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Summary. A multiplicative stochastic measure diffusion process is the con- 
tinuous analogue of an infinite particle branching diffusion process. In this 
paper the limiting behavior of the critical measure diffusion process is 
investigated. Conditions are found under which a non-trivial steady state 
random measure exists and in this case a spatial central limit theorem is 
established. 

1. Introduction 

Multiplicative stochastic measure diffusion processes in R e arise as the small 
particle limits of branching diffusion processes. This fact together with the basic 
construction of a stochastic measure diffusion process are obtained in [3]. The 
main objective of this paper is the description of the limiting behavior of 
measure diffusions. Although the methods introduced can be extended to the 
multitype case, we restrict our attention to the single type case. 

One of the fundamental properties of the Galton-Watson branching process 
is that the critical process goes to extinction with probability one (c.f. Athreya- 
Ney [1; Chapter 1, Theorem 5.2]). On the other hand the effect of mixing a 
number of such populations is to counteract this tendency to extinction. In fact 
one of the principal results of this paper is that it is possible to have a mixing 
mechanism for an infinite collection of critical Galton-Watson processes so that 
a non-zero steady state exists. In the language of nonequilibrium thermody- 
namics, the mixing is a dissipative process whereas the multiplicative process is 
one which amplifies fluctuations. 

Let /d (R d) denote the family of Borel measures on R d. When ~ ( R  d) is 
furnished with the topology of vague convergence, it becomes a Polish space. 
Let M(dg(Rd)) denote the o--field of Borel subsets of d/(Rd). A r a n d o m  m e a s u r e  

on R d is an /d(Rd)-valued random variable, that is, one whose distribution is 
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given by a probability measure on (Jg(Ra), N(J/(Re))). Let CK(R a) denote the. 
class of continuous functions on R a with compact support. For veJ/l(Ra), ' 
~osCK(Re), let (v ,q) ) -Sq)(x)v(dx) .  A probability measure, P, on (Jg(Ra), 
#)(J/l(Ra))) is uniquely determined by the characteristic functional L(.), where 

L( f )  = ~ exp( i~f(x)v(dx))P(dv)  for fECK(Ra). (1.1) 
(R d) 

The reader is referred to Jagers [8] for a review of random measures and 
characteristic functionals. 

Throughout the paper we denote by # the Lebesgue measure on R a. 
A stochastic measure process {Xt: t>=0} is an ~'(Re)-valued stochastic 

process. A Markov stochastic measure process with time homogeneous tran- 
sition probabilities is uniquely determined (in the sense of finite dimensional 
distributions) by the characteristic functional of the initial distribution and the 
characteristic functional of the transition function; 

Lt, v(f) = E(exp(i ~ f (x) Xt(dx)) lX o = v) (1.2) 

for ve,// l(R a) and f s Cz~(Ra). 
In the case of multiplicative stochastic measure processes which are dealt 

with in this paper the characteristic functional plays the central role and can be 
explicitly computed. 

2. The Multiplicative Stochastic Measure Diffusion Process 

In this section we review the construction of the multiplicative stochastic 
measure diffusion process and refer the reader to Dawson [3; Section 6] for 
details. However for the purposes of this paper we restrict our attention to the 
critical case. 

The critical continuous branching process is given by the solution of the It6 
stochastic differential equation 

dz(t) = (27 z(t)) ~ db(t); z(O) = z o (2.1) 

where 7>0  and {b(t): t>=0} is a Wiener process. 
Let M(O, t), O~R, t e R  +, denote the characteristic function 

M (O, t) - E~o (exp(i Oz(t))) (2.2) 

where E,o(. ) denotes the expectation with respect to the probability measure 
induced by the solution of Equation (2.1). By a standard computation it can be 
verified that M(., .) satisfies the first order partial differential equation 

~?M(O, t)/~t = i y 02 OM(O, t)/~O 

M(O, 0) = exp(i Ozo). (2.3) 

Because of the multiplicative nature of the process, log(M(0, t)) is of the form 
(refer to [1, 3] for details), 
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log(M(0, t)) = i z o ~(0, t) 

where O(O,t) is real-valued for 
equation 

0(0,  t + s) = ~ ( 0 ( 0 ,  t), s), 

each 0 and t. ~( . , . )  satisfies 
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(2.4) 

the functional 

0(0,0)=0. (2.5) 

It is also easy to verify that ~(.,.) satisfies the nonlinear evolution equation 

~ ( t ) / &  = i~f ~2(t); q)(0, 0)=0. (2.6) 

Solving explicitly either Equation (2.3) or Equation (2.6), we obtain 

m(o, t) = exp(i Ozo/(1 - i 7 Or)). (2.7) 

Using the moment generating properties of M(O, t) we obtain 

E~o(z(t))=z o for all t>0 ,  and (2.8) 

Var~o(Z(t))=2?,Zot for t>0 .  (2.9) 

We now describe the corresponding Brownian measure process. A Brownian 
measure process {X~:t~0} is a Markov process with state space dr a) with time 
homogeneous transition probabilities and which satisfies the following 
conditions: 

(Spatial independence) if Ac~B=gt and the pair (Xo(A), Xo(B)) are inde, 
pendent, then the pair (X~(A), X~(B)) are independent for all t >0. [X,(A) 
denotes the random measure of the set A at time t] (2.10) 

(Spatial homogeneity) if Xo(A + x)= Xo(A), then X~(A +x)=Xt(A ) in law for 
all t>0 ,  (2.11) 

(Creation-free) if Xo(A ) = 0, then X~(A)= 0 for all t > 0. (2.I2) 

The process is said to be muttiplicative if for all vl, V2~J/~(Rd), Pvl+v2=Pvl, Pv2 
where �9 denotes convolution. In other words the distribution of the process with 
initial condition v 1 +v 2 is equal to the distribution of the sum of independent 
versions of the process with initial conditions v 1 and v2, respectively. 

Consider the family of mappings Tt: CK(R a)-* C~(R a) defined by 

(Tdp)(x) = O(q) (x), 0 for t>0 .  (2.13) 

Then {T~: t >  0} is a semigroup of nonlinear operators on CK(R a) with generator 

(Fcp) (x) = i 7 (P 2 (x). (2. t 4) 

It can be verified (c.f. [3]) that the Jg(Ra)-valued Markov process in which the 
characteristic functional of the probability transition function is given by 
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L,,xo(~O ) =-- exp(i ~ T t ~0(y) Xo(dy)) (2.15) 

for Xo~JC(R a) and ~o~CK(R a) is a multiplicative Brownian measure process. 

Proposition 2.2 Let {Xt: t>0} denote the Markov process defined by (2.15). I f  
Xo~J/I(R a) is non-atomic, then for each t>O, Xt is a completely random-measure 
with Kingman representation (c.f. [-8]) 

log(Lt, xo(~0)) = ~ ~ (exp(i ~0(y) x) - 1) vt(dx, dy) (2.16) 
0 +  

where vt is the canonical measure on R |  a and is given by 

vt(dx, dy) = (V t)- z exp( - x/? t) #(dx) Xo(dy), x > 0, (2.17) 
= 0  , x < 0 .  

Proof. Substituting (2.17) into (2.16) and integrating we obtain 

log(Lt, xo(q~)) = ~ (i r (y)/[-1 - i ? (p(y) t]) Xo(dy ). 

The result then follows by the uniqueness property of the Kingman 
representation. 

We complete the construction of a measure diffusion process by adding 
spatial diffusion to the Brownian measure process. Let {S,: t>0} denote the 
semigroup of contraction operators on C~(R a) which are associated with a 
conservative Markov process which lives on R a. The Markov process associated 
with {St: t>0} will serve as the "spatial diffusion process" or "spatial motion 
process". We denote the infinitesimal generator of {S~: t >= 0} by G. It was shown 
in [3: Section 6] using a nonlinear version of Trotter's product formula that 

U , -  lim (%nS,/,)", t>O, (2.18) 

defines a semigroup of nonlinear operators on CK(R a) with infinitesimal genera- 
tor (F+G). It was also shown that (U,: t>O} satisfies 

t[Ut q0ht < I1~01] (2.19) 

where t].11 denotes the supremum norm. A similar argument implies that 

IIU, ~olla < I1~0111 (2.20) 

where I1.[11 denotes the L 1 norm. 
Let ~tr a) denote the family of measures 

Jgt (Ra) = { 2 ~ ~ (Ra): 0 < lim (4 (Ak)/# (Ak)) < oo } 
k ~ a o  

where A k denotes the cube centered at the origin in R a of side k. 
Let P~ denote the family of probability measures on M/(R a) which are 

invariant under the transformations induced by translations in R a. Henceforth 
we also assume that the spatial motion process is spatially homogeneous, that is, 

G ~x ~o(.) = ~ G ~0(.) 
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where 

�9 x ~o(.)-~o(. +x). 

In this case the semigroup {Ut: t > O} then defines a Markov process which lives 
on ~{~(Ra). The characteristic functional of the probability transition function is 
given by 

L,, Xo ((?) = exp(i S U, (p (x) X o (dx)) (2.21) 

for Xo~Jgi(Ra), cp~ CK(Ra). 
Note that (2.21) is for each t > 0  the characteristic functional of an infinitely 

divisible random measure. The Markov process defined by (2.21) is known as the 
critical multiplicative measure diffusion process. 

Since {Ut: t > 0} is strongly continuous, the transition kernel is stochastically 
continuous and the process is characterized by a semigroup of contraction 
operators {Wt: t_>0} acting on C~(JC4(Ra)), the space of bounded continuous 
functions on J/~(Ra). Let {W~*: t >  0} denote the adjoint semigroup of operators 
acting on Pr. 

PeP~ is said to be a steady state random measure for the measure diffusion 
process if 

W f f P = P  for all t > 0 .  (2.22) 

It is clear that the trivial random measure 6o is a steady state random measure 
for the Markov process defined by (2.21). In the following sections we investigate 
the possibility of the existence and properties of additional steady state random 
measures. 

In the remainder of this paper we restrict our attention to the case in 
which the motion process is either a Brownian motion or a symmetric stable 
process in R d. In other words we assume that 

G=A ~/2, 0<c<<2 (2.23) 

where A ~/2 is a shorthand for - ( - z ] )  ~/2, and where A is the Laplacian operator 
in R ~. In this case the distribution of a particle which starts at the origin and 
travels according to this motion process is given at time t by an infinitely 
divisible law with characteristic function 

M(O) = e x p ( -  t 0(0)) 

for O~R d and with 

(2.24) 

O(O)=rOV, 0<~<2 ,  

or it is normally distributed with distribution N(0,2t) for the case e=2 .  
It is known that the symmetric stable process of index ~ in R d is transient if 

and only if d > a  and that the corresponding potential operator is the Riesz 
potential of order ~, that is, for f ~  CK(Ra), 
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U~f(x) -~ ~ ~ p~(t, y -  x ) f (y )  #(dy) dt 
0 

= ~ g~(y - x) f (y )  #(dy) (2.25) 

where 

g~(y - x) =- C((d - ~)/2) (2 ~ rc a/2 V(0~/2) )  - 1  IX - -  Yl-(a- =) 

and where F(.) denotes the Gamma function and p,(t,.) denotes the symmetric 
stable density function corresponding to the characteristic function given by 
(2.24). The reader is referred to [2] for details. 

Remark 2.1. The referee has brought to my attention the earlier work of 
M. Jirina [9] on finite measure-valued branching processes. In particular, he 
extended to this general setting the basic fact that the total mass of a critical 
finite measure-valued branching process converges to zero as t ~oo with probabi- 
lity one. 

3. The Recurrent Critical Case  

The main result of this section is Theorem 3.1 in which we show that the critical 
multiplicative measure diffusion process goes to extinction in the recurrent 
critical case. Before stating the theorem we state and prove two technical 
lemmas. 

The class of recurrent symmetric stable processes in R e consist of the 
following: 

d=2,  e=2 ,  that is, the two dimensional Brownian motion, (3.1.a) 

and 

d = l ,  1___e_<2. (3.1.b) 

We require the following scaling properties of the densities of the symmetric 
stable processes in R 1. 

p~(t, x) = t 1/~ p~(1, x/ t  1/~) (3.2) 

p~(t,x)<=Ktx -(~+1) for x>tl /~( logt)  1/~ (3.3) 

for sufficiently large t (for proofs refer to Ibragimov and Linnik [7; 
Theorem 2.4.2]). 

Lemma 3.1. I f  p~(t, x) denotes the density at time t of a recurrent symmetric stable 
process and veJ//Zi(Ra), then 

p~( t ,x )v (dx)~O as t ~  ~ .  (3.4) 
I[xll ~ (tlogt) TM 

Proof. Case 1. (Assume (3.1.a).) It suffices to show that 
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(exp(-r2/t)/t)Y(dr)+O a s  t , o o  

(tlogt)�89 

where ~([-r, r +  a)) denotes the v-measure of the annulus with inner radius r and 
outer radius r + a. But for sufficiently large t, 

oo oo 
(exp(-- r2/t)/t) ~(dr) <= K ~ (t-~/r 3) g(dr) 

(tlogt)�89 (tlogt)�89 

since e x p ( - x  2) < K/x 3 for sufficiently large x. 
Then 

oo ao 
(t-~/r 3) ~(dr) <= ~ (t~/2 3k) ~([2 k, 2 k+ 2)) 

(t log t)�89 k = Kt  

where Kt=[log2((tlogt)~)] and [.] denotes 
v~d//i(R2), there exists L such that for k>L,  

9-([2 k, 2 k + 2)) ~ c2k 

where c is a positive constant. Therefore, 

"greatest integer in". Since 

oo 
(t~/r 3) 9-(dr) < K'/(log t) } 

(t log t) �89 

for sufficiently large t and the proof is complete. 
Case 2. (Assume 3.1.b). If ved'Ci(R2), then by (3.3), 

p~(t,x)v(dx)<=K ~ (t/x~+*)v(dx) 
(t log t) 1/~ (t log t) 1/= 

< K  ~ (t/2 k(=+l)) v([2 k, 2k+2)) 
k =  K t  

where K,=[log2(tlogt)l/~]. But for sufficiently large k, v([2 k,2k+a))<c2k, and 
therefore, 

(p~( t,x)) v(dx) < K'/log t 
(t log t) ~/= 

for sufficiently large t and the proof is complete. 

Lemma3.2 (a) Given v s , ( R 2 ) ,  there exists a constant c > 0  such that for every 
monotone decreasing function f (x )> 0 on [0, oo) such that f is constant on [0, 1], 

t t 

Sf(x)v(dx)<cj f (x) l~(dx) ,  t > l .  
0 0 

(b) Given v ~ ( R  2) there exists a constant c > 0  such that for any spherically 
symmetric function, f ( x ) ~  O, monotone decreasing as a function of the distance 
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from the origin in R z and such that f( .)  is constant on the unit circle, 

f(x)v(dx)<=c ~ f(x)l~(dx), t > l .  
HxlL _<t IqxLI ~t 

Proof. (a) Let  F(x)~- iv(dx  ). Since by assumption F(x)/x converges to a finite 
0 

constant  as x ~  0% 

lim F(x)/x < oo. 
x=>l 

Hence there exists a constant  c > 0 such that  F(x)< c x for x > 1. Then  for t > 1, 

t t 

~ f (x) v(dx)=  F ( t) f ( t ) -  ~ F (x) df  (x) 
0 0 

t 

< F (t) f ( t ) -  c ~ x df  (x) 
0 

t 

= F( t ) f ( t ) -  c t f ( t )  + c f (1)  + c~f(x) #(dx) 
1 

t 

<_ c ~f(x) ~(dx). 
0 

The proof  of (b) follows in essentially the same way. 

Theorem 3.1. (a) In the recurrent  critical case there is no nontrivial  steady state 
r andom measure. 

(b) For  every compact  set K c R  d, ~>0,  and v~J/gi(Ra), 

lim P~ (X,(K) > e) = 0. (3.5) 
t ~ a 3  

Proof. Let  (p = q~l +iq~2e C~(Rd), the class of cont inuous complexvalued functions 
with compact  support.  Then, 

T,q~(x)={q)l(x)+i[q)2(x)(l + 7~o2(x))+ Vt~o~(x)]}/(l + Ttq~2(x)) 2. (3.6) 

Hence  T~ maps i CK(R ~) into itself and if q0 ~ Cr(Rd), then 

u(t, x) - Im (T,(i ~o (x)) = q~(x)/(1 + y t ~o (x)). (3.7) 

Then  

u(t, x) = u(0, x)/(1 + 7 t u(0, x)); u(0, x) = qo (x)e CK(Ra), (3.8) 

and 

d/d t(u(t, x)) = - 7 u2 (t, x). (3.9) 

No te  that  by taking (p to be purely imaginary we are effectively replacing the 
characteristic functional by the Laplace transform. 
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In a similar way we define 

v(t, x) =-- Im(Ut (i q) (x)), 

v(O, x) = q)(x)e C r~(R~). 

Then 

•/c3t(v( t, x)) = 14 ~/2 v( t, x) - 7/32( t, X). 

To prove (3.5) it suffices to show that 

lira ~ v(t, x) v(dx) = O. 
t ~ o O  

Let 
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(3.1o) 

(3.11) 

(3.12) 

S, =- {x eRe: II x ll < ((K + t) log(K + t)) 1/'} (3.13) 

with K > 0. Let f(t, x) denote the solution of the equation 

8/&(f( t ,  x)) = A ~/2 ~(t, x); 9(0, x) = (p (x). (3.14) 

Note that 

~(t, x) >__ v(t, x). 

Without loss of generality we can assume that q0 is spherically symmetric and 
monotone decreasing as a function of the distance from the origin in R a. We also 
note that ~)(t, x) can be dominated by a multiple of p~(t + s, x) for some s > 0 since 
p~(t,x)>O and is monotone decreasing in IIxN for each t>0 .  Lemma 3.1 implies 
that 

~(t,x)v(dx)-~O as t ~ o o ,  (3.15) 
s~ 

and hence 

~v(t,x)v(dx)--rO as t ~ o o .  
sf 

Equation (3.11) implies that Sup v(t, x) is dominated by the solution of Equation 
X 

(3.9) and therefore 

Sup v( t, x) < K/ t  (3.16) 
x 

for sufficiently large t. Hence for any K ' <  0% 

v ( t , x ) v (dx )~O as t ~ o o .  (3.17) 
Ilxll ~K' 

We can apply Lemma 3.2 to conclude that it suffices to show that 

~v( t ,x )~(dx) -~o as t - - , ~ .  
St 

We now construct a comparison function w(t,x). 
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Let  

w ( t , x ) - ~ ( t , x )  if xeS[ 

- W(t) if x e S  t, (3.18) 

where W(t) is the solution of the differential equat ion 

d/dt(W(t)) = - 7 W2 (t) + ( f ' ( t ) / f ( t ))  W(t) + g(t) f ( t ) ,  (3.19) 

w(o) = S ~o(~) ~(d~)/~(So), 
So 

and 

f ( t )  =- (#(S,))- 1 = c((K + r)log(K + t)) -a/~ 

and 

g(t) = - d/dt( J v(t, x) #(dx)). 
Sf  

Note  that  

5 g(t) dt < oo. 
0 

Now let 

Z(t) =- W(t)-  i f ( t )--(W(t)II(St)  )-  l, 

z (0) = z o = ( w ( o )  ~ ( s  o))-  1. (3.20) 

F r o m  (3.19) and (3.20) we obtain 

d/dt(Z(t)) = 7 f ( t ) -  g(t) Z 2 (t). (3.21) 

Hence, 
t t 

Z (t) = Z o + ? ~f(t) d t -  ~ g(t) Z 2 (t) dr. (3.22) 
0 0 

oo 

Let  us assume that  ~f ( t )d t=oo .  If S u p Z ( t ) < ~ ,  then we easily conclude that  
0 t > O  

the right hand  side of (3.22) has infinite supremum thus yielding a contradict ion.  
Therefore  we conclude that  Z(t)  -* oo as t--* oo. 

Hence if d__< c~, 

co oo 

(/z(SJ)- 1 dt = c ~ ((K + t) l o g ( g  + t)) -a/~ dt = oo 
0 0 

thus implying by the above argument  that  W(t)i~ (S t )~  O. 
To complete  the proof  of (3.5) we must  verify that  

v(t, x) #(dx) < W(t) #(S~). (3.23) 
St 
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For t = 0, 

W(0) #(So) = [. v(O, x) #(dx). (3.24) 
So 

To prove (3.23) it suffices to show that if 

V(to, x) ~(dx) = W(to) ~(Sto), 
St 

then 

d/dt [~ v(t, x) #(dx)] It= to < d/dt(W(t) #(St))lt= to- (3.25) 
St 

Note that 

d/dt (W(t) # (St)) = - 7 W2 (t)/f(t) + g (t) 

whereas 

d/dt [ ~ v(t, x) #(dx)] 
St 

= [. A ~/2 v(t, x) #(dx) + c~/Oy( ~ v(t, x) #(dx))ly= s t -  1' [. v2 (4 x) H(dx) 
& Ilxll _-<y st 

< g( t ) -  y [. v2(t, x) #(dx) 
St 

for t > 0 since the stable semigroup is conservative. 
But by Schwarz's inequality, 

v2(t, x) #(dx) >=(~ v(t, x)/~(dx)) 2 (/~(St)) - I  
St St 

with equality only if v(t, x) is constant on S t. 
Hence 

d/dt[ ~v(t, x) #(dx)] it=to < g ( t ) -  WZ(to) #(Sto ) 
St 

=d/dt(W(t) #(St))lt=to 

and the proof of (b) is complete. 
Part (a) follows by noting that if Xo is a steady state spatially homogeneous 

random measure with finite intensity, then the ergodic theorem implies that 
X o ~ Z x ( R  d) with probability one. 

Remark3.1. An analogous result has been obtained by completely different 
methods by Liemant and Matthes [10] for infinitely divisible point processes 
which are generated by an iterated "cluster" or "shower" operation. 

4. The Transient Critical Case 

The principal result of this section is given by the following theorem. 

Theorem 3.1. Let (Xt: t > 0} denote a transient critical measure diffusion process. 
Then there is a parameter family {Po: 0 < p < o o }  of probability measures on 
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J/ZI(R a) which are both steady state random measures for the process and also 
invariant under spatial translation. The parameter p corresponds to the mean 
density of the random measure and Ppl+o2=Pm,Po2 where * denotes the con- 
volution operation. 

Proof. Recall that 

Lt, Xo ((P) = exp (i ~ U t qo (x) X o (dx)). (4.1) 

In this proof we set X o-- p #. 
The central step in the proof is to show that 

lim ~ U t (p(x) #(dx) = U ~  (p (4.2) 
t ~ o 0  

exists for all q~eCx(R d) and that U~cp=~0 for at least some q)eCK(Rd). Then 

Lx~ (~o) - exp(i p U~ q)) (4.3) 

is the characteristic functional of a steady state random measure, X~, for the 
measure diffusion process. To verify this note that for s > 0, 

Lw,x~(~o) = lira exp(i j U t +~ q)(x) p #(dx)) 
t ~ o O  

= exp(i p U .  q)) = Lx~(q~ ). (4.4) 

The translation invariance of the random field Xoo is a direct consequence of the 
translation invariance of G and of the Lebesgue measure in R d. 

We now proceed to prove (4.2). Since the semigroup {Ut: t>0} has in- 
finitesimal generator (F+  G), we note that for q)~CK(Rd), 

t 

Ut (p = S, qo + i 7 ~S~_ s((U~ q~) (U, (p)) ds. (4.5) 
0 

We introduce the family of finite binary rooted trees, ~,, with binary composition 
operation denoted by o. -c e denotes the tree consisting of just one vertex and 
~1oz2 denotes the rooted tree in which the root is connected to copies of zl and 
z 2 respectively. We denote the tree ZeO27e by %. The order, Iz[, of z~3-- is defined 
as the number of boundary vertices, that is, those vertices having at most one 
neighbour. 

We note that formally the solution of (4.5) can be written in the form 

U t = S t +  ~ (iT)l~l-aUt (4.6) 
Z E J - -  ze 

where the {Ut: ze~--} are defined inductively as follows: 

U ~  ~ - S ,  
t 

u~ .... (~)-  Ss,_~(u2(~). u?(~)) ds. 
0 

(4.7) 

Hence the {Ut} can be explicitly in terms of {S t: t > 0}. 
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Let 

U~ go - lira ~ U; go(x) #(dx). (4.8) 
t ~00  

We now explicitly compute U~ go in the case e = 2. 
Then 

U~ go= lim [Sff~ (2 n ( t -  s)) -d/2 e x p ( -  �89  x12/( t -  s)) 

"(I (2re s)- a/2 exp(- [u-y12/2s)  go (u) l~(du) S (2re s)- a/2 (4.9) 

- tv  -ylZ/2s) go(v)#(dr))#(dy) #(dx) ds]. e x p (  N 

Note that 

lu - y l  z + iv -y t  2 =�89 [u- v{ 2 + 2 [y-�89 + v)[ z. (4.10) 

Hence, 

U~; go= lira [Sif~ (2 re(t-s)) -d/z exp( - �89  t y -  xlZ/( t -  s)) 

"(If (4n s)- a/2 exp( - [ u -  v[Z/4s) (n s)- a/2 

. exp( - lY- �89  + v)12/s) go(u) go(v) #(du) #(dr)) #(dx) #(dy) ds] 
t 

= lim �89 (2re s) -e!2 e x p ( - l u -  v12/2s) go(u) go(v) #(du) #(dr) ds 
t~oo  0 

= } IS gz (u - v) go (u) go (v) # (du) # (dr). (4.11) 

The last integral is convergent since we have assumed that the motion process is 
transient. 

For c~@2, note that (c.f. Blumenthai and Getoor [2; 2.20]), 

ao 

p~(t, x)= f P2( u, x) ~7~/Z(du) (4.12) 
0 

where t/~/2 is the distribution at time t of a one-sided stable process with index 
~/2. 

In the case ~ =t= 2, we then have 

( ) U~; go = lim 5 i~ .[5 (2~r)-e/2 e x p ( - ] u -  vl2/2r)tl~/2 (drl2) go(u) go(v)#(du) #(dr) ds 
t-*o~ 0 

= 2- ~/2 Sj" g~(u- v) go(u) go(v) #(du) #(dr). (4.13) 

To verily that the formal solution (4.6) is actually a true solution we must 
investigate the convergence properties of the right hand side of (4.6). 

First, note that U~o can be extended from CK(R a) in such a way as to 
include indicator functions of compact subsets of R a. We now assume that go is 
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the indicator function of a convex compact subset of R d of diameter D. Let T 
denote the maximum expected sojourn time of a particle which satisfies the 
motion process with infinitesimal generator 2A in a sphere of radius D centered 
at the origin where the maximum is taken over the initial position of the 
particle. 

From (4.9) and the fact that if two particles belong to a convex set so does 
their center of gravity, it follows that 

t 

U~" q) (x) = ~ (2 rc(t - s))- ~/2 exp ( - �89 [y - x 12/(t - s)) 
o 

�9 (fI(4~ s) -~/~ e x p ( -  [u -v[2/4s)(re s) -el2 
(4.14) 

�9 exp( - [y - �89  + v)12/s) 9(U) ~o(v) #(du) #(dr)) ,u(dy) ds 

<= TE~ (q~ (Yt)) 

where { Yt: t >_ 0} is the Markov process describing the motion of the center of 
gravity of two particles each independently performing a Markov motion 
process in R d with infinitesimal generator A. Note that the center of gravity 
process moves "more slowly" than the original particle process and has in- 
finitesimal generator �89 Proceeding inductively, it then follows that in the case 
G~-A, 

]Ut q~(x)l < T I*1- 2 ]z I lUg" (p(x)] (4.15) 

and hence 

IU• q)(x)l < T I*1- z I~11U~ q~l. (4.16) 

The factor [z[ arises as a result of the "slowdown" in the motion of the center of 
gravity of ]z[ particles compared to the original particle motion. 

Then 

IUL(8 ~o)l =l 8"~ U2 ~01 
< TI*I- 2 81"11z[ IU~ q)l. (4.17) 

We now return to consider the convergence of the right hand side of (4.6). Note 
that 

Uo~ (0 9) = lim [0 ~ 9 (x) #(dx) + ~ 8 I*1 (i 7) 1.1-2 ~ U~ q~(x) #(dx)]. 

Therefore, for q~ > 0, 0 > 0, 

IU ~ (8 q~)l <= 8 ~ q)(x) #(dx) + ~ Ol~l Tl*l- l Tl*l- Z l'cl lU;g gl. (4.18) 

Note that ~ - -  te 

~l*l-181*lTN-21~l lUg; ~ol < ~ 181"g'nf(n) (4.19) 
r ~ - - -  re n =  2 

where K is a constant independent of 8, and C(n) denotes the number of binary 
rooted trees of order n. 
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However C(n) is also the coefficient of 0" in the Taylor series expansion of 
f(O) when f( . )  satisfies 

f(O)=aO+Tf2(O), f (0 )=0 ,  (4.20) 

that is, 

f(O) = (1 - (1 - 47 0 a)~)/27. 

Therefore the power series in 0 given by the right hand side of (4.18) has a non- 
zero radius of convergence. Hence U~(0 ~o) is well defined for sufficiently small 0 
and is given by the power series (4.18) in 0. Using property (4.12), the analogue 
of (4.14) can be proved in the case ~4=2 and then the remainder of the proof 
follows in essentially the same way. The only difference is that the factor ['c[ in 
(4.15), etc. must be replaced by the factor [~1,/2. Hence the result is valid for any 
transient symmetric stable case. 

Consider the induced random measure X~ with distribution Pp which 
corresponds to the characteristic functional (4.3). Since # is invariant under 
translation, U~ ~b~ q)=U~cp and hence X~ is a spatially homogeneous random 
measure. Using (4.18) and the usual moment generating properties of the 
characteristic functional, it can be shown that Pp has mean density p. The 
condition Ppl+p2=Pp~*Pp2 follows immediately from Equation (4.3) and the 
proof is complete. 

A random measure whose characteristic functional satisfies 

log L(O (p~) = ~ ak(K ) O k, 
k = l  

(p~(x)-q~(x/K), K > 0 ,  

with positive radius of convergence for 0 in the complex plane, and such that 

lim ak(K)/K a < oo, (4.21) 
K + c o  

for each k > 1 is said to be B-mixing. 

Corollary 4.1. (i) X o is not B-mixing. 
(ii) Xoo satisfies the strong law of large numbers, that is, for ~oECK(Rd), 

lira ((Xo~, ~o~)/g d) = S (p(x) p #(dx) almost surely [Po]" (4.22) 
K ~  oo 

(iii) The invariant distribution Pp is the unique invariant ergodic measure for 
the critical measure diffusion process with mean density p. 

Proof We first note that (c.f. proof of Theorem 5.1) that 

Var((Xoo, q)K)) ~ K ~+= as K ~ m .  (4.23) 

Hence (i) follows immediately. 
But then, 

Var((X~,~o~)/Ka)~O as K--, oo 
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and therefore we obtain the weak law of large numbers, that is, 

< Xoo, (fiK> /Ka--+ P S q)(x) #(dx) 
in probability as K ~ o o .  But since PpePi, the pointwise ergodic theorem implies 
that 

<x~, (fi,,>/(5 (fi(x) ~(dx). K") 

converges almost surely with respect to Po as K--+oe to a random variable, R. 
But this together with the weak law of large numbers implies that R - - p  almost 
surely [Po] and the proof of (ii) is complete. 

Now let X denote an invariant spatially homogeneous random measure 
with distribution P and which satisfies the strong law of large numbers with 
mean density p. Then for (fie CI((Rd), 

Lw ,x((fi ) = E(exp(i S Ut (fi(x) X(dx))). 

But u(t, x)= U t (fi(x) and hence from (4.5), 

~. u(t, x) X (dx) = [. S, (fi(x) X(dx) + i~ i S~_s u2(s, x) as X(dx) 
0 t 

= ~ (fi(x)(p~(t), X)(dx) + iy ~ uZ(s, x)(p~(t- s), X)(dx) ds. 
0 

In view of (3.17) and Lemma 3.2 it follows that 
t 

u2(s, x)(p~(t- s),X)(dx) ds--+O, a.s. [-P]. (4.24) 
St 

Let J denote the a-subfield of N(~(Rd))  of events which are P-almost surely 
invariant under the transformations induced by spatial translations. The results 
of Debes et al. [4; Satz 1.6] imply that 

(fi(x)(p=(t), X)(dx)--* E[5 (fi(x) X (dx) lJ] 
in La(p) as t--+oo and also 

St 

~tU2(S, x)(p~(t-- s)* X)(dx) ds-* E [! R2(S, X ) X ( d x ) d s [ J ]  
0 

in LI(P) as t~oo .  
But 

E[~(fi(x)X(dx)[Y]=p~(fi(x)#(dx) a.s. In]  

and 
�89 �89 

E[S =p S u (s.x) #(dx)d. 
t-O .a 0 

Hence 

S u, (fi(x) X(dx)-~pU~ (fi 

a . s .  I-P]. 

(4.25) 

in LI(P) as t-~oo and for an appropriate sequence {tk: k > l }  the convergence 
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is almost sure. Since X is an invariant random measure, this implies that 

Lx(cp) = Lx~ (~0) = exp(ip U~ (p). 

Hence X = X~ in law and the uniqueness assertion is proved. 
Finally, for ~o~ CK(R d) we have 

E(exp(i(X~,q)))[J)=exp(ipUoo~p) a.s. [Pp]. 

Hence the conditional distribution of Xoo given J is uniquely determined by p. 
Since distinct ergodic measures are mutually singular, this implies that there is 
no nontrivial ergodic decomposition of Po and hence the proof of ergodicity is 
complete. 

5. Renormalization Theory and the Spatial Central 
Limit Theorem 

In this section we consider the renormalization theory for the steady state 
random measure X~ whose existence was established in 4. The limit theorem is 
a special type of functional central limit theorem which has a different form 
from the usual central limit theorem for B-mixing random measures. 

We first introduce the renormalization transformation. Given K > 0  and 
cp ~ C~(R a) we define 

(pl~(X) =- cp(x/K). (5.1) 

Consider a new random measure X~ defined by 

( x ~ ,  ~o5 - ( x ~ ,  ~oi,) = ~ ~o(x/K) x ~(ax). (5.2) 

The effect of this transformation is to reduce the spatial dimensions by a factor 
of K, that is, the random measure assigned to the unit cube by X~ equals the 
random measure assigned to the cube of side K by the X , - r a n d o m  measure. 

The functional central limit theorem consists in finding constants aK, bK sucla 
that 

(X~  - aK)/b K (5.3) 

converges in law to a limiting random field as K ~  oe. 

Theorem 5.1. Let X~ denote the steady state random measure for a critical 
transient measure diffusion process in which the motion process is a Brownian 
motion or symmetric stable process. Then in the sense (5.3), X~ has as limiting 
random field a Gaussian random field with covariance kernel given by the 
potential kernel of the motion process. 

Proof  We first describe the proof in detail in the case c~ =2  and then indicate 
how it can be modified in the case e + 2. 
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We begin by investigating the effect of the renormal izat ion t ransformat ion 
on the coefficients in the power series expansion (4.18)�9 For  computa t ional  
convenience we do not  work directly with U ~ but  rather  consider the sequence 
of power series obta ined by solving Equat ion  (4.5) by iteration�9 Let  

u]~)(t, x) = 0(2 n t)- a/2 S exp( - �89 + x la/t) 'P (y/K) #(dy) 

= 0(27r t /K 2)- a/2 ~ exp( - �89 - x/K[Z/(t /K 2)) @ (y/K) K - a  #(dy). 

Hence 

u~r)(t, x) = u~ ( t /K 2, x /K) .  (5.4) 

Let  us define recursively 

t 

ut, r+ ) a(t, x) =- u]~C)(t, x) + i 7 ~ ~ (21r(t - s))- a/2 exp( - �89 - xlZ/(t - s)) 
0 

�9 [ u ~ ( s ,  y)]2 ~(dy) ds (5.5) 

and 

u,+ l(t, x) = u~,2 ,(t, x). 

Note  that  

u.(s, y) = ~ O k U.,g(S, y). (5�9 
k 

We now prove that  

u~)(s, y) = ~ O k U,,k(S/ K 2, y /K)  K Zk- 2. (5.7) 
k 

To prove (5.7) we use mathemat ical  induction. We have shown in (5.4) that  (5.7) 
is true for n = 1. 

But 

uar l(t, x) = Ux(t/K 2, x /K)  n+ 

t 

+ iv K 2 j.j. (2 zt(t - s)/K 2)- a/2 exp( - �89 - x/KI2/((t - s)/K 2)). 
0 

[utlC)(s ' y)]2 K - a  la(dy)K- 2 ds 
t 

= u l ( t / K  2, x / K )  + i ~ I ; 2 ~  ( 2 ~ ( t / K  2 - r))-d/2 
0 

�9 exp( - �89  - x / K ] 2 / ( t / K  2 - r ) )[~  K 2k- 2 O k U.,k(r ' U)]2 la(du) dr 
k 

= ~ O k u,+ , ,k(t /K 2, x / K ) K  2k- 2 
k 

and hence the proof  of (5.7) by induct ion is complete.  
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Let 

u~)(t, x) = lim u(.~)(t, x) 

_.= ~ O k Uoa,k(t/K 2, x /K)K2(k-  1). ( 5 . 8 )  
k = l  

Then 

U(ooK)(/7, X ) / A ( d x )  = S (k~l= U~o,k(t/K 2, x/K)K2,k-1) O k) ]A(dx) 

and hence 

lim S u~)( t, x) la(dx) = ~ [lim I u~, k(t, U)/~(du)] K 2(k- 1)+a O k. (5.9) 
t~oo k = l  t ~ m  

Now consider the case e =t= 2. Recall that 

p~(t, x) = ~ pdu, x) ~U(du). 
0 

Therefore 
oo 

u(~ K)' ~(t, x) -- S 0(2 7c u)- a/2 ~ exp( - �89 - x/Kl2/(u/K 2)) (p(y/K) ~ff/2 (du)K-a #(dy) 
0 

= ~ u~(u/K 2, x/K) tff/2(du) 
0 

= ~ U~l(~, ~IK)~/2o(d~) 
0 

- -  U 1 ( t / K  , x / K ) .  

Similarly we obtain, 

U~ K)' ~(S, y )= 2 ok Un, k(S/Ka, y /K)g  ~(k- 1) 
k 

and hence 

U~)'~(t, X) ~ O k Um,k(t/K ~, x /K)K ~(k- 1). 
k = l  

Hence as above, 

(5.10) 

lim ~ u~ ), ~(t, x) #(dx) 
t~oo 

= ~ [lim ~u~,k(t,u)p(du)JK ~(k- 1)-}-dok ~ 

k= l t~o~ 

Thus we have obtained the cumulant generating functional 

(5.11) 
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~vK(0 ) = log E(exp(i ( Xo~ - E(X~),  O ~OK) )) 

= ~ akK~(k-1)+dok. 
k=2 

For k=2 ,  ~ ( k - 1 ) + d = ~ + d .  
Hence 

t[tK(O/K(~+d)/2 ) = ~ ak K(d-~)(1-�89 O k. (5.12) 
k = 2  

Since d > ~ and k > 2, 

lim ~K(O/K (~+d)/2) = a 2 0 2 ,  (5.13) 
K ~  

the cumulant generating functional of a Gaussian random field. The covariance 
kernel is given by 

lim [(~ U~z(t, x) #(dx) - ~ q~(y) #(dy))/iT] 
t---~ oo  

= lim 2 -~" 2~z r) (-]u-vlZ/2r)~l~/2(dr 
t ~ o 0  

�9 qo(u) ~o(v) #(du) #(dr) = 2- ~" ~ g~(u - v) rp(u) ~o(v) #(du) u(dv). 

Hence the covariance kernel is proportional to the potential kernel for the 
spatial motion process. Note that the limiting random field and its eovariance 
kernel are invariant under the combined effect of the renormalization transfor- 
mation and an appropriate scale change. Hence the proof is complete. 

Remark 5.1. The type of limit theorem derived in this section is different from 
that which would be applicable in other situations such as in the case of the 
steady state random measure arising from a subcritical measure diffusion 
process with immigration or in the critical case at a finite time with uniform 
initial distribution. In these latter situations, the random measures are B-mixing 
and consequently the covariance kernel of the limiting Gaussian random field is 
given by the Dirae delta function�9 Limit theorems of the type considered in this 
section have recently received attention in the study of the renormalization 
theory of the Ising model at the critical temperature (c.f. Gallavotti and Martin- 
L/Sf [-6]). 

The Gaussian random fields whose covariance function is given by an 
inverse power law were first investigated by Whittle [-11] in an attempt to 
describe empirical agricultural data. They are also characterized as the Gaussian 
random fields which are invariant under the combined effect of a renormali- 
zation and appropriate scale transformation. Of course it is reasonable to expect 
that a limiting random field would be a "fixed point" of the renormalization 
transformation. Therefore it is reasonable to expect that Gaussian random fields 
whose covarianee kernels are given by a Riesz potential will serve as the limiting 
random fields for a wide class of homogeneous and isotropic random measures 
and fields. For  example, in the context of this paper this is likely to be the case if 
the spatial motion process with infinitesimal generator G is in the domain of 
attraction of a symmetric stable law in an appropriate sense. 
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