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Symmetric Wiener-Hopf Factorisations 
in Markov Additive Processes 

E. Arjas and T. P. Speed 

The classical Wiener-Hopf factorisation of a probability measure is extended to 
an operator factorisation associated with a semi-Markov transition function. Some 
consequences of this factorisation are indicated including a set of duality relations. 

1. I n t r o d u c t i o n  

The classical Wiener-Hopf factorisation of a probability measure F on (IR 1, ~1) 
has been put in a symmetric form by Spitzer [14] and Feller [7] and can be 
written as follows: 

(1 .1 )  3 o - F = (3o  - H - )  * (3  0 - ~ 6o)  * (c~ o - H + )  

where 3 o is the unit mass at zero, 0 < ( < 1  and H +, H -  are possibly defective 
probability measures concentrated on (0, ~ )  and ( -Go,  0) respectively. In fact 
H + (resp. H - )  is identified as the distribution of the strict ascending (resp. de- 
scending) ladder variable. 

In his very interesting extension of (1.1) Dinges [6] considered a substochastic 
transition function P on a measurable space (E, 6 ~ with a total order, and con- 
structed a factorisation: 

oo 

(1.2, I--,cP=(I--~l ZkPk- ) o(I--~ZkPk ") o(I--~zkpk +) 
where Pk-, Pk', and Pk+,k=0, 1 . . . .  , are suitable operators or sub-stochastic 
transition functions, 0 < z <  1 and "o" denotes composition. Dinges' result gives 
(1.1) as a special case, but first a few rearrangements are required to do this. The 
reason is that although Pk- and Pk + are notationally dual their constructions are 
not immediately seen to be so, and thus it is desirable to clarify this point. Further 
Presman [11, 12] has unsymmetric matrix factorisations which are similar to ones 
derived below, but these are obtained algebraically. 

It is the purpose of this paper to obtain a symmetric factorisation which 
generalises (1.1) in two distinct ways: for we deal with Markov additive processes 
{(X,, S,): n>0},  which reduce to the classical random walk by specialising the 
first component to a single value, or by suppressing the second component and 
specialising the first to be a random walk. Thus we can also obtain a result like 
(1.2) with the difference that our factorisation is manifestly symmetric. We formu- 
late our results in an abstract way and the different results referred to are special 
cases. One aspect we emphasise throughout is the duality obtained from, and 
implicit in the proof of, our symmetric factorisations. In this respect our method 
8* 
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is quite analogous to that of Feller's [7] Fourier analytic derivation of (1.1) in 
Chapter XVIII. 

We now describe the contents of this paper. After some preliminaries con- 
cerning Markov additive processes we consider briefly Markov additive pro- 
cesses in duality. Next we formulate our abstract Wiener-Hopf factorisation and 
give its simple proof. The following two sections give concrete applications of this 
result and give a selection of corollaries. We close with some purely probabilistic 
duality results which are of some interest in themselves, and which can also be 
used to give alternative (probabilistic) proofs of our factorisations. 

2. Markov Additive Processes 

Our approach and notation will be based as far as possible upon ~inlar [4, 5] 
which in turn, is modelled upon Blumenthal and Getoor [3]. We recall some 
terminology. If (G, fr and (H, J r )  are measurable spaces and if f :  G ~ H is meas- 
urable with respect to ff and ~ then we write f~f#/H. If H = ~1 = [ _  0% oo] and 
: ~ f = ~ l ,  the Borel subsets of ~1, then we write f ~  instead o f f ~ # / ~ .  Further 
bfr = {f6 f#: f is bounded}, f#+ = {f~ fr f > 0} and bfq+ = b~q n f~+. 

A mapping N: F x fg ~ [0, 1] is called a transition function from (F, ,~-) into 
(G, fq) if a) A ~ N(x, A) is a measure on fq for all fixed x~F, and b) x ~ N(x, A) is in 
b.~" for all fixed A~ff. Analogously, we define a mapping Q: E x (8 x ~ ' )  ~ [0, 1] 
to be a semi-Marker transition function (abbrev. SMTF) on (E, 8, ~m) if a) x 
Q(x,_A x B) is in b8 for every A~8, B ~  m, b) A • B ~ Q(x, A • B) is a measure on 
8 x ~m for every x~E. 

If Q, R are two SMTF's on (E, 8, ~m) we may define the convolution product 
Q o R as the function, 

(2.1) (x, A x B ) ~ ( Q o R ) ( x ,  A x B ) =  [. ~ Q(x, dx ' •215  
E~.m 

QoR is easily checked to be an SMTF. For any SMTF Q we define Q ~  where 
I(x, A • B)=fx(A) re(B), and for n >  1 Q,=Q,-1 oQ. 

There are many different ways of viewing a SMTF Q, and at various times we 
will be doing this. Thus Q may be viewed as a positive contraction valued measure 
defined on (IR', ~ ' )  by the map B--* Q(B), where (Q(B)Ia)(x)=Q(x, A x B); as a 
transition function on (E • ~ " ,  8 x ~m) which is homogeneous in the second 
component by the m_ap ((x, s), A x B ) ~  Q (x, A x ( B -  s)); as a transition function 
from (E, 8) to (E x IR m, 8 x ~ )  by (x, A x B) ~ Q (x, A x B) (cf. ~inlar [4] (1.2)); 
and finally as giving a sequence {Q": n-> 0} satisfying Definition (1.1) of ~inlar [5]. 

Any SMTF Q induces a family {Q(0): 0 ~ " }  of contractions on the Banach 
space b8 by writing (Q (0) f~ (x) = ~ Q (x, dx' • dy). f(x') e it~ Y), where (., .) denotes 
the usual inner product in IR ~. We call {Q (0)} the Fourier transform of Q. 

We will consider a Markov process with state space (E, 8) to be a sextuple 
X = (f2, J/l, J/l/,, X, ,  0,, P~) (x~E), and all such processes will be assumed non- 
terminating (see Blumenthal and Getoor [3]). Following ~inlar [5] we have: 

(2.2) Definition. Let X be a Markov process with state space (E, 8), write (F, .~') = 
(IR ~, ~"),  and let S = {S,: n > 0} be a family of functions from (f2, ~r into (F, ,~-). 
Then (X, S)= (f2, Jg, ~ ' , ,  X,, S,, 0,, P~) is called a Marker additive process 
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(abbrev. MAP) provided the following hold: 

a) So =0  a.s.; 
b) for each n>O, S,~d/lJo~; 
c) for each n >0, A~d, B~o~,, the mapping x ~ Px{XnEA, S,~B} of E into I-0, 1] 

is in g+ ; 

d) for each k, l>O, Sk+l=Sk+S~oO~ a.s.; 
e) for each k, l>O, x~E, A~r B~,~ 

px { X t o O k E A  ' StoOk~BiJ/lk } = pxk {X~A,  St~B } . 

We follow ~inlar [5] in our notation for objects associated with the definition, 

(2.3) Q(x, C)=P~{(X~, SO,C}, C~e  x o~; 

(2.4) P (x, A) = Q (x, A x F), A ~g. 

The action of Q (B) mentioned above is as follows: for f ~ +  

(2.5) (O (B) f)(x) = E ~ [f(X,);  $1 eB]. 

Let N be a stopping time on f2 relative to {d{,}; we define the (operator) 
transforms associated with (AN, SN) and with the behaviour of (X,, S.) for n < N: 
for f e b g +  0eIR", 0 < ~ <  1: 

N-1 

(2.7) (H f)(x) = E x [~N d(~ s,,) f(XN); g < oo]. 

A fundamental passage-time identity relating the transforms G=GN(z, 0), H= 
HN(z, 0) and Q(O) is the following proved in Arjas and Speed [21 (I is the identity 
operator): 

(2.8) Proposition. GN(z, O)[1-  vQ(O)] = I -  HN(r , 0). 

3. Markov Additive Processes in Duality 

Let us suppose that we are given a a-finite measure n over our fixed state space 
(E, g). We shall say that the MAP's 

(X,S)=(O, JI,./#.,Xn, S., O.,P x) and (X , ' S )=( f2 ,~ j#n ,X . ,S . ,O . ,p  x) 

with SMTF's Q, Q respectively, are in duality relative to n if 
a) for every x~E, P(x, . ) ~ ,  P(x, ")~n; 
b) for every B E ~ " , f  g~8+ 

(3.1) ( f  a(B)g)  = (fO~(-B), g) 

where, for fl ,  gl ~8+, we have ( f l ,  gl) =Sfl (x) gl (x) n(dx). In this case we say 
also that Q and (~ are in duality relative to n. 

It can be proved (cf. Blumenthal and Getoor [3]) that n is P-excessive where 
P = Q (~ ' )  is the Markov transition function of X, and similar results hold for P. 
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Thus (cf. Nelson [10]) the operators Q (B)(resp. (~ (B)) defined by (2.5) act as linear 
contractions on LP(zc) for l < p <  ~ .  With this interpretation (3.1) expresses the 
fact that (~(-B), acting on LP(rc), is the Banach space adjoint of Q(B) acting on 
L q (re) where p-a + q-1 = 1. Slightly modifying this terminology we will speak of T 
and T* being adjoint if ( f  T(B)g) = ( f T ( - B ) * ,  g) for every B e ~ " ,  f geg+.  

4. The Factorisation 
In this section we present an axiomatic approach to symmetric Wiener-Hopf 

factorisations of SMTF's. A special case of our work is the unsymmetric matrix 
factorisation of Presman [-12] whose derivation is abstract algebraic in nature. 
We would like to emphasise that while the discussion to follow is in a sense 
abstract, probabilistic considerations are used throughout and thus our argu- 
ments could hardly be termed algebraic. 

Our formulation of the Wiener-Hopf factorisation will be in terms of the 
Fourier transforms of certain operator-valued measures. Explicitly, we will call 
a map B ~ T(B) from ~m into the space of all bounded linear operators o v e r  LP(lr) 
an operator-valued measure if for every f e L p, g eL q, the set function B ~ ( f T (B) g ) 
is countably additive. In this case the Fourier transform of the operator-valued 
measure is the operator-valued function 0 ~ T(O) from IR m into the space of all 
bounded linear operators over LP(n) where we write, for f e  L p, gel2, ( f ,  T(O)g)= 
S ei(O' y) (f '  T(dy)g). It is easy to see that the functions 0 ~ GN(Z, O) and 0 ~ Hs(z, O) 
are Fourier transforms of suitable operator-valued measures. The space of all such 
Fourier transforms will be denoted ~r clearly an algebra over ~. 

We make the following convention which shortens somewhat our statements: 
We say that a statement holds 

(i) symmetrically (abbrev. s.) if it holds when all " + "  symbols are replaced by 
" - "  symbols and vice versa; 

(ii) dually (abbrev. d.) if it holds when (X, S) and the possible other elements 
associated with it are replaced by (2, S) and the corresponding associated ele- 
ments. 

As we conceive them, symmetric Wiener-Hopf factorisations of transforms 
of SMTF's have three essential ingredients. We assume the following (I-III) 
throughout this section (almost surely): 

I: A decomposition A = A -  �9 A" G A + of a subalgebra A c ~r with 

(i) A-, A', A + all subalgebras of A; 

(ii) A- A" ~ A-, A" A- c A-, and s.; 

(iii) (A+) * = A -  and s., (A')* =A'. 
Here A- A" = {ST: SEA-,  TEA'} etc., and (A+)* = {S*: SeA + } and s. 
We call a decomposition as in I a symmetric W-decomposition. The letter W 

is to stand for "Wendel" as there is a close relationship between the above and the 
so-called Wendel-projections of Kingman [-9]. 

II: A system of stopping times N +, N '+, N+ relative to {J{,}, and s. and d., 
such that almost surely 

(i) N+ = N" § < N + if N" + < oo and N+ = N + if N" + = ~ ,  and s. and d.; 
(ii) on {N'+ < ~ }  N+=N'++N+oON. +, and s. andd .  
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The stopping time N + will be sometimes described as a strict ladder index 
and N+ as a weak ladder index, and s. and d. 

We require that the above stopping times be adapted to the symmetric W- 
decomposition, by which we mean: 

III: ( i ) /cA' ;  

(ii) HN+~A +, GN+ ~A-  OA',  and s. and d.; 

(iii) HN§ cA" |  +, GN+ - I ~ A - ,  and s. and d.; 
where A- ,  A" and A § stay fixed when statements are dualised. 

We now prove two important preliminary lemmas, which give the desired 
factorisation as an almost immediate corollary. In the first lemma only II is 
used, whereas the second lemma is based on I and III. 

(4.1) Lemma (Relation between strict and weak ladder indices). 

I - -  HN + =(I--HN. +)(I--HN+), and s. and d. 

Proof. We note first that for x e E ,  0 <  ~< 1, O e l R ~ , f e L  p 

(4.2) EX[~ N+ ei(~ N ' + < N +  <ooJ=(HN.+HN+f) (x ) .  

To see this we write 

ExFr N§ ei(~ N "+ < N  + < eel 

= E,~ [,N. + e i{o, sN. +) E x [~N+ oo~,. + ei(O, sN + oO,,. +)f(XN + o 0N. +); 

N + ~ ON- + < oo [~N' +] ; N '+ < oe] by II and the general properties of 
conditional expectations 

=EX[z w+ e ~(~ s '  +)(HN+ f ) ( X  N. § N "+ < oo] 

by the (strong) Markov property 
= (H N. + t t  N + f )  (x). 

Then, using II (i) and (4.2), we observe that 

(HN+f) ( x ) = e ~ [ z  N§ ei{~ N+ < oo] 

=E~[* N+ ei(~ N+ = N  "+ <oo]  

+E~[z N+ ei(~ N+ = N  + < oo] 

=E~[z  s +  ei(~ N "+ <oo]  

+EX[z N+ e"~ N + < oo] 

- E ~ [ z  N+ e~(~ N "+ < N  + < oo] 

=(HN.+f) (x)+ (HN+f)(x)--(HN.+ HN+f)(x) by (4.2) 

which completes the proof. The symmetric and dual statements are proved simi- 
larly. 

The second of the preliminary lemmas is 

(4.3) Lemma (Duality).  

(i) GN+ = ( I -H~+) -~ ,  and s. and d.; 

(ii) GN+=(I--/~*+) -1, ands.  and d. 
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Proof By Proposition (2.8) applied to N+, and its dual form applied to N+, 
for 0 < T < I ,  

( I - T Q )  -1 = ( I - H u + )  -1 Gu+ 
and 

( i _ z O ) - I  = ( i _ / ~ + ) - 1  (~+.  

These equations are mutually adjoint because ~ = Q*, and so comparing the right 
hand sides we get 

( I -Hs+)  -1GN+-- ~* ^ .  -1 - G ~ + ( I - H a +  ) , 
and further 

GN + (I-- ffI*+ )=(I--  HN+) G*+ . 

From I and III follows that the left hand side is of the form I + K  where K c A - ,  
and the right hand side is in A'@ A +. Hence both sides must be I, giving (4.3)(ii) 
and the dual statement of (4.3)(i). Other symmetric and dual statements are 
proved similarly. 

(4.4) Corollary. (i) Hu. + = fi~. + and s.; 

(ii) H N. + cA" and s. and d. 

Proof (i) I -HN.+ = ( I - H N + ) ( I - H n + )  -~ by (4.1) 

= GN + (I-- ~ Q) ( I - ,  Q)- 1 G~I by(2.8) 

= GN+ G~+ a cancelling 

= ( i _ / ~ + ) - 1  ( I - /~*+)  by (4.3) 

= [ ( I _ / ~  +)( i_ /~8+)-1] .  = i_/~$.+ by (4.1). 

(ii) Hn. + cA" @ A + follows from the first line of the above proof when using III, 
and /q*.+ cA" @ A -  can be proved similarly. The assertion then follows from 
(4.4)(i). 

(4.5) Theorem (Wiener-Hopf factorisation). Let (X, S) and (f(, S) be in duality 
relative to z~, and assume I-III  to be valid. Then, for 0 < z <  1, Oct,,": 

(4.6) I - r Q ( O ) = [ I - f t w  (v,0)] [I--HN+(z,O)], ands. andd., 

where the middle term is interchangeable with I-I-7~. + (z, 0), and s. and d. Further, 
the factorisation (4.6) is unique in the sense that for a given W-decomposition there 
are no other factorisations with the non-unit term of the first (resp. second, third) 

factor in A -  (resp. A', A+), and s., and d. 

Proof I -  z Q (0) = G;~+ (~, O) [I - Hu + (~, 0)] by (2.8) 

= [ I - /1~+  (z, 0)] [I --HN+ (z, 0)] by (4.3) (ii) 

= [ I - /q~+  (z, 0)] [I--HN.+(v,O)-] [I--HN+(z,O)] by (4.1), 

which is the required factorisation. The interchangeability of I - H u .  + (z, 0) with 
I - / ~ * .  + (~, 0) follows from (4.4)(i). 

We now prove uniqueness. To do this let us abbreviate the notation and assume 
that 

I - - c Q = K - K ' K +  =L- E L  + 
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are two factorisations with factors invertible such that I - K - ,  1 - L - c A - ;  
I - K ,  1 - E T A "  and I - K  +, I - L  + cA + . Then 

K ' K  + (L+) -1 (IS) -~ = (K- )  -~ 1_7, 

and arguing as in the proof of (4.4)(ii) we see that both sides must be equal I, 
giving 

K -  = L- and K" K + = E L § 

A similar argument on the latter equation shows that K § = L + and K ' =  E. (This 
proof followed a familiar pattern, cf. Dinges [6].) 

We also state the factorisation in a measure form, allowing a direct comparison 
to the factorisation (1.2) of Dinges. Without going through the lengthy prelimina- 
ries (regarding the decomposition of the convolution algebra of operator-valued 
measures etc.) or making qualifications regarding uniqueness we simply describe 
the form of the factorisation and briefly explain some details of its components. 

(4.7) Theorem (Wiener-Hopf factorisation, measure form). For suitable operator- 
valued measures H +, HI, + ffI +, n>_ 1, we have 

o o  

(4.8) [ I - z Q ] ( B ) = [ I - ~ l Z n ( f f I ~ + ) * l o [ I - ~ z " H / , + ] o [ I - ~ l Z n H + ] ( B  ), 

and s. and d. 

Interpretation. (i) "o" denotes the convolution product (see (2.1)) and " . "  the 
adjoint as in w 3; 

(ii) for x c E, B c ~" ,  f ~  Is and n > 1: 

(n~ (B)f) (x)=EX[f(X.);  N § =n, S . cB] ,  

(Us + (B) J) (x) = E" [f(X.); N" § = n, S n e B], 

(/4+ (B) f )  (x) = E~ [f(X.); ~r + = n, S. cB] .  

5. A Faetorisation for Markov Chains with Totally Ordered State Space 

We now specialise the results of the previous section to give a symmetrised 
factorisafion for a transition function P, analogous to Dinges' [6] result. Recall 
however that we have assumed our process to be non-terminating, whereas in 
Dinges' case no extra assumptions of this kind are made save the necessary ones 
regarding order. These are that E has a reflexive, transitive binary relation, denoted 

, - -  I t < ~  < such that for any x, x ' cE  either x<_x or x =x.  Further, if we write x ~ x  iff 
' <  < , x<=x' and x =x ,  and x < x '  if x = x  and x ~ x '  is false, then we require that 

{(x, x'): x' < x} belong to the product a-field ~ x of. 
For our algebra A (subalgebra of ~ )  we choose the real algebra generated by 

the set of all positive contractions on L p (n); this arises by putting 0 = 0  in each 
element of ~' .  Using the well-known equivalence between positive contractions 
and transition functions on (E, ~) we define the appropriate symmetric W-decompo- 
sition as follows: for TeA, xcE ,  A e g  put 

T + (x, A) = T(x, {x': x < x'} n A); 

(5.1) T" (x, A)= T(x, {x': x ' ~  x} n A); 

T - ( x , A ) = T ( x , { x ' :  x' <x}c~A);  
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clearly T =  T -  + T' + T + and this is easily seen to define a direct stun decomposition 
of A satisfying I(i), (ii) ofw 4. To see how the decomposition can be defined directly 
in terms of its action on functions, we refer to Dinges [6]. 

The system of stopping times is the familiar o n e -  the usual ladder indices: 

N+ = i n f { n > 0 :  Xo<X,};  

N+ =inf  {n >O: Xo < X,}  ; 
(5.2) 

N ' + = N +  if N + < N  +, and N ' + = m  otherwise; 

and s. and d. 

We omit the verification of the fact that (5.2) satisfies II and III ofw 4; II(ii) follows 
because on { N ' + < m }  X N . + ~ X  o and N ' + < N  + so that N + = i n f { n > N  "+" 
XN. + <X,}, and other requirements are satisfied quite obviously. Thus we can 
read off the following theorem, where we write HN + (~) = HN + (v, 0) etc.: 

(5.3) Theorem. Let P and P be in duality relative to re, and consider the stopping 
times (5.2). Then as a relation between contractions on IY(z) for 0 < �9 < 1 

(5.4) I -zP=[I- f f I~v+(~)]  [I--HN.+(z)] [I--HN+(Z)], and s. and d., 

where the middle term is interchangeable with I- f f I*.  +(~), and s. and d. The uni- 
queness is as in Theorem (4.5). 

n 

(5.5) Application I. The one-dimensional random walk. Suppose that X, = ~ Zk 
1 

where the {Zk} are i.i.d, random variables with law #. Let/l denote Lebesgue meas- 
ure on (IR 1, ~1); then it is easy to see that 2 is P-excessive with/3(x, A)=/~(A-x)  
where/~ is the measure/~ reflected in the origin i.e. for B ~  1/~(B) = p ( - B ) .  

Now the operator P on L ~ (2) is 

(5.6) (P f )  (x) = E x [ f (X 1)3 = j" f ( x  + x') I~ (d x'). 

Following Dinges [6] we call this operator T~; note that if e(x)=e i~ for 0elR 1 
then (T~ e)(x)= r i.e. scalar multiplication by the characteristic function 
r of ~. The following expressions are readily checked: with notation as in 
Feller [7], Chapter XVIII (3.5) 

(HN+ e) (0) = Z (z, 0), 

(5.7) (HN.+ e) (0)=f(z), 

(/~L e) (0) = z -  (~, 0). 

Note that in the last case the adjoint simply means complex-conjugation; the 
Eq. (3.5) of Feller is now seen to be an immediate consequence of (5.4) above 
acting on e(x) and evaluating at x =0. 

(5.8) Application 2. The m-dimensional random walk. 
n 

Here Xn = ~  Zk where {Zk} is a sequence of i.i.d, random variables with law ~. 
1 

The dual process A" is constructed as in the previous example, with respect to 
2,,, m-dimensional Lebesgue measure. We order the state space (IR m, ~ " )  by 
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selecting a basis for IR m so that each Zk can be written Zk = (Z~ 1), ..., Z(k ")) and we 
then write: 

(X' (1) , (m) (l) X' (m) x(m). . . . .  x )t>l(X . . . .  , x (m)) iff > ~ [=] 

In terms of this order the ladder indices N + etc. relate to the hyperplane x(m)=0. 
Exactly as we found in the preceding example a factorisation arises by operating 
on e(x)= e i(~ x) for 0~IR". 

(5.9) Application 3. A duality principle. 
We now briefly describe a duality principle which is implicitly contained in 

Lemma (4.3). We express it as adjointness of two transition functions or rather, 
their associated contractions. For xEE, AEE, n>= 1, define: 

(5.10) (i) D, (x ,A )=Px{X l  < x , . . . , X . < x ,  X ,  eA} ,  

(ii) b,(x ,  A ) = P  ~ {21 ~ 2 ,  . . . . .  X ,_  1 <-_X,, 2n~A } . 

Clearly these transition functions induce contractions Dn and / ) ,  on if(u) and 
Lq(n) respectively, and the duality result is: 

(5.11) Propostion. D* =f) , for  all n>0. 

(5.12) Remark. The symmetric statements, where __< in (5.10) is replaced 
systematically by <,  >= or > ,  and the dual statements hold also. 

Proof. With the stopping times N + and/V+ and the duality being used in this 
section we see that with definition (5.10)(i) 

ao 

GN + (z) = ~ z" D, where Do = I. 
o 

Further, observing that 

D,(x, A ) = P  ~ {n is a weak ascending ladder index, X,r 

we readily find that 
oO 

(I-~Io+('c))- l=2znDn w h e r e  /)o = I ,  
o 

and the proof is an immediate consequence of Lemma (4.3)(ii). 

(5.13) Remark. We can  express Proposition (5.11) as follows: for fsff(rc), 
gr n>O: 

_ < , ( f  Dn g)  = ~S f (x)  P~ {Xl <-x,... ,  X , _  x, X ,  ~ (dx )} g (x') n (dx) 

=I~f(x)  px" {21 < X . , . . .  ~ ^ " ' ' _ , X . _ l < = X . , X . e ( d x ) } g ( x ) ~ ( a x )  

= ( f / ) , , g ) .  

In this form it is easy to give a direct probabilistic proof, and with this proof 
of Lemma (4.3), combined with a direct probabilistic proof of Lemma (4.1), we 
have an alternative method of obtaining Theorem (5.3). 

6. A Factorisation Associated with the Second Component of a MAP 

As a second specialisation we derive a factorisation using the ladder indices 
associated with the S-component of a MAP (X, S). This was our original aim and 
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amongst many possible applications, it gives an alternative way of deriving the 
result (1.1). Throughout we suppose the dimension m= 1, see Remark (6.6). 

The algebra which we decompose is the full algebra d of all Fourier transforms 
T(O). For any such transform we have T(0) = j" e i~ T(dy), and we define 

o -  

T ( 0 ) -  = ~ e i~ T(dy),  
--oo 

(6.1) T(0) = T({0}), 
oo 

T(O) + = ~ e i~ T(dy),  
O+ 

where the right sides can be interpreted formally or precisely, as operator integrals. 
For example, i f fe  L p, g e H, p -  1 + q -  1= 1, then we define such integrals by 

O--  

( f  T(O)- g )  = ~ e wy ( f  T(dy) g )  
--r 

and similarly for T(O) +. Clearly T(0)= T(O)- + T(O)'+ T(O) + and this decomposi- 
tion induces a decomposition of d satisfying I (i), (ii) of w 4. The system of stopping 
times is the family of ladder indices for S: 

(6.2) 

N+ = i n f { n > 0 :  S ,>0} ;  

N+ = i n f { n > 0 :  S ,>0} ;  

N + = N +  if N + < N  +, and N ' + = ~  otherwise; 

and s. and d. 

We again omit the verification of the fact that (6.2) satisfies II and III of w 
II (ii) now follows because S N. + = 0  on {N "+ < oo}. We have the following theorem, 
where HN.+ (r) = HN.+ (z, 0): 

(6.3) Theorem. Let  Q and O~ be in duality relative to n, and consider the stopping 
times (6.2) and s. and d. Then as a relation between contractions on IY(n),for 0 < z < 1, 
O~IRI: 

I -  r O (0) = [ I - /~*+  (% 0)] [ I -  HN.+ (z)] [ I -  HN+ (% 0)], 
(6.4) 

and s. and d., 

where the middle term is interchangeable with 1 -  s + (~), and s. and d. The unique- 
ness is as in Theorem (4.5). 

We now suppose that the state space E =  {1, 2 . . . . .  s} and for a given SMTF Q 
the underlying chain P is ergodic. Thus there is a unique invariant measure 
such that rc (i) > 0, ie E. Put A = (3ij ~z (i)). 

(6.5) Corollary. In the finite-state case just  described, if  t denotes matrix transpose: 

I - z Q ( O ) = A  -1 [ i _ / ~ s  + (z, O)]tA [I - -HN.  + (~)] [I --HN+ (z, 0)] 

and s. and d. 
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This result is a symmetrised form of Theorem (2.1) of Presman [12], and if the 
last two factors are combined it becomes exactly his result. 

(6.6) Remark. Before going on to give applications of Theorem (6.3) we will 
observe that the restriction to m = 1 in this section is purely for simplicity. At least 
one interesting situation in m > 1 dimensions is when N is the hitting time to a 
half-space through 0, as described in w 5. This topic can be treated exactly as the 
1-dimensional case has been, giving rise to a generalised form of (6.3). 

(6.7) Application 1. A duality principle. 

The following discussion is a generalisation of the result Feller [7.1, p. 609, as 
indeed was the result (5.9). In a manner similar to our previous discussion we define 
SMTF's D,,b, :  for xEE, Aeg,  B E ~  1 and n > l  

(6.8) (i) D,(x, AxB)=P~'{X,  eA, SI <O .... ,S.<O,S,  eB}; 
(ii) D.(x, a x B)=P~ {X,~A, $1 < S . . . . . .  S,-1 < CS,, CS,~B}. 

It is easy to see that these induce contractions on/Y(r0 and/2(re) respectively, and 
the duality result here is: 

(6.9) Proposition. D* (B)= f),(B) for all B s ~  i, n>0.  

Proof The proof is almost identical to that given for Proposition (5.11). 

Remark (5.12) applies here as well. Also as in w 5 we can give a direct proof of 
this result, but we refer to the final section for a fuller discussion. 

We now discuss briefly the above duality in the context of the bivariate proces- 
ses (X, W) = {(X,, W,): n > 0} and (X, M) = {(X., M.): n => 0} where we define 

(6.10) 

and 

(6.11) 

(Xo, Wo) = (Xo, o) 

(xo, N)=(x.,(w._l+s.-s._o+), n>o; 

(X., M,) = (X,, min (0, S 1 . . . . .  S,)), n > O. 

We now formulate this duality explicitly as: 

(6.12) Theorem. For (X, S) and (2, S) in duality the bivariate processes (X, W) 
and (2, if/I) are adjoint. 

Proof As shown in Arjas and Speed [2] the resolvent of (X, W) is 

A(z, O)= [I - HN_ (z, 0)] -~ GN_ (z, O) 

and that of (2, _if/) is 

(~, 0) = E l -  ~ -  (~, 0)] - 1 8 ~ -  (~, o), 

where the stopping times are the ladder indices (6.2). Now if we take the adjoint 
of A(z, 0) we find 

A* (z, 0) = G*_ (% 0) [I - H~_ (~, 0)]-1 

= [-I - / t s -  (~, 0)1-1 (~_ (~, 0) by Lemma (4.3) 

= ~ (~, 0) as stated. 
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(6.13) Application 2. A moment identity. 

In Feller [7] one of the more immediate consequences of the factorisation 
(1.1) is a relation between the expectations of the hitting times to half-lines (assum- 
ing both exist) which reads 

(6.14) - �89  2 =E [SN- ] [1 -- (]  E [Sn+ ]. 

We now derive an analogue of (6.14) for the stopping times under discussion in 
this section. Let E~[f] be an abbreviation for (1 , f )=Sf (x )  n(dx) and let us con- 
sider (when possible) the limited expansions: 

Q(O)= P + i O Q1-  �89 Qz + 0 ( 0 2 ) ;  

HN+ (1, 0 ) = H  + + i o m  + + o(0); 
(6.15) 

HN.+ ( 1 ) = H ' + ;  

and d. 

(6.16) Theorem. Let Q and Q be in duality relative to n, and consider the stopping 
times (6.2). Then, if SN+ (resp. S~+) is proper and has a finite expectation irrespective 
of the starting point X o of X (resp. -~0 of X), 

QI=0,  Q 2 < ~  
and 

1 n 2 - z E  [Sx ] = S~ e x [S~+] [ I -  H" +3 (x, dx') E ~" [S~v.] n(dx). 

Proof We use the factorisation (6.4) at z = 1, giving 

(1, [I-Q(O)] 1) 

= ( 1, [-I - / 4 " +  ( 1, 0)] [I  -- bin.+ (1)] [I  - H n + ( 1, 0)] 1 ) 

= ( [ 1 - / ~ +  -iOJVl + + o(0)] 1, [ I - H  "+ ] [ I - H  + - i O M  + + o(0)] 1) 

= -- 02 ( J ~  + 1, [ I - H ' + ] M  + 1) +o(02), 

since, by the assumption of properness , / t+ 1 = 1 and H + 1 = 1. On the other hand 
we can use the expansion 

(1, [I-O(O)] 1) 

= ( 1 ,  [ I - P - i O Q 1  + � 8 9  1) 

= - iO (1, Q, 1) +�89 2 (1, Q21 ) + o(02),  

and the assertion follows by comparing the coefficients of 0 and 0 2. 

7. Two-Barrier  Dual i ty  Relations in M A P ' s  

In this final section we show that some general duality relations obtained 
recently by one of us in the case of one-dimensional random walks carry over to 
the present situation. In particular we can use them to give a direct probabilistic 
proof of (6.3). 

Let (X, S) be as before, m--1, and define the "reflected" process (X', S') with 
SMTF Q' by Q'(B)=Q(-B),  B ~  1. Further, let (X, V) (resp. (X', V')) be the 
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process obtained from (X, S) (resp. (X', S')) by placing two absorbing barries for 
the second component at specified positions, and (X, W) (resp. (X', W')) be the 
process obtained from (X, S) (resp. (X', S')) by placing two impenetrable barries 
for the second component at 0 and a > 0. In the latter case we have inductively 

Wo =So; W.=min(a, max(W,_~+S,-S._l,0)), n>0.  

The dual processes (~, ~), (_~', ~'), (2, V), (X-', ~'), (.~, l?v') and (5~', I?V') have their 
obvious meanings. We remark that the definition of an MAP can easily be ex- 
tended to allow S to have a non-zero starting position. 

Our duality relations are expressed in terms of the equality and adjointness 
of certain operators on LV(rc). We define the following transition functions, where 
absorbing barriers are placed in braces following the expressions: for xeE, Aeg, 
an interval l e ~  ~, y, zelR ~, n>0,  a>0:  

D,(x, A, I, y, z)= W {X, eA, W,< z, S,~I + ylSo= y} ; 

b,(x,A,I,  y,z)=P~{X, eA, ~ <a-y ,S ,  eI +a-z lSo=a-z} ,  {0, a+};  
(7.1) 

O',(x,A,l, y ,z)=W {X'.eA, W, '>a-z ,S ' ,e - I  +a-ylS 'o=a-y};  

b'.(x,A,I,y,z)=P~{X',eA, ~'>y,S',e-I+zlS'o=Z}, {0- , a} .  

The associated operators are denoted by dropping the first two arguments e.g. 
D. (I, y, z) arises from D, (x, A, 1, y, z). 

(7.2) Proposition. The following operators coincide: 
(1) D,(I, y, z), 
(2) b* (I, y, z), 
(3) D',,(I, y, z), 
(4) D',* (I, y, z). 

Further, if the inequalities on the right side of (7.1) are made strict and the 
barriers changed to {0 - ,  a} and {0, a + } respectively, the above result is still true. 

Proof The result (1)= (2) follows from the corresponding result of Speed [13] 
by proving that for fGL p, geU:  

~ f (x) W {X,e(dx'), IV, <_ z, S, eI + Yl So = y} g (x') r~(dx) 

= ~f(x)/3~' {2,e(dx), ~<<_a-y, ~ .eI+a-zl '~o=a-z}  g(x') rc(dx'). 

All the other assertions are proved similarly. 
Finally we remark that the case a = oo (one impenetrable or absorbing barrier 

only) can be formulated as (7.2) above using the analogous results in the i.i.d, case. 
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