Z. Wahrscheinlichkeitstheorie verw. Geb. 4, 253--259 (1965)

Recurrent and Transient Sets for 3-dimensional Random Walks

By

R. A. DONEY

Abstraet. Before ITô and MCKEAN characterized the recurrent and transient sets for the simple random walk in 3 dimensions, it was thought that a condition of the form

$$
\sum_{b \in B} f(|b|) = +\infty
$$

might be necessary and sufficient for B to be recurrent. Their characterization has been extended to hold for an arbitrary 3-dimensional aperiodic random walk with zero mean and finite second moments; in this paper it is used to show that for such a random walk no condition of type (A) can be necessary and sufficient for B to be recurrent, and to find the best possible conditions of type (A) which are necessary or sufficient for B to be recurrent.

$$1$

In what follows a, b, c , will be members of the 3-dimensional lattice L_3 of points with integer coordinates and S_n will denote the position at time n of a particle performing an aperiodic random walk on L_3 . It is known (BLACKWELL [1]) that for any subset B of L_3 $P\{S_n \in B \text{ for an infinite number of values of } n | S_0$ $= a$ } = $P^*(B)$ is independent of a and can take only the values 0 or 1, and B is said to be recurrent or transient according as $P^*(B)$ is 1 or 0. For the simple random walk ITO and McKEAN proved

(1.1)
$$
\sum_{n=1}^{\infty} 2^{-n} \widehat{C}(B_n) = +\infty \Leftrightarrow P^*(B) = 1,
$$

where

$$
\widehat{C}(B_n) = \sum_{b \in B_n} P\{S_r \notin B_n, \, \text{all } r \ge 1 \, \big| \, S_0 = b \}
$$

is the discrete capacity of B_n , the intersection of B and the spherical shell $\{2^n \leq |a| \}$ $\langle 2^{n+1} \rangle$. (1.1) actually decides the issue for every aperiodic 3-dimensional random walk with zero mean and finite second moments, for SPITZER $([4]$ p. 321) has established that a subset B of L_3 is either recurrent for each such random walk or transient for each such walk.

Since ITO and McKEAN showed that

$$
(1.2) \star \qquad k_1 C(\hat{A}) \leq \hat{C}(A) \leq k_2 C(\hat{A}),
$$

where $C(\hat{A})$ is the Newtonian capacity of the set \hat{A} derived from the subset A of L_3 by centreing at each point of \overline{A} a unit cube with edges parallel to the coordinate axes, we may replace $\hat{C}(B_n)$ by $C(\hat{B}_n)$ in (1.1), and it is this version of (1.1) that we shall use.

 \star k_1, k_2, \ldots denote positive constants.

254 R. A. DONEY:

The following facts about the capacities of certain solids are easily checked:

Lemma 1.3. The capacity of any solid consisting of n non-intersecting unit cubes *is not less than* $k_3 n^{1/3}$.

Lemma 1.4. *If* C^{β}_{α} is the capacity of a rectangular block of dimensions $\beta \times \beta \times \beta \alpha$,

$$
k_4 \frac{\alpha \beta}{\log \alpha} \leq C_{\alpha}^{\beta} \leq k_5 \frac{\alpha \beta}{\log \alpha} \quad \text{for} \quad \alpha \geq 1.
$$

Lemma 1.5. The capacity of a solid consisting of n unit cubes whose centres are *collinear and equally spaced at a distance* $2\beta + 2$ apart and whose faces are parallel *is not less than* $k_6 n$ *provided* $\beta > \log n$.

We also need some information about series of positive terms:

Lemma 1.6. Given an arbitrary monotone sequence (λ_n) of positive terms with $\lim_{n \to \infty} \lambda_n = +\infty$ there exists for each $\alpha > 1$ (β_n) with *n-.-~. + oo*

$$
(1.7) \t\t 0 \leq \beta_n \leq 1,
$$

$$
\sum_{n=1}^{\infty} \beta_n < +\infty ,
$$

$$
(1.9) \t\t\t\t\t\sum_{n=1}^{\infty} \beta_n^{\alpha} \lambda_n = +\infty.
$$

Proof. Let $m_0 = 0$ and m_j for $j \ge 1$ be the first n for which $\lambda_n > j^{\alpha}$ and $m_j > m_{j-1}$. Let $\beta_n = \frac{1}{2i+1+\delta}$ when $n = m_j$ and $\beta_n = 0$ when $n + m_j$ for any j. Then (1.7) is clearly satisfied and since

$$
\sum_{n=1}^{\infty} \beta_n = \sum_{j=1}^{\infty} \frac{1}{2j^{1+\delta}},
$$

$$
\sum_{n=1}^{\infty} \beta_n^{\alpha} \lambda_n = \sum_{j=1}^{\infty} \frac{1}{2^{\alpha}j^{\alpha}\delta},
$$

(1.8) and (1.9) are also satisfied for each choice of δ in $0 < \delta < \alpha^{-1}$.

Lemma 1.10. Given an arbitrary monotone sequence (λ_n) of positive terms with $\lim_{n \to \infty} \lambda_n = 0$ there exists an increasing sequence of positive integers (n_j) with $n\rightarrow\infty$

(1.11)
$$
\sum_{j=1}^{\infty} \frac{1}{n_j} = +\infty,
$$

$$
\sum_{j=1}^{\infty} \frac{\lambda n_j}{n_j} < +\infty \, .
$$

Proof. Let l_r be the first value of n for which $\lambda_n < 1/r$, let $m_0 = h_0 = 0$ and define h_r and m_r inductively for $r \geq 1$ by

$$
(1.13) \t\t mr = \max\left\{2r, lr, mr-1 + hr-1 + 1\right\},\,
$$

(1.14)
$$
\sum_{s=0}^{h_r} \frac{1}{(m_r+s)} < \frac{1}{r} \leq \sum_{s=0}^{h_r+1} \frac{1}{(m_r+s)}.
$$

Now let (n_j) consist of all integers of the form $m_r + s$, $0 \le s \le h_r$, arranged in increasing order. Then (1.12) holds, for by (1.13) and (1.14) ,

$$
\sum_{j=1}^{\infty} \frac{\lambda_{n_j}}{n_j} = \sum_{r=1}^{\infty} \sum_{s=m_r}^{m_r + h_r} \frac{\lambda_s}{s} \leq \sum_{r=1}^{\infty} \lambda_{m_r} \sum_{s=0}^{h_r} \frac{1}{m_r + s} \leq \sum_{r=1}^{\infty} \frac{1}{r^2}.
$$

Also we have $m_r \geq 2r$, from (1.13), and therefore

$$
\sum_{s=0}^{h_r} \frac{1}{(m_r+s)} = \sum_{s=0}^{h_r+1} \frac{1}{(m_r+s)} - \frac{1}{(m_r+h_r+1)} > \frac{1}{2r},
$$

whence,

$$
\sum_{j=1}^{\infty} \frac{1}{n_j} = \sum_{r=1}^{\infty} \sum_{s=0}^{h_r} \frac{1}{(m_r+s)} > \frac{1}{2} \sum_{r=1}^{\infty} \frac{1}{r},
$$

so that (1.11) holds.

w

In this section we prove that there is no positive valued function f with the property

(2.1)
$$
\sum_{b \in B} f(b) = +\infty \Leftrightarrow P^*(B) = 1.
$$

(According to BREIMAN [2], this has been proved by P. ERDÖS and B. H. MURDOCH [unpublished]).

We use a 3-dimensional version of the argument by which BREIMAN $[2]$ proved the same proposition for a 1-dimensional random walk.

Let A_n be $\{a: 2^n \leq |a| < 2^{n+1}\}$, and $I(n, m, \alpha)$ be the rectangular block of lattice points

$$
\{a: 2^n + m < a_1 \leq 2^n(1 + \alpha) + m, 0 < a_2 \leq 2^n \alpha, -2^{n-1} < a_3 \leq 2^{n-1}\}
$$

where a_1, a_2 , and a_3 are the coordinates of a.

We have

Lemma 2.2. *If* $I = \bigcup_{r=1}^{\infty} I_r$, where $I_r = I(n_r, m_r, \alpha_r)$ and (n_r) is an increasing $r=1$ sequence of positive integers, (m_r) a sequence of non-negative integers and (α_r) a *sequence of real numbers satisfying, for each* $r \geq 1$ *,*

$$
(2.3) \tIr \subseteq An, \t and \t 2nr \alphar > 1,
$$

then

(2.4)
$$
\sum_{r=1}^{\infty} \left\{ \log \frac{1}{\alpha_r} \right\}^{-1} = +\infty \Leftrightarrow P^*(I) = 1.
$$

Proof. Note that α_r is necessarily less than $\frac{1}{2}$ $\sqrt{3}$ (otherwise $I_r \nsubseteq A_n$) and I_r is a solid rectangular block $[2^{n_r} \alpha_r] \times [2^{n_r} \alpha_r] \times 2^{n_r}$ (where [x] denotes the largest integer $\leq x$). Lemma 1.4 tells us that $\sum_{i=1}^{s} 2^{-n_i}C(\hat{I}_r)$ converges together with $\sum_{r=1}^{s} \left\{ \frac{2^{n_r}}{\log 2^{n_r}} \right\}^{-1}$ and this plainly converges together with $\sum_{r=1}^{s} \left\{ \frac{1}{\log 1} \right\}^{-1}$. $\sum_{r=1}^{\infty} {\log \frac{1}{[2^n \alpha_r]}}^r$, and this plainly converges together with $\sum_{r=1}^{\infty} {\log \frac{1}{\alpha_r}}^r$; thus (2.4) is a consequence of (1.1) and (1.2) .

We now argue by contradiction, and assume the existence of a positive f satisfying (2.1). Writing

$$
F(n, m, \alpha) = \sum_{a \in I(n, m, \alpha)} f(a) ,
$$

we define for $0 \leq \alpha \leq \alpha_0$

(2.5)
$$
g(\alpha) = \lim_{n \to +\infty} \inf_{\lambda \to +\infty} \left\{ \inf_{m \in I} F(n, m, \alpha) \subseteq A_n \right\}
$$

where $\frac{1}{2}$ $\sqrt{3} \ge \alpha_0 = \sup \{ \alpha : \text{for every } n \ge 1 \}$ *m* with $I(n, m, \alpha) \subseteq A_n \} > 0$.

Lemma 2.6. *Within its range of definition g(* α *) is non-decreasing and g(* $\alpha + \beta$ *)* $f\geq g(\alpha)+g(\beta)$. Also $g(\alpha)<\infty$ for $0\leq\alpha\leq\gamma$ for some $\gamma>0$, and hence $g(\alpha)\leq k_{\sigma}\alpha$ *in this range.*

Proof. The first assertion is obvious. As for the second, take $\alpha > 0, \beta > 0$, such that $\alpha + \beta \leq \alpha_0$ and write $m' = m + [2^n \alpha]$. Then, since $I(n, m, \alpha)$ and $I(n, m', \beta)$ are disjoint subsets of $I(n, m, \alpha + \beta)$,

(2.7)
$$
F(n, m, \alpha + \beta) \geq F(n, m, \alpha) + F(n, m', \beta) \text{ for all } n \text{ and } m.
$$

Now $\{m: I(n, m, \alpha + \beta) \subseteq A_n\} \subseteq \{m: I(n, m, \alpha) \subseteq A_n\}, \{m': I(n, m, \alpha + \beta) \subseteq A_n\}$ \subseteq $\{m': I(n, m', \beta) \subseteq A_n\}$, so for each n,

(2.8)
$$
\inf F(n, m, \alpha) \qquad \inf F(n, m, \alpha) \geq \inf F(n, m, \alpha)
$$

$$
m: I(n, m, \alpha + \beta) \subseteq A_n \geq m: I(n, m, \alpha) \subseteq A_n
$$

(2.9)
$$
\inf F(n, m', \beta) \qquad \inf F(n, m, \beta)
$$

$$
m: I(n, m, \alpha + \beta) \subseteq A_n \stackrel{\geq}{=} m: I(n, m, \beta) \subseteq A_n
$$

(2.7), (2.8) and (2.9) in (2.5) yield

$$
g(\alpha + \beta) \geq \lim_{n \to +\infty} \inf_{m} \left\{ \begin{aligned} & \inf F(n, m, \alpha) & \inf F(n, m, \beta) \\ & m \cdot I(n, m, \alpha) \subseteq A_n + m \cdot I(n, m, \beta) \subseteq A_n \end{aligned} \right\}
$$
\n
$$
\geq g(\alpha) + g(\beta).
$$

Suppose now that $g(\alpha) = +\infty$ for all $\alpha \in (0, \alpha_0)$. Then given any $\alpha_r \in (0, \alpha_0)$ with $\sum_{r=1}^{\infty} {\log \frac{1}{\alpha_r}}^{-1} < +\infty$ we see that $F(n, 0, \alpha_r) \to +\infty$ as $n \to +\infty$ for each r. We can thus find an increasing sequence of positive integers (n_r) such that 2^n $\alpha_r > 1$ and $F(n, 0, \alpha_r) \geq k_8 > 0$ for all $n \geq n_r$. Then by Lemma 2.2 $I = \bigcup_{r=1}^{\infty} I(n_r, 0, \alpha_r)$ is transient yet $\sum f(a) = \sum_{r=1}^{\infty} F(n_r, 0, \alpha_r) = +\infty$: this contra $r=1$ *aeI* $r=1$ diction of (2.1) implies that $g(\gamma) < +\infty$ for some $\gamma > 0$. Taking any $\alpha \in (0,$ γ) write $\gamma = n\alpha + \beta$, where $0 \le \beta < \alpha$. Then the first assertion of the Lemma gives $g(\gamma) \geq g(n\alpha) \geq ng(\alpha)$, and therefore

$$
\frac{g(\alpha)}{\alpha} \leq \frac{g(\gamma)}{n \alpha} \leq \frac{2 g(\gamma)}{\gamma} = k_7 < \infty.
$$

Plainly we can find $\alpha_r \in (0, \gamma)$ such that $\sum_{r=1}^{\infty} \{\log \frac{1}{\alpha_r}\}^r = +\infty$ and $\sum_{r=1}^{\infty} \alpha_r < +\infty$. oo Lemma 2.6 then implies the existence of (n_r) , (m_r) such that $I = \bigcup_{r=1}^{r} I(n_r, m_r, \alpha_r)$

satisfies the conditions of Lemma 2.2 and $F(n_r, m_r, \alpha_r) \leq 2k_7 \alpha_r$ for all r. The conclusion of Lemma 2.2 is that $P^*(I) = 1$ and yet $\sum f(a) = \sum F(n_r, m_r, \alpha_r)$ *as1* r=l $< +\infty$, which is the required contradiction.

g 3

Our sufficient condition is $\{\sum'$ denotes $\sum \}$ $b \in B$ $b \in B$: $|b| > 0$

(3.1)
$$
\sum_{b \in B} \frac{1}{|b|^3} = +\infty \Rightarrow P^*(B) = 1.
$$

To prove (3.1), let $B_n = B_0 A_n$ have N_n points, and $\sum_{b \in B} \frac{1}{|b|^3} = +\infty$. Then since $\text{each } b \in B_n \text{ has } |b| \geq 2^n, \sum N_n 2^{-3n} = +\infty, \text{ and therefore } \sum N_n^{1/3} 2^{-n} = +\infty.$ $n=1$ $n=$ By Lemma 1.3 $C(B_n) \geq k_3 N_n^{1/3}$, so that $\sum 2^{-n} C(B_n) = +\infty$, and $P^*(B) = 1$. $n=1$ (3.1) is the best possible sufficient condition of type (A) in the following sense:

given an arbitrary positive-valued function f with $\lim f(x) = +\infty$, there is a set B with $\sum' f(|b|)/|b|^3 = +\infty$ and $P^*(B) = 0$. $\longrightarrow +\infty$ *beB*

To establish this, notice that we can take the given function f to be monotone: for if not, $g(x) = \inf f(y)$ is monotone, and any transient set with $\sum' g(|b|)/|b|^3$ $y \ge x$ $y \ge x$
 $= + \infty$ necessarily has $\sum' f(|b|)/|b|^3 = + \infty$. Putting $\lambda_n = f(2^n)$ and $\alpha = 3$ *baB* in Lemma 1.6 yields a sequence (β_n) with

$$
(3.2) \t\t 0 \leq \beta_n \leq 1,
$$

$$
(3.3) \t\t\t\t\t\sum_{n=1}^{\infty} \beta_n < +\infty,
$$

$$
(3.4) \qquad \qquad \sum_{n=1}^{\infty} \beta_n^3 f(2^n) = +\infty.
$$

Letting B_n be the set of all lattice points lying within a sphere of radius $\beta_n 2^{n-1}$ centred at the point $(3.2^{n-1}, 0, 0)$, it is easy to see that $B = \bigcup_{n=1}^{\infty} B_n$ is transient. $n=1$ For B_n is certainly contained within a sphere of radius $\beta_n 2^{n-1} + 1$, so that $C(\hat{B}_n) \leq \beta_n 2^{n-1} + 1$ and, by (3.3)

$$
\sum_{n=1}^{\infty} 2^{-n} C(\hat{B}_n) \leq \sum_{n=1}^{\infty} \frac{1}{2} \beta_n + 2^{-n} < +\infty.
$$

Moreover $N_n \geq k_9 (2^{n-1}\beta_n)^3$ so that, by (3.4)

$$
\sum_{b\in B} f(|b|)/|b|^{3} \geq \sum_{n=1}^{\infty} N_{n} f(2^{n}) 2^{-3 n-3} \geq k_{9}/64 \sum_{n=1}^{\infty} \beta_{n}^{3} f(2^{n}) = +\infty.
$$

Our necessary condition is

(3.5)
$$
P^*(B) = 1 \Rightarrow \sum_{b \in B} \frac{1}{|b|} = +\infty.
$$

This, of course, is equivalent to

(3.6)
$$
\sum_{b \in B} \frac{1}{|b|} < +\infty \Rightarrow P^*(B) = 0.
$$

For a random walk of the type we are considering, it is known that $\sum_{n=0}^{\infty} P(S_n = b)$

converges for each b, and SPITZER ([4], p. 308) has shown that $|b| \sum_{n=1}^{\infty} P(S_n = b)$ is $n=1$

bounded for all large enough |b|. Thus when $\sum_{i=1}^{r} < +\infty$, $\sum P(S_n \in B) < \infty$, so that $P^*(B) = 0$. $P^* = 0$.

 (3.5) is also best possible of its type. For given arbitrary nonnegative f with $\lim_{k \to +\infty} f(x) = 0$, there is a set B with $\sum_{b \in B} \frac{f(|b|)}{|b|} < +\infty$ and $P^*(B) = 1$.

Again we may take $f(x)$ to be monotone (otherwise consider $g(x) = \sup f(y)$), $y\geq\stackrel{\frown}{\varkappa}$ but this time we put $\lambda_n = f(2^n)$ in Lemma 1.10 and get a sequence of increasing positive integers *(hi) with*

$$
(3.7) \qquad \qquad \sum_{j=1}^{\infty} \frac{1}{n_j} = +\infty \,,
$$

$$
(3.8) \qquad \qquad \sum_{j=1}^{\infty} \frac{f(2^{n_j})}{n_j} < +\infty.
$$

Let B_n be empty if $n \notin (n_j)$: let B_n for $n = n_j$ consist of all points of the form $(2^n + 2rn, 0, 0)$ with $0 \le r \le \left[\frac{2^n}{2n}\right] - 1$. Plainly Lemma 1.5 will apply to \hat{B}_{n_j} provided that $\log \left|\frac{2^{n_j}}{2n_j}\right| < n_j-1$. This is the case if $n_j \geq 2$, so by Lemma 1.5 and (3.7)

$$
\sum_{n=1}^{\infty} 2^{-n} C(\hat{B}_n) \geq k_6 \sum_{j=2}^{\infty} 2^{-n_j} \left[\frac{2^{n_j}}{2 n_j} \right] \geq \frac{k_6}{4} \sum_{j=2}^{\infty} \frac{1}{n_j} = +\infty.
$$

$$
\sum_{b \in B} \frac{f(|b|)}{|b|} \leq \sum_{j=1}^{\infty} \left[\frac{2^{n_j}}{2 n_j} \right] \frac{f(2^{n_j})}{2 n_j} \leq \frac{1}{2} \sum_{j=1}^{\infty} \frac{f(2^{n_j})}{2 n_j},
$$

Howey

so by (3.8) $B = \bigcup_{k=0}^{\infty} B_k$ is the required recurrent set with $\sum_{k=1}^{\infty} \frac{f(|b|)}{k} < +\infty$. $n=1$ Naturally we can improve (3.1) if we impose conditions on the set B : for exam-

ple (see [5])
(3.9)
$$
\sum_{b \in B} \frac{1}{|b|^2} = +\infty \text{ and } B \text{ a set of coplanar points}
$$

$$
\Rightarrow P^*(B) = 1,
$$

(3.10)
$$
\sum_{b \in B} \frac{1}{|b| \log |b|} = +\infty \text{ and } B \text{ a set of collinear points}
$$

$$
\Rightarrow P^*(B) = 1.
$$

(3.9) and (3.10) are again best possible of their type.

I am grateful to Professor G. E. H. REUTER for much helpful advice, and to the Department of Scientific and Industrial Research for financial support.

References

- [1] BLACKWELL, D.: On transient Markov processes with a countable number of states and stationary transition probabilities. Ann. math. Statistics 26, 654-658 (1955).
- [2] BREIMAN, L.: Transient atomic Markov chains with a denumerable number of states. Ann. math. Statistics 29, 212-218 (1958).
- [3] ITO, K., and H. P. McKEAN, jr.: Potentials and the random walk. Illinois J. Math. 4, 119--132 (1960).
- [4] SPITZER, F.: Principles of random walk. New York: Van Nostrand 1964.
- [5] DONEY, R. A.: Thesis. Durham University, 1964.

Department of Mathematics Imperial College University of London London S.W. 7 (Great Britain)

(Received October 30, 1966)