
Z. Wahrsche in l i chke i t s theo r i e  verw. Geb .  28, 165 - 171 (1974) 
�9 by Spr inger -Ver lag  1974 

On a Mixing Property of Operators in Lp Spaces* 

H. Fong and L. Sucheston 

Let (X, .~) be a measurable space. For a measure g defined on d and a fixed 
number p with 1 < p < ~ ,  Lp (#) shall denote the Banach space of functions f such 
that ~ I f t  p d/~< oo; L~o(/~) denotes the Banach space of/~-essentially bounded 
functions. We consider the following conditions on a linear contraction operator 
T defined on Lp (/0: 
(A) For each f~Lp(#), T " f  converges weakly in Lp(/~). 

(B) For each feLp(l~), ~ a,i T i f  converges in Lp(#) for each matrix (a,i) 
satisfying i 

(UR) sup ~ ]a.i] < oo; lira ~ a.i= 1; lim m a x  [ani [ = 0 .  
n i n i n i 

Condition (A) corresponds to mixing, or more generally stability in applica- 
tions to Ergodic Theory (cf. [2, 9, 3, 10]). The matrices satisfying (UR) could be 
called uniformly regular. It is not difficult to see that the last condition in (UR) 
may be replaced by: lim a,~=0 for each i and lim max [a,~] =0.  Lorentz charac- 

n i n 
terized the class of (UR) methods in terms of "summability functions" (see [11] 
and [12]). In Section 1 we show that (A) and (B) are equivalent for p = 1 and 2. 
This is still true if 1 < p  < ~ ,  under some additional conditions on T, as shown 
in Section 2. Passage from L2 to Lp, p4:2, is accomplished via an interpolation 
result (Theorem 1.2) proved by a very simple argument, but including results 
for point-transformations and Markov operators which seemed fairly difficult 
to establish (cf. [2]; [9], Theorem 4.1; [10], Theorem 3.2). 

The au tho r s  wish to t h a n k  B. Ba i shansk i  and  M. Lin  for va luab le  comments .  

Section 1 

Our first theorem generalizes some results in Blum-Hanson [23, Hanson- 
Pledger [63, Akcoglu-Sucheston [13, and Jones-Kuftinec [83. 

Theorem 1.1. Let T be a contraction operator on L 2 of a a-finite measure space 
(X, d ,  It). Let f be a fixed function in L2 (#). Then the following conditions are 
equivalent: 

(a) T" f  converges weakly in L 2 (l~). 
(b) For every (UR)-matrix (a,i), A, f = ~  a,i T i f  converges in L 2 (t0. 

i 

Proof ( b ) ~  (a) In fact, we show that condition (a) is easily impl ied-not  
only in L 2 ,  but in any Banach s p a c e - b y  the following weaker condition: 

* This  research was suppor t ed  by the N a t i o n a l  Science Founda t i on ,  g ran t  GP-34118.  
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(b') There exists a regular matrix (a.i) such that for every increasing sequence 
of positive integers (ki), ~. a.i Tki f  converges weakly. 

i 

We recall that a matrix (a.i) is called regular if: sup ~ [a.~[ < o% lira ~ a.~= 1, 
n i n i 

l ima, i=0  for each i. Assume that (b') holds for some regular matrix (a,i) and 
n 

that (a) fails. Then there exists g~L2(#) such that ( T " f  g)=~ T " f . g  d# diverges. 
The sequence c, = ( T " f  g) being bounded, there are sequences of positive integers 
(ri) and (ti) such that ~ = lim % +-lira % = ft. We shall form an increasing sequence 

of positive integers (ki) such that the sequence ~ a,i % does not converge. Since 
i 

(a.i) is regular, there exist increasing sequences of integers (t/k) and (rag) such that 

lim( ~ I%,~1+ ~ 1%,~1)=0. (1.1) 
k ~  i < m k - i  i>mk 

The sequence (ki) is formed as follows: take ml terms of (ti), then (m E -- ml) larger 
terms of (ri), then (m 3 --m2) larger terms of (ti), etc. It follows from (1.1) and the 
regularity of (a,~) that 

li m ~, a,~j + ~, i % = a and li.rn y' a,~j, i Ck i = f l "  
J i 3 i 

Remark. The above argument establishes the following fact, perhaps already 
observed: If (c,) is any bounded sequence, (a,i) is regular and ~, a,i % converges 
for every (ki) , then c, converges, i 

(a) ~ (b) The following lemma is taken from [1]. 

Lemma 1.1. Let S be a contraction operator on L 2 (#) and assume that hs  L 2 (#). 
Then Ilhll 2 - IIShLI 2__<d implies that for each geL2(#), I(h, g ) - (Sh ,  Sg)l-<__e Ilgl[. 

Proof of  Lemma. I(h, g) - (Sh ,  Sg)l= ](h, g) - (S*  Sh, g)l=< IIh-S*ShH Ilgll. But 
]lh-S*Shll2= Ilhll2-2l{Shll2+ IlS*Shll2< Hhll 2 -  IIShll2<e 2, since S* is also a 
contraction. 

Assume (a), and let (a,i) be a (UR)-matrix. We note that lim llZ"fll exists 
n 

since T is a contraction. We first make the additional assumption that T " f ~  0 
weakly. Hence, for each e >0, one can find an integer K > 0  such that k > K  
and j > 0 imply that [I Tk f  II 2 _ II Z j+ kf  112 __< ~2 and also [(Tkf, f)[ < e. Applying the 
lemma with S = T j, h = Tkf, g = f, we obtain that 

i(Zj+ k f, Tj  f )  _ (Tk f,, f )  l < e . II f II, 
and hence 

[(TJ+kf, TJf)I<a . (1 + Ilfll) 

whenever j>_0 and k >  K. Consequently, we have that 

I(T~f, T J f ) l < e . ( l + l l f N  ) for l i - j l > K .  (1.2) 

Since lmamax a,i]=0, there exists an integer N such that n > N  implies that 

max ani <& Let m=sup~la . i [ .  
n i 
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It follows from (1.2) that for n_>_ N 

IIA~ ft] 2 = ( ~  a~T~f ~, a,~ Tif) 
i i 

< ~ [a.~lla,~ll(T~fTJf)[+e(l+llf[]) �9 ~ [a,i]la,,j] 
I i - j ] < K  ] i - j [ > K  

<2K(n~axla,jl) I[ fIl2 (Z la, il) + e(1 + llfll)" (Z la,~l) 2 
i i 

< [2Km [If I[ 2 +(1 + [If[I)m a] e. 

Thus lim I[A,f H = 0. In the general case, let T"g converge weakly to g. Clearly 
n 

is T-invariant, hence the above argument applied to f = g - ~  shows that 
NA, fl] ~0 .  It then follows from 

IIA, fll = ][2 a . ~ T ' g - ~  a,~T~gH=][A,g-(2 a,~)~ll 
i i i 

that HA, g -gH ~ 0 since lim ~ a,i = 1. 
n i 

A sequence of operators T, is said to converge weakly in Lp if T, f converges 
weakly for each f eLp .  

Theorem 1.2. Let (X, ~4, v) be a finite measure space, and let S be a contraction 
operator on Lpl(V ) and Lp2(v ) hence on Lp, pl<p<p2, where either (c 0 
1 < Pl < 2 < P2 < 0% or (fl) 1 = Pl < P2. Then the following conditions are equivalent: 

(1) For some fixed qo~[pl,p2), S" converges weakly in Lqo(V). 
(2) For every q6 [Pl, P2), S" converges weakly in Lq(v). 
(3) For every q~[Pl,P2) and every f6Lq(v), ~ a, i T i f  converges in Lq(v)for 

every (UR)-matrix (a,i). 
I f  v is assumed only a-finite and (~) holds, then (1), (2), (3) are still equivalent, 

provided that [Pl, P2) is replaced by (Pl, P2) when Pl-- 1. 

Proof We only prove the theorem under the assfimption that v(X)< or; the 
proof of the a-finite case is similar. Case (e). The implication (2) ~ (1) is obvious; 
the implication (3) ~ (2) follows from the same argument as in the proof of 
(b) ~ (a) in Theorem 1.1; thus we need only to show that (1) ~ (2) and (2) ~ (3). 
For l < p < ~ ,  p' is given by 1/p+l/p'=l.  

(1) ~ (2) Assume that (l) holds for qo~[Pl,P2), and let q~[Pl,P2) be fixed. 
Since the sequence (S') is uniformly bounded, we need only to show that S"f 
converges weakly for feLq(v)c~Lqo(v ) which is dense in Lq(V). But it follows 
from (1) that for each f~Lq(v)~Lqo(V), l imSg. S"fdv exists for each 

n 
g~Lq,(v)~Lq6(v ) which is dense in Lq,(V). Hence S" converges weakly in Lq(v). 

(2) ~ (3) Assume (2); hence S" converges weakly in Le(v ). By Theorem 1.1, 
for each fixed matrix (a,i) satisfying (UR) and each f~Lz(v), A , f = ~ a ,  iSif 

i 
converges strongly in L 2 (v). For a fixed q, Pl < q <P2, clearly Lp~ (v) is contained 
and dense in Lq(v). Since A , = ~  a,i S~ is a sequence of uniformly bounded linear 

operators in Lq(v), in order to prove that A , f  converges strongly in Lq(v) for 
12" 
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each feLq(v), it suffices to verify the convergence for f belonging to a dense 
subspace, say Lp=(v). If pl<q<2,  set r=pl (2 -q ) / (2 -p l  ), s=2(q-pl) / (2-pl) ,  
p=(2-pt) / (2-q) ,  and p'=p/(p-1)=(2-pO/(q-PO; then r+ s=q, rp=pl,  and 
sp'= 2. Let fELp~(v); it follows from HSlder's inequality that 

[[A,f - Amf  l]~= ~ [A, f  - Amfl" IA, f - A~ f l  ~ dv 

< [[(A,f-A,,f) '[[pl[(A,f-Amf)~llr 

= I[A,f-A,,fll~,/p t[A,f-Amflt~/p' 

< (2 II f lip,' sup ~. ]a,~]) g'/p I] A, f -  A m f t] z/v' 

which converges to zero since s u p ~ l a ,  il< co and (A , f )  is Cauchy in Lz(V ). If 
n i 

2 < q < p 2 ,  set r=pa(q-Z)/(p2-2),  s--2(pz-q)/(P2-2),  p=(p2-2)/(q-2) ,  
p'=(P2-2)/(pz-q); a similar argument yields the conclusion. Case (fi). The 
proof is the same, with the following Theorem 1.3 applied instead of Theorem 1.1. 
The proof of Theorem 1.3 depends on (a), but not (fl), case of Theorem 1.2. 

We next consider the case p = 1. The following theorem is due to Akcoglu 
and the second named author [1] in the case when the matrices (a,,) in con- 
dition (B) are obtained from the Ces~tro matrix by arbitrarily inserting columns 
of zeros. 

Theorem 1.3. Let T be a contraction operator on LI(X, d ,  I~). Then the con- 
ditions (A) and (B) are equivalent: 

(A) T" converges weakly in Ll(lO. 
(B) For each f e l l ( # )  and for each (UR)-matrix (a,i), ~ a . iT i f  converges 

in L 1 (l~). i 

Proof We prove that (A) ~ (B); the implication (B) ~ (A) is valid in general 
Banach spaces, as remarked in Theorem 1.1. Let r be the linear modulus of T; 

is a positive linear contraction on L a(g) and I T f l  < z I f l  for each f 6  L 1 (~t) (see 
Chacon and Krengel [4]). The following lemma is taken from [1]: 

Lemma 1.2. A contraction T on LI(X, d ,  #) decomposes the space X into sets 
G and F = X - G  such that 

(i) I f  f e L l  and if T" f  converges weakly in L1 then lira ~ [T"fl d#=0 .  
n F 

(ii) There exists an h~L-~ such that the support of h is G and zh=-h, where z 
is the linear modulus of T. 

Assume that (A) holds. If G=O, then (B) follows from (i) of the lemma; 
otherwise, there is an h6L+l, h~-O, satisfying (ii) of the lemma. Let ~o be the finite 
measure defined by d2=hd#.  We note that a function ~o~LI(G,)~) if and only 
if hcp~Ll(G, #). The operator S defined on L~(G, ),) by 

Sop= h T(h (p), q~6Lt(G, )0 (1.3) 

is a contraction since 

S ISq~I dA=f 1T(h ~p)l d / ~ S  I~Pl dA. (1.4) 
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S is also a contraction on Loo (G, 2) since for each g~Loo (G, 2) 

[Sg[= 1 T(hg) < 1  z(hlg[)<]lg]lo~" (1.5) 

To prove (A) ~ (B), we first note that if T" converges weakly in L~(X, #) then 
S n converges weakly in LI(G, 2). Indeed, for cpeLl(G, 2), g eLoo (G, 2) we have 
that hcp e L~ (G,/l) and hence 

~ S"cp.g d2=~ Tn(hcp).g d# 

converges by assumption (A). Applying ~Iheorem 1.2 to S with Pl = 1 and P2 = oO, 
we obtain that for each matrix (a,i) satisfying (UR) and for each cPeLI(G, 2), 
lim Z aniSicP exists in LI(G, 2); i.e., the sequence Z aniTi(hcP) =h" Z aniSiq ' is 

n i i i 

Cauchy hence convergent in LI(G , #). This proves that lim/~ a.iTif exists for 

each feL~(G, kt). For an arbitrary j"eL~(X, #), let Anf=~. a,.T~f To prove the 
i 

convergence of A.f, it suffices to show that for each e>O there exists a Cauchy 
sequence gneL1 (X, p) satisfying 

lim sup ][A, f -gn lh  < e. 
n~oo  

Let re=sup ~ la, il; apply Lemma 1.2 to obtain an integer io>0 such that 
n i 

~.lTi~ d# < e/m. (1.6) 
F 

Let g=  lo.  Ti~ It follows from lim max ]anil=0 that 
n i 

io 

lim ~ [a,i I =0.  (1.7) 
n i = l  

Set for n, i= 1, 2 . . . . .  b,i=a,,i+io. 
Clearly, (bni) also satisfies (UR). Since geLl(G,#), the first part of the proof 
shows that the sequence g , = ~  b, iTig is Cauchy in L~(X, #). We note that 

i 

gn---- 2 bni  T i + i ~  - 2 bni T i ( 1 v  " Ti~ Z an, i+io T'+i~ -h .  
i i i 

where by (1.6) 

Thus 

IIhn][l= 112 b, i T'(ie �9 Ti~ (~ [b,i[)(~/m)<e. 
i i 

IIg,-A.fJll <= I!~ a..i+io Ti+i~ - ~  aniTiflli +e 
i i 

<( ~ fa.,J)llflh+~ 
l<=i<_io 

which implies by (1.7) that lira sup [Ig,-A, f rll_-< e. 

(1.8) 
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Section 2 

For p~= 1, 2, we require some additional conditions on the operator T. 
Whether the theorem is true without such conditions we do not know. An 
operator T on Lp (It) is called positive if f e  Lp(It) and f > 0 imply that T f  > O. 
We first consider the case 1 < p < 2. 

Theorem 2.1. Let T be a positive contraction on Lp(X, sO, It), where p is fixed, 
l < p < 2 .  I f  there exists a positive function heLp(It) satisfying T h < h  then con- 
ditions (A) and (B) are equivalent: 

(A) T" converges weakly in Lp(#). 
(B) For each feLp(#)  and for each (UR)-matrix (a.i), ~ a . iT i f  converges 

in Le(it). i 

Proof We only prove that (A) ~ (B). Let v he the finite measure on ~ defined 
by dv=h p dIt, and let S be defined on Lp(X, s~, v) by 

1 
S~o = h  T(h (p), q)eLp(v). (2.1) 

Clearly S is a positive linear operator on Lv(v ). Furthermore, 

]l S q)I1~ = S ~ [T(h q~)[ p dv = ~ I T(h q))l p d# < ~ [h q)I p d# = ~ Iq)[ p dr, 

which shows that S is a contraction on Lp(v). The assumption that Th<_<_ h and 
(2.1) with q~=l imply that SI__<I, and hence S is a contraction on Loo(V). We 
note that a function oeLp(v) if and only if q~. heLp(It), and tpeLp,(V) if and only 
if 0" hV-leLp'(It) �9 Furthermore, iteration of (2.1) yields for n=  1, 2, ..., 

1 
S" q) = h  rn(h q~)' q) eLv(v ). (2.2) 

Thus for q)eLp(v) and OeLp,(v ), we have 

Y O" S" ~o d v = ~ (0 hp- 1). T" (h q)) dIt, (2.3) 

which shows that S" converges weakly in Lp(v) if and only if T" converges 
weakly in Lp (It). Similarly, it follows from 

a, iSi q~ - y" ami Si q)l p dr= ~ @ - [ ~  i ani Ti(h q))- 2 ami Ti( h 0)[ p dv 
i i i 

= ~ I~, a,i T i (h q))- ~ ami T i (h q))[ p d~ 
i i 

that S satisfies (B) on Lp (v) if and only if T satisfies (B) on Lp (It). By assumption 
(A), T" converges weakly in Lp(It), therefore S" converges weakly in Lp(v). Since 
S is a contraction on both Lp(v) and L~o (v) of the finite measure space (X, d ,  v), 
Theorem 1.2 applied to S with pl=p and P2 = - o o  shows that S satisfies (B) on 
Lp(v) and hence T satisfies (B) on Lv(#). 

Theorem 2.2. Let T be a positive contraction on Lv (X, d ,  #), where p is fixed, 
2 < p < o o .  I f  there exists a positive function heLp(It) satisfying Th<_h and 



On a Mixing Property of Operators in Lp Spaces 171 

T* h v- 1 < h p- 1 then the following conditions are equivalent: 
(A) T" converges weakly in Lv(p). 

(B) For each f ~ Lv (#) and for each ( U R )-matrix (a,i), ~ a,i Ti f converges in Lp (# ). 
i 

Proof. Positive functions h satisfying the conditions Th < h and T* h p -  1 ~ h p -  1 

have been introduced and called semi-fixed points of T by Chacon-Olsen I-5], 
where it is shown that a positive fixed point is semi-fixed. The proof of Theorem 2.1 
shows that the operator S defined on L,  (v) of the finite measure space (X, d ,  v) 
is a contraction on both L;  (v) and L~ (v). One checks that the adjoint operators S* 
is given by 

1 
S* ~b=~y: i- T*(h ;-~. ~), OsLp,(v). (2.4) 

Since [IS*llp,:llSl[p, s* is a contraction on Lv,(v ). Moreover, (2.4) and the 
assumption that T* hV-~<h v-1 imply that S* is also a contraction on L~(v). 
Thus S is a contraction on both Ll(v) and L~(v), and Theorem 1.2 may be 
applied to S with p~ = 1 and Pz = ~ .  The remaining part of the proof is the same 
as that of Theorem 2.1. 
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