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Limiting Behavior 
of Regular Functionals of Empirical Distributions 

for Stationary ,-Mixing Processes* 

Pranab Kumar  Sen 

1. Introduction 

Let {Xi, - ~  < i <  ~ } be a stationary ,-mixing stochastic process defined on 
a probability space (s ~r P). Thus, if ~,k_ ~o and ~ /~n  be respectively the o--fields 
generated by {Xi, i<k} and {Xi, i>k+n} ,  and if, A~d/k_~ and BEJ/ /~n,  then 
for every k ( -  ~ < k <  ~ )  and n 

IP (AB) - P (A) P (B)[ < ~, P (A) P (B), (1.1) 

where ~ .$0  as nT~ .  Further conditions on {~b,} will be stated as and when 
necessary. We may refer to Blum, Hanson and Koopmans (1963) and Philipp 
(1969a, b, c) for detailed treatment of ,-mixing processes in the context of the 
limiting behavior of sums of the Xi. 

We denote the marginal distribution function (d. f.) of Xi by F(x), x e R  p, the 
p (___ 1)-dimensional Euclidean space. Consider then a functional 

0 (F)= ~... ~ g (x l , . . . ,  x,,) dF(xl).., dF(x,,), (1.2) 
Rpm 

defined over ~ =  {F: I0(F)] < oo}, where g(x 1 . . . . .  xm) is symmetric in its m(>  1) 
arguments. We consider here the following two estimators of 0 (F). For a sample 
{X1, ..., X,}, the empirical d.f. is defined as 

n 

F,,(x)=n -1 ~ u ( x - X i )  , x e R  v, (1.3) 

where u (v) is equal to one only when all the p components of v are non-negative; 
otherwise, u (v)= 0. Then, in the same fashion as in von Mises (1947), a differentiable 
statistical functional 0 (F,) is defined as 

O ( F n ) =  ( " "  ~ g ( x l ,  . . .  , Xm) d F n ( X 1 ) . . ,  dFn(Xm) 
Rpm 

il = 1 im = 1 

(1.4) 
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which is the corresponding functional of the empirical d.f. Also, as in Hoeffding 
(1948), we define a U-statistic 

U,= ~*  g (X,,, ..., Xim), n>m, (1.5) 

where the summation ~ *  extends over all possible 1 < i 1 < . . .  < i,, < n. 

Under suitable moment conditions on g and on {0.}, to be stated in Section 2, 
the following three problems are studied here: (i) asymptotic normality of 
n�89 and n~[U~-O(F)], (ii) the law of iterated logarithm for 0(F~) 
and U., and (iii) weak convergence of continuous sample path versions of the 
processes {n-�89 k> 1} and {n-~k[Uk-O(f)], k> 1} to processes 
of Brownian motion. It may be noted that (i) is a special case of (iii), and is estab- 
lished under less stringent conditions. 

The main results along with the preliminary notions are presented in Section 2. 
Certain useful lemmas are considered in Section 3, and with the aid of these, the 
proofs of the main results are outlined in Section 4. The last section deals with 
a few applications. 

PI" 

We may note that for m = 1, 0 (F~) = U, = n- 1 ~ g (Xi), and the corresponding 
i = 1  

results have already been studied by Ibragimov (1962), Billingsley (1968), Reznik 
(1968), and Philipp (1969a, b, c), among others. Hence, in the sequel, we shall 
exclusively consider the case of m > 2. We may also remark that the above men- 
tioned authors have considered the general q%mixing processes [where the right 
hand side of(1.1) is ~b. P(A) and ~b. $ 0 as n ~ o0] which contain .-mixing processes 
as special cases. The simple proof to be considered in the current paper rests on 
certain basic lemmas on Bernoullian random variables in a .-mixing process. 
These lemmas do not hold for general @mixing processes, and hence, the same 
technique of proof is not applicable for the latter processes. Also, the reverse 
martingale property of U. [cf. Berk (1966)] or related properties for O(F,) do not 
hold for @mixing (or .-mixing) processes, so that an alternative approach of 
Miller and Sen (1972), studied for independent processes, does not seem to be 
readily adaptable. An altogether different and presumably more involved proof 
seems to be needed for a general 4~-mixing process. 

2. Statement of the Result 

For every c: O<_c<_m, we let 

gc(xx, ..., xc)= S"" S g(xl '  "" '  x,.) dF(xc+x).., aF(x,,), 
RP ( m -  c) 

so that go = 0 (F) and gm= g. Also, let 

~l,h=~l,h(F)=E[gt(X1)gl(Xl+h)]-O2(F), h>=0; 

a2=a2(F)=~l,o + 2 ~ ~l,h" 
h = l  

Then, we assume that (i) 
0<0-2<o0,  

(2.1) 

(2.2) 

(2.3) 

(2.4) 



Limiting Behavior of Functionals of Empirical Distributions for ,-Mixing Processes 73 

and (ii) for some r ( ~  2), 

v, = S"" f Ig(xa, "" , xm)r dF(xl).., dF(x,,) < ~ .  (2.5) 
R p m  

Finally, we define for every non-negative d, 

Ad(0)= ~, (k+l )d0~ and A~(0)= ~ (k+l)2a0k. (2.6) 
k = O  k = O  

Note that Ad(l~)< of) =e.Ad,(tp)< oo for all O<d' <d, and 

[A a (0) < ~ ]  ~ [A~' (~) < ~ ] .  (2.7) 

Then, we have the following two theorems. 

Theorem 1. I f  Am_l (~k ) < ~ ,  (2.4) and (2.5) (with r=2 )  hold, then 

lim P{n~[O(F,)-O(F)] < x m a }  =(27r) -~ ~ e-§ (2.8) 

for all x: - ~ < x < 0% and 

n~ lO (F,)- U,I --~ 0, in probability, as n--* ~ .  (2.9) 

Hence, (2.8) also holds for 0 (F,) being replaced by U,. 

Theorem 2. I f  for m* = m a x  [2, m - 1 ] ,  A,,.(~,)< ~ ,  (2.4) and (2.5) (with r=4)  
hold, then 

P {lim sup n + [0 (/7,)- 0 (F)J/m [2 o -2 log log n] ~- = 1 } = 1, (2.10) 
n 

P{ l imin fn~[O(F , ) -O(F)] /m[2a21og logn]~=- l }=! ,  (2.11) 

P {lim sup n~lO (F,)- U,I/m [2 a z log log n]§ 0} = 1, (2.12) 
n 

and hence, (2.10) and (2.11) also hold for U n. 

Consider now the space C [0, 1] of all continuous real valued functions X(t), 
0 < t < 1, and associate with it the uniform topology 

p(X, Y)=sup IX(t)-  Y(t)l, I={ t :  0 < t < l } ,  (2.13) 
t ~ l  

where both X and Y belong to C [0, 1]. For every n>  1, we define Y,(0) = 0, and let 

r , ( t )=Y, ( [n t ] /n )+(n t - [n t ] ) [ r , ( ( [n t ]+l ) /n ) -Y , ( [n t ] /n ) ] ,  0 < t < l ,  (2.14) 

where [s] denotes the largest integer contained in s (>  0), and 

Y,(k/n)= k [O(Fk)-O(F)]/(m tr n-~), k= 1 . . . .  , n. (2.15) 

Similarly, replacing 0 (Fk) by U k for k >= m and by 0 (F) for k__< m - 1, we define Yf (t) 
as in (2.14) and (2.15). Then, Yf ( t)=0 for O<_t<_(m-1)In. Also, let 

Y~={Yn(t) , td} ,  Y,*={Y*(t) , t~I}  and W={W( t ) , t~ I } ,  (2.16) 

where W is a standard Brownian motion. Then, we have the following. 
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Theorem3. If  for m*=max(2, m-1) ,  Am,(l]/)< 00, (2.4) and (2.5) (with r=4)  
hold, then both Y, and Y* converge weakly in the uniform topology on C [0, 1] 
to W, and 

p(Y,, Y*)-~,O, in probability, as n--~oe. (2.17) 

In fact, (2.17) holds even if (2.5) holds for r = 2 and Am_l(O)< oo. 

The proofs of the theorems are postponed to Section 4. 

3. Certain Useful Lemmas 

Let {X~, - oe < i < oe } be a stationary .-mixing process, and for eachj (= 1,2 .... ), 
let Zs~ = hj(Xi), -oo  < i <  0% be zero-one valued random variables, where hl(u ), 
h 2 (u) .... are not identical, and 

P{Zs~= 1} = 1-P{Zs~=0} =Ps, J>  1. (3.1) 

Lemraa 3.1. If  for some k>  1, Ak_I(0)< 0% then 

E I ~I [ ~ (Zji-Pj)] } <=nk Ko pl ... pZk, (3.2) 
k j = l  Li=I  J 

where K , ( <  oo) depends only on {~k,}. 

Proof. We sketch the proof only for k = l  and 2; for k>3,  the same proof 
(but, evidently, requiring more tedious steps) holds. For k = 1, we have 

E {j=FI [i=1 ~ (zs'-PJ']t<J). ,=ij=l ~ ~[E(Z~'-Pl)(Z2J-P2) '  (3.3, 

Now, by Lemma 1 of Philipp (1969 c), under (1.1) and (3.1), 

[E (Zl i -  Pl) ( Z2 J -  P2)I <-<- ~kF- Jl E IZl i -  Pl l E IZ2J- P21 (3.4) 
= Oli-jl 4p~(l -Pl )  P2( 1 -P2)<4Pl  P2 ~/1i- Jl �9 

Hence, (3.3) is bounded above by 

iOl i_s l4p lp2<8plp2~ ~Os_,<8nplpEA*(~k), (3.5) 
i = l j = l  i=l j=i 

and therefore, the proof follows by using (2.7). 
For k = 2, we have 

k j = l  LI= 1 - ] )  

~ ~, ~ i[E(Zxi--Pl)(Z2j-P2)(Z3k--P3)(Z41-P4)[ (3.6) 
i=lj=ik=ll=l 

<= ~* { ~ IE(z~,-p~) (z~s-p ~) (z~-p~)(z~,-p~)l, 
l<i<j<k<l<n 
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where (e, fl, V, 6) is a permutat ion of  (1, 2, 3, 4), and the summat ion  ~ *  extends 
over all 4! permutat ions  of  this type. For  simplicity, consider the part icular 
permutat ion c~ = 1, fl = 2, V = 3 and 6 = 4. Then, we have, 

[E (Zli--  Pl) ( Z 2 j -  P2) (Z3k - -  P3) (Z  4 1 -  P4)I 
l<__i<=j<~k<_t<_. (3.7) 

E(n 1) + }'~(n 2) + ~-'}n 3) [E (Zl i  - Pl)(Z2 j - P2)(Z3 k -- P3)(Z4t -- P4)[, 

where the summations  E(~ 1), E(. 2) and E~. 3) extend respectively over all l<=i<=j<= 
k-< 1-< n for which j -  i = max (j - i, k - j ,  l - k), k - j  = max (j - i, k - j ,  l -  k) and 
l - k = max (j - i, k - j ,  l - k). Again, by L e m m a  1 of Philipp (1969 c), 

~(1)lg (Zli - P0 (Zzj - P2) (Z3k -- P3) (Z4z -- P4)I 

~ E ~ n l ) O j _ i E [ Z l i - - p l [ E I ( Z 2 j - - p z ) ( Z a k - P a ) ( Z , , i - p 4 ) [  (3.8) 

< 2p1 ~ ) 0 j - i  E [(Z2j--P2) (Zak --P3)(Z4-1- P4)[, 

as ElZj~-p~] = 2 p j ( 1 - p j ) ,  j=> 1. Also, by a few straight forward steps, 

E [(Z2j - P2) (Z3 k --  P3) (Z4,  -- P4)I 

< E {I(Z2~- P2) (Z3 k -  P3)I E [IZ 4 ~-  P4 I [ ~ -  k ~3 } 

<= E {[(Zzj-p2 ) (Zsk--P3)[ [(1 --P4) P4 (1 + 0~-k) +P4(1 --P4) (1 + 0Z-k)]} (3.9) 

=-< 2 P4 (1 + 01- k) E ](ZEj-  Pz) (Z3 k -- P3)[ 

__<8p~ p~ p4(1 + 0k-~) (1 + 0~-k). 

Hence,  by (3.9), (3.8) is bounded  above  by 

16Pl P2 Pa P4 ~t l )0 /_ / (1  + 0k- i ) (1  + 0t-k) 

16pl P: P3 P4( 1 + 0 0 )  2 ~(1) 0 j - i  

< 16pl PE P3 p,(1 + 0 0 )  2 n ~ (k+  1) 2 0k 
k=0 

_--- 16pa Pz P3 P4 n(1 + 0 0 )  2 A~'(0), 

where by (2.7), A~ (0) < oo whenever  A 1 (0) < oo. Similarly, 

~ 3 )  [E (Z~i - PO (Z2 j - P2) (Za k - P3) (Z41 - -  P4) I 

< 16 pa P2 P3 P4 n (1 + ~o) 2 A* (0). 

(3.10) 

(3.11) 
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Finally, by Lemma i of Philipp (1969c), and a few steps similar to those in (3.9) 
and (3.10), we have 

~2 )  lE(Z~,_p~) ( Z 2 j - p 2 ) ( Z 3 , - p 3 )  (Z4,-P4)I 

_-< Ec.2) I [E (Zxi - Pa) (Z2j - P2)] [E (Z3 k - Pa) (Z4 , -  P4)]I 

+ Z~ 2) ~k- j E l(Z,i - Pl) ( Z 2 j -  P2)I E l (Zsk- Ps) (Z4,-  p4)l 

< ~2)~_, ~q_klEiZ~i_pl I EIZ2j-P21 EIZ3k-Psl EIZ4~-P41 
(3.12) 

+ y't2) ~k_i(l+%_~)(l+~bt_k)ElZ~__px I P2 EIZ3k--Pal P4 

< 16pl P2 P3 P4 ~z)~Oj_ i ~Ol_k+4P 1 P2 P3 P4( 1 +~90) 2 ~ 2 ) ~ k - j  

) = k +4ptP2P3P4(I+Oo) 2n k +  1)2 0k 
k k = 0  

_-< 4 n Pl P2 Pa P4 [4 n {A* (~)}2 + (1 + ~o) 2 A~' (~)]. 

Thus, by (2.7), (3.10) and (3.11), whenever AI(~O)< 0% (3.7) is bounded above by 

K~, n 2 Pl P2 P3 P4, where * Kq, < ~ .  (3.13) 

Since (3.13) does not depend on the order of the subscript 1, 2, 3, 4 of the Pi, 
repeating the steps for each permutat ion (~, fl, 7, fi) of (1, 2, 3, 4) and choosing 
Kq,=24K~,, it follows that (3.6) is bounded above by K~,n z Pl Pz P3 P4, which 
completes the proof  for k = 2. 

r 

Lemma3.2.  Let sj(>O), j = l , . . . , r ( >  l) be such that ~ sj=2k, k> l. Then 
Ak- 1 (~) < oV implies that j= 1 

Z (Zj,-pj) nk Pl"'" (3.14) 

where K~,(< oo) depends only on {~b,}. 

The proof is similar to that  of Lemma 3.1, and hence, is omitted. 

Let us now define for every e: 1 < c < m,  

c 

V, Cc) =~""  S gc(Xl . . . .  , xc) 1--[ d IF, (x j ) -  F(xj)]. (3.15) 
R c p  j =  1 

Then, upon writing dF, = dF + d [F.-  F], we have from (1.4) and (3.15) that 

O(F,)=O(F)+ ~ (m) V~C), n>l .  
c =  1 

Note that, by definition, 

V, tl) = n-  1 ~ [gl (Xi)-  0 (F)]. 
i = 1  

(3.16) 

(3.17) 
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Lemma3.3 .  If (2.5) holds for r = 2 ,  then for every c: l <_c<m, Ac_l(~)<oo 
implies that E[Vff)]Z<_Kq, n-Cv2, Kr (3.18) 

where K~, depends only on {~k,}. 

Proof By (3.15) and the Fubini  theorem, 

E [ Vff)] 2 = ~'~']S gc (Xl '  " " ' X c ) g c ( x c + l '  ""'x2c)E ~J=tfJx d[F,(xj)-F(xj)]} 

= ~ ' ' "  ~ go(X1 . . . .  , Xc )  g c ( X c +  l ,  " '"  , X 2 0  (3.19) 
i 2 c p  

" n - 2 c  bl x j - - X  i - -  X j  . 

i 

Thus, if we let Zji=dfu(xj-Xi)], i= 1, . . . ,  n, j =  1, . . . ,  2c, where dEu(x-y)] = 
u (x+dx -y ) -u (x - y ) ,  so that  

P{Zj,=I}=I-P{Zj,=O}=dF(xj),  j = l , . . . , 2 e ,  (3.20) 

we obtain from Lemmas 3.1 and 3.2 that  

E { ~=l ( ~=,d[u(xj-Xi)-F(x,)]) } <n~ Kc, dF(xl)...dF(x2~), (3.21) 

when xa,..., x2~ are all distinct; otherwise n ~ K~, dF(xO.., dF(xr) , where xl,  . . . ,  xr, 
r >  1, are the distinct set of values of xl,..., x2c. Hence, by (3.19) and (3.21), 

2c 
E [Vff)]2 <= K, n-~ S'" 5 Igc(Xx, . . . ,  x~) g~(Xc + a, ..., X2c)J I-I d F  ( x j )  

R2cp  j= l  

= K ,  n -c IS... ~ lgc(Xi, . . . ,  x~)l dF(xl).., dF(xc)] 2 (3.22) 
R2cp  

<v2Kq, n -c. Q.E.D.  

L e m m a  3.4. If (2.5) holds for r = 4  and AI(O)< 0% then 

ElV, C2)14<Kov4n-4, K o < o o ,  (3.23) 

where K~, depends only on {~k,}. 

The proof  is similar to that  of Lemma 3.3, and hence, is omitted. 

We may  rewrite (1.5) as 
r/l 

Un = n- ~1 Z S"" ~ g (xl . . . .  , ~ )  1-1 d [u  (~j - X,)3 
Pn, m R pm j=l  

1B 

= n-[ml ~ 5... ~ g (Xl, . . . ,  Xm ) l--I d [{u (x j -  xij ) -  F(xj)} + F(xj)] (3.24) 
Pn, m R pm j= l  

h=l 

where P,,,, = {(i,, . . . ,  ira): 1 < i I #='" dF i m ~ n}, n-  [m] = {n... ( n -  m + 1)}- 1, and 
h 

U, ~h) = n-thl ~ ~... ~ gh (Xa,..., Xh) I~ d [u (xj -- Xij ) -- F(xj)],  h = 1, . . . ,  m. (3.25) 
Pn, h R ph j= l  
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Note that VJl)= UJ ~), so that by (3.16) and (3.24), 

[O(Fo)-U,J: ~ (m) [VJh --U2hq 
h= 2 ~, w~'l 

(3.26) 

(2) (2) U(2'+m" =3 (m)h [ V"Ch' _ud--,h)] = n-2[[n2 V"C2)-nt21UJ2)]]- n-1 h~ 

Now, by the same technique as in Lemma3.3, for every h = l ,  Ah_l(~b)<oo 
implies that 

E[UJh)]Z<K~,n-hv2, K~,<oo. (3.27) 

Also, writing Q, = n 2 VJ 2~- n t21 UJ 2), and rewriting it as 

Q,,= ~ S... ~ g2 (x~, xE) d[u(x ~ - X,)- F(xt)] d[u(xz- X,)- F(x2) ], (3.28) 
i=1  R 2p 

we obtain by the same technique as in Lemma 3.3 that A~ (~) < oo implies that 

n- 1 EQ2 < K~, v2, K~ < c~. (3.29) 

Thus, from (3.18), (3.26), (3.27), (3.28), (3.29) and the c,-inequality, we obtain that 
if v 2 < ~ and A m_~ (~) < oo, then 

E[O(Fn)-U,]2<=C~n -3, C,<oo. (3.30) 

These results are used in the next section, in the proof of the theorems. 

4. Outline of the Proofs of the Theorems 

Let us first consider Theorem 1. By virtue of (3.16) and Lemma 3.3, whenever 
A m _ l ( ~ ) <  O0 , 

m m 

__<n(m-1) ~ ( h f  E[VJh)]2 (4.1, 
/*=2 

= * * (<  ~ )  depends only on {$,}. <n-l K, v2, where K ,  

Thus, by (4.1) and the Chebychev inequality 

n ~ l0 (Fn) - 0 ( F ) -  m VJl) I P , 0, as n ~ ~ ,  (4.2) 

which implies that n ~ [O(F~)-O(F)] and m n r VJ 1) both have the same limiting 
distribution, if they have one at all. Now, by (3.17) and the central limit theorem 
for ~b-mixing (and hence, .-mixing) processes [cf. Billingsley (1968, p. 174) and 
Philipp (1969a)], mn ~ VJ 1) converges in law (whenever v2<oo ) to a normal 
distribution with zero mean and variance m 2 a 2, where a 2 is defined by (2.3) and 
it is assumed that (2.4) holds. This completes the proof of (2.8). By virtue of (3.30) 
and the Chebychev inequality, (2.9) follows directly, and this, in turn, implies 
that (2.8) also holds for U n. 
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Let us now consider Theorem 2. Here v4 < oo and A,,,(0) < ~ imply, by virtue 
of (3.23), that for every 8 > 0, 

P {n ~ IV)2) I > ~, for at least one n > no} 
1 (4.3) 

< ~ P( n~ IV,~Z)I<~}<(vgK~,/e4) Z n 2 , 
n>no n>no 

which converges to 0 as n0~oo.  Also, by Lemma 3.3, v 2 < ~  and A, , , (0 )<~  
(~Am_, (@) < m)imply that 

{ __~3(m) } (4.4) =< ~ P n ~ V(h) >e 
n>no h h 

<(Kq, v2/e 2) ~ n-2--~0 as no~OO. 

Thus, for every e>0  ,=>,o 

P {n ~ [O(F~)-O(F)-m V,~1)]/(2 log log n) ~ >eV~ for at least one n>  no} ~ 0 (4.5) 

as n o ~ .  Consequently, it suffices to prove (2.10) and (2.11) for [O(F,,)-O(F)] 
being replaced by m V. C1). Since V, (1) involves an average over a stationary ,-mixing 
(and hence, C-mixing) sequence of random variables, by Theorem 1 of Reznik 
(1968) [see also Philipp (1969c)], under conditions even less stringent than the 
hypothesized ones, the law of iterated logarithm holds for {V, Cl)}, i.e., (2.10) and 
(2.11) hold. Again by (3.30) and the Bonferroni inequality, for every e > 0, 

P {n ~ [U,- 0 (F,)] > e for at least one n > n o } 

< ~' P{n~IU"-O(F")I>e} (4.6) 
n~no 

"<C~k/3-2 Z n-2--~O as n o - O p .  
n~n0 

Thus, n+IU,-O(F.)[--+O a.s. as n ~ ,  which implies (2.12), and that in turn 
implies that (2.10) and (2.11) hold for {U,}. 

We now proceed to the proof of Theorem 3. Let us define on C [0, 1] a sequence 

processes {Y~176 by Y~ ', k = l  . . . .  ,n, of 
yO (0) = O, and \ h i  

yO(t)= y0 ( ~ _ ) + ( [ n t ] - n t ) [ y O  ([nt ]+n 1 ) _  yO ( I n  ~__)], 0<t_< 1. (4.7) 

Since {gl(Xj, - ~  < i< ~}  is stationary .-mixing (and hence, C-mixing), and by 
(2.4) and (2.5), 0 < a 2 <  ~ ,  by Theorem 20.1 of Billingsley (1968, p. 174), it follows 
that under A o (~O) < ~ ,  

yO 2 ,  W, as n--~ ~ .  (4.8) 

We complete the proof of the theorem by showing that as n ~ 0% 

p(y.,yO) P , 0  and p(y , ,yo)  P>O. (4.9) 
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Now, by (2.14), (2.15), (3.16) and (4.7), 

p(y,, i1o)= max k IO(K)-O(F ) -m Vktl)l/{m n ~ a} 
l<k<n 

< max + max 
l<_k<_n man ~ l<k<n man �89 

(4.10) 

By Lemma 3.4 and the Bonferonni inequality, under (2.2) for r = 4, for every e > 0, 

pf  maxk(mlivk~2)i>~man~} < ~ P{kiVk(2)l>2~an�89 
[1-<k___. \21 = . k=l  

<Kov4(m-1)g/(2~4n 2) ~ 1 (Ko<oo) 
k=l  

=Kv, v4(m-1)4/(2e4n)--*O as n---, ~ .  

Similarly, under (2.2) for r = 2, by Lemma 3.3 and the c,-inequality, for every e> 0, 

m n m m ] 2 /  
P(~max<k ~ (h) VkO') >eman@< ~k2E[ _~3(h  ) V k ( h ' l / [ E 2 m 2  0"2/'/'] 

( l < k = n  h=3 ) - - k = l  h -  
(4.12) 

<(C/ne ~) ~ k -1 
k=l  

<=(Clogn)/(nea)~o as n ~ o o .  

Thus, (4.10) converges in probability to zero as n ~  oo. Hence, by (4.8), 

Y~ ~ . ,  W a s  n ~ oo .  (4 .13)  

Since W is a standard Brownian motion and m/n ~ 0 a s  n ~ o% 

sup IY,(t)l P ,0  as n - - ~ .  (4.14) 
O<_t<m/n 

Hence, to show that p(Y*, yO) P , O, we use the triangular inequality 

p(y., rO)<_p(y., y.)+ p(y., yO), (4.15) 

and for the first term on the right hand side of (4.15), by virtue of (4.14), it suffices 
to show that 

m<akX lk(Uk--O(Fk))l/[ma]/~ ] P ,0 as n - - , ~ .  (4.16) 

By (3.30) and the Bonferroni inequality, for every e > 0, 

P{ m<akX lk(U~-O(FO)l>ema]/~ } < ~ P{Ik(Uk-O(F~))J>emal/~} 
k = m  

<= ~ { Co/(e2 m~ ~2 n k)} 
k = m  

1 " -1 
= ( C o / m  2 e 2 0 "2) - -  ~ k 

iel k=m 

(Co/m 2/3 2 0 "2) (n- t log n) --~ 0 

(4.17) 

as  n ---+ oo. 
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Thus, p(Y*, Y,) P ,0 as n ~ o o ,  and hence, by (4.15), p(Y*, yO) P ,0 as n ~ o o ,  
and thereby (4.8) implies that 

Y* ~ , W as n--~oo, (4.18) 

which completes the proof. Note that in (4.17), we have made use only of (2.2) 
with r = 2  and Am_l(r which are less restrictive than the hypothesized 
conditions. 

5. A Few Applications 

For illustration, we consider the following functional. Let Xi~-(X} 1), X} 2)) 
have the d.f. F(x, y), and define 

0(F)=12 ~ ~ [F(x, oo)-�89 [F(oo,y)- �89 dF(x,y), (5.1) 
- - C O  - - c O  

which is known as the grade correlation of X ~ and X (2). We have then 

0(F,)= 12 ~ ~ [F,(x, oo)-�89 [F , (~ ,  y)- �89 dF,(x, y) 
- - C O  - - C O  

n n 

i=l 2 ]  
= ( 1 - n - 2 )  Rg+3n  -2, 

where Rg is the classical Spearman rank correlation i.e., 

n /,/ 

Rg=[12/n(n2 1)]i~= l (Ri_ 2 1 )  ( S i _  n + l  (5.3) 
_ 2 , 

Thus, for large n, both 0 (F,) and Rg have the same properties. Now, as in Hoeffding 
(1948), we have 

Ra=n -tal ~ g(X~,Xa, X:,), (5.4) 

where 
1 (1) (1) (2) (2) (1) _ v(1)] e / v ( 2 )  y(2)" I g(XI'X2'X3)=2[-S(X1 --X2 )S (X1  - - X 3  )-[-S(X1 ~3  10~1 - - ~ 2  1 

-~ e /v (1)  v(1)~ c'[v(2)--'c'(2)]'J-egv(1)--v(1)~ S(X(22)-- X] 2) ) (5 .5 )  

+ o ' " )  --"~ s ( x 7  ~ - x~  ~)) + s (~c 3" - x C') s ~xC~ ~ x ~ n  ~ -- '~1 ! 2 t 3 - -  1 IA, 

and s(u)= 1, 0 or - 1 according as u is >,  = or <0. Since m =3 and g is a bounded 
kernel, (2.5) holds for every r__> 0. Hence, under (2.4) and the stated conditions on 
{r all the three theorems of Section 2 hold. Other examples are easy to construct. 

Let us now consider the case of random sample sizes. For every r, let N r be a 
positive integer valued random variable such that there is a sequence {nr} of 
positive numbers for which 

n,--~oo but N,/n~V--Y-~l as r-~oo.  (5.6) 

Then, using Lemmas 3.3 and 3.4, it can be shown that under (5.6), (4.2) readily 
extends to n being replaced by N~ where r ~  oo. Also, (4.6) insures that 
6 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 25 
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N~ IUNr--O(FNr)I--~0 a.s. as r---~ 09. Further, (4.11), (4.12) and (4.17) can be easily 
adjusted to random sample sizes. Consequently, using Theorem 20.3 of Billingsley 
(1968, p. 180) for {V~)}, we conclude that both Theorems 1 and 3 remain valid 
for random sample sizes satisfying (5.6). 

The theory developed here is of interest in the developing area of asymptotic 
sequential inference procedures based on {0(F,)}.or {U,}. 
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