is no positive valued function / with the 

property 

(2.1) ~ / ( b )  = + ~  -.~ P*(B)  = 1. 
beB 

(According to BI~IMAN [2], this has been proved by P. EgD6s and B. H. Mvgvocg 
[unpublished]). 

We use a 3-dimensional version of the argument by which BR~I~rAN [2] proved 
the same proposition for a 1-dimensionM random walk. 

Let  An be {a:2 n g ]a[ < 2n+l}, and I(n,  m, g) be the rectangular block of 
lattice points 

{a:2 n + m < al ~ 2n(1 -[- ~r + m, 0 < a2 ~ 2ng, - -2  n-1 < a3 =< 2 n-l} 

where al, a2, and a8 are the coordinates ofa.  
We have 

oo  

Lemma 2.2. I /  I = QJ It, where Ir = I (nr, mr, er) and (nr) is an increasing 
r = l  

sequence o/ positive integers, (mr) a sequence o/ non-negative integers and (er) a 
sequence el real numbers satis/ying, /or each r > 1, 

o o  1 _1 (2.4) log = + oo ~ p *  (I) = 1. 
r = l  k ~r J 

Pro@ Note that  ~r is necessarily less than ~ V ~ (otherwise Ir ~ A~)  and I~ is a 
solid rectangular block [2 "r ~r] • [2 nr CCr] • 2 n" (where [x] denotes the largest 

8 ^ 

integer _< x). Lemma 1.4 tells us that  ~2-nrC(Ir)converges  together with 
r = l  

CJlog 2nr ~-1 1 -1 , and this plainly converges together with i {log ~-r } ; t h u s  
r='(-~ [1 [2 r carl J r= 1 
(2.4) is a consequence of (1.1) and (1.2). 

(2.3) IrCAnr  and 2n~O~r>l, 

then 
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We now argue by  contradiction, and assume the existence of a positive [ 
satisfying (2.1). Writ ing 

F(n, m, ~) = ~ l (a), 
aeI(n,m,a) 

we define for 0 --< s --< s0 

(2.5) g(s) = l i m  inf / inf F (n, m, s) / 
n--, +r [ m : I ( n , m , e )  CAnJ  

where } / 3  => e0 = sup { s : f o r c v e r y n  >= 1 3 m with I(n,m,s)C__An} > O. 

Lemma 2.6. Within its range o/definition g (s) is non-decreasing and g (s +/7) 
g(s) + g(/7). Also g(c~) < oo ]or 0 <-- s <-- y [or some y > O, and hence g(~) <= lcT~ 

in this range. 
Pro@ The first assertion is obvious. As for the second, take s > 0,/3 > 0, such 

tha t  ~ -4-/3 =< e0 and write m' = m + [2ns]. Then, since I (n ,  m, ~) and I(n,  m',/7) 
are disjoint subsets of I (n, m, s + /7), 

(2.7) F ( n , m , ~ + / 7 ) > = F ( n , m , ~ ) + F ( n , m ' , / 7 )  for a l ln  and m.  

Now {m: I (n ,  m, ~ +/7)  C= An)  C {m:Z(n,  m, o:) C= An),  {m' : I (n ,  m, ~ +/7) C An} 
C {m' : I (n ,  m',/7) CAn} ,  so for each n, 

inf  F (n, m, e) inf  F (n, m, ~) 
(2.8) > 

m: I ( n , m , ~  + /7) C A n  -- m: I (n,m,o~) C A n '  

inf  F(n,  m',/7) inf  2re(n, m,/7) 
(2.9) > 

m: Z(n, m, o: + fi) C A n  -- m: I (n ,  m,/7) CAn  

(2.7), (2.8) and (2.9) in (2.5) yield 

g ( g ~ _ / 7 ) > = l i m i n f l  i n f F ( n , m , s )  i n fF(n ,m , /7 )  I 
n-+ +~ ~ m : I ( n , m , s )  C A n + m : I ( n , m , / 7 ) C A n J  

> g (~) + g (/7). 
Suppose now tha t  g (e) = ~- c~ for all e e (0, so). Then  given any gr ~ (0, co) 

with=~l_ log < -[- c~ we see that  Y (n, O, sr) --> + c~ as n -+ ~ - c~ f~ each r" 

We can thus find an increasing sequence of  positive integers (nr) such tha t  
2 n a r  > 1 and Y(n, 0, er) ==:- ks > 0 for all n >= nr. Then b y L e m m a  2.2 

o o  oo  

I = I J  I (nr, o, ~r) is t ransient  ye t  ~ [ (a) = ~ / V  (nr, 0, ~r) = ~- cr this eontra- 
~ ' = 1  ae I  r = l  

diction of (2.1) implies tha t  g(y) < Jr oo for some y > 0. Taking any  s e  (0, 
y) write y = n~ -F/3, where 0 g [7 < g. Then the first assertion of the Lcmma gi- 
ves g(y) -->_ g(ns)  >= rig(s), and therefore 

g(c~) <= g(y) < 2g(y) _ i t  7 < ~ 1 7 6  
n ~  - -  y 

Pla in lywccan f inds re<0 ,  y ) s u c h t h a t  ~ log = -t- c~ and sr < + c~. 
r ~ ]  r ~ l  

oo 

Lemma 2.6 then implies the existence of (nr), (mr) such tha t  I = U I ( n r ,  mr, st) 
r = l  
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satisfies the conditions of Lemma 2.2 and F(nr, mr, ~r) ~ 2k7 ~r for all r. The 

conclusion of Lemma 2.2 is tha t  P*(I) = 1 and yet  X](a) = X F ( n r ,  mr, ~r) 
as1 r = l  

< @ c~, which is the required contradiction. 

w  

Our sufficient condition is { ~ '  denotes ~ } 
beB bEB: Ibl > 0 

(3.l/ Z '  1 p ,  
beN ] b l ~  - -  + ~ ~ (B) = 1. 

To prove (3.1), let Bn = B A An have Nn points, and ~ ; ~  = @ oo. Then since 

_ ~" NI!~ 2-n e a c h b ~ B n h a s l b  ] >2n, ~ N n ~ - a n = - ~ - c o ,  and therefore z ,  ~ = - ] - c ~ .  
n = l  ~ = 1  

By Lemma 1.3 C(Bn) >=/caNln Is, so that  ~2-nC(Bn) = + co, and P*(B) = 1. 
n = l  

(3.1) is the best possible sufficient condition of type (A) in the following sense: 
given an arbi trary positive-valued function [ with lira / (x) - -  -~ c~, there is a set B 
with ~ ' / ( Ib l ) / Ib l  ~ = + ~ and P*(B) = O. ~-~+~ 

beB 

To establish this, notice tha t  we can take the given function / to be monotone : 
for if not, g (x) --= inf / (y)  is monotone, and any transient set with Z 'g (] b])/l b]3 

y > x  beB 

: + eo necessarily has ~'[([b])/lbIa = ~- oo. Putting 2n : / ( 2 n )  and ~ : 3 
baB 

in Lemma 1.6 yields a sequence (fin) with 

(3.2) 0 ~ / ~ n  ~ 1 ,  

c o  

(3.3) Z fin < + co, 
n = l  

(3.4) ~ l ( 2 n )  = + co. 

Letting Bn be the set of all lattice points lying within a sphere of radius fl~2 n-1 
r  

centred at  the point (3.2n-~, 0, 0), it is easy to see tha t  B = QJ Bn is transient. 
n = l  

For/}n is certainly contained within a sphere of radius fin2 n-1 -~ 1, so that  

C(Bn) <= fin2 n-1 ~- 1 and, by  (3.3) 

n = l  n = l  

Moreover Nn >=/% (2n-1~]n)3 SO that ,  by (3.4) 

o o  ~o 

Z 7(1 b l)/] b ] s __> ~ ~v, / (2n) 2-~ n-~ > ~,/6~ ~ ~,~/(2n) = + oo. 
b~B n = l  n = l  
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Our necessary condition is 

(3.5) P*  (B) = 1 ~ ~ = ~- oo. 
beB 

This, of course, is equivalent  to 

(3.6) < -~- oo ~ P*  (B) --  0.  

For  a random walk of the type  we are considering, it  is known tha t  ~ P ( S n  = b) 

converges for each b, and SrITZEIZ ([4], p. 308) has shown tha t  I b [ ~ P (Sn = b) is 
n=l 

bounded for all large enough I b [. Thus when ~ < + ~ ,  P (Sne  B) < c~, 
so tha t  P*  (B) = 0. n=l 

(3.5) is also best  possible of its type.  For  given arbi t rary  nonnegative / with 
X,, f([bl)  l ira/(x)  = O, there is a set B with ~ B ~ -  < ~- co and P * ( B )  ~- 1. 

Again we m ay  take /(x) to be monotone (otherwise consider g (x) = sup /(y)) ,  
y>n 

but  this t ime we pu t  2n = ](2n) in Lemma 1.10 and get a sequence of increasing 
positive integers (hi) wi th  

(3.7) 

(3.s) 

1 = 1  " 

~ f(2n~)~ < -~- oo. 
j=l  nj 

Le t  Bn be empty  if n 6 (nj) : let  Bn for n ~ nj consist of all points of the form 

(2 n -}- 2rn,  0, 0) with 0 --< r _< ~ --  1. Plainly Lemma 1.5 will apply to /~n~ 

provided tha t  l o g i C / <  n j - - 1 .  This is the case if n , ~ 2 ,  so by  Lemma 1.5 

and (3.7) 

Y2no( n/>--k0 2-nJI2 'l 
However,  n=l i=2 [2n j ]  > - -  

Z,f(Ibl) ~__~[2nJ] f (2n , )  1 ~1 f(2n,) 
b~B Ibl --]=z-~i[2nj] 2n~ g 2 j =  2nj ' 

o o  ~ "  f(ib]) 
so by  (3.8) B = ~.J Bn is the required recurrent  set with b~  I bl < ~ co. 

n=l 
Natura l ly  we can improve (3.1) ff we impose conditions on the set B : for exam- 

ple (see [5]) 

(3.9) ~ ,  1 b~, Ib12 - + ~ and B a set o/coplanar points 

=~ P*  (B) = 1, 
1 

(3.10) ~ '  I bl log Ib] - -  + r and B a set o] collinear points 
bEB 

:z. P*  (B) = 1. 

(3.9) and (3.10) are again best possible of their  type.  
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