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§ 1. Introduction
Let A=(a;;) be a n x n matrix of real numbers. Let

pa=na_, o=} (a;—a.—a;+a )/n-1),
iJ

where

ai.=zaij/n7 a.jZZaij/m a..zzaij/nz'
i i

J

Let further d;;=(a;;—a;. —a_j+a_)/o,. A theorem which has been proved under
various conditions by Hoeffding [3], Motoo [5] and others states that if = is
uniformly distributed on the set of permutations of {1,2,...,n} then T,
=(3 Gipy—W/6=2. d;ng is approximately standard normally distributed. We

shall investigate the rate of convergence.

Estimates have been obtained by von Bahr [7] and Ho and Chen [2], but
they yield the rate O(n~'/?) only under some boundedness conditions, like
sup [d;|=0(n'1?).

i

"Izhe special case where a;;=e;d; is of particular interest in non-parametric
statistics and has been discussed by many authors, e¢.g. by Huskova [4] in the
case where the d; satisfy boundedness and smoothness conditions and most
recently and successfully by Does [1], whose results may cover most cases of
statistical interest. Usually, d; is assumed to be given by so-called score gener-
ating functions, e.g. d;=J(j/(n+1)), where J is a function on (0, 1), satisfying
some smoothness assumption. The main advantages of the approach given here
are that no smoothness is needed and the g;; are completely general. Von Bahr
and Ho and Chen allow the a;; to be random independent of n. The extensions
to cover this case are straightforward and therefore omitted.
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Theorem. There is an absolute constant K >0, such that for all A with ¢%>0

iy

sup |P(T, <)~ @) <K Y 1d,)*/n
t l,]

where & is the standard normal distribution function.

If one takes a sequence (af?) of nxn matrices, the theorem gives the
convergence rate n~ /% if 3’ |d§;’|3/]/ﬁ remains bounded and ¢%=1.

The proof given in §3 1; simpler than the Fourier theoretic approaches used
e.g. by Does [1]. It is based on an improvement of the Stein method. Stein’s
method has also been used by Ho and Chen.

In §2 a proof of the classical Berry-Esseen Theorem is given using a version
of the Stein method. This has also been done by Ho and Chen [2], but their
proof depends on a concentration inequality and seems not to work for non-
identically distributed variables. The approach given here is more flexible and
the extension to the non-identically distributed case is straightforward. The
proof in the simple situation of §2 gives the motivation for the proof of the
theorem stated above.

§2. A Proof of the Classical Berry-Esseen Theorem

If neN, y=1, let Z(n, y) be the set of sequences X ={X,, ..., X,} of random
variables, such that X,,...,X, are iid. and EX,=0, EX?=1, E|X,?=y. If
k

7<1 L, y)=0.Let S,= Y X,/Y/n, 1k<n. 1f z, xeR, 4>0, let
i=1
h, ;()=((A+CE=x)/HYADVO,  h, o(x)=1_, 4(X)

Let
5(]'7 ?s n):sup {‘E(hz, A(Sn))*dj(hz, Z)lz ZEIR7 Xeg(rh 'y)}

Here &(g) is the standard normal expectation of g.
We write 6(y, n)=45(0, y, n). The Berry-Esseen theorem states that

sup {Y/nd(y, n)fy: y2 1, neN} < oo. 2.1)
By using h, o<h, ;<h,,; , one obtains
o(y, )=9(4, y, )+ 4/} 2m. 2.2)

It obviously suffices to bound ﬂé(y, n)/y for n=2 which is assumed from now
on. We simply write & instead of k,_ , if there is no danger of confusion.

Let f(x)=e*""* | (h(z)—D(h)) e~*/*dz, which satisfies

J' ()= xf (x) =h(x) — D(h). (2.3)
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If x<0, then |f(x)| <P (x)/@(x), where ¢ is the standard normal density and if
x>0: ] f(x)| £(1 — P(x))/e(x). Therefore

fI=t; Ixfxlsl; [f/x)Is2 forall x. (2.4)
(The last estimate by using (2.3)). From this one has
|+ 2 =f" ) =1yf (x+9) +x(f(x +y) =f () +h(x +y) —h(x)|

o 2.5)
Iyl (1420515 [ spaletsy)ds)
E(f'(S) =8, fS)=E(/"(8,)~Vn X, f(5,)
v , 1 X\ 2.6)
~el 0=, -2 (7 (5. 7 716,-0)

if xe#(n, y). Using (2.5) one obtains

| Xl X,
B S) - Su 0SB (1218, 0 {51 T2 )
Vn Vn
C
Vn
where we used the independence of S, ; and X,. Here and in the future ¢ is
used as a positive constant which depends only on the formula where it

appears.
Similarly

< (1+6(y, n—1)/4)

B (r (5. ) S, )

Implementing these estimates into (2.6) and using (2.3) and (2.2) one obtains

<L (1460, n—1)/A).
n

8(y, Ny S—= (1+8(y, n—1)/A) +Afy/ 2.

1/

Choosing now A=2c¢ y/ﬂ (¢ here the same as above), then &(y, n)gcy/]/ﬁ
+06(y, n—1)/2. Using d(y, 1)< 1, this proves (2.1).

§3. Proof of the Theorem

¢ again denotes a constant which depends only on the formula where it
appears. In contrast, ¢, ¢,, ... are positive constants which depend on nothing.
Let f,=Y 14,/ If noeN and &,>0 are arbitrary but fixed then the state-

i, J
ment of the theorem is true if n<n, or f,>eyn (f, is bounded from below).
Therefore, we assume that n>n, and f,<e,n where g,, n, will be specified
later on but ny,=4.
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We first need a truncation: Let

4o d; if 4 =12
S0 |d)>12

and I'={(i, j): |d;;|>1/2}. Clearly, |I'|, the number of elements in I is at most
84 4. Therefore,

P(Z Uiny TA)ép(Z 1, m(@)= 1)

<E(Y 1,6, 7))
=[I/n=8p,/n. (3.1
If A" is the matrix (aj ), then
1 1
Ly =]~ i ..
ta n ga” on (i,%‘erlal]l
1
<= TP B <ch . (62

We claim that
0% — 1| <P 4fn. (33)
lo% — 1= IE(ZI: a;n(i))z — Wy _E(Zl: aAin(i))2|
= IE(; a;i(i) + i;ja;n(i) Wiy — Z, dizn(i) - i;jéin(i) djn(j))l + 45
1 1

42 ! 1 A A 2
— E a,+ E Ay —a., A )+ ,
nger 0 onln—=1) 5 kzﬂ( @y — Ay )| +uy

1 2
<= Y @i+ l Ay 8l + 1%
"(i;er Yonn—1) i(*_j%*rl e ’
i, €

1 R 1 PN
= ), i <cBum and n(n—l)l ) Y dudl

R g per G, Kel j*i, 1¥k

1 ~2
= a%,5cB yin.
n(n—1) (i,%el" , 4

Therefore (3.3) is true.
If we choose &, small enough (depending on ¢ in (3.3)), one has

lo —11£1/3  if B <en
Therefore,

N 1
la’{j‘: P (aéj—a:'._a’.j_i_ai.)
oy

<3+

[S1%

(lai.|+1a | +1a’ .
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By taking &, small enough, this is easily seen to be <1. Therefore,
FAESY (3.4)
A simple calculation shows that

ﬁA’=Z|d,ij|3gcl B4 (3.5)
i

if y>0, let M, (y) be the set of n x n matrices B satisfying
0‘%;4:0, ll;l]lél and ZII;U|3§V
i J

Let
0(4, p, n)=sup {IEhz, /1(TB)“(D(hz, D zeR, BeM, ()}

and 9(y, n)=9(0, y, n).
The considerations above show that if 4 is a nxn matrix with ¢%>0 and
b Segn, then
: 864
sup iP(TA <t)— ¢(t)l =sup |P(Z Ainiy = f) —&(1)] +T
t t i

8
<51 )+ UD|P((— o)~ RO+ 4

Sol(c  Bam)+cPyin (3.6)

We now want to show that &(y, n)<cy/n, which together with (3.6) proves the
theorem.

As f,=cyn, we may assume that y=1. We fix AeM (y) and estimate
|Eh, (T,)—®(h, ;). Of course, we may assume a;;=d;; and therefore a; =a ;

=0; n—1~ Y a}=1. We denote the set of these matrices by M (7).

In ordérj to apply the method of §2 we need some manipulations on the
permutations which replace the independence of the summands in §2.

We define a random element (I,, I,, J,, J,) in N% where N={1,...,n}, in
the following way: (I,, I,, J,) is uniformly distributed on N3, and given this,
one has J,=J; on {I;=1,} and J, is uniformly distributed on N—{J;} on {I,
+1,}. Let n; be a random permutation, which is uniformly distributed on the
permutations of N and independent of (I, I,, J,, J,). Define

Iy=n (), Ly=ni'(y), Js=nLy),  Jy=n,(,). (3.7)
l:(IIJIZ>I3aI4.): _'I=(J1>J2:J35J4)-

Of course, I;,=I, holds if and only if I,=I,. For each fixed i
=(i;, 1,,13,1,)6 N* which satisfies the condition i, =i,<i,=i,, we fix once for
all a permutation #(i) of N, which maps i, to i, and i, to i; and which leaves
the numbers outside {i,, i,, i5, iy} fixed. Let further s(i,, i,) be the transposition
of i, and i,. We put m,=m, ot(l), ny=m,0s(I;, I,).
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Lemma. a) n,, n,, n3 have the same law.
b) =, is independent of (I, J,).

Proof. A simple calculation shows that | and n; are independent. Given I, w, is
a one to one function of n,. Therefore, n, is also uniformly distributed and
independent of I.

Given =,, (I, I,) is a one to one function of (I, J,). As (I,, I,) is uniformly
distributed on N2, it follows that =, is independent of (I, J,). This proves b).
Using this, an identical argument as that above shows that =, is uniformly
distributed.

J
AT, on (U, 1,,J,,J,).
Therefore, if f=f, , from §2:

E(T, f(T)=E(T, f(Ty))=nEla;, 5, f(T2)
1
= (01,5, 4T, (F (T, AT, +14T3) =1 (T ) e

i=1,2,3; AT=T,,,~T,

13 1

, i=1,2. AT, depends on (I,J),

+nE(ay, 5, AT, f(T})),

where we used the independence of T, and 4, ; (Lemma b). Using the inde-
pendence of =n; and (I,,1,,J,,J,) the second summand above equals
nE(a;, 5, AT,) E(f'(T})). Using this and (2.5), one obtains

|E (T =Ty AT
1
<2|nE(ay, ;, AT,)—1|+nf E{\a,m AT, (AT, +1AT,)| (1 +2| Ty
0

1
+% { 1[2_”“('1“1+sAT1+smT2)ds)} dat
[¢]

§2|nE(ahJ; AT,)~1| +nE(|ath AT (AT |+]4T,)
+2nE(a;, ;, AT,|(4 T +14T) T

L (MMA T\(AT, +4T,)

A
11
N e n(Ti+54AT +stAT,)ds dt)
00
=A,+A,+A;+A,, say. (3.8)
A, is 0 and A4, is easy to estimate:
E(lay, ;, ATI(AT | +14T,D)
contains summands of the form
E(‘all Jy azxﬂ a;tvl)

“7#6{113""14}7 B,VE{JI,...,J4}.

where
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An easy calculation shows that these summands are bounded by cy/n? So
A, =Zcy/n. (3.9)

In order to estimate 4, and A, we look at the conditional distribution of T}
given I=i, J=j. T, depends only on =, and the conditional distribution of x,
is easy to describe: m, takes any permutation ¢ which satisfies @(i)=j,,
1 £k <4, with equal probability. If B is the matrix which is obtained from A4 by
cancelling the rows i, i,, i5, i, and the columns j,, j,, j;, ja, the T},
conditioned on I =i and J = j has the same law as

n—1[

Z ln1(1)+ Z bJa(J)’

ielit, ..., ia) j=1
where [ is the number of (distinct) elements in {i,...,i,} and ¢ is uniformly
distributed on the permutations of {1, ...,n—I}. As |a;|<1 for all i, j, one has

E(Ty\I=i,J = )S4+E(Y. by
SAHEQ b))
which is bounded, uniformly in i and j. Therefore, A; can be estimated in the
same way as 4,, leading to
As=Zcy/n. (3.10)

If 1<I<4, let M'(y) be the set of (n—I) x (n—I)}-matrices, which can be ob-
tained from matrices in M?(y) by cancelling / rows and [ columns. Introducing

a4, y, m)=sup {|P(Ty€lz, 2+ A1 L, J)| ,: z€R, A M (7)}
we have:

n—1
a(d, 7, n)gsup{P( Y biwElz z—i—i]): zeR, Be Mi(y), 1§l§4}. (3.11)
i=1

If BeM,(y), then |b, |, |b ||, |b_| are <c/n. Using this, one obtains

IRFE

where the Y’ is the sum over the cancelled matrix elements. Furthermore,
Y ah<cnel? if f,<eon and if £, < ¢, is small enough and n, sufficiently large,
we have |aB— 1]<1/2 and therefore 5= 1/2. Using this, one gets

Ba=Y bl <c, By (3.12)

i J

{

n—I1—1

2
Og

Therefore
sup P(}. b, €[z 2+ 2])Ssup P} by, e[z 2+24]),
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which, if ¢, e, <&, according to (3.6), is
<28(cy By, n—D+cBuin+ 2y 2n
<28(cy ¢y By n—D)+cycByntify2m.
Using (3.11), one has
a(d, y, M) =2 r3<x (e cyfunn —l)+c(/1+ﬂA)

Using this with the estimate (3.9) of 4,, one obtains

1y 1
- = d =D).
A4, (H—/1 n+ﬂ ltzllax {cicyy,n l))

Combining this with (3.9) and (3.10) in (3.8) and using (2.2) and (2.3) one
obtains

1 1
My, m<e,; - (HZLr max d(c; ¢, 9,1 l))+

A 1214

2
123

Now one may choose 1 at ones liking, so we take 1=2¢, ¢, ¢, y/n leading to

cy 1
5(% n)§7+261 c, 5(C1 Cr % n—l),
and if n=8, this gives
o(y, n—I
sup noly n)< -1— max sup( ) Sy, n—=1).
% Y 15154

This proves 8(y, n)<cy/n and, using again (3.6), this proves the theorem.
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