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On a Mixing Property of Operators in L, Spaces™

H. Fong and L. Sucheston

Let (X, o) be a measurable space. For a measure y defined on o/ and a fixed
number p with 1 <p< oo, L, () shall denote the Banach space of functions f such
that [|f1Pdpu<oo; L, (w) denotes the Banach space of p-essentially bounded
functions. We consider the following conditions on a linear contraction operator
T defined on L,(u):

(A) Foreach f eL,(w), T" f converges weakly in L, (w).

(B) Foreach feL (,u) Zan, T' f converges in L, (u )for each matrix (a,;)
satisfying

(UR) sup ) la,;|<oo; lim Y a,;=1; lim max |a,,]/=0.

Condition (A) corresponds to mixing, or more generally stability in applica-
tions to Ergodic Theory (cf. [2, 9, 3, 10]). The matrices satisfying (UR) could be
called uniformly regular. It is not difficult to see that the last condition in (UR)
may be replaced by: 11m a,;=0 for each i and hm max la,;|=0. Lorentz charac-

terized the class of (UR) methods in terms of ¢ summab1hty functions” (see [11]
and [12]). In Section | we show that (A) and (B) are equivalent for p=1 and 2.
This is still true if 1 <p< oo, under some additional conditions on T, as shown
in Section 2. Passage from L, to L,, p#2, is accomplished via an interpolation
result (Theorem 1.2) proved by a very simple argument, but including results
for point-transformations and Markov operators which seemed fairly difficult
to establish (cf. [2]; [9], Theorem 4.1; [10], Theorem 3.2).

The authors wish to thank B. Baishanski and M. Lin for valuable comments.

Section 1

Our first theorem generalizes some results in Blum-Hanson [2], Hanson-
Pledger [6], Akcoglu-Sucheston [1], and Jones-Kuftinec [8].

Theorem 1.1. Let T be a contraction operator on L, of a a-finite measure space
(X, .o, 1). Let f be a fixed function in L, (n). Then the following conditions are
equivalent:

(@) T"f converges weakly in L, ().
(b) For every (UR)-matrix (ay;), A, f=Y, a,; T'f converges in L, (1).

Proof. (b) = (a) In fact, we show that condition (a) is easily implied—not
only in L,, but in any Banach space— by the following weaker condition:
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(b") There exists a regular matrix (a,;) such that for every increasing sequence
of positive integers (k;), Y a,; T* f converges weakly.

i

We recall that a matrix (a,,) is called regular if: sup )" |a,;| < o0, im Y a,;=1,

lim a,;=0 for each i. Assume that (b’) holds for some regular matrix (a,;) and

that (a) fails. Then there exists ge L, (u) such that (T"f, g)=[T"f- g dp diverges.
The sequence ¢,=(T"f, g) being bounded, there are sequences of positive integers
() and (¢;) such that «=1lim ¢, *lim c,,= f. We shall form an increasing sequence

of positive integers (k;) such that the sequence Z a,; ¢y, does not converge. Since

(a,;) is regular, there exist increasing sequences of integers (n,) and (m,) such that

lim( Y la,.+ ¥ la, :)=0. (1.1)

2P i<mp-y i>my

The sequence (k;) is formed as follows: take m; terms of (z;), then (m, —m,) larger
terms of (r;), then (ms—m,) larger terms of (t;), etc. It follows from (1.1) and the
regularity of (a,,) that

11mZa,,2 LiC,=0 and hmZa,,2 e, =P
J J

Remark. The above argument establishes the following fact, perhaps already
observed: If (c,) is any bounded sequence, (a,;) is regular and ) a,; ¢, converges
for every (k;), then ¢, converges. i

(a) = (b) The following lemma is taken from [1].

Lemma 1.1. Let S be a contraction operator on L, (1) and assume that he L, ().
Then |h||* — |Shi> <& implies that for each ge L, (), |(h, 8)—(Sh, Sg)I=e|igl.

Proof of Lemma. |(h,g)—(Sh,Sg)|=I(h,g)~(S*Sh,g)|<Ilh—S*Sh| |gll. But
|h—S*Shii*=||h)?>—2||Sh|?+ [|S*Sh|>< |[h|>— ||Sh|?<e?, since S* is also a
contraction.

Assume (a), and let (a,;) be a (UR)-matrix. We note that 1i£n||T" [ exists

since T is a contraction. We first make the additional assumption that T"f— 0
weakly. Hence, for each ¢>0, one can find an integer K=0 such that k=K
and j=0 imply that || T*f{|> — | T/**f||> <e? and also |(T*f, f)|<e. Applying the
lemma with S= T, h=T*f, g= f, we obtain that

(T LTI~ (T L NI<se- I f1
(T LTINS - (L1 f1)
whenever j =0 and k= K. Consequently, we have that

(T LT se-A+1f1)  for li—jlZK. (1.2)

and hence

Since lim max|a,;|=0, there exists an integer N such that n=N implies that
n 1

max|a,;|<e. Let m=sup Y |a,,|.
1 n i
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It follows from (1.2) that for n >N
HAanZ:(Z aniTifr Z aniTif)
< Y aillal(TAETN+e@+11D) Y laullay

li-Jl<K li-jlzK

§2K(m1§1XIan;l) AP Qe+ e+ 11D - Qo lanl)?
<R2Km| fI*+1+[fl)ym*]e.

Thus lim |4, f]|=0. In the general case, let T"g converge weakly to g. Clearly &

is T-invariant, hence the above argument applied to f=g—g shows that
|4, f1]— 0. It then follows from

14, /1= 12 auT' =Y au T'g] = | Ang— (X ani) 2]

that |4, g—gl— 0 since lim ) a,;=1.

A sequence of operators T, is said to converge weakly in L, if T, f converges
weakly for each feL,.

Theorem 1.2. Let (X, o, v) be a finite measure space, and let S be a contraction
operator on L, (v) and L,,(v) hence on L,, p,<p<p,, where either ()
1=£p£2<py S0, or (B) 1=py<p,. Then the following conditions are equivalent:

(1) For some fixed qo€[py,p,), S" converges weakly in L, (v).

(2) For every qe[py,p,), S" converges weakly in L, (v).

(3) For every qelpy,p,) and every feL,(v), ZamTf converges in L,(v) for
every (UR)-matrix (a,;).

If v is assumed only o-finite and (o) holds, then (1), (2), (3) are still equivalent,
provided that {p,, p,) is replaced by (p,, p,) when p;=1.

Proof. We only prove the theorem under the assimption that v(X)< co; the
proof of the o-finite case is similar. Case (x). The implication (2) = (1) is obvious;
the implication (3) = (2) follows from the same argument as in the proof of
(b) = (a) in Theorem 1.1; thus we need only to show that (1) = (2) and (2) = (3).
For 1<p< oo, p’ is given by 1/p+1/p'=1.

(1) = (2) Assume that (1) holds for goe[p,, p,), and let ge[p;, p,) be fixed.
Since the sequence ($") is uniformly bounded, we need only to show that §"f
converges weakly for feL,(v)n L, (v) which is dense in L ,(v). But it follows
from (1) that for each feL (v)quo (), hrnj g-S'f dv exists for each

geL, (v)n Ly (v) which is dense in L, (v). Hence S converges weakly in L,(v).
(2) = (3) Assume (2); hence S" converges weakly in L,(v). By Theorem 1.1,
for each fixed matrix (a,;) satisfying (UR) and each felL,(v), 4, f= ZamSi f

converges strongly n L, (v). For a fixed g, p;=q<p,, clearly L,,(v) is contalned
and dense in L, (v). Since 4, Z a,;S" is a sequence of umformly bounded linear

operators in L,(v), in order to prove that A, f converges strongly in L,(v) for

12*
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each feL,(v), it suffices to verify the convergence for f belonging to a dense
subspace, say L,,(v). If p;=q=2, set r=p;(2—-q)/(2—py), 5s=2(q—p)/2—py),
p=(2—py)/2—g), and p'=p/(p—1)=(2—p))/(g—p,); then r+s=q, rp=p,, and
sp'=2. Let feL,, (v); it follows from Holder’s inequality that

1Anf— A fla= [ 1Ay f = An ST 14, [~ Ay [P d
S A f=An IV WAn f = A [
= [ A, f = An f IR AL = An F 137
<20 Sl Sgplzwni\)”‘“’ 1A, f— Ay £137

which converges to zero since sup Y |a,;|<co and (4, f) is Cauchy in L,(v). If

2<q<py, set r=py(q—2/(p,—2), 5=2(p,—q)p,—2), p={p,—2)/q—2)
p'=(p»—2)/(p,—q); a similar argument yields the conclusion. Case (). The
proof is the same, with the following Theorem 1.3 applied instead of Theorem 1.1.
The proof of Theorem 1.3 depends on (a), but not (B), case of Theorem 1.2.

We next consider the case p=1. The following theorem is due to Akcoglu
and the second named author [1] in the case when the matrices (a,;) in con-
dition (B) are obtained from the Cesaro matrix by arbitrarily inserting columns
of zeros.

Theorem 1.3. Let T be a contraction operator on Ly(X, s, p). Then the con-
ditions (A) and (B) are equivalent:

(A) T" converges weakly in L, ().

(B) For each feL,(u) and for each (UR)-matrix (a,;), Y. a,T'f converges
in Ly (p). '

Proof. We prove that (A) = (B); the implication (B) = (A) is valid in general
Banach spaces, as remarked in Theorem 1.1. Let 7 be the linear modulus of T;
7 is a positive linear contraction on L,(u) and |Tf{<t|f}| for each feL,(p) (see
Chacon and Krengel [47). The following lemma is taken from [1]:

Lemma 1.2. 4 contraction T on L (X, o, ) decomposes the space X into sets
G and F=X — G such that

() If feL, and if T"f converges weakly in Ly then lim {|T"f]du=0.

5 F

(ii) There exists an heL{ such that the support of h is G and th=h, where t
is the linear modulus of T.

Assume that (A) holds. If G=#, then (B) follows from (i) of the lemma;
otherwise, there is an he LY, h=%0, satisfying (ii) of the lemma. Let 4 be the finite
measure defined by di=hdu. We note that a function @eL,(G,4) if and only
if hoeL, (G, w). The operator S defined on L,(G, 4) by

1
So=--The), ¢eLi(0, A) (1.3)

is a contraction since

f1SeldA={iT(he)ldu=fleld]. (14)
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S is also a contraction on L, (G, 4) since for each geL (G, 4)

Sel=| - The)| < o(h D= el (13

To prove (A) = (B), we first note that if T" converges weakly in L,(X, ¢) then
§" converges weakly in L,(G, 4). Indeed, for ¢eL,(G,7), ge L, (G, 1) we have
that hpeL,(G, p) and hence

[S"¢p-gdi=[T"(he)-gdu

converges by assumption (A). Applying Theorem 1.2 to S with p;=1 and p, =0,
we obtain that for each matrix (a,;) satisfying (UR) and for each ¢eL,(G, 4),
lim ) a,;S'e exists in L,(G,4); i.e., the sequence ). a,; T'(ho)=h-) a,S'¢ is
Cauchy hence convergent in L, (G, ). This proves that lim ) a,; T'f exists for

each feL,(G, p). For an arbitrary feL,(X, u), let A, f=> a,;T'f. To prove the

convergence of 4, f, it suffices to show that for each £>0 there exists a Cauchy
sequence g,eL, (X, u) satisfying

lim sup || 4, f —gull1 <&.

Let m=sup ) |a,;|; apply Lemma 1.2 to obtain an integer i, >0 such that

[ITf|du<e/m. (1.6)

F

Let g=1¢- T /. It follows from lim max |a,;|=0 that

lim Y |a,;|=0. (1.7)
n =1

Set for n, i:1a25 (R bni:an,i+io‘

Clearly, (b,;) also satisfies (UR). Since geLy(G, p), the first part of the proof
shows that the sequence g,= b,;T'g is Cauchy in L, (X, u). We note that

gn:Z bniTi+i0f—Z bniTi(lF ' Tiof)zz an,i+i0 Ti+i0f_hn
where by (1.6)

Ayl = “Z bniTi(lF : Tiof)”1§(z [byil)(e/m)<e.
Thus l
lgn—Anf = “Z Ay, ivig Ti“of*z aniTifH1+3

<( X lau)lfli+e

1gi=io

(1.8)

which implies by (1.7) that lim sup [lg,— A4, f |1 =Zs.
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Section 2

For p#1,2, we require some additional conditions on the operator T.
Whether the theorem is true without such conditions we do not know. An
operator T on L,(u) is called positive if feL,(n) and f =0 imply that Tf =0.
We first consider the case 1 <p<2.

Theorem 2.1. Let T be a positive contraction on L,(X, 57, ), where p is fixed,
1<p<2. If there exists a positive function he L,(u) satisfying Th<h then con-
ditions (A) and (B) are equivalent :

(A) T" converges weakly in L,(p).

(B) For each feL,(u) and for each (UR)-matrix (a;), Za,,,T f converges
in L,(u).

Proof. We only prove that (A) = (B). Let v be the finite measure on &/ defined
by dv=h? dy, and let S be defined on L,(X, <, v) by

So=1 Tho), peL,0). @)

Clearly S is a positive linear operator on L,(v). Furthermore,
IS¢ I”‘j—lT(MP )l dv={|T(h )l du<§|h<0l” du={lpl"dv,

which shows that S is a contraction on L,(v). The assumption that Th<h and
(2.1) with @=1 imply that S1<1, and hence S is a contraction on L, (v). We
note that a function ¢eL,(v) if and only if ¢ - he L,(u), and €L, (v) if and only
if y - P~ e L, (). Furthermore, iteration of (2.1) yields for n=1,2,...,

1
S'=—-T"(h9),  @EL,0). (22)

Thus for peL,(v) and yeL, (v), we have
[y -S"@dv={(yn*~") - T"(ho)dp, 2.3)

which shows that S* converges weakly in L,(v) if and only if T" converges
weakly in L, (u). Similarly, it follows from

. . 1 ) .
_Hzanisl(p_z amisl(plp dv= Flz aniTl(h (P)_Z amiTl(h (D)lp dv
={1Y a0 T'ho)=Y a,: T'h @) dp

that S satisfies (B) on L,(v) if and only if T satisfies (B) on L,(u). By assumption
(A), T" converges weakly in L,(u), therefore S" converges weakly in L,(v). Since
S is a contraction on both L,(v) and L, (v) of the finite measure space (X, </, v),
Theorem 1.2 applied to S with p,=p and p,=cc shows that S satisfies (B) on
L,(v) and hence T satisfies (B) on L, (u).

Theorem 2.2. Let T be a positive contraction on L,(X, <, p), where p is fixed,
2<p<oo. If there exists a positive function heL,(u) satisfying Th=<h and
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T*h?~ < hP~! then the following conditions are equivalent:
(A) T" converges weakly in L, ().
(B) For each feL,(u) and for each (UR)-matrix (a,;), ). a,; T'f converges in L, ().

Proof. Positive functions h satisfying the conditions Th<h and T* h*~1gp?~!
have been introduced and called semi-fixed points of T by Chacon-Olsen [5],
where it is shown that a positive fixed point is semi-fixed. The proof of Theorem 2.1
shows that the operator S defined on L,(v) of the finite measure space (X, ./, v)
is a contraction on both L, (v) and L, (v). One checks that the adjoint operators §*
is given by .
ho~1

S* = T*(h*~'-y), el (). (2.4)

Since [|S*||, =1Sl,, S* is a contraction on L, (v). Moreover, (2.4) and the
assumption that T*h?~'<hP~' imply that $* is also a contraction on L (v).
Thus § is a contraction on both L;(v) and L, (v), and Theorem 1.2 may be
applied to S with p;=1 and p, = oo. The remaining part of the proof is the same
as that of Theorem 2.1.
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