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1. Introduction

Properties of the sample path for the symmetric stable process of order
o, 0 < o < 2in Euclidean n-space, R® have been studied by many authors (see for
example [1, 2, 13, 16]). 1t is well known that for 1 << a < 2, n = 1, the process
is point recurrent so that in fact for any given x € R! there is probability 1 that =
will be visited ¢ times (¢ is the cardinal of the continuum) and there is therefore
no problem about the existence of multiple points. For other values of «, n the
process is not point recurrent but there may be some points which the path visits
more than once. A point visited at least twice is called a double point, while if it is
visited at not less than k& different time instants we call it a k-multiple point. In
the present paper we completely settle the question of the existence of k-multiple
points for 0 << & < 2 and go on to consider the extent of the set of k-multiple
points when this is known to be non-void. The case o == 2 corresponds to Brownian
motion and has previously been completely settled in the series of papers [6 — 9]
mainly due to DvorErzrY, ErRDOs and KaguTan:. For k = 2 and other values
of o, TAKEUCKI [16] has shown that double points exist with probability 1 if
2 = o > 4 n, but that for 0 <<« =< }n the path enters no point twice with
probability 1. We will make use of the estimates in [16], though our method has
to be somewhat different.

We now summarize our main results: X (), { = 0 will denote the symmetric
stable process of order « in R*.

Theorem 1. For each positive integer k,

(1) ¢/ 2 Z o > n (k — 1)k, with probability 1 there isa point { € R* and k distinct
times 0 Z 11 < g << =»+ <ty such thot

X(t)=¢, i=1,2,... k:

(i) ¢f 0 <o = n(k— L)k, with probability 1 there is no point { € B* which is
entered k times by X (t).

The case « = 1 == n corresponds to the Cauchy process. It was proved by
McKeaN [13] that the path set of the Cauchy process has zero Lebesgue measure
and that the hitting probability of any fixed point is zero. Theorem 1 (i) says,
however, that the Cauchy process has points of arbitrarily high finite multiplicity
with probability 1. This result was obtained for Brownian motion in the plane
{0 = 2 = n) by DvorerzKY, ERDOS and KARUTANI [7] who went on to show in

* During the preparation of this paper the author was supported by the National Science
Foundation, NSF —GP3754.



248 S.J. TAYLOR:

[9] that in this case there are e-multiple points. We can use the estimates of this
paper to adapt the arguments of [9], and prove:
Theorem 2. Almost all Cauchy processes on the line have c-multiple points.
These two theorems together mean that for each allowable «, n there is a
k = k(x, n) such that the path set of X (/) has maximum multiplicity % (here k is
either a positive integer or ¢). Thus

if n=4, k=1 for 0<a=<2;
if n=3, k=1 for 0<oc§§, k=2 for %<oc§2;

. r—1 7
if n=2, k=1 for 0<aZl, k=r for —T<%a§7ﬁ,

r=23,..., k=¢ for a=2;

. —1

if n=1, k=1 for O0<a=<l, k=r for r_}_<a§7%:
r=2,3,..., k=¢ for 2=2a=1.

Whenever the set of k-multiple points is known to be nonvoid it is of interest
to ask questions about its nature. It is easy to see that it is a Borel set and that it
has cardinal ¢ with probability 1, so it becomes interesting to ask for its dimen-
sional number in the sense of Hausdorff- Besicovitch. This question was settled for
the whole path set by McKraw [13] and BromeENTHAL and Grroor [I]. For
Brownian motion it was conjectured in [8] that in the plane (¢« = 2 = n) the set
of k-multiple points has dimension 2 for each k, while in B3 the set of double
points for the Brownian path has dimension 1 with probability 1. The upper
bounds in each case are easy but previously used techniques do not seem to yield
any lower bound for & = 2. In the present paper we use the technique of trying
to ‘hit’ the set with an independent symmetric stable process of order j for
different values of f§; and solve the problem completely for » =1 or 2. Un-
fortunately this method will not work for n = 3 (because we cannot use values
of f > 2). We obtain:

Theorem 3. For each positive integer k:

Aifrn=2 2=Z0a>2 ﬁ;—L, the set Ey of k-multiple points of the process

X (1) has dimenston ko — 2(k — 1) with probability 1;
@in=11=za> k%i, the set Ey of k-multiple points of the process
X (t) has dimension ko — (k — 1) with probability 1.

This theorem includes the conjectured result (¢ = 2 = n) that the set of
k-multiple points for Brownian motion in the plane has dimension 2, and a similar
result for the Cauchy process on the line. It is clear that for « > 1 = n, the set of
c-multiple points has dimension 1 (it actually has positive Lebesgue measure).
By theorem 2 we can examine c-multiple points for the Cauchy process in Rl
as well as Brownian motion in R2. Tt turns out that both these sets have maximum
dimension.

(iii) The set of c-multiple points of a Brownian path in the plane has dimen-
ston 2 with probability 1.

(iv) The set of c-multiple points of a Cauchy process on the line has dimension 1
with probability 1.
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We have been unable to prove that the set of double points for the process of
order o (> 3) in R3 has dimension (2« — 3), though this seems very likely.

The paper is arranged as follows. Section 2 summarizes the main properties of
the symmetric stable process which we will require, and goes on to give a sequence
of estimates of various probabilities needed for later computations. Section 3 gives
the relationship between Hausdorff measure and capacity and establishes the
method of finding the dimension of any Borel or analytic set in B2 or R by using
stable processes of different orders. In section 4 we establish the existence of
k-multiple points for the right values of « <Z % and in section 5 obtain a restriction
on the Hausdorfl measure of this set which enables us to complete the proof of
theorem 1 (ii). Section 6 deals with the remaining case (x = 1 = =) of the Cauchy
process, indicating how theorem 2 may be proved by modifying the arguments of
[9]. Finally in the last section we examine the dimensional number of the set of
k-multiple points and prove theorem 3.

2. Preliminary Results and Notation

The symmetric stable process in R” of order «, 0 < o <C 2 will be denoted
Xo, n(f, ®). When o, n are fixed they will usually be omitted and we will normally
suppress o as well and simply talk of the process X (£). Thus X, 4(t, w) is a
Markov process with stationary independent increments, whose transition density
fx,a(t, x — y) relative to Lebesgue measure in E7” is uniquely determined by its

Fourier transform
e HE* — J‘eq,(x,f) fa,n t, x) dx
RTL

where £, x € R?, (x, £) is the ordinary inner product in R? and |z| = (z, z)1/2 is
the usual Euclidean norm. It is worth remarking that the transition densities,
and therefore the process, are invariant under a change of scale in which ¢ is
replaced by At and z by A~ V*z. Only for « = 1 = » (the Cauchy process), and
o = 2 = n (Brownian motion in the plane) can the transition density be written
down in simple form. We write P, and F, for the conditional probability and
expectation given X (0) = x. Unless otherwise stated we will assume that X (0) =0
with probability 1 and suppress the suffix so that P = Py, E = Ey. For all state-
ments that follow, other than formal theorems, we will suppress the words
‘with probability 1’; so that for any given statement there may be a set of zero
probability in the underlying probability space on which the statement is false.

Using the terminology introduced in [3], we will assume that we have a version
of process which is a Hunt process, that is we assume hypothesis (A) of Huxw [17].
The fact that such a version exists can be checked by showing that our transition
functions satisfy the conditions of paragraph 1.7 of Guroor [10]. This paper also
contains an admirable summary of the meaning of the statement that X (£) is a
Huxt process. We state only the more important properties which are needed in
the sequel.

P;. The function X(t) is continuous on the right and has left hand limits
everywhere.

P3. The strong Markov property is satisfied. This loosely means that, if 7'(w)
is a stopping time, the behavior of the process for ¢ = T (w) given X (7'(w))is
independent of the path up to 7' (w).

Z. Wahrscheinlichkeitstheorie verw, Geb., Bd. 5 18
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P3. The process is quasi-left continuous. This means that if {7} is an in-
creasing sequence of stopping times with limit 7', then X (7',) — X (7') almost
surely on {T' < + oo}.

For any analytic set 4 c R#,

Ta(w)=inf {f >0: X}, w)e A}

is called the hitting time (or entry time) of 4: it is understood that if the set in
braces is empty then 74 (w) = oo. We use the fact that 74 (w) is a stopping time
for any such A.

We need a notation for the part of the sample path corresponding to the time
interval [a, b]. Thus

L(a,b; ®) = Ly, n(a,b; )
={xeR": Xy »(t,0) =a for somet, a=<t=<b}.

Similarly we denote the set of k-multiple points by
L¥(a,b;w) = {x € R*: X (¢, w) =  for k different {, a < ¢ < b} .

Fortunately the probability of certain events which are important in our argu-
ment has been estimated by previous authors — or can be easily deduced from
known estimates. For convenience we now list a number of such results as lemmas.
In the present section we give results only for the transient case 0 < a < 2,
o < n. Estimates will not be needed for & >> 1 = =, and they take a completely
different form for « = 1 = n and o = 2 = n. Where possible, we use probabilistic
arguments rather than analytic ones. Constants whose value is not important
occur frequently. We will use ¢y, ¢q, ..., ¢as to denote positive real numbers whose
value may depend on « and » but is independent of all other parameters.

If a transient process starts inside a sphere in R# it is not certain to return to
it for values of t = T'p; similarly if it starts outside the sphere it need never hit it.
The first two lemmas give estimates for these probabilities.

Lemma 1. If |x| > r > 0, then

1 (m_rﬂ)n—fx S PA|X ()| = for some t >0} =1 (Tx_lr:_)n—a_

This is lemma 2 of [16].
Lemma 2. If TVe>r > 0 and || =7, put
Qz,r, T)= P {|X(t)| =r for some t = T}.
Then

n—a

Qx,r, T) Zca <7,;,;)

Proof. Tt is clear that
Qx,r, T) = [ Py {|X (t)| <r for some ¢t > 0} p(y —«, T)dy

y|>7r

where p(y, T') is the transition density of the process. Using the lower estimate in
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lemma 1 and making a standard change of scale gives, on using r I'-1/& < 1,
0, T) 2 exr® [ ([y] 1/ wseply —a Dy
y =7

261 nﬂxj'ly]—n-kocp y — T)dy

ly|>r

€1 (?%m)n_a Jlylmroeply — 2T~V 1)dy

|y|>rD-1%

e —a
=1 (g70) | lylmeply — a T2 1)dy
fy[>1

7T n—o
= (*Tm) ,

since p(y, 1) is bounded below by a positive constant in the region 0 < |y| =< 3
and this lower bound will be a lower bound for p(y — 2TV 1)in 1 < |y| =< 2,
since |z | T'-1/% < 1.

Lemma 3. For T > 0,7 > 0 and all
n—a
Q(%’, r, T) é C3 (rf?l‘/?> .

This is proved in [16] for = 0. Only obvious modifications are needed to give
the result for general .

Lemma 4. If |z| > r > 0 and TV% > c4| x|, then

s n—a
P {|X ()| <r for some te]0, T]}>05(le +7) )

Proof. Clearly the required probability is at least
P {|X(#)] <r for some t > 0} — P,{|X(t)] =r for some t = T}

r n—a r n—o 1 r 7n—o .
> () elmn) 7 da ()T provided 7y cfe].

This lemma shows that, provided || is not large compared to 7%, the proba-
bility of entering a sphere in [0, T'] is of the same order as the probability of enter-
ing at all. We need to show also that the probability of returning to a sphere in
[T, T2] is of the same order as the probability of returning in [ 7', co}. This is

Lemma 5. Forr > 0, TV Z r = |2| = 0, provided Ty > c¢T1,

n—a

P {|X(t)| =7 for some t [T, Tal} > ¢q (F:m)

This can be deduced from our lemmas 2 and 3 in the same way that lemma 5 is
deduced from lemmas 3 and 4 in [16].

Finally we need a lemma which strengthens the result that the process X (¢} is
continuous in probability. It follows from P{|z(1)| > 1} > 0 and the fact that we
haveindependent increments by a standard argument (see, for example, STEIN [715]).

Lemma 6. For ) > 8,

P{sup|aa,n(r)| = Ao} < o=,
0=r<i

18%*
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3. Riesz Capacity and Hausdorft Dimension

Since we are considering a HHUNT process, the probability
Do, n(x, A) = Py{Xo, n(f) A for some ¢ > 0}

that a symmetric stable process starting at a will hit the analytic set 4 c R* is
defined. This function is the ‘natural’ potential of 4 associated with the process.
Many authors have observed that the general theory of HuNT [11] implies that
when 4 is a compact set K of positive (n — «) RIESzZ capacity, then @y ,(x, K) is
the value of the equilibrium RIEsz potential of order (n — «) of K at z: that is

Dy, n(@, K) = LK) [ |2 — y| " ux (dy)
K

where ug is the equilibrium distribution on K and A(K) is a constant. Further,
when the RIrsz capacity of K is zero, @y, 4 (x, K) is zero for all . There are
several different definitions of f-capacity, but this will not worry us as the numeri-
cal value will play no role and the class of compact sets of zero f-capacity is the
same for all of them (see for example, [18]). The definition of S-capacity can be
extended (see, BRELOT {4]) to the class of capacitable sets which includes the ana-
lytic subsets of R%. Since @y, 4 (x, 4) was also defined for analytic 4 we can state
{C(A) denotes some definition of the S-capacity of 4):

Lemma 7. For n > «, x € R® and any analytic A c R,
Dy, n(x, A) = Pz {Xyn(t)ed for some t > 0}
18 positive or zero according as Cp—q(A) is positive or zero.
There is also a version of this result for the special cases of the Cauchy process
(w = 1 = n) and Brownian motion is the plane (x = 2 = n) which involves the

use of logarithmic potential and capacity. This will not be required explicitly.
It is clear from any of the definitions of Cy(4) that if « < f,

Co(A)=0=Cs(A)=0 and Cp(4)>0=0Cy(4)>0.
We can therefore define the capacity dimension of 4 by
C — dim (4) = inf{$:C(4) = 0} .

If A c R*, Cg(A) = 0 for § > nso that O —dim (4) < n. Now the Hausdorff dimen-
sion of any subset of R" can be defined in terms of the Hausdorff measures A%
with respect to the measure function 2%. Since it is known (see [18] for references)
that

Cy(4) > 0 = A%(A4) = + oo,

Ou(A) =0= AP (A) =0, B>a;

it follows that the Hausdorff dimension
dim{A4) = inf{f: A6(4) = 0}

is the same as the capacity dimension for any analytic set A. It is worth remarking
that, though this correspondence is exact for these simple power functions A% it
does not apply to finer distinctions like A%( (log 1/A))8 — see [18].

We now state as a theorem a technique which utilizes the symmetric stable
processes of varying order to determine the Hausdorff dimension of an analytic set.
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Theorem 4. Suppose A is an analytic subset of the line or the plane. Then, for any
point x,
if Ac RL,dim (4) = 1 — inf {a: Dy,1 (&, 4) > 0};
if A c R2,dim (4) = 2 — inf {o: Dy 2 (z, 4) > 0}.

Proof. We write out the argument only for 4 ¢ R1. Suppose first that « is such
that @y, 1(x, 4) > 0. Then, by lemma 7, C4_4(A4) > 0 which implies that
A1=2(A4) = 4 co. This in turn gives dim(4) = 1 — «, so that

dim (4) = 1 — inf {o: Dy, (2, 4) > 0} .

Conversely, if § < dim (4) there is a compact K c 4 such that § < dim(K) = ¢ —
— dim (K) so that Cg(K) > 0. By lemma 7 we now have @, ; (v, 4) > 0 for
y =1 — B. Hence

inf {a:Ppy (2, 4) >0} =<1 —f

for every § < dim(A4), and this completes the proof.

Remark. It is clear that one can state a corresponding theorem for subsets of
Rn, n = 3 but it is incomplete since the order « of a stable process is restricted by
0 < o < 2. The technique will therefore only work in R”, n = 3 for analyzing sets
whose dimension is known to be greater than (n — 2).

Previous workers have used the result of lemma 7 by first obtaining informa-
tion about the capacity of a set and making a deduction about the hitting proba-
bility. We will use it in the reverse direction in section 7 — making deductions
about the f§-capacity from information about the hitting probability by a process
of order (n — p).

4. Existence of Points of Multiplicity %

In the present section we restrict our attention completely to the transient
processes (n > o). It is clear that for « > 1 = n there is no problem since every
point is entered arbitrarily often — in fact any given point is a point of multipli-
city ¢ (see [2], where BLUMENTHAL and GETOOR actually determine the Hausdorff
dimension of the set of time instants at which a fixed point is visited). Of the
remaining cases, « = 2 = n is Brownian motion in the plane which was settled in
[7]and [9], and we will deal with the Cauchy process (x = 1 = z) in section 6.

The first step is to show that there is a constant c¢ > 0 such that, for any
o > 0, there is a probability of at least ¢y that there are k time instants 0 < §; <
<l << <tp=Zcy with & — 1 =133 =2,..., k) such that X{#)(@ =1,
2, ..., k) are all within some sphere of radius p. In fact this will follow if we can
show that there is a fixed finite set, depending on g, of spheres of radius p for which
the probability that at least one of them contains k entries by the process in
[0, ¢10] — the successive entries all separated by at least unit time — is not less
than cg. This is the essential content of lemma 9. In order to save writing we will
state and prove lemmas 8 and 9 for processes in the plane (n = 2). It is clear that
dimensionality changes are all that is needed to cover the cases n = 1,3. Values of
n = 4 are not relevant to the present section since we know that even double
points cannot exist in this case.

Now put U = max(cs, ¢4), c10 = & U. This means that, if || < 1 in lemma 4
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and T < 1 then the estimates of lemma 4 for entry in [0, U] and lemma 5 for
reentry in [1, U] are valid. This allows us to state

Lemma 8. Suppose k is a positive integer and o > 2 (k — 1)/k. Let Sy, S» denote
discs in R2 with centers 1, xs and radius o, where 3 < |@1| < %, 1 < |22| < Land
0 <10 < min {|x1|, |@2]|, |#1 — 22|} Let By(i = 1, 2) be the event that there are
k time instants t1, 89, .. g with 0= S U, 1=, — 40 =U (1=2,3,...,k)
such that ]

Xa,g(tj)GSi (7=1,2,,k)

Then
P(E;) > c110%2®, ¢=1,2;
P(E1 N Bs) < c1a| 21 — x| F@~0) p2k(2-0)

Proof. A lower bound for the probability that X, o(t) will hit S; in [0, U] is
given by the lemma 4. If the process hits S; in [0, U], let ¢, be the first entry time.
Since this is a stopping time, we can restart the process at X (£1) and apply the
strong Markov property. The conditional probability of a further reentry to S; in
[1, U] is then given by lemma 5. Repeating this argument (¢ — 1) times gives
easily

P(E;) > cr10k @,

If we E1 N By, the process makes at least 2k entries #; << t, < ... < tox
into S1u Sz in [0, c10] such that, for at least & of the integers ¢ (2 <1 < 2k), t; —
— t;—1 = 1. Let N be the number of ways of choosing k integers out of 2k and
denote by
U1, the probability of entering at least one of 81, S2;
w2, the upper bound of the probability of entering S; starting from a point of
S; (& % 4); and
us, the upper bound of returning to S; after time } starting from a point z € §;.

It is clear that

P(B1N Es) < Ng p1 ps*1 (p2 + ps)® .
Now
1 =2¢1(50)>%, by lemma 1;
pe = c1(20)2 % | @1 — 22|"2*%, by lemma 1;
u3 Zczp?*, by lemma 3.

Noticing that [xl — a:g] < 1, it now follows easily that
P(E1 N Eg) < 12028 @0 | gy — wa|~F (-0,
Lemma 9. Suppose k is a positive integer, and 2 > o > 2(k — 1)/k. For each
positive integer r consider the discs, S, centered at
=it St e
of radius g = Ar—2/k2-9),

1T am indebted to Dr. J. TaxrucHI for pointing out a computational error in an earlier
version of lemmas 8, 9.
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Let Ey(v = 1,2, ...,72) be the event that there exist time instanis ty, b2, ..., g
with0 <t S U, 1<t — 1 S UG =2,..., k) and that
Xo, 2 eSSy, i=1,2,...,k.

v=1

742
Then, provided 2 = c13, P (UEv ) =g > 0forall r.

Proof. It is clear that, at least for large r and small 4, all the conditions o
lemma 8 are satisfied for each pair of dises S5, Sy-. Using the estimates of lemma 8
gives

P (UE) =S P~ 3 PN B)

v=1 p=1 1<y’ £92
r(2— k(2 — _
> 12011 0f% 7% — c120 7Y B |y — @y [FETH .
1Sv<y =02
Now, for fixed », the number of »’ such that

9s—1 28
Té]xw—’xv] 27(8:1:2:'“;81‘)

-1
is certainly less than 100.225+2) <2 > 287 = 1). Hence

— 1\ —k(@—
z ) Y < c1474.

$r
Z |2y — @] @@ <42 > 100.225+2 (T

1Sv<<y' 2 s=1

Hence

r2

P (U Ev) > 120110, @79 — c1a015740% 2 > 9 > 0
v=1

provided €11 = 201201412.

Proof of Theorem 1 (7). We can now complete the proof apart from the special
cases oo =1=n and «=2=mn. Suppose now that 0 <o < 2=mn, and
o > 2(k—1)/k. Let @; be the event that there exists some disc D of radius 1/s and
k time instants I, %, ..., with 0 § 141 § U, 1 é t]' — tj~1 é U (7 = 2, cees ]{))
such that all the X (%), ¢ = 1,2, ..., k are in D. Clearly, if r is large enough to

72
ensure the o, <C 1/s, the event @; > U E,, using the notation of lemma 9. Thus

r=1

P(Qs) =c9>0.

o

But now @ decreases as s increases so that, if @ = (") @,
s=1

P(Q)=Zco>0.
Suppose now that w € @, so that w € @, for all s. For each s, pick a disk Ds and
stopping times which satisfy
0=8=U;1=8~8 kU, j=2,...,k).

(To ensure ¢; are stopping times it is important at each stage to choose the first
entry or reentry time to D) — for this reason we have had to relax the upper bound
in the last inequality). Since all the values of { involved are in a bounded set we can
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choose a subsequence {s;} such that, forj =1,2,..., k,
i —1; as i->o00,

and the convergence is monotone. If ¢ decreases with ¢, then X () — X (7;) as
i — oo gince the sample functions are right continuous, and the same result holds if
¥ is increasing in ¢, since each element is a stopping time, by the quasi-left conti-
nuity. Hence if w € @), there exist values of the time 0 < 71 < 12 < - < 1z kU
such that 7j — 751 = 1forj = 2,3, ..., kand

X(m)=X(rs) =" = X(11).

Thus the probability of & k-multiple point for the path L(0, kU ;w) is at least
¢g > 0. By changing the scale, the probability of a k-multiple point for the path
L{0,1; w) is also at least ¢y > 0. By independence of distinct portions of the path,
the probability of no k-multiple point in L (0, n;w) is less than (1 — )" which —0
as 7 — oo. Hence there is probability 1 that the path Ly, 5(0, 1;w) has a k-multiple
point provided 2 > « > 2 (k — 1)/k. It is clear that all the details of the proof
work for n = 1 and 3 so that

(i) There are double points of Ly, 3(0, 1;w) with probability 1 if & > 3;

(ii) There are k-multiple points of Ly, 1(0, 1; ) with probability 1 if
1>a>Fk—1)k.

It may be worth remarking that the techniques of the present section will also
yield part (i) of the following theorem.

Theorem 5. Suppose w1, w3, ..., o are k independent realizotions of a symmetric
stable process of order o, in R™ all starling from the same point at t = 0. Then these k
realizations will have some point in common other than the starting point

(1) with probability 1, if 2 = o > n(k — 1)/k;
(ii) weth probability 0, if o = n (k — 1)/k.

5. Hausdorff Measure of the Set of k-Multiple Points

In [8] we showed that the set of double points of the Brownian path in B3 had
o-finite Al-measure. We now use the estimates of section 2 to extend the methods
of [8], obtaining the corresponding result for L% , (0, 1;0) — the set of k-multiple
points of a stable process — in the case ka > n(k — 1) where we know that k-
multiple points exist. We again exclude the critical casesa = 1 =nanda =2 = n
where the upper bound for the dimension in theorem 3 is in any case trivial. There
is also nothing interesting to say about the case « > 1 = n, which is excluded
from our statement of theorem 3.

In order to show that the Hausdorff measure of L¥(0, 1;w) of dimension
B = ka — n(k — 1) is o-finite we must divide the set into a countable number of
pieces each of finite f-measure. For such a subset @ we must show that, for every
d >0, we can cover @ by a sequence {S;} of spheres whose diameters {d;} satisfy
Z df < M < oo. It is sufficient, clearly, to show that

k
(M L(raj-1, 7253 ®)

i=1
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has finite S-measure for each sequence
0= <re<-<rygps=l

of 2k distinct rationals in [0, 1]. This will follow by the same argument as the proof,

which we now give, that
E

Qr(w) =ML (2] —1,2§;0)

j=1
has finite §-measure.

For any positive integer m, put &, = m~1/% and consider the points of L(1,2; )
which are approached within g, by each of the pieces L(2j — 1, 2§;w). If we
cover this set of near-g,, returns then we will certainly have covered @z (w). Split
up the interval [1, 2] into m equal pieces by the time points

ti=1-¢m (t=0,1,...,m).

The maximum displacement of X (f) — X (¢;) inf; < ¢ < #3441 will be of the order of
m~1« To be precise, put
Yi,m=mYesup | X () — X (t)] .

LSt
Then Y, pm, ¢ = 0,1, ..., m — 1 are random variables and, by lemma 6, for 1 > 8,
P{Yim> 2} <e .

It is simpler for computational purposes to use a discrete random variable g;, 4
defined as follows:

if Yim=8, pubgsm=9m e,

25 < Yy 25, put g, = (1 4+ 25 )ym-V, 5=3,4,....

It is clear that if any point of L(t;, t;41;w) is to be a point of near-g,, return,
then each of the pieces L(27 — 1, 2j;w) must at least enter the sphere S;, ,, with
center X (f;) and radius g;, . We now find an upper bound for the probability that
this happens.

Starting from X (f;11) which is a point of §;,» the probability of a return to
S;,mfor3 =t = 41is, by lemma 3, less than c3 g} ;,% since the relevant value of 7T is
at least 1. If a return occurs in [3, 4] choose the first return 7, which is a stopping
time and repeat the argument (¢ — 1) times using the strong Markov property.
Thus the probability p;, » of a return to S;, » in all of the intervals [27 — 1, 27],
j=2,3, ..., ksatisfies

Pi,m = cé’“lei-f%” (=2,

Now put

di, m(w) =0, if in at least one of [25 — 1,24], = 2, ..., k no return occurs;
di, m(w) = 294, m(w) if all the (k¢ — 1) returns occur;

m—1

m(@) = > [di,m (@)
i=0

Thus the random variable 7, (w) is the sum of the §-th powers of the diameters of
the spheres S;, ,, which are re-entered (k¢ — 1) times in the intervals considered.
The next step is to obtain an upper bound for the first moment of I,,, (w). Using the
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estimates just obtained,

B} S o153 Plom = (28 + 1) m-Va){(2 4+ 1) mo e =D

§=3 et
<15 [(gm—lla)ﬂ+(k—1)(n—a) + ZGXP(— g 25) {(2s_|_1)m—1/a}ﬂ+(k~1)(n—a)]
s=4
<2,

on making use of lemma 6. Finally we have
B {lm(@)} = m B {{ds, m(@)'} < crs.

We can now repeat the argument on page 861 of [8] to deduce that, with probabil-
ity 1, there is a finite real number M (w) such that, for a subsequence my, ma, ...

I, (@) = M (0) 1=1,2,....
Now, if we put

max  0:,m = Qm.
0=i=m—1

it follows from lemma 6 that, for large m,
P{gm > 135} <mexp(— cgddmile),

An application of the Borel Cantelli lemma now shows that only finitely many
of the events {gs, > 1 0} occur so we may assume all the covening spheres have
diameter less than §. It follows that

AP Q(w) < M (w) < oo.

Going back to the argument in the second paragraph of the present section
we have established that L¥(0, T'; w) has o-finite §-measure.

Proof of Theorem 1 (ii). By the relationship between capacity and measure
discussed in section 3, it follows that for every rational r, the B-capacity of
LE(0, r; w) is zero. It follows that, if o < nk/(k + 1),

P{X(t)e Lk(0,r) for some ¢ >r} =0

by lemma 7. Hence, if n (k — 1)/k << o =< nkj(k-+1) the set L% (0, r; w) N L(r,c0; o)
is void for each rational r, and there cannot be any points of multiplicity (k - 1). This
establishes theorem 1 (ii) for the transient case o << #n. When o = n the theorem is
vacuous.

A similar argument establishes theorem 5 (ii).

6. The Cauchy Process on the Line

The investigation of multiple points for Brownian paths in the plane was
carried out by DvorETzKY, ERDOS and KakuTani, [7] and [9]. They used certain
estimates for the probability of return to a disc in given time intervals of a similar
nature to our lemmas 1—5. If we show that the same estimates (apart from the
values of the positive constants) are valid for the Cauchy process in R!, then
it is clear that the arguments of [7] and [9] will establish theorem 1 (i) fora=1=n
and theorem 2, except for possible difficulties arising from discontinuities in the
sample function (since theorem 2 clearly implies theorem 1 (i) for the Cauchy
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process it is sufficient to prove theorem 2). There are minor simplifications to the
arguments of [7] and [9] since we are working in B! rather than R2.

It is possible by rather a lot of hard work to estimate all the probabilities
needed using the usual techniques of first passage time analysis and Laplace
transforms. We prefer to use the amusing relationship between the Cauchy process
in R! and Brownian motion in R2 discovered by Seirzer [14]. This is given by
the next lemma.

Lemma 10. If X (t) + ¢ Y (t) represents Brownian motion in R2 and T (1)
= inf[7: Y (1) = t] ts the first passage time across the line Y =1t, then X [T (t)]

=0
represents a Cauchy process in R1.

This means that if we observe the 1-dimensional Brownian process X (f) only

at those time instants ¢ for which Y () = sup Y (1), we obtain the sample path of

0=7=¢
the Cauchy process. Now (L#vy [12], theorem 49.1) showed that the set of time

instants where Y (£) = sup 7'(t) is stochastically equivalent to the set of time
osTst

instants 7 for which Y (1) = 0. Since X (f), Y (t) are independent processes it

follows that we can calculate probabilities of entering a linear set E by the Cauchy

process by considering the planar set
Ey={(z,y):2zckE,y=0}

and calculating the probability that a planar Brownian path will enter Ey. We
will only require these probabilities for intervals E, but even in this case the corre-
sponding probabilities for B¢ have not been computed. However, under reasonable
conditions, the probability that a Brownian path will hit {(x,y):a <x <b, y =0}
in a given time interval is of the same order of magnitude as the probability of
hitting the disc with this segment as diameter — in fact one can prove that these
probabilities as asymptotically the same as the length b — a — 0. These mean
that we can get the estimates we require from known results for the Brownian
process in R2. We obtain the results in a sequence of lemmas. Throughout this
section Z (¢) will denote a planar Brownian process, and C(¢) will denote a linear
Cauchy process.

Lemma 11. If 2 = |z] 2 3,0 < o < %, then
o
log1/e

This can be obtained from lemmas 3 and 5 of [7] by a suitable change of scale.

Lemma 12, For $ £ <1, 0 < ¢ < c9,

C18

P,{ inf |Z 2R
<P inf 1Z0)] <o} <51,

621
oulfs
Proof. Because of the relationship in lemma 10, the probability
Pe{ inf [C(0)] <o}
0sts1

0207

Togjy < Pel o;}; |0@1)] <o} <7

is precisely the probability that a planar Brownian process Z(t) starting from 0
will enter the segment {§ — ¢ <& < & 4 p, ¥y = 0} in unit time. This is clearly
less than the probability of entering the disc center (£, 0), radius ¢ which in turn
is less than ¢ig/log 1/p by lemma 11.
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In the other direction, the required probability is clearly greater than
p1(p2 — ps) where

p1 = P{Z(t) hits disc center (£, 0) radius 40 in 0 < ¢ < $};

pe = P{Z(t) starting from a point in disc radius § ¢ hits a fixed diameter of
a larger concentric disc of radius g before exiting from larger disc};

ps = P{Z(t) starting from a point in disc radius ¢ remains in larger con-
centric disc of radius ¢ for 0 < ¢ < L}

Now p2 is bounded away from zero for all starting points in the smaller disc (for
a rigorous proof use the logarithmic potential theory) and p3 — 0 as ¢ — 0 by
lemma 7 so that p3 < L inf ps. We can estimate p; from lemma 11 by a charge of
scale. Combining these gives the required lower bound for 0 < ¢ < ¢9.

We also require an upper bound for the case |£]| < %

Lemma 13. If 0 < o < |&| < 1, then

1+ logl/|é&|
P f = Pl ol L LR
s{ o |CW] = e} <1517,

This follows from lemma 4 of [7] by the argument used in the proof of our

lemma 12,
Lemma 14, If 0 < |&] = ¢ < cas,

C24

P f
Toglje < 5{1/elft<1[ O <11/ -

C25

Proof. This can also be deduced from the corresponding result for Brownian
motion. However the case & = 0 is proved in lemma 1 of [17], and the methods
used there immediately give the result as stated.

It is now clear that, by using the estimates of lemmas 12, 13, 14 instead of the
corresponding ones for Brownian motion and the (slightly) simpler lattice of
intervals in R! instead of discs in R2, the proofs of DvorEzTRY, ERDOS, KARUTANI
in [7] and [9] go through. This means that theorem 2 is established apart from
the difficulty about left hand limit points. This we now get around as follows. In
the notation of [9] we obtain time points

tn(9), j=1,...,2%

for which C (¢, (), = 1, ..., 2% are all the same point £, and choose a convergent
subsequence &y, —> & as p — oo, Put

I 7_12 2%}

p=q

A:

1Ds

where the bar denotes closure. Then A4 is a perfect set, and therefore of power e.
If we leave out of A4 all the points isolated on the right (not more than a countable
set) we are left with a set B still of power e¢. Now for any ¢ € B we can find a
sequence ¢(m) increasing to infinity and integers ju with 1 = §, =< 22(m) such
that fy0my(g(m)) decreases to ¢ as m -» co. Hence C(t) = & since the paths are
right continuous. This completes the proof of theorem 2.
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7. The Dimension of the Set of Multiple Points

The results of section 5 already give us an upper bound for the dimension of the
set of k-multiple points,

dim If , (0,00, 0) < f = ko — n(k — 1),

when 5 > 0 (corresponding to the case where L¥ is not void, by section 4). We now
use theorem 4 with the methods of section 4 to show that the dimensional number
of £ , = f. This will complete the proof of theorem 3. It is sufficient to show that,
for any y > n — f there are points common to an X, ,(¢) process and the set
L% (0, 1; w) of k-multiple points of the an independent X, 5 (£) process. We deal
first with the transient case o << n = 2. (Our method completely breaks down for
o> %, k=2,n=23). We can use the estimates of lemmas 1—5 to establish,
by a proof very similar to that of lemma 8 and 9.
Lemma 15. Suppose n =2,0 <a<n,0<y<n and ko -+ vy > nk. For
each positive integer v consider the discs S, centered at
1 V1 i V2 v =1,2,...,r,i=1,2;
x”:<z+7167’ I+T07) y= {1 — 1)r 4 »2
of radius
n
G Dn—ka—y 470
Let By (v=1,2,...,72) be the event that there are time instanis 0 < t; < V,
1= -0 =5V,9=2,3,....kand 0 = tg1 =V such that

X, nlty)eSy for §=12,..k

Or = Ar " where y =

and
Xﬂf,’ n(tx+1) €8y,
Then

72
P(JE)) = car> 0.
r=1
(In the above V is a fixed real number chosen large enough to ensure that the
estimates are valid for both processes.)
The argument which follows lemma 9 can now be easily modified to establish.

Lemma 16. If Xy () and X, 5 (t) are independent symmeiric stable processes
of orders o and y in B® where ko + y > nk, then with probability 1 there are time
instants

0=t <ta<< - <tg, trr1>0
such thai
Xj},n(tk+l):z:Xm!ﬂ(t’£), 1=1,2 ...k

This lemma means that X, ,(¢) hits the set Lfm(O, oo; @) at a positive time
with probability 1. By theorem 4 we deduce that dim L , (0, oo; w) = f. This
completes the proof of theorem 3 in the transient case. The cases o = 1 = n of
theorem 3 (ii) and o = 2 = n of theorem 3 (i) will follow a fortiori if we can
establish theorem 3 (iii) and (iv). We write out the proof for theorem 3 (iv), since
the remaining case follows by a similar argument.

We follow the sequence of arguments in [9] to give us the proof of theorem
3 (iv), giving the details only when there is an essential change in the argument.
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The statements in (9] are labelled 4, B, ... . We need to replace B by the following

lemma in which we compute the probability that at least one of r small intervals is

entered by a stable process of order y and is entered twice by each of £ independent

Cauchy processes. 1t is more difficult now to find the correct length g, for the

intervals so that we have just enough independence to carry out the computation.
For small values of s > 0, 0 << v <C 1 consider

y=f(s)=s"""(log 1)s).

This function is monotone increasing for small s, so it has an inverse s = p(y)
defined for small positive y.

Lemma 17. Suppose wiy, wz, ..., wr are k independent Cauchy processes
starting (et t = 0) at 31, ®g, ..., xp respectively, and wo is an independent symmetric
stable process of order y(0 <y < 1) in RY starting af xo where |2;| < 1/100
(t=0,1,...., k). Let

1 v
CV:Z+U7 ,‘}’—:1:2:"':77
1
Or =C28Y\ |5
and denote by Dy the event that there exist, for j = 1, ..., k time instanis t] , t; such that

1 ,
O<y =1, jéti—tjél,
Io(t];wy)—‘:vl<@r; Io(ti’:w])—'ZVl<Qra
and a time instant to such that 0 < tg < U and

[ Xy, 1(t, wo) — O] < o -
Then

,
P(JDy) > c2>0,
p=1

for all integers r = 1.
Proof. Since the processes are all independent, lemmas 12, 14 and 4 give

P(Dy) > e300 " /(log L]gr)?* = esof(er);

or2(1—v) (log] Ly — 0/ )4*

(Here we have used the strong Markov property and the same arguments as were
used in the proof of lemma 8.) Now

P(D,NDy) = ca1

P(ODV) gﬁp(pv) — S P(D,nDy)

rv=1 v=1 1=sv=v =7

o Y — 4%
> caor flor) — 2rlf (e es X, WIS E

y=2

> esorfon) — Benr? (@Y - (477 (log 42)"

v
y=1 v

> eao7 flor) — c327%[f(0r)]2 for r=r
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since

flos) ~ Cogl ™7+

For r = ry, we must have

’ 2 4 ;
PRJDy) > 3 Cos 7 g0 — g C28" v 032
p=1
> ca9 > 0.
This establishes the lemma,
The argument of [9] can now be continued with the obvious changes leading
to the following lemma, which corresponds to (E) in [9].

Lemma 18. Suppose wo is a symmeiric stable process of order y (0 <<y < 1)
i Bl and w1, we, ..., o areindependent Couchy processes. For any & > 0,there is
probability 1 that there is a point € L, 1(0, &; wo) which is a double point of
L1,1(0, &; aq) for; each i = 1,2, ..., k.

Finally, using the modifications suggested for the proof of theorem 2 we obtain:

Lemma 19. For 0 < v < 1, there is probability 1 that an independent stable
process of order v will hit the set L (0, 1; w) of points of multiplicity ¢ of a Cauchy
process.

If we apply theorem 4, we see that the set L] (0, 1; ») must have dimension 1
with probability 1. This completes the proof of theorem 3.

8. Further Problems

1. We remark again that we have been unable to compute the dimension of
the set of double points L2 5(0, 1; w) of a symmetric stable process of order «
in R3: the value suggested by our results is (2 — 3) for « > 3/2.

2. Tt is clear that the methods we have used will solve other problems of a

k
similar nature. For example, in B2,if0 < o; £2,¢=1,2,..., k, Zoci > 2(k—1)
i=1
and w; (1 = 1, ..., k) are independent stable process of order «; in R2, there is
probability 1 that the set of points common to L, 5(0, 1; w) will be non-void
x

and have dimension Zoci — 2{k — 1).
i=1

3. Our results suggest that one ought to be able to say something about the
subset of points of a given fixed set & which are ‘hit* by a stable process. We state
a conjecture which seems to us to be plausible.

Conjecture. Suppose I is a Borel set in R* such that dim[E N S(g)] = g for
all 9 > 0, where S (g) is the sphere center 0, radius p. Then, if « + § > n, there is
probability 1 that dim[E N Ly, 4(0,1; w)] = o + f — n.
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4. One can also ask questions of a more delicate nature about the Hausdorff
measure of the sets L;fm (0, 1; @) of k-multiple points. On would like to find the
correct measure function %(d) such that the A-measure of L];m is finite and
positive with probability 1. This is known for the path set Lo (0, 1; @) of
Brownian motion (see [6] and [19]), and the methods used in [79] can be applied to
Ly, 2 (0, 1; w) to show that, in order to measure the path set,

(i) for o < m, the correct measure function is d*loglog % )

(i) for & = 1 = n, the correct measure function is d log %logloglog %

I am unable to make a plausible onjecture about the correct measure function to
measure L%, (0, 1; w) when k& = 2.
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