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1. Introduction 

Properties of the sample path for the symmetric stable process of order 
~, 0 < ~ =< 2 in Euclidean n-space, R n  have been studied by many authors (see for 
example [1, 2, 13, 16]). I t  is well known that  for 1 < ~ ~ 2, n = 1, the process 
is point recurrent so that  in fact for any given x ~ R 1 there is probability 1 that x 
will be visited c times (c is the cardinal of the continuum) and there is therefore 
no problem about the existence of multiple points. For other values of ~, n the 
process is not point recurrent but there may be some points which the path visits 
more than once. A point visited at least twice is called a double point, while if it is 
visited at not less than k different time instants we call it a/c-multiple point. In 
the present paper we completely settle the question of the existence of/c-multiple 
points for 0 < ~ < 2 and go on to consider the extent of the set of Gmultiple 
points when this is known to be non-void. The case ~ = 2 corresponds to Brownian 
motion and has previously been completely settled in the series of papers [6 --  9] 
mainly due to DVORETZKY, ERD0S and KAKUTANI. For /c = 2 and other values 
of g, TAKEUCKI [16] has shown that  double points exist with probability 1 if 
2 ~ ~. > �89 but that  for 0 < g G �89 the path enters no point twice with 
probability 1. We will make use of the estimates in [16], though our method has 
to be somewhat different. 

We now summarize our main results: X (t), t ~ 0 will denote the symmetric 
stable process of order e in R n. 

Theorem 1. Nor each posit ive integer/c ,  

(i) i] 2 >= ~ > n ( /c - -  1)tic, with  probabil i ty  1 there is a point  ~ ~ R n and/c dis t inct  
t imes  0 ~ t l  ~ t2 ~ "'" ~ tk such that 

X ( t i )  = ~, i = 1, 2 . . . .  ,/c: 

(ii) i / 0  < ~ < n (/c - -  1)//c, wi th  probabil i ty  1 there is  no po in t  ~ ~ _Rn which is 
entered/c  t imes  by X (t). 

The case ~ = 1 --~ n corresponds to the Cauchy process. I t  was proved by 
McK~A~ [13] that  the path set of the Cauchy process has zero Lebesgue measure 
and that  the hitting probability of any fixed point is zero. Theorem 1 (i) says, 
however, that  the Cauehy process has points of arbitrarily high finite multiplicity 
with probability 1. This result was obtained for Brownian motion in the plane 
(~. = 2 = n) by DVOR~TZKY, ERDSS and KAKUTANI [7] who went on to show in 
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[9] tha t  in this case there are c-multiple points. We can use the estimates of this 
paper to adapt  the arguments of [9], and prove: 

Theorem 2. Almost  all Cauchy processes on the line have c-multiple points. 
These two theorems together mean tha t  for each allowable ~, n there is a 

k =- k (~, n) such tha t  the path  set of X (t) has maximum multiplicity k (here k is 

if n ~ 4 ,  k = l  for 0 ~ G 2 ;  
if n = 3 ,  k----1 for 0 < ~ ,  k ~ - 2  for ~ < ~ 2 ;  

r - 1  r 
if n - -~2 ,  k = l  for 0 < ~ < = 1 ,  k = r  for - - ~ � 8 9  

r ~ 2 , 3  . . . .  , k = e  for c r  

k = r  for 
r - - 1  r 

if n ~ l ,  k ~ l  for 0 ~ � 8 9  - - - - ~ - - - -  r ~ r ~ - l '  
r - - - -2 ,3 , . . . ,  k ~ c  for 2>--~>--1.  

Whenever the set of k-multiple points is known to be nonvoid it is of interest 
to ask questions about  its nature. I t  is easy to see tha t  it is a Borel set and tha t  it 
has cardinal c with probabili ty 1, so it becomes interesting to ask for its dimen- 
sional number in the sense of I-Iausdorff-Besicovitch. This question was settled for 
the whole pa th  set by  McKEA~ [13] and BLI~ME~T~IAI, and GV, TOOl~ [1]. For 
Brownian motion it was conjectured in [8] that  in the plane (~ ~ 2 = n) the set 
of k-multiple points has dimension 2 for each k, while in R 3 the set of double 
points for the Brownian pa th  has dimension 1 with probabili ty 1. The upper 
bounds in each case are easy hut  previously used techniques do not seem to yield 
any lower bound for k ~ 2. In  the present paper we use the technique of trying 
to 'hit '  the set with an independent symmetric stable process of order fi for 
different values of fi; and solve the problem completely for n--~ 1 or 2. Un- 
fortunately this method will not work for n ~ 3 (because we cannot use values 
of fl ~ 2). We obtain: 

Theorem 3. For each positive integer k: 

]c--1 
(i) i/ n ~ 2, 2 ~ :r ~ 2 ~ ,  the set E~ o/k-mul t ip le  points o/ the process 

X( t )  has dimension k~ - -  2(k - -  1) with probability 1; 
I c - 1  

(ii) i/ n ~- 1, 1 ~ :r ~ - - ~ ,  the set E~ o/ k-multiple points o/ the process 

X (t) has dimension ko~ - -  (k - -  1) with probability 1. 

This theorem includes the conjectured result (g-~ 2 ~ n) tha t  the set of 
k-multiple points for Brownian motion in the plane has dimension 2, and a similar 
result for the Cauchy process on the line. I t  is clear tha t  for g ~ 1 ~ n, the set of 
c-multiple points has dimension 1 (it actually has positive Lebesgue measure). 
By theorem 2 we can examine c-multiple points for the Cauchy process in R 1 
as well as Brownian motion in R ~. I t  turns out that  both these sets have maximum 
dimension. 

(fii) The set o] c-multiple points o / a  Brownian path in the plane has dimen- 
sion 2 with probability 1. 

(iv) The set o /c-mul t ip le  points o / a  Cauchy process on the line has dimension 1 
with probability 1. 

either a positive integer or c). Thus 
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We have been unable to prove that  the set of double points for the process of 
order c~(> ~) in R 3 has dimension (2~ -- 3), though this seems very likely. 

The paper is arranged as follows. Section 2 summarizes the main properties of 
the symmetric stable process which we will require, and goes on to give a sequence 
of estimates of various probabilities needed for later computations. Section 3 gives 
the relationship between Hausdorff measure and capacity and establishes the 
method of finding the dimension of any Borel or analytic set in R 2 or R 1 by using 
stable processes of different orders. In section 4 we establish the existence of 
k-multiple points for the right values of c~ < n and in section 5 obtain a restriction 
on the Hausdorff measure of this set which enables us to complete the proof of 
theorem 1 (ii). Section 6 deals with the remaining case (~ ---- 1 = n) of the Cauchy 
process, indicating how theorem 2 may be proved by modifying the arguments of 
[9]. Finally in the last section we examine the dimensional number of the set of 
k-multiple points and prove theorem 3. 

2. Preliminary Results and Notation 

The symmetric stable process in R n of order ~, 0 < c~ < 2 will be denoted 
Xc~, n (t, co). When ~, n are fixed they will usually be omitted and we will normally 
suppress co as well and simply talk of the process X( t ) .  Thus Xc~,n(t, co) is a 
Markov process with stationary independent increments, whose transition density 
/~, n(t, x - -  y) relative to Lebesgue measure in R n is uniquely determined by its 
Fourier transform 

e-f'l~[~ = ] ei(x'~)/~,n (t, x) dx 

where ~, x e R n, (x, ~) is the ordinary inner product in R n and Ix[ ~- (x, x) 1/~ is 
the usual Euclidean norm. I t  is worth remarking that the transition densities, 
and therefore the process, are invariant under a change of scale in which t is 
replaced by )~t and x by )~-l/~x. Only for ~ = 1 = n (the Cauchy process), and 
0r =- 2 = n (Brownian motion in the plane) can the transition density be written 
down in simple form. We write Px and Ex for the conditional probability and 
expectation given X (0) ~- x. Unless otherwise stated we will assume that X (0) = 0 
with probability 1 and suppress the suffix so that  P = P0, E = E0. For all state- 
ments that  follow, other than formal theorems, we will suppress the words 
'with probability 1'; so that for any given statement there may be a set of zero 
probability in the underlying probability space on which the statement is false. 

Using the terminology introduced in [3], we will assume that  we have a version 
of process which is a H u n t  process, that  is we assume hypothesis (A) of H u n t  [11]. 
The fact that  such a version exists can be checked by showing that our transition 
functions satisfy the conditions of paragraph 1.7 of GETOO~ [10]. This paper also 
contains an admirable summary of the meaning of the statement that  X (t) is a 
Hv=T process. We state only the more important properties which are needed in 
the sequel. 

P1. The function X (t) is continuous on the right and has left hand limits 
everywhere. 

P2. The strong Markov property is satisfied. This loosely means that, if T (co) 
is a stopping time, the behavior of the process for t ~ T(o9) given X(T(co))is 
independent of the path up to T(co). 

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 5 18 
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Pa. The process is quasi-left continuous. This means tha t  if {Tn} is an in- 
creasing sequence of  stopping times with limit T, then X(Tn)---> X ( T )  almost  
surely on {T ~ -~ oo}. 

For  any  analytic set A c R n, 

TA(~) = inf {t > 0 : / ( t ,  o9) eA} 

is called the hit t ing time (or en t ry  time) of  A : it is unders tood tha t  ff the set in 
braces is emp ty  then TA (o9) ---- c~. We use the fact  t ha t  TA (o9) is a stopping time 
for any  such A. 

We need a notat ion for the par t  of the sample path  corresponding to the t ime 
interval [a, b]. Thus 

L(a, b; o9) = L~, n(a, b; o9) 
{ x ~ R  n : X a , n ( t , o , ) ) : x f o r s o m e t ,  a~_ t~_b} .  

Similarly we denote the set of It-multiple points by  

Lk(a, b;w) = (x~  Rn:X( t ,  o9) ---- x for k different t, a _~ t ----- b} . 

For tuna te ly  the probabil i ty of  certain events which are impor tan t  in our argu- 
ment  has been est imated by  previous authors - -  or can be easily deduced from 
known estimates. For  convenience we now list a number  of such results as lemmas. 
I n  the present section we give results only for the transient  case 0 ~ ~ ~ 2, 
a ~ n. Est imates  will not  be needed for =r ~ 1 = n, and they  take a comp]etely 
different form for r162 = 1 -~ n and ~ ~ 2 ~ n. Where possible, we use probabilistic 
arguments  ra ther  than  analyt ic  ones. Constants whose value is no t  impor tan t  
occur frequently.  We will use cl, c~ . . . .  , c~2 to denote positive real numbers  whose 
value m a y  depend on g and n but  is independent  of  all other parameters.  

I f  a t ransient  process starts inside a sphere in R n it is not  certain to re turn  to 
it for values of t ~ To ; similarly if it starts outside the sphere it need never hit it. 
The first two lemmas give estimates for these probabilities. 

Lemma 1. I[ Ix I > r > O, then 

C I ~ x ~  ] g Px(IX( t ) l  g r  /or some t > O } = c l ( ~ r r }  . 

This is lemma 2 of  [16]. 

Lemma 2. I / T  TM ~ r > 0 and [ x[ g r, put 

Q(x,r, T) : p~(]x( t )  I g r  /or some t ~  T}. 

Then 

f r ~n-~ 
Q (x, r, T) >_-- c2 ~ 1 ~ - )  - 

Proo/. I t  is clear tha t  

Q(x,r, T) ~ .[ Py{[X (t)l ~ r for some t > 0 } p ( y - -  x, T)dy 
]y]>r 

where p (y, T) is the transit ion density of the process. Using the lower estimate in 
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lemma 1 and making a standard change of scale gives, on using r T -1/~ ~= 1, 

Q (x, r, T) ~ cl r n-~ ~ (] y[ -F r)-n+~p (y _ x, T )dy  
lyl>r 

>~_ e1(~l r)n-~ ~ y ]-n+~p (y __ x, T) dy 
]y >r 

f r ~ n - ~  
= c 1 1 2 2 5 N ]  S J Y ] - n + ~ p ( y - - x T - 1 / % I ) d y  

]Y ] > rT-1/ct 

> c 1 [  r ~ n - ~ f l y i _ n + ~ p ( y _ _ x T _ l / ~ , l ) d y  
= \2T1/~] lu~>ll J 

since p (y, 1) is bounded below by a positive constant in the region 0 ~< ]g] =< 3 
and this lower bound will be a lower bound for p(y  --  xT-1/c~,l) in 1 < [Yl < 2, 
since ]x] T-1/c~ =< 1. 

Lemma 3, For T > O, r > 0 and all x 

Q(x, r, T) • c3 ~ / ~  ] �9 

This is proved in [16] for x ~ 0. Only obvious modifications arc needed to give 
the result for general x. 

Lemma 4. I / I x ]  > r > 0 and TI/~ > ca]x], then 

Px{lX(t)] <=r /or some t c [O ,T]}  > c s \ ~ F r  ] . 

Proo/. Clearly the required probabili ty is at least 
P z ( ] i ( t ) ]  ~= r for some t > 0} - -  Px{JX( t )  l ~ r for some t =~ T} 

> et ~ :  - -  e~ TI?; > ~ - e ~ / ~ + r j  , provided T~/~ > c41 x 1. 

This lemma shows that,  provided Ix[ is not large compared to T 1/~, the proba- 
bility of entering a sphere in [-0, T] is of the same order as the probabili ty of enter- 
ing at  all. We need to show also that  the probabili ty of returning to a sphere in 
[T1, T2] is of the same order as the probabili ty of returning in IT1, ~ ] .  This is 

Lemma 5. For r > O, T ~/~ ~ r ~ Ix I ~= O, provided T2 > c6T1, 

Px  { IX  (t)[ ~ r /or  some t ~ [T1, T2]} > c7 \T~i~] �9 

This can be deduced from our  lemmas 2 and 3 in the same way tha t  lemma 5 is 
deduced ~rom lemmas 3 and 4 in [16]. 

Finally we need a lemma which strengthens the result that  the process X (t) is 
continuous in probability. I t  follows from P {  [x(1) ] > 1} > 0 and the fact tha t  we 
have independent increments by a standard argument (see, for example, S T ~  [15]). 

Lemma 6. For )~ > 8, 

P{sup lx~ ,n (~)  ] ~ ~t TM} ~ e -~c~ . 
O~:~=t 

18" 
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3. Riesz Capacity and Hausdorff Dimension 

Since we are considering a HU~T process, the probabil i ty 

q ~ ,n (X ,  A )  = P x { X ~ , n ( t )  e A  for some t > 0} 

tha t  a symmetr ic  stable process start ing at  x will hit  the analytic set A c R n is 
defined. This function is the 'na tura l '  potential  of A associated with the process. 
Many authors have observed tha t  the general theory  of  HuNT [11] implies t ha t  
when A is a compact  set K of  positive (n - -  ~) l~I~sz capacity,  then ~ ,  n (x, K) is 
the value of  the equilibrium RIESZ potential  of  order (n - -  ~) of K at x: t ha t  is 

~ ,  n (x, K)  = ,~ ( g )  ] [ x  - -  y [ -n+~#K (dy) 
K 

where /~g is the equilibrium distribution on K and ,~ (K) is a constant.  Further ,  
when the RI~sz  capaci ty  of K is zero, ~b~, n (x, K) is zero for all x. There are 
several different definitions of/~-capacity, but  this will not  worry  us as the numeri- 
cal value will p lay  no role and the class of compact  sets of zero/~-eapaeity is the 
same for all of  them (see for example, [18]). The definition of/~-capacity can be 
extended (see, B~]~LOT [4]) to the class of capaeitable sets which includes the ana- 
lytic subsets of R n. Since ~b~, n (x, A) was also defined for analytic A we can state 
(C~ (A) denotes some definition of  the/3-capaci ty  of A):  

Lemma 7. For  n > :r x ~ R n and any  analyt ic  A c R n, 

qS~ ,n (x ,A )  = P x { X ~ , n ( t ) c A  /or some t > 0} 

is  posit ive or zero according as C n - ~ ( A  ) is  posit ive or zero. 
There is also a version of this result for the special cases of the Cauchy process 

(~ = 1 = n) and Brownian motion is the plane (~ = 2 = n) which involves the 
use of logarithmic potential  and capacity. This will not  be required explicitly. 

I t  is clear f rom any  of  the definitions of  C~ (A) tha t  if ~ < 8, 

C ~ ( A ) = O ~ C ~ ( A ) = O  and C ~ ( A ) > O ~ C ~ ( A ) > O .  

We can therefore define the capaci ty  dimension of A by  

C --  d im(A)  = inf{/~:C~(A) = 0}.  

I f  A c R n, C~ (A) = 0 for fl > n so tha t  C - - d i m  (A) <= n. Now the Hausdorff  dimen- 
sion of  any  subset of  R n can be defined in terms of the t Iausdorff  measures A ~ 
with respect to the measure function h~. Since it is known (see [18] for references) 
tha t  

C~(A)  > 0 ~ A ~ ( A )  = ~- ~ ,  
C~(A)  - -  0 ~ A r  = O, f l > e ;  

it follows tha t  the Hausdorff  dimension 

dim (A) = inf{fl : Ar  (A) = 0} 

is the same as the capaci ty  dimension for any  analytic set A. I t  is wor th  remarking 
that ,  though this correspondence is exact  for these simple power functions h ~ it 
does not  apply to finer distinctions like h~( (log I/h))z - -  see [18]. 

We now state as a theorem a technique which utilizes the symmetr ic  stable 
processes of  varying order to determine the t tausdorff  dimension of  an analytic set. 
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Theorem 4. Suppose A is an analytic subset o/the line or the plane. Then,/or any 
point x, 

i / A  c R i, dim (A) = 1 - -  inf  {~: q~, l  (x, A) > 0} ; 
i] A c R 2, dim (A) = 2 - -  inf {~ : ~b~,2 (x, A) > 0}. 

Pro@ We write out  the a rgument  only for A c R 1. Suppose first tha t  g is such 
tha t  qS~,l(X, A) > 0. Then, by  lemma 7, CI-~(A) > 0 which implies t ha t  
A 1-~ (A) = ~- 0o. This in tu rn  gives dim (A) > 1 - -  ~, so tha t  

dim (A) => 1 - -  inf {~.:~b~n(x, A) > 0} . 

Conversely, if fi < dim (A) there is a compact  K c A such tha t  fl < dim (K) = C - -  
- - d i m ( K )  so tha t  C ~ ( K ) >  0. By  lemma 7 we now have q57, 1 ( x , A ) >  0 for 
y =  1 - - f l .  Hence 

inf {~: ~ , ~  (x, A) > 0} =< 1 - 

for every fl < dim (A), and this completes the proof. 

R e m a r k .  I t  is clear tha t  one can state a corresponding theorem for subsets of  
R n, n ~ 3 but  it is incomplete since the order ~ of  a stable process is restricted by  
0 < ~. ~ 2. The technique will therefore only work in RG n => 3 for analyzing sets 
whose dimension is known to be greater than  (n - -  2). 

Previous workers have used the result of  lemma 7 by  first obtaining informa- 
t ion about  the capaci ty  of  a set and making a deduct ion about  the hit t ing proba- 
bility. We will use it in the reverse direction in section 7 - -  making deductions 
about  the fl-capacity f rom information about  the hit t ing probabil i ty by  a process 
of  order (n - -  fi). 

4. Existence of Points of Multiplicity k 

I n  the present section we restrict our a t tent ion completely to the t ransient  
processes (n > e). I t  is clear t ha t  for e > 1 = n there is no problem since every 
point  is entered arbitrari ly often - -  in fact  any  given point  is a point  of  multipli- 
city c (see [2], where BLVMENT~AL and GETOOR actual ly  determine the Hausdorff  
dimension of  the set of  t ime instants at  which a fixed point  is visited). Of the 
remaining cases, ~ = 2 = n is Brownian motion in the plane which was settled in 
[7] and [9], and we will deal with the Cauehy process (~ = 1 = n) in section 6. 

The first step is to show tha t  there is a constant  c9 > 0 such that ,  for any  
> 0, there is a probabil i ty of  at  least e9 tha t  there are k time instants 0 ~ h < 

< t 2 < ' " < t k ~ e l 0  with t 3 - t i _ 1  ~ 1 ( 2 ' = 2  . . . .  ,/~) such tha t  X ( h ) ( 6 =  1, 
2, . . . ,  k) are all within some sphere of  radius ~. I n  fact  this will follow if we can 
show tha t  there is a fixed finite set, depending on ~, of  spheres of radius ~ for which 
the probabi l i ty  t ha t  at  least one of  them contains k entries by  the process in 
[0, c~0] - -  the successive entries all separated by  at least uni t  t ime - -  is no t  less 
than  e9. This is the essential content  of  lemma 9. I n  order to save writing we will 
state and prove lemmas 8 and 9 for processes in the plane (n ~ 2). I t  is clear t ha t  
dimensionali ty changes are all t ha t  is needed to cover the cases n ---- 1,3. Values of  
n ~ 4 are not  re levant  to the present section since we know tha t  even double 
points cannot  exist in this case. 

Now put  U = max  (e6, e4), elo = k U. This means that ,  if  I x l < 1 in lemma 4 
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and T ~ 1 then  the estimates of lemma 4 for en t ry  in [0, U] and lemma 5 for 
reent ry  in [1, U] are valid. This allows us to state 

Lemma 8. Suppose/c is a positive integer and ~ ~ 2(k --  1)//c. Let S~, S~ denote 
discs in R 2 with centers x~, x2 and radius Q, where ~ ~ ] x l  l ~ �89 ~ ~ Ix2] ~ �89 and 
0 < 10 ~ < min {Ix~[, Ix21, Ix~ - -  xsl} .  Let E i ( i  : 1, 2) be the event that there are 
lc time instants t~, t2 . . . . .  t~ with 0 ~ t~ ~ U, 1 ~ t i --  t~-~ ~ U (~ ~ 2, 3 . . . .  ,/c) 
such that 

Then 

X~, ~ (t~) e S~ (~ = 1, 2 . . . . .  ~) .  

P(E~) > ell~ k(2-~), i : 1, 2 ; 
P (El  (~ E~) ~ c1~ I xi  --  xe ]-~(2-~) ~2~(2-~). 

Pro@ A lower bound for the probabi l i ty  t ha t  X~, ~ (t) will hi t  S~ in [0, U] is 
given by  the lemma 4. I f  the process hits Si in [0, U], let t, be the first en t ry  time. 
Since this is a stopping time, we can res tar t  the process a t  X (tl) and apply the 
strong Markov proper ty .  The conditional probabil i ty  of a fur ther  reent ry  to S~ in 
[1, U] is then  given by  lemma 5. l%epea~ing this argument  (Is - -  1) t imes gives 
easily 

P(E~) ~ c11~ k (2-~) . 

I f  c o e E 1 v ~ E 2 ,  the process makes at  least 2/c entries t 1 ~  t 2 < . . . < t g ~  
into $1 ~) S~ in [0, c~0] such that ,  for a t  least/~ of the integers i (2 --~ i --~ 21@ t~ --  
- -  ti-~ ~ �89 Le t  IV~ be the number  of ways of choosing/c integers out  of 2/c and 
denote  by  

#~, the probabil i ty of entering at  least one of S~, Ss ; 

#2, the upper  bound of the probabil i ty  of entering S i start ing from a point  of 
S~ (i # i); and 

/ta, the upper  bound of returning to S / a f t e r  t ime �89 starting from a point  x e Si. 
I t  is clear t ha t  

P (El (~ W2) < N]~/tl ~ta k-1 (f12 ~-/t3)/c. 

Now 
#1 g 2c1(50)2-% by lemma 1; 
#2 ~ cl(2Q)2-alxl  - -  x21-2+% by  lemma 1; 
tta ~ ca ~2-a, by  lemma 3. 

Noticing t ha t  I xl - -  x~ 1 ~ 1, i t  now follows easily t ha t  

P (E1  ('~ E2) < c12e2k(2-a)]Xl - -  X2]-k(2-~). 

Lemma 91. Suppose k is a positive integer, and 2 > ~ > 2(k --  1)/k. For each 
positive integer r consider the discs, S~ centered at 

( 1  ft 1 ~ )  ~ i - : 1 , 2  . . . .  , r ; i = l , 2 ,  
x ~ =  -~ 1 0 r '  4 + ~  ~ = ( v l - - 1 ) r + v 2 ;  

o/radius  9r ~ ,~r-~/r (2-a). 

1 I am indebted to Dr. J. TAKEUCHI for pointing out a computational error in an earlier 
version of lemmas 8, 9, 
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Let E~(v---- 1, 2 . . . . .  r 2) be the event that there exist time instants t~, t2 . . . .  , tk 
with O <= tl <= U, 1 <= tj --  tj_l ~ U (j = 2 . . . .  , k) and that 

X~. 2 (tj) ~ S~, ] = 1 ,2  . . . . .  k .  

Then, provided ~. = c13, P r >= c9 > 0/or  all r. 

Proo/. I t  is clear that ,  a t  least for large r and small 4, all the conditions o 
lemma 8 are satisfied for each pair  of  discs S~, S~,. Using the estimates of lemma 8 
gives 

v= 1 1 ~ < ~ ' _ ~ r  2 

> r2e11   - -  
l=<v<v '~r2  

Now, for fixed v, the number  o fv '  such tha t  

2s-1 2 s 
- - < ] x v - - x v l < - - ( s = l , 2 ,  .. st) 
r ~ ~ r " 

- -  > 1 Hence is certainly less than  100.22s+2, 2 > r = " 

Sr 
~ [ x ,  x~[_k(2_~)~< r2 ~ 100.22s+ 2 (~ -1 ) -k (2 -~)  -- ~ C14 r4.  

l___u<v'~r 2 s = l  

I ~ c n e e  

P > r 2 C l l ~ r  k ( 2 - a )  - -  e12e15r4@2r k ( 2 - a )  > v9 > 0 

provided cll =- 2c1~e14~ ~. 
Proo[ o /Theorem I ( i ) .  We can now complete the proof  apar t  f rom the special 

cases ~ 1 : n  and ~ : 2 - - n .  Suppose now tha t  0 ~ 2 : n ,  and 
:r > 2 (k--1)/k. Let  Qs be the event  t ha t  there exists some disc D of  radius 1/s and 
k time instants  tl, t2 . . . .  , t~ with 0 ~ tz ~ U, 1 < t i --  tj-z <= U (j =-- 2 . . . . .  k) 
such tha t  all the X(t~), i = l, 2, . . . ,  k are in D. Clearly, if r is large enough to 

~2 

ensure the ~r ~ ] / S ,  the event  Qs ~ ~J  E~, using the notat ion o f l emma  9. Thus 
~ 1  

P ( Qs) ~ c~ > O. 

But  now Qs decreases as s increases so that ,  if Q - -  6 Qs, 

P (Q)  >= e9 > O. 

Suppose now tha t  ~o e Q, so tha t  o9 e Qs for all s. For  each s, pick a disk Ds and 
stopping times which satisfy 

O < t ~ < U ; l ~ t S ~ - - t  "~ < ] c U  (] ---- 2, ...,/~) 
~ ] - - 1 :  , �9 

(To ensure t~ are stopping times it is impor tan t  at  each stage to choose the first 
en t ry  or reent ry  t ime to Ds -- for this reason we have had to relax the upper  bound 
in the last inequality).  Since all the values of  t involved are in a bounded set we can 
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choose a subsequenee {si} such that ,  for j =- l, 2, . . . ,  k, 

s~__>~j as i - ->oo ,  tj 

and the convergence is monotone.  I f  t~ ~ decreases with i, then X (t~') -+ X (~j) as 
i -+ cr since the sample functions are r ight  continuous, and the same result holds if 
t~' is increasing in i, since each element is a stopping time, by  the quasi-left conti- 
nuity.  Hence ff ~ ~ Q, there exist values of  the time 0 < ~1 < ~2 < "'" < ~ < k U 
such tha t  ~j - -  ~j-1 > I for ] = 2, 3, . . . ,  k and 

X (~l) = X (~)  . . . . .  X ( ~ ) .  

Thus the probabil i ty of a k-multiple point  for the pa th  L (0, k U; (9) is at  least 
c9 > 0. By  changing the scale, the probabil i ty of  a Z-multiple point  for the pa th  
L(0 , I  ;(9) is also at  least c9 > 0. By  independence of distinct portions of the path,  
the probabil i ty of  no Z-multiple point  in L (0, n ; 09) is less than  (1 - -  c9) n which -+ 0 
as n ~-> oo. Hence there is probabil i ty 1 tha t  the pa th  L~, 2 (0, 1 ; w) has a Z-multiple 
point  provided 2 > ~ > 2 (k - -  1)/k. I t  is clear t ha t  all the details of  the proof  
work for n = 1 and 3 so tha t  

(i) There are double points of L~, 8 (0, 1 ; (9) with probabil i ty 1 if a > 23; 
(ii) There are Z-multiple points of L~, 1 (0, 1 ; (9) with probabi l i ty  1 if 

1 > ~ > ( k - -  1)/k. 
I t  m a y  be worth  remarking tha t  the techniques of  the present section will also 

yield par t  (i) of  the following theorem. 

Theorem 5. Suppose  col, (92 . . . . .  ~ok are k independent realizations o / a  symmetric  

stable process o/order  cr in  R n all starting [rom the same point  at t =- O. Then  these k 

realizations will have some point  in  common other than the starting point  

(i) with probability l ,  i / 2  > ~ > n (k - -  1)/k; 

(ii) wi th  probability O, i / ~  < n (k - -  1 ) /k .  

5. Hausdorff Measure of the Set of k-Multiple Points 

I n  [8] we showed tha t  the set of double points of the Brownian pa th  in R 3 had 
a-finite Al-measure.  We now use the estimates of section 2 to extend the methods 
of [8], obtaining the corresponding result for L~,~ (0, 1 ; w) - -  the set of Z-multiple 
points of  a stable process - -  in the case k~ > n ( k  - -  1) where we know tha t  k- 
multiple points exist. We again exclude the critical cases ~ = 1 = n and g = 2 = n 
where the upper  bound for the dimension in theorem 3 is in any  case trivial. There 
is also nothing interesting to say about  the case ~ > 1 = n, which is excluded 
from our s ta tement  of  theorem 3. 

I n  order to show tha t  the Hausdorff  measure of  Lk(0, 1;(9) of  dimension 
= k s  - -  n ( k  - -  1) is a-finite we must  divide the set into a countable number  of  

pieces each of finite/~-measure. For  such a subset Q we must  show that ,  for every 
> 0, we can cover Q by  a sequence {Si} of  spheres whose diameters {di} satisfy 

d~ < M < r I t  is sufficient, clearly, to  show tha t  

N L (r2j-1, r2j; (9) 
j= l  
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has finite f i-measure for each sequence 

0 ~ r l  ~ r2 ~ "'" ~ r2k ~ 1 

of 2k  d i s t inc t  ra t iona ls  in [0, 1]. This  will follow b y  the  same a rgumen t  as the  proof,  
which we now give, t h a t  

k 

Q~(~) = . ( ~ L ( 2 j  - -  1, 27.;~o) 
? = 1  

has f ini te/~-measure.  
F o r  a n y  posi t ive  in teger  m, p u t  e m =  m -1/~ and  consider  the  points  of  L (1, 2 ; (~) 

which are approached  wi th in  em b y  each of the  pieces L ( 2 7 . -  l ,  27.;~). I f  we 
cover  this  set of  near-sin re turns  then  we will cer ta in ly  have  covered Q~ (co). Spl i t  
up the  in te rva l  [1, 2] into m equal  pieces b y  the  t ime points  

ti = 1 ~ i /m (i = 0, 1 . . . . .  m) .  

The m a x i m u m  d isp lacement  of X (t) - -  X (h) in h =~ t ~ h+l will be of the  order  of 
m -1/~. To be precise, p u t  

Y~, m = m 1/~ sup [ X (t) - -  X (t d ] . 
h <=t<=h+l 

Then  Y~, m, i = 0, 1, . . . ,  m - -  1 are r a n d o m  var iables  and,  by  l emma 6, for ~ > 8, 

P { Y i ,  m > ~} < e-~% 

I t  is s impler  for compu ta t i ona l  purposes  to  use a discrete  r a n d o m  var iable  ~i, m 
defined as follows: 

i f  Yt, m ~ 8 ,  p u t ~ , m = 9 m - 1 / ~ ;  
i f 2 s <  Yi, m ~= 2 s+l , pu t  ~l,m = (l ~- 2s+l)m-1/~, s = 3 , 4 , . . . .  

I t  is clear t h a t  ff a n y  po in t  of  L(h ,  h+t;co) is to be a po in t  of near-sin re turn ,  
t hen  each of  the  pieces L ( 2 ]  - -  1, 2];~o) mus t  a t  leas t  en te r  the  sphere Si, m with  
center  X ( h )  and  radius  ~ ,  m. W e  now find an  uppe r  bound  for the  p r o b a b i l i t y  t h a t  
this  happens .  

S ta r t ing  f rom X (h+l) which is a po in t  of S~, m the  p robab i l i t y  of  a r e tu rn  to 
Si, m for 3 --~ t ~ 4 is, b y  l emma 3, less t h a n  c3 ~,~n ~, since the  r e l evan t  va lue  of T is 
a t  leas t  1. I f  a r e tu rn  occurs in [3, 4] choose the  first r e tu rn  ~, which is a s topping  
t ime  and  r epea t  the  a rgumen t  (/c - -  l)  t imes  using the  s t rong Markov  p rope r ty .  
Thus the  p r o b a b i l i t y  P/, m of a r e tu rn  to  S~, m in all of  the  in terva ls  [2)" - -  1, 2j] ,  
?. = 2, 3 . . . . .  ]c satisfies 

~9i, ~ ~ :  o ~ - - l , ~ ( k - - 1 ) ( n - c o )  

Now p u t  

d~,m((9) = 0, i f  in  a t  least  one of  [2?. - -  1, 2?.], ?. = 2 . . . . .  k no r e tu rn  occurs;  
di, m(rg) = 2 ~,m(~O) i f  all the  (k - -  ]) r e tu rns  occur;  

m - -  1 

~ (~) = ~ Ida, m (~)]~. 
i = 0  

Thus  the  r a n d o m  var iab le  lm (o9) is the  sum of the /~- th  powers of the  d iamete rs  of  
the  spheres S~, m which are re -en te red  (/c - -  l)  t imes  in the  in te rva ls  considered.  
The  nex t  s tep  is to ob ta in  an  uppe r  bound  for the  first  m o m e n t  of lm (o)). Using the  
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es t imates  just  obtained,  
co 

d ~ E{ ~,m} <= e15~P{oj,,~ = (2s + 1)m-1/~}[(2s + 1)m-1/~]a+(k-1)(n-~) 
s = 3  co  

c15 [(9 m-1/~) ~+(k- 1)(n-~) + ~ exp ( - -  Cs 2 s) ( ( 2 s +  l) m-1/~} ~+ (k-1)(n-~)] 
8 = 4  

e l 6  

~n 

on making  use of l emma 6. Final ly  we have  

E{/m(W)} ---- mE{[di, m(W)] ~ } < c16. 

We can now repeat  the a rgumen t  on page 861 of [8] to deduce that ,  with probabil-  
i ty  1, there is a finite real number  M (w) such tha t ,  for a subsequence ml ,  m2 . . . .  

Im, (~o) ~ M (~o) i ~- 1, 2 . . . . .  
Now, if we pu t  

m a x  @t,m ~-~ qm, 
o~i<~m-1 

it follows f rom l emma 6 tha t ,  for large m, 

P(qm > �89 ~} < m e x p ( - -  c s �89  

An applicat ion of the Borel Cantelli l emma  now shows tha t  only finitely m a n y  
of the  events  {qm ~ �89 5} occur so we m a y  assume all the  covening spheres have  
d iameter  less than  ~. I t  follows t h a t  

A s Qk (~o) g M (~o) < c~. 

Going back to the  a rgumen t  in the  second pa rag raph  of the present  section 
we have  established t h a t  L ~ (0, T;  o~) has a-finite fl-measure. 

Proo/o/  Theorem 1 (ii).  B y  the relat ionship between capaci ty  and measure  
discussed in section 3, i t  follows t h a t  for every  rat ional  r, the f l-capacity of  
Lk(0, r; o)) is zero. I t  follows that ,  i f  ~ ~ nIc/(]c ~- 1), 

P {X (t) ~ L k (0, r) for some t > r} = 0 

by  l emma 7. Hence,  if n (]~ - -  1)/]c < ~ ~ nk/ (k+ 1) the set L ~ (0, r; o~) n L (r,oo ; ~o) 
is void for each rat ional  r, and there cannot  be any  points  of  mult ipl ic i ty  (/c + 1). This 
establishes theorem 1 (ii) for the t rans ient  case ~ < n. When  ~ ~ n the theorem is 
V A C U O U S .  

A similar a rgument  establishes theorem 5 (fi). 

6. The Cauehy Process on the Line 

The invest igat ion of mult iple  points  for Brownian  pa ths  in the plane was 
carried out  by  DVO~ETZKY, ERDSs and KAKV~A~I, [7] and [9]. They  used certain 
es t imates  for the probabi l i ty  of  re tu rn  to a disc in given t ime intervals  of  a similar 
na ture  to our l emmas  1--5.  I f  we show t h a t  the same est imates  (apar t  f rom the 
values of the posit ive constants)  are valid for the Cauchy process in R 1, then  
it  is clear t h a t  the a rguments  of [7] and  [9] will establish theorem 1 (i) for ~ --~ 1 ---- n 

and theorem 2, except  for possible difficulties arising f rom discontinuities in the 
sample funct ion (since theorem 2 clearly implies theorem 1 (i) for the Cauchy 
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process it is sufficient to prove theorem 2). There are minor simplifications to the 
arguments of [7] and [9] since we are working in R 1 rather than R 2. 

I t  is possible by rather  a lot of hard work to estimate all the probabilities 
needed using the usual techniques of first passage time analysis and Laplace 
transforms. We prefer to use the amusing relationship between the Cauchy process 
in R 1 and Brownian motion in R 2 discovered by SPITZER [14]. This is given by  
the next lemma. 

Lemma ]0. I] X(t)  ~- iY ( t )  represents Brownian motion in R 2 and T(t) 
= inf[~: Y(~) ~ t] is the ]irst passage time across the line Y =-t, then X[T(t)]  

~ 0  

represents a Cauchy process in R 1. 
This means that  if  we observe the 1-dimensional Brownian process X (t) only 

at  those time instants t for which Y (t) = sup Y (~), we obtain the sample pa th  of 
0_<v_<t 

the Cauchy process. Now (L~vY [12], theorem 49.1) showed tha t  the set of time 
instants where u = sup T(~) is stochastically equivalent to the set of time 

0=<v~t 

instants T for which Y ( T ) =  0. Since X(t),  Y(t) are independent processes it 
follows tha t  we can calculate probabilities of entering a linear set E by the Cauchy 
process by considering the planar set 

E0 = ((x,y) : x ~ E ,  y = 0} 

and calculating the probabili ty tha t  a planar Brownian path  will enter E0. We 
will only require these probabilities for intervals E, but  even in this case the corre- 
sponding probabilities for E0 have not been computed. However, under reasonable 
conditions, the probabili ty tha t  a Brownian path  will hit {(x,y):a ~_ x ~ b, y = 0} 
in a given time interval is of the same order of magnitude as the probabili ty of 
hitting the disc with this segment as diameter - -  in fact one can prove tha t  these 
probabilities as asymptotically the same as the length b - -  a -~ 0. These mean 
tha t  we can get the estimates we require from known results for the Brownian 
process in R 2. We obtain the results in a sequence of lemmas. Throughout this 
section Z (t) will denote a planar Brownian process, and C (t) will denote a linear 
Cauchy process. 

L e m m a l l .  I / 2 >  [z] > �89 0 < @ < ~, then 

C17 Pz { inf C18 
logl/@ < ]Z(t)[ < @} < ]ogl?~ " 

0 ~ t ~ l  

This can be obtained from lemmas 3 and 5 of [7] by a suitable change of scale. 

Lemma12 .  For �89 ~= ~ ~= l, O < @ < c19, 
C20 C21 

logl/@ < P # {  inf ]C(t)] < @ } <  logl/ff" 
0~t=<l 

Pro@ Because of the relationship in lemma 10, the probability 

P~{ inf Ic(t)]<e} 
0 g t g l  

is precisely the probabili ty tha t  a planar Brownian process Z(t) starting from 0 
will enter the segment {~ - -  @ _< x --< ~ + @, y = 0} in unit time. This is clearly 
less than the probabili ty of entering the disc center (~, 0), radius @ which in turn 
is less than Cls/log 1/@ by  lemma 11. 
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I n  the other direction, the 
p l  (P2 - -  ps) where 

PI = P{Z( t )  hits disc center 

P2 = P{Z( t )  start ing from a 
a larger concentric disc of radius 

required probabil i ty is clearly greater than  

(~, 0) radius �89 p in 0 --< t --< �89 

point  in disc radius �89 p hits a fixed diameter of 
before exiting from larger disc}; 

P3 = P{Z( t )  start ing from a point  in disc radius �89 ~ remains in larger con- 
centrie disc of  radius e for 0 --< t _< �89 

Now p2 is bounded away  from zero for all s tart ing points in the smaller disc (for 
a rigorous proof  use the logarithmic potential  theory) and p~ ---> 0 as ~ --> 0 by  
lemma 7 so tha t  P3 < �89 inf P2. We can estimate Pl f rom lemma i 1 by a charge of  
scale. Combining these gives the required lower bound for 0 < ~ < c19. 

We also require an upper  bound for the ease < �89 

L e m m a  13. I1 0 < ~ < I~l < 1, then 

P~{ inf I C ( t ) [ = ~ } < c 2 2  l + l ~  
0_<t_<l log 1/Q 

This follows from lemma 4 of  [7] by  the a rgument  used in the proof  of  our 
lemma 12. 

L e m m a  14. I1 0 < ]~[ < ~o < e23, 

624 ~25 
logl/~o < p c {  inf [ C ( t ) ] } <  logl /o" 

1/e<=t<=l 

Pro@ This can also be deduced from the corresponding result for Brownian 
motion. However  the ease ~ = 0 is proved in lemma 1 of [17], and the methods 
used there immediately  give the result as stated. 

I t  is now clear that ,  by  using the estimates of lemmas 12, 13, 14 instead of  the 
corresponding ones for Brownian mot ion and the (slightly) simpler lattice of 
intervals in R 1 instead of  discs in R 2, the proofs of  DVO~EZTI<Y, ERDOS, KAKVTASI 
in [7] and [9] go through.  This means tha t  theorem 2 is established apar t  f rom 
the difficulty about  left hand  limit points. This we now get around as follows. I n  
the notat ion of [9] we obtain t ime points 

tn (j) , j = 1 . . . .  , 2  n 

for which C (tn (j) ), /" = l, . . . ,  2 n are all the same point  ~n and choose a convergent  
subsequence ~n~ --> ~ as p --> c~. P u t  

. 

q = l  p = q  

where the bar  denotes closure. Then A is a perfect set, and therefore of power c. 
I f  we leave out  of  A all the points isolated on the r ight (not more than  a countable 
set) we arc left with a set B still of power c. Now for any  t ~ B we can find a 
sequence q(m) increasing to infinity and integers ]m with 1 =< ]m <= 2 q(m) such 
tha t  tn(m)(q(m)) decreases to t as m--> co. I-Ienee C(t) = ~ since the paths  are 
r ight continuous. This completes the proof  of  theorem 2. 
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7. The Dimension of the Set of Multiple Points 

The results of section 5 already give us an upper  bound for the dimension of the 
set of/c-multiple points, 

dimLy,n(0, oo; ~o) G fl = /C~ --  n(/c --  1), 

when fi > 0 (corresponding to the case where L k is not  void, by  section 4). We now 
use theorem 4 with the methods of section 4 to show tha t  the dimensional number  
of L~, n ~= ft. This will complete the proof  of theorem 3. I t  is sufficient to show that,, 
for any  y > n - -  fl there are points common to an Xr, n (t) process ~nd the set 
L~, n (0, 1 ; ~o) of/c-multiple points of the an independent  X~, n (t) process. We deal 
first with the t ransient  case ~ < n G 2. (Our method completely breaks down for 

> ~,/c ~ 2, n = 3). We can use the estimates of lemmas 1 - -5  to establish, 
by  a proof  very  similar to t ha t  of  lemma 8 and 9. 

L e m m a 1 5 .  Suppose n ~- 2, 0 < o: < n, O < y < n and /cc~ q- y > n/c. For 
each positive integer r consider the discs S~ centered at 

[ 1  , ~1 1 v., ~ ~ t = - 1 , 2  . . . .  , r , i = l , 2 ;  

o/ radius 

~r =- ~r-I" where l~t = (k § l ) n _  k ~ _  ~, ~ = c 2 6 .  

Let E~ ( v =  1 ,2  . . . . .  r 2) be the event that there are time instants 0 <=tl <= V, 
1 < = t j - - t j _ l ~  V , j = 2 , 3  . . . .  , k a n d O  <=t~+l<= V s u c h t h a t  

X~ ,n ( t j )~S~  /or ~ = 1 , 2 , . . . , k  
and 

X~, ~ (t~+l) ~ S~. 
Then 

t.2 

P(UE~)  >= c27> 0. 

(In the above V is a fixed real number  chosen large enough to ensure tha t  the 
estimates are valid for both  processes,) 

The a rgument  which follows lemma 9 can now be easily modified to establish. 

Lemma 16. I] X~, n (t) and Xv,  n (t) are independent symmetric stable processes 
o/ orders ~. and y in R n where ~co: q- ~ > n/c, then with probability I there are time 
instants 

0 ~ t l < t 2  < ' * "  < t k ,  t k + l >  0 
such that 

Xv,  n ( t ~ + l ) = z = X ~ , n ( t i ) ,  i = 1 , 2  . . . . .  k. 

This lemma means tha t  Xv,  n (t) hits the set L~,~ (0, ~ ;  e)) at  a positive t ime 
with probabi l i ty  1. By  theorem 4 we deduce tha t  dimL~,~(0, oo; o9) > ~. This 
completes the proof  of theorem 3 in the t ransient  case. The cases ~ = 1 -~ n of 
theorem 3 (ii) and ~ = 2 = n of theorem 3 (i) will follow a fortiori ff we can 
establish theorem 3 (iii) and (iv). We write out the proof  for theorem 3 (iv), since 
the remaining ease follows by  a similar argument.  

We follow the sequence of arguments  in [9] to give us the proof of theorem 
3 (iv), giving the details only when there is an essential change in the argument .  
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The s ta tements  in [9] are labelled A, B . . . . .  We need to replace B by  the following 
l emma in which we compute  the probabi l i ty  t h a t  a t  least  one of r small intervals  is 
entered by  a stable process of  order y and is entered twice by each of k independent  
Cauchy processes. I t  is more difficult now to find the correct length 0r for the 
intervals so t h a t  we have  just enough independence to car ry  out  the computat ion.  

For  small values of  s > 0, 0 < 7 < 1 consider 

y = [(s)  ~ sl-Y(log l / s ) .  

This funct ion is monotone  increasing for small s, so it has an inverse s = ~f(y) 
defined for small posi t ive y. 

L e m m a  17. Suppose  w l ,  w2, . . . ,  o~k are k independent  Cauchy processes 
starting (at t -= O) at x l ,  x~ . . . .  , x~ respectively, and wo is an independent  symmetr ic  
stable process o/ order y(0  < 7 < 1) in  R 1 starting at xo where [x~[ < 1/100 
(i ~- O, 1 . . . .  , k). Let  

1 u 
~ v = ~ + ~ r ,  ~ : 1 , 2  . . . . .  r; 

Or =- C~s ~f r ; 

and denote by D~ the event that there ex i s t , / o r  ] = 1 . . . . .  k t ime instants  t,j , t] such that 

1 
0 < t i l l ,  T ~ t i - - t l ~ l ,  

IV(t], ~ j ) -  ~J <Or, IC(tj, ~ <Or, 

and a t ime ins tant  to such that 0 ~ to ~ U and 

l (to, o o) - [ < e , .  

Then  

P ( U  Dv) > c29 > O, 

/or all integers r ~ ro. 
Proof .  Since the processes arc all independent ,  l emmas  12, 14 and 4 give 

P (D~) > ca0 0r 1-r / ( log 1for) 2~ -~ c3o / (Or) ; 

~r 2(1- v)(log I ~ -- ~,,' ])4~ 

(Here we have  used the s t rong Markov  p rope r ty  and the same arguments  as were 
used in the proof  of  l emma  8.) Now 

P ( U D , )  ~ P ( D , )  - -  ~ P ( D ,  a D , , )  

r 

> C30 r /(0r) - -  2 r [/(0r)] 2 c a l ~  2= (l~ : $1 I~__V ~ - ~1 I) ~ 

> e3or/(Or ) - -  8c31r2[ f (~r ) ]2~  1 (~r_)l-~, (log ? ) 4 k  

> c3or/@) - ca2r2[/(Or)] ~ for r ~ rl  



Multiple Points for the Sample Paths of the Symmetric Stable Process 263 

since 
1/4 

. ~ l  4 .  \ . / 
0 

as r --~ ~ .  Choose cps to satisfy 

c~s ~-~ = ~ c~o/cs~ 

and note that ,  if ~)r= C28~0 (1- ) ,  then 
% [ 

1 
/(Or) ~ c 2 s l - " r  a s r - > c ~ .  

For  r > rp, we must  have 

r 2 1--y 
P ( U  Dr) > ~ Cps "c~0 - ~ C2s 2-2~' �9 c32 

> c29 > 0.  

This establishes the 1emma. 
The a rgument  of [9] can now be continued with the obvious changes leading 

to the following lemma, which corresponds to (E) in [9]. 

Lemma 18. Suppose coo is a symmetric stable process o/ order 7 (0 < y < 1) 
in R 1 and col, 0)2 . . . . .  co~ are independent Cauchy processes. For any e > O, there is 
probability 1 that there is a point ~ ~ Lv, l(O, s; coo) which is a double point o/ 
Li,  1 (0, e; cod/or ; each i = 1, 2 . . . . .  k. 

Finally, using the modifications suggested for the proof  of theorem 2 we obtain:  

Lemma 19. For 0 < y < l, there is probability 1 that an independent stable 
process o/order y will hit the set L~. 1 (0, 1 ; co) o/points  o/multiplici ty c o /a  Cauehy 
process. 

I f  we apply theorem 4, we see tha t  the set L~, 1 (0, 1 ; co) mus t  have dimension 1 
with probabil i ty 1. This completes the proof  of theorem 3. 

8. Further  Problems 

1. We remark  again tha t  we have been unable to compute  the dimension of  
the set of  double points L~, 3 (0, 1; co) of a symmetr ic  stable process of  order 
in R3: the value suggested by  our results is (2~ --  3) for e > 3/2. 

2. I t  is clear t ha t  the methods  we have used will solve other problems of  a 
k 

s i m i l a r  n a t u r e .  F o r  example, i n  R 2, i f 0  < ~/ ~< 2, i = l ,  2, . . . ,  k, E ~ i  > 2 ( k - -  1) 
i = l  

and co~ (i = 1, . . . ,  k) are independent  stable process of order e~ in R 2, there is 
probabil i ty 1 tha t  the set of  points common to L~.2 (0, 1; co) will be non-void 

k 
and have dimension ~ e ~  - -  2(k - -  1). 

i = l  
3. Our results suggest t ha t  one ought  to be able to say something about  the 

subset of  points of  a given fixed set E which are 'hit' by  a stable process. We state 
a conjecture which seems to us to be plausible. 

Conjecture. Suppose E is a Borel set in R n such tha t  d im[E  r S(0)] = fi for 
all 0 > 0, where S (0) is the sphere center 0, radius 0" Then, if ~ § fi > n, there is 
probabi l i ty  1 tha t  d i m [ E  ~ La, n(O, 1; co)] =: c,. § fi - -  n. 
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4. One can  also ask  ques t ions  of  a m o r e  de l i ca te  n a t u r e  a b o u t  t h e  H a u s d o r f f  

m e a s u r e  o f  t h e  sets  L~,~ (0, 1 ; o)) o f  k -mu l t i p l e  poin ts .  On  w o u l d  l ike to  f ind t h e  

co r rec t  m e a s u r e  f u n c t i o n  h(d) such  t h a t  t he  h - m e a s u r e  o f  L~, n is f in i te  a n d  

pos i t i ve  w i t h  p r o b a b i l i t y  1. Th is  is k n o w n  for  t h e  p a t h  set  L2, n(0, 1; ~o) o f  

B r o w n i a n  m o t i o n  (see [5] and  [19]), a n d  t h e  m e t h o d s  used  in [19] can  be app l i ed  to  

L~, n (0, 1 ; ~o) to  s h o w  t h a t ,  in  o rde r  to  m e a s u r e  t h e  p a t h  set,  

1 
(i) for  ~ < n, t h e  co r rec t  m e a s u r e  f u n c t i o n  is d~loglog ~ ,  

1 1 
(fi) for  ~. = 1 ~- n, t h e  co r rec t  m e a s u r e  f u n c t i o n  is d log d - l o g l o g l o g  ~- .  

I a m  u n a b l e  to  m a k e  a p laus ib le  o n j e c t u r e  a b o u t  t h e  cor rec t  m e a s u r e  f u n c t i o n  to  

m e a s u r e  L~,~t (0, 1 ; ~o) w h e n  k > 2. 
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