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w 1. Introduction 

Let A = (a~j) be a n x n matrix of real numbers. Let 

where 

#A =na.., a2A= ~. (aij--ai. --a4+a..)2/(n-- 1), 

al. = ~, a~/n, a 4 = ~ aij/n, a..= ~ ai/n 2. 
j i i , j  

Let further c~ij= (aij-a~.--a.j+ a.,)/a a. A theorem which has been proved under 
various conditions by Hoeffding [3], Motoo [5] and others states that if ~ is 
uniformly distributed on the set of permutations of {1,2, ..., n} then T A 
= ( ~  ai , (o-#) /a=~ ~(o  is approximately standard normally distributed�9 We 

i i 

shall investigate the rate of convergence. 
Estimates have been obtained by yon Bahr [-7] and Ho and Chen [2], but 

they yield the rate O(n -1/2) only under some boundedness conditions, like 
sup ]alsl = O(n- 1/2). 

i , j  
The special case where a~j=eid~ is of particular interest in non-parametric 

statistics and has been discussed by many authors, e.g. by Huskovfi [4] in the 
case where the dj satisfy boundedness and smoothness conditions and most 
recently and successfully by Does [1], whose results may cover most cases of 
statistical interest. Usually, dj is assumed to be given by so-called score gener- 
ating functions, e.g. dj=J(j/(n+l)), where 3 is a function on (0, 1), satisfying 
some smoothness assumption. The main advantages of the approach given here 
are that no smoothness is needed and the a~j are completely general. Von Bahr 
and Ho and Chen allow the ai~ to be random independent of ~. The extensions 
to cover this case are straightforward and therefore omitted. 
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Theorem. There is an absolute constant K > O, such that for all A with a 2 > 0 

sup lp(ZA < t)_q~(t)[ < K ~ lau[~ 3/n 
t f, j 

where ~ is the standard normal distribution function. 

If one takes a sequence (al~)) of n x n matrices, the theorem gives the 
convergence rate n-1/2 if .~ lalT)ls/]/n remains bounded and a2=  1. 

The proof given in w 3 is simpler than the Fourier theoretic approaches used 
e.g. by Does [1]. It is based on an improvement of the Stein method. Stein's 
method has also been used by Ho and Chen. 

In w a proof of the classical Berry-Esseen Theorem is given using a version 
of the Stein method. This has also been done by Ho and Chen [2], but their 
proof depends on a concentration inequality and seems not to work for non- 
identically distributed variables. The approach given here is more flexible and 
the extension to the non-identically distributed case is straightforward. The 
proof in the simple situation of w gives the motivation for the proof of the 
theorem stated above. 

w 2. A Proof of the Classical Berry-Esseen Theorem 

If nsN,  7>  1, let ~(n ,  7) be the set of sequences X = { X  1 . . . . .  Xn} of random 
variables, such that X 1 . . . . .  X,  are i.i.d, and EXi=O, EX.2,=I, ElX~]3=7. If 

k 

y < l  5f(n, 7)=9. Let Sk= ~ X]]/~ ,  l<_k<n. If z, x~N, Z>0,  let 
i = 1  

h~, x (x)= ((1 + (z -x) /2)  A 1) V 0, hz, o (x)= 1( . . . .  ](x). 
Let 

6(2, y, n) = sup {]E(hz, x (S , ) ) -  ~(hz, x)l: zelR, X e ~ ( n ,  7)}. 

Here {b(g) is the standard normal expectation of g. 
We write 3(7, n)=6(0, y, n). The Berry-Esseen theorem states that 

sup {1//n 6(7, n)/y: 7> 1, neN} < oo. (2.1) 

By using hz, o <<- hz, ~ < hz + 4, o one obtains 

6(% n) < a(2, 2, n)+ Z/I/~-.  (2.2) 

It obviously suffices to bound ]//n6(y, n)/y for n > 2  which is assumed from now 
on. We simply write h instead of h=,, if there is no danger of confusion. 

Let f(x)=e x2/2 i (h ( z ) -  ~(h)) e -z2/2 dz, which satisfies 
- o o  

f '  (x) - x f  (x) = h (x) - {b (h). (2.3) 
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If  X < 0, then If(x)[ < ~b(x)/go(x), where (p is the s tandard  no rma l  density and if 
x > 0 :  [f(x)l < (1 - ~(x))/q)(x). Therefore  

[ f ( x ) [ < l ;  ]xf(x)l<l; I f ' ( x ) [ < 2  for all x. (2.4) 

(The last es t imate by using (2.3)). F r o m  this one has 

[f'(x + y) - f ' ( x ) [  = l yf(x + y) + x ( f  (x + y) - f  (x)) + h (x + y) - h (x)[ (2.5) 
<lyl (l + 2lx[+~ i lE~,z+.~(x +sy)ds), 

0 

E (f' (S,) - S, f(S,)) = E (f' (S,) - l ~  X, f(S,)) 

i f -xeS~ n, 7). Using (2.5) one obtains  

EIf'(S,)-f'(S,_I)I<E 1 + 2  IS,_11 + ~  lt~. z+~,] S,_~+t dt 
0 

C 
< (1 + 3(7, n - 1)/2) 
=Va 

where we used the independence  of S,_1 and X,. Here  and in the future c is 
used as a posit ive constant  which depends only on the formula  where it 
appears .  

Similarly 

E X2 i (f '  (S,- l + t ~nn) - f ' (S , -  ,)) dt <-- ~nn ( l + 3(7, n-1)/2). 

Implemen t ing  these est imates into (2.6) and using (2.3) and (2.2) one obtains  

6 (),, n) < c 7  (1 + 3 ()', n - 1)/2t + R / l / ~ .  

Choosing  now 2=2c7/1/n (c here the same as above), then 3(7, n)<cy/]~ 
+b(7,  n - 1 ) / 2 .  Using 6(7, 1)<  1, this proves  (2.1). 

w 3. Proof of  the Theorem 

c again denotes a constant  which depends only on the formula  where it 
appears .  In contrast ,  Cl, c 2, ... are posit ive constants  which depend on nothing. 

Let  f i a = ~  ^ 3 [au] . If  n o e N  and % > 0  are arb i t ra ry  but  fixed then the state- 
t ,  J 

merit of  the theorem is t rue if n<=n o or /~a>e0n (/3 A is bounded  f rom below). 
Therefore,  we assume that  n>n o and fla<eo n where %, n o will be specified 
later on but  n o > 4. 
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We first need a truncation: Let 

, [ciij if lai~[ < 1/2 
aiJ = 10 if 14jl > 1/2 

and F = {(i,j): ]aij I > 1/2}. Clearly, IFI, the number of elements in F, is at most 
8flA. Therefore, 

P(~  a;.~o as T.)< P(~  lr(i, re(i))>_ 11 
i i 

< E ( ~  lr(i, re(i))) 
i 

= I r l / n  < 8 fiA/n. ( 3 . 1 )  

If A' is the matrix (a'~, j), then 

We claim that 

1 •  , <1 Z 14al 

1 
<_ irlz/3 ~/3 <_c&/n. 

t2 
(3.2) 

1 - Z  
n 6, j )~F 

L0-~'- II ~cflA/n. 

ai~o~ - /~a'-E(Z air,o) I 
i i 

_-_[E(X '~  ' ' 
i i * j  i i * j  

- -  a~j+ ~, l(aikaj~--alkajl) +U 2, 
n (~,j)~r n ( n - 1 )  ~,j 

1 *,2 2 
= aik ajz[ + #A', 
< -  Z ~(.-I) n (i,j)~F i#j,k~:[ 

(i, k)eF 

1 
~2<_cfia/n and n ( n _ l )  ] ~ ~ a~kajJ 

(i,k)eF j * i , l * k  

1 

n(n-  1) (i,k)~r 

Therefore (3.3) is true. 
If we choose ~; small enough (depending on c in (3.3)), one has 

Therefore, 
Io-2,-11<1/3 if fla<don. 

t ! ! ! 

Labl = ~@. (ao -a , -a . j+a . . )  
~ 3  3 =~ + ~ (lai.[ + la'.j[ + la'..I). 

( 3 . 3 )  
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By taking e0 small enough, this is easily seen to be < 1. Therefore, 

I a',;I < 1. 

A simple calculation shows that 

(3.4) 

f lA '=~ la;jl3 ~ Cl fiA (3.5) 
1, J 

if ~ > 0, let M,dT) be the set of n x n matrices B satisfying 

Let 

0-240, f~j[<l and ~[/~13=<7. 
i , j  

6(2, 7, n)= sup (]Eh~, a(TB)-- ~(hz,  x)]' zdR,  BeM,(7) } 

and fi(7, n)= 6(0, 7, n). 
The considerations above show that if A is a n x n matrix with 0 -2 >0  and 

fla < e; n, then 

sup ]P(T  A < t) - ~(t)] =< sup IP(~ a'/~(o < t) - ~(t)] -t- 8,-~A ~ 
t t i tl 

< 6 (c i fia' n) + sup I q ) ((t - #A')/aA') -- eb (t)[ + - -  
t 

<= 6(Cl G, n) + cG/n. (3.6) 

8 G  

I3 = rC~- 1 (J1), I 4 = ~ z ~ l ( J 2 ) ,  J3 = :rCl(I1), J 4 = 7 c 1 ( I 2 ) .  

] = (11, 12, 13, 14), -or = (J1, J2, J3, J4). 

(3.7) 

Of course, 11=12 holds if and only if I3=14. For each fixed _/ 
=(il ,  i2, i3, i4) ~N4 which satisfies the condition i I = i 2 r  we fix once for 
all a permutation t(/) of N, which maps i 1 to i 4 and i 2 to i 3 and which leaves 
the numbers outside {il, i2, i3, i4} fixed. Let further s(i l ,  i2) be the transposition 
of i 1 and i 2. We put n 2 = n  1 o t(I), 7~3 =re2 oS(11, 12). 

We now want to show that 6(~, n)<__cT/n, which together with (3.6) proves the 
theorem. 

As f l A > c l ~ ,  we may assume that 7>1. We fix A E M , ( 7 )  and estimate 
]Ehz, x ( T A ) - ~ ( h z . x )  I. Of course, we may assume aij=fiij and therefore a i . = a  4 

1 
=0;  ~Z~_ 1 .~.a~= 1. We denote the set of these matrices by M~ 

t ,  J 

In order to apply the method of w we need some manipulations on the 
permutations which replace the independence of the summands in w 

We define a random element (I1, 12, J1, J2) in N 4, where N =  {1 . . . .  , n}, in 
the following way: (11, 12, J1) is uniformly distributed on N 3, and given this, 
one has J 2 = J 1  on {11=12} and J2 is uniformly distributed on N - { J 1 }  on {I 1 
:4=12}. Let ~1 be a random permutation, which is uniformly distributed on the 
permutations of N and independent of (11, 12, J1, J2)- Define 
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Lemma. a) ~1, 7z2, r~3 have the same law. 
b) rc 2 is independent of (11, JO. 

Proof. A simple calculation shows that ! and zr I are independent. Given !, ~2 is 
a one to one function of rq. Therefore, n2 is also uniformly distributed and 
independent of !. 

Given z~ z, (11, 12) is a one to one function of (I1, Jl). As (11, I2) is uniformly 
distributed on N z, it follows that rc z is independent of (I~, Ja). This proves b). 
Using this, an identical argument as that above shows that zc 3 is uniformly 
distributed. 

Let Ti---~aj.~(j), i = 1 , 2 , 3 ;  ATI---T~+I-T i, i=1,2 .  A T  1 depends on (I_,J), 
J 

A r 2 on (11, I z, J1, J~). 
Therefore, i f f=f~,  ~ from w 

E(Tz f(Ta) ) = E(T 3 f(T3) ) = nE(ax, j~ f(T3) ) 

( ) = nE a~, j ,  A T 2 ~ ( f ' ( T  1 + A T 1 + tA r2) - f ' (T1)  ) dt 
0 

+ nE(ahj  , A T z f '(ri)),  

where we used the independence of T 2 and al~s, (Lemma b). Using the inde- 
pendence of ~a and (Ii,12, J1, J2) the second summand above equals 
nE(ahs ~ A T2) E(f'(TO). Using this and (2.5), one obtains 

IE( f ' (Ta)-  r~f(W~))l 

<=2lnE(ahs~ATz)-l l+n ! E lahs, Arz(ATl +tAT2)l 1+21Tll 

1 )} 
+~ i l~z.~+zj(Tl +sATl  +stAT2)ds dt 

0 

< 2 ]nE(a h j~ A Z 2) - 1] + nE(Jah s , A TzJ(IA r~ l + ]A T2[ ) 

+ 2hE(lab s ~ A T 2 J (IA T~I + ]A TzI) IT~ 1) 

~ +-~ E lahj~ AZz[(IAZ~ +AZz[ ) 

" ) 
�9 i f l[z, z+~,l(rl +szt T 1 +stA V2)ds dt 

O 0  

= A I + A z + A 3 + A ~ , ,  say. (3.8) 

A 1 is 0 and A 2 is easy to estimate: 

E ([ah a ~ A T2](M L I + IA T21)) 

contains summands of the form 

where 
E(la1~ j~ asp a~,~[) 

~ , ~ ( I 1 ,  ...,I~}, 8, v~(J1 . . . . .  A). 
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An easy calculation shows that these summands are bounded by cT/n 2. So 

A z < c 7/n. (3.9) 

In order to estimate A 3 and A 4 w e  look at the conditional distribution of T 1 
given _I=i, J_ =j_. T 1 depends only on % and the conditional distribution of rc~ 
is easy to describe: rq takes any permutation (p which satisfies (p(ik)=jk, 
1-<k<4,  with equal probability. If B is the matrix which is obtained from A by 
cancelling the rows il, i2, i3, i4- and the columns Jl, J2, J3, J4, the T 1, 
conditioned on _ / = / a n d  _J = j  has the same law as 

i e { i l  . . . .  ,14}  j =  1 

where l is the number of (distinct) elements in {i 1 . . . . .  i4} and o- is uniformly 
distributed on the permutations of {1 . . . .  , n - l } .  As ]aij [ < 1 for all i,j, one has 

E(I Tll I != i ,  _J =._j) < 4 + E(I 2 bi~li)1) 
i 

<= 4 + (E(y" b i or(i))2) 1 /2  

i 

which is bounded, uniformly in / and j .  Therefore, A a can be estimated in the 
same way as A 2, leading to 

A 3 <cy/n.  {3.10) 

If 1 <1<4,  let MZ,(2) be the set of ( n - l ) x  (n - /)-matrices, which can be ob- 
tained from matrices in M~ by cancelling I rows and l columns. Introducing 

o~(2, y, n )=sup{ l lP(T l6[Z  , z + 2 ]  I!, -J)[l~: zdR,  AeM~ 

we have: {(n ) } 
c~(2, 7, n)<sup P i~=~ b~,~,)e[z,z+2] " zelR, B~MI,(7), 1__<I<4 . (3.11) 

If BeM~,(7), then lb,.l, ]b.j[, ]b..I are <c/n. Using this, one obtains 

1 1 
er2 n - - I - 1  ~,j~.a2 = n - - l - - 1  < ~ 'a iS+~ 

where the ~ '  is the sum over the cancelled matrix elements. Furthermore, 
y 'a~<cne~ /3  if flA<eO n and if eo<e ;  is small enough and n o sufficiently large, 
we have la 2 - 1 [ <  1/2 and therefore ~2 > 1/2. Using this, one gets 

fib = ~ f.j]3 <c  2 fla. (3.12) 
tg J 

Therefore 

sup P ( ~  bz~0e [z, z + 2]) < sup P(~/~i~(z)e [z, z + 22]), 
z i z i 
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which, if c 2 e 0 < ~; according to (3.6), is 

< 2 ~ (c 1 fiB, n - l) + c fiR/n + )~ / l f~  

<26(cl  c2fl A, n--l) + c2 c fi a/n + )~/]//~. 

Using (3.11), one has 

e(2, 7, n)<2 max (~(CaC2flA, n - - I )+c(2+~A] .  
1< ,<4  \ n /  

Using this with the estimate (3.9) of A2, one obtains 

A 4 < ~ ( 1  1 ,  1 n - l ) ) .  

Combining this with (3.9) and (3.10) in (3.8) and using (2.2) and (2.3) one 
obtains 

6(7, n)=<c3 7 1+ 1 max g)(ClCEy, n - I  ) 
1/Y " 

Now one may choose 2 at ones liking, so we take 2 = 2 c l  c 2 c a 7In leading to 

_c7 1 
3(7, n ) < - - - + - -  6(c 1 c 2 7, n- l ) ,  

- n 2 c 1  c 2 

and if n > 8, this gives 

n6(v,n) 1 ( n -  t) 
sup < c +  max sup 6(7, n-1). 

7 2 7 1</<4  ? 

This proves 6(7, n)< cy/n and, using again (3.6), this proves the theorem. 

E. Bolthausen 
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