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Summary. For independent identically distributed bivariate random vectors 
(XI, I11), (X2, I12), ... and for large t the distribution of X1 + . . .  +XN(o is 
approximated by asymptotic expansions. Here N(t) is the counting process 
with lifetimes I11, Y2 . . . . .  Similar expansions are derived for multivariate X1. 
Furthermore, local asymptotic expansions are valid for the distribution of 
f(X1) +... +f(XN) when N is large and nonrandom, and Xi, i=  1, 2 . . . .  , is a 
discrete strongly mixing Markov chain. 

1. Introduction and Summary 

Let (X, Y), (X1, I11), (Xz, Yz),... be a sequence of independent identically dis- 
tributed bivariate random vectors, where Y is nonnegative. For  positive t define 

N(t)=max{k: Y1 + . . .  + Yk<t} 

and the randomly stopped sum 

S(t) = X~ +... + XN(O. 

The stochastic process S(t), t>0 ,  is called a compound process whenever X 
and Y are stochastically independent. If in addition the distribution of Y is 
exponential, then we have a compound Poisson process which is often used as 
a model for the aggregate claims process. In the following we shall drop the 
assumption that the waiting times - the Y's - and the claim amounts - the X's 

are stochastically independent, and that X is univariate. 
Consider a sequence (X, Y), (X1, I71), (X2, I12),... of independent identically 

distributed p+ l -va r i a t e  random vectors, X p-variate, Y>0,  and define N(t) 
and S(0 as above. The process S(t), t>O will be called compound process with 
dependence. For large t, the distribution of S(t) is approximately normal 
(Theorem 2.2) and can be approximated by asymptotic expansions. The latter 
will be done for p > 2  under the assumption that the covariance matrix of 
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(X, Y) is nonsingular. We assume that (X, Y) has a lattice distribution or 
satisfies a Cramar condition in one of its arguments. For p =  1 we shall also 
discuss the case of a singular covariance matrix of (X, Y). On the other hand, 
we consider Markov chains 41, 42,-.. on a countable state space I which 
satisfy a strong mixing condition. For  f :  I ~ Z we derive asymptotic expansions 
for 

(1.1) P{f(41) + ... +f(r = z}, zeZ.  

The main tool for our proof of higher order approximations for compound 
processes with dependence and for (1.1) are local approximations for the joint 
distribution of (X1 + ... + X N ,  Ya, . . . ,  YN), N large, where (Xi, Y~), i=  1, 2, ..., are 
iid random vectors. This idea was used by Bolthausen (1980, 1982) in his proof 
for the Berry-Esseen bound for functionals of Markov chains. Asymptotic 
expansions for (1.1) can also be obtained from GStze and Hipp (1983). For 
this, however, we have to assume that 41, 42 . . . .  satisfies a strong mixing 
condition with exponentially decreasing mixing coefficients. The Bolthausen 
method used here works also in the case of polynomially decreasing mixing 
coefficients. 

Laws of large numbers and the central limit theorem for univariate S(t)  can 
be found in Smith (1955, 1958). Asymptotic expansions for compound Poisson 
processes can be found in v. Chossy and Rappl (1983). 

It is not possible to compute reasonable absolute error bounds for our 
approximations. The fact that the error of approximation has the right order 
indicates that the approximations are good for moderate to large N or t. 

In Sect. 2 we state and prove the results for compound processes with 
dependence. The same is done in Sect. 3 for discrete Markov chains. Section 4 
contains auxiliar results. 

2. Results for Compound Processes with Dependence 

Throughout  this section we assume that 

E Y > O  

and that for some integer s_-> 2 

(2.1) E IIXllS+ EYS < oo. 

Write C for the covariance matrix of 

X (7) - Y E X ~  j = 1, . . . ,  p 

and U(t) for the p-vector with components 

Uj(t) = ( t iE Y ) -  1/2(S(t)(J)-  tEX(J ) /EY) ,  j : 1, ..., p. 

The following theorem seems to be well known. 
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(2.2) Theorem. Assume that C is nonsingular. Then for t tending to infinity, the 
distribution of U(t) converges weakly to the p-variate normal law with mean zero 
and covariance matrix C. 

Proof Let Op(1) denote a generic random variable which converges to zero in 
probability when t tends to infinity. For  j = 1, ..., p define 

war)  = ( t /E  Y ) -  ~/2 Z '  {X7 ~ - F~X(J~ - ( ~ - ~ Y) E X ( ~ / E  r }  

where the sum extends over 1 <_v <_ t/EY It suffices to show that for j =  1 . . . .  , p 

We have 

and hence 

u~(t) = wj(t) + o~(1). 

N(t) 
t-- 1/2 E Yv = t l /2  -r or(l)  

v = l  

N(t) 
t-i~2 Z (Y~-EY)=t -1 /2( t -N( t )EY)+~ 

v = t  

Lemma (4.1) yields that 

and 

Hence 

N(t) 
t 1/2 Y , ( Y ~ - e Y ) = t  " 2 2 ' ( Y ~ - E Y ) + o ~ ( 1  ) 

v = l  

N(t) 

t -  ~/2 ~2 (X7 ~- EX(J)) = t-  x/2 F/(X7 ~- EX(J)) + op(1). 
v = l  

Uj(t) = Wj(t)+ or(l). 

Higher order approximations for the distribution of U(t) will now be 
derived under the assumption that the covariance matrix Co of (X, Y) is 
nonsingular, that (2.1) holds for some s_>_3, and that one of the following 
conditions is satisfied. 

(2.3) The distribution of (X, Y) satisfies the Cram6r condition, i.e. for all 
positive e there exists a positive number  d such that 

]hul]l+lUzl>e implies IEexp( iuTX+iu2Y) l<l - -d .  

(2.4) (X, Y) has a lattice distribution with minimal lattice ;gP+~, the set of all 
p + l - v e c t o r s  with integral components, i.e. for fixed zeTA. p+I with P{(X, Y) 
= z } > 0 ,  Z p+I - as an additive group - is generated by the support of (X, Y) 
- -Z .  

(2.5) Y has a lattice distribution with minimal lattice •, and the joint distribu- 
tion of (X, Y) satisfies a uniform Cram6r condition in its first argument:  For  
all positive e there exists a positive number d such that 

IlUl]l =>e implies IEexp( iuTX+iuzY) l<l - -d .  
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(2.6) X has a lattice distribution with minimal lattice 7Z.p, and the joint 
distribution of (X, Y) satisfies a uniform Cram& condition in its second argu- 
ment: For all positive e there exists a positive number d such that 

JulJ>e implies ] E e x p ( i u r X + i u 2 Y ) l < l - d .  

Under conditions (2.4) and (2.5) the random function S(t) is constant for t in 
It, r +  1), r an integer. Under these conditions the distribution of S(t) will be 
approximated for integral t only. The approximations derived under conditions 
(2.3) and (2.6) are valid for all nonnegative t. 

(2.7) Theorem. Assume that (2.1) holds for some integral s>  3, and that the 
covariance matrix of  (X, Y) is nonsingular. Then there exist polynomials qr and 
q*, r = 0  . . . .  , s - 3 ,  yielding higher order approximations for the distribution of  
U (t) in all cases (2.3)-(2.6) in the following sense. 

(i) I f  (2.3) holds, then uniformly for convex measurable A ~ IR p 

S- -3  

(2.8) P { U (t)6A} = ~ pc(Z) ~ t - '/2 qr(z) dz + O(t- (s-  2)/2). 
A r = 0  

Here (Pc is the density of  the p-variate normal law with zero mean and eovariance 
matrix C. 

(ii) I f  condition (2.5) holds, then (2.8) is true for integral t when q, is replaced 
by q*, r=0 ,  ..., s - 3 .  

(iii) I f  (2.6) holds, then uniformly for A c 1 R  v 

(2.9) P { U (t)~ A } = Mt, s (A) + O (t-(s-  2)/2) 

where Mr, s is the f inite signed discrete measure defined by 

Mt, s {u} = t-  p/2 n,, s(U), 

u = ( ( t /EY) -  1/2(z j -  tEX())/EY)~= 1 ..... p), zl  . . . .  , zp~Z. 

s - - 3  

Here nt, ~(z)= (Pc(Z) ~ t - ' /2 qr(z). 
r = 0  

(iv) I f  condition (2.4) holds, then (2.9) is true for integral t and 

S- -3  

nt, s(Z)= (pc(Z) Z t-~/2 q*(z). 
r ~ O  

We have in particular for p = 1 

qo(z) =-- q*(z) - 1 

ql(z)=�89 Y)(z/~ 2 -z3/~ 4) 
+ �89 var (Y) E X  ( - 2 z/a 2 + z3/a4) - �89 E X  z/a 2 

- ~ E (X  - Y. EX)  3 (z 3/~r6 - 3 z/a 4) 

q* (z) = ql (z) + �89 E X  z/~r 2 
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where ~2 = var  ( X ) -  2EX coy (X, Y) + (EX) 2 var  (Y) is the asymptotic variance of 
U(t), and EY= 1 for simplicity. 

Proof. In this p roof  we shall use R and R' as generic functions in A and t 
satisfying 

sup {IN(A, t)l: A ~ IR  v measurable} = O(t -(s- 2)/2) 
and 

sup {IR'(A, t)l: A c l R  p measurable ,  convex} =O(t (~-2)/2), 

respectively. 

(a) Truncation. For  t > 0 define the vectors  iX, tX1, 'X2, ... by 

tX~=Xv l(llX~l / <=tl/21, v= 1, 2, ... 

and 
ty,, ty1 ' t y 2  ' . . .  by ty~ = Yv l{yv~tl/2}. 

Here  la is the indicator  function of the set d.  Let  S'(t) and N'(t) be defined as 
S(t) and N(t) with tXj and 'Yj instead of Xj and Yj, Then 

(2.10) P {S(t)eA} = P {S'(t)eA } + R. 

In order  to prove  (2.10) it suffices to show that  for j = 1, . . . ,  p 

p{ ,x(~)+  ~,vo)  -~X(J)+.. •  *+P{N(t)4=N'(t)}=R. . . .  T . ~ X N ( t ) ~ -  . ~ -  X X N ( t ) f  

L e m m a  (4.2) implies that  there exists a positive constant  c such that  

P{N( t )>ct}  =R. 

With Chebyshev 's  inequali ty we obtain  

P {tx(~ +. . .  +'x~},~,  x ?  + . . .  + x~},~} = R. 

Recall  that  N'(t)>=N(t), and inequali ty can hold if for some k<__N(t)+l we 
have 

5 4 = ' 5 .  
Hence  

P{N'(t) 4= N(t)} ~ ( c t +  1) e {Y4='Y} = R .  

This proves  (2.10). 

(b) Representation. For  m =  0, 1 . . . .  and measurab le  subsets A c ~  p define 

Q(m, t, A)=P{((tX~)+ ... + tX~))j= 1 ..... p)eA and 

t - 'Y~+ , <'Y, +.. .  + tY~<=t}. 

Our  start ing point  is the relat ion 

P{S'(0eA} = ~ Q(m, t, A). 
m = O  
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L e m m a  (4.2) implies that  

P{S'(t)~A} = Y~' Q(m, t, A ) + R  

where the dashed sum extends over  m with 

(m - tiE y)2 < var  (t g)(s - 2) t log t/(UY)2. 

(c)  Approximation�9 Write  Q for the dis tr ibut ion of ty. Then  

Q(m, t, A) = ~ P {((tx(J)-[- .. .  -1-tX~))j= 1 ..... v)eA and 

t - x  <tY1 +... +tYm<=t} Q(dx). 

(cl) 
for convex A c N  p and x > 0  

p{tX1 + ... + tXmeA and t - x  <tY1 + ... + tym<t} 

~- ~ m-(P+ 1>/2 gin(m- 1/2(U-- m E t X ) ,  m -  1/2(/)_ m g t y ) )  

�9 1a(u)  du l ( ,_x ,  tl(/)) dv 
+(1 +x) (1  + ( m -  1/2(t-mEtg))2)- 10(m-  (s- 1)/2) 

+ O(m-(S+ 1)/2). 

S u m m a t i o n  over  m renders an error  of order  O(t- (~- 2)/z)�9 We thus obtain  

P{S'(t)~A} = ~ '  Ql(m, t, A)+ R' 
where 

Qi (m, t, A) = E ~ m (v+ 1)/2 gin(m- 1/2(u- mEtX), m- 1/2(v- mEtY)) 

�9 1A(U) du l ( t_  tr, tj(/)) d/). 

(c2) Assume now that  condi t ion (2.5) holds and  that  t is an integer. We have 

Q(m, t, A)= F~* O_*(m, t, A) 

where for integral  1 

Q?(m, t, A)=P{tX1 + ... +tXm~A, tY 1 + .�9 +*Y~= l} P { Y > t - l }  

and the stared sum extends over  integral l with 

t - t l / 2  <l<t .  

L e m m a  (4.5) implies that  uni formly for l~Z  and convex A c ] R  v 

Q*(m, t, A) = {m -(p+ 1)/2 ~ gin(m- 1/2(u-mE*X), m- 1/2(1-mE'Y)) du 
A 

+(1 + [m- 1/2(t --l --mEty)]2) - 1 0 ( m - ~ -  1)/~)} p { y > t -1}. 

Summing  over  m and then over  1 we obta in  with 

Z P { Y > I } < ~  

Ch. Hipp 

Assume  that  condi t ion (2.3) holds�9 L e m m a  (4�9 implies that  uniformly 
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that 
P { S' (t)EA } = ~ '  Q2(m, t, A) + R' 

where 

Q2(m, t, A ) = ~ *  m -(v+1)/2 ~ g~(m- 1/2(u-mEtX), m- 1/2(1-mEtr))  du P { Y > t - l } .  
A 

(c3) Assume that condition (2.4) is satisfied�9 Then by Lemma (4�9 we have 
uniformly for u~2g p, v~Z 

Q*(m, t, {u}) = {m- (p+ 1)/2 gin(m- 1/2(U-- mEeX), m-  1/2@_ mE'Y)) 

+(1 + lira- i /2 (u-  mEtX)ll2v+2{-Im- 1/2@_ mEtY)lZV+2)- 1 

, O(m-(~+p- 1)/2)} p { y >  t - v } .  

The facts that for positive a, b 

(1 + aS)(1 + b') < 3(1 +a2S+b 2s) 
and 

y P{r>t}<~o 

imply that summation over u and then over v yields an error term of the right 
order, i.e. 

P{S'( t)eA} = E'  Qa(m, t, A ) + R '  
where 

03(m, t, A)= y, y*  m -(p+'/2 
u ~ A n Z P  

�9 (m- 1/2 (u - mEtX), m-  1/2 (v - mE ~ Y)) P { Y > t -- v}. 

(c4) Assume now that condition (2.6) holds. Then Lemma (4.6) implies that 
uniformly for u~Z v and m in the range of summation 

Q(m, t, {u}) = ~ i m-(;+ 1)/2 gin(m- 1/2(u- mEtX), m-  1/2@_ mgty))  dv Q(dx) 
t - - X  

+ O(t-(~+p+ 1)/2) 

+ O(t -(s+p- 1)/2)(1 -}-Jim- 1/2(u-mEtX)N p+ 1 ) -  1 

- ~ max {(1 + (m-  1/2(t--x--mEty))2)-  1, 

�9 (1 +(m-  1/2( t -mEty))2)-  i} Qo(dx) 

where Qo is the distribution of ~Y Since 

sup t -  1/2 '~, (1 + (m- i / 2 ( t - x - m E  t y))2)- i < oo 
x E ~  rtl 

we obtain that summation over u and m renders an error term of the right 
order, i.e. 

P {S'(t)~A} = ~ '  Q4(m, t, A)+ R 
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where 
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Then for j = 1, . . . ,  4 

(2.11) ~' Q~(m, t, A) = 2 '  Q)(m, t, A) + R. 

In order  to prove (2.11) we use the relation 

[Qj(m, t, A)-Q)(m,  t, A)[ 

c ~ m-  (s + p- 1)/2 sup {ID~2 - 1 gm (m- a~ 2 (u - mE ~X), 

m-1/z(~-rnEtY))] : t - t l / z  < ~ < t} du E Y  ~, 

where c is a positive constant  not  depending on m or t. F r o m  the special 
structure of  g,, we obtain that  there exists a positive e such that  for all u~N p, 

]D~ -1  gm(U, V)I < e  -1  exp ( - -e  ]lull 2 --ev2). 

Furthermore ,  if A'(t) is the range of  summat ion  for m, 

sup {~ m-  1/2 exp ( - e rn -  1 l] u _rnEtX[]2) du: m~A'(t), t=>0} < oo. 

For  the p roof  of  (2.11) it suffices to show that  

(2.12) ~ ' m - 1 / Z s u p { e x p ( - e m - l ( ~ - m E t y ) z ) : t - t x / 2 < ~ < t } < o o .  

For  j~71 define 

Aj= {m~A'(t): t + j t  1/2 < m E t y  < t +(j + 1) tl/2}. 

Then #Aj<=t 1/2, and for rneAj, ] j l>2,  and t - t l /E<=~<t 

[m- 1/2(~_ mEtY)] > (t /EY+ tgt)- 1/2 ta/2(ljl_ 2), 

where fit = sup {(m - tiE Y)/t: msA'  (t)}. 

t 

Q4(m,t,A)= Z ~ ~ m-(P+i>/2 
ueAnTlP t-- x 

�9 gin(m- ~/2(u- mE'X), m -  1/2(v- mEtY)) dv Qo(dx). 

(d)  Expansion. We shall now derive higher order  approximat ions  for 
Qj(m, t, A), j =  1 . . . .  ,4. Fo r  smooth  g: I R 2 ~ I R  and nonnegat ive  integer v write 

0 ~ 
D~zg(u, v)=Ov ~ g(u, v). Let Qj(m, t, A) be defined as Qj(m, t, A), where 

gin(m- 1/2(u-mE~X), m- 1 /2 (v -mUg))  

is replaced by its Taylor  expansion of  order  s - 2  at the point  

(m- 1 /2 (u-mUX) ,  m- 1/e(t-rnUY)).  
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N o w  l im6~=0,  U Y > O ,  and 

~ e x p ( - 6 ( I j l - 2 ) ) < o o  for all 6 > 0  
jsZ 

implies (2.12). 
In each of  the Q)(m, t, A) replace E t Y  and E t X  by E Y  and EX,  respectively, 

and denote  the new terms by Q~(rn, t, A). Since 

E , Y = E Y + O ( t - ( s  1)/2) 

and 
E t X = E X + O ( t - ( ~  1)/2) 

we obtain that for j = 1, ..., 4 

2 '  Q)(m, t, A ) = ~ '  Qy(m, t, A)+ R. 

The terms Q~(m, t, A) are linear combinat ions  of  expressions of  the following 
kind:  

(2.13) m -r/2 ~ m (v+l)/z(~ocoH)(m- 1 /2(u-mEX) ,  m-  1 / z ( t -mEY) )  du 
A 

for j = 1 and j = 3, and 

(2.14) m -r/2 ~ m-(P+l)/z(qocoH)(m-1/2(u-mEX),m 1 / z ( t -mEY) )  
u~AAZ p 

for j = 2 and j = 4. 
Here, (pc~ is the p + 1-variate normal  density with mean zero and covariance 

matrix Co, and H(u, v) is a polynomial .  The coefficients of  this linear com- 
binat ion and of H do not  depend on m or t. 

For m in the range of summat ion  we have 

m/t = 1 - (t-- m)/t = 1 + o( t -  1/2 log t). 
Denote  

a = t -  1/2(m - -  t) 

b = t  1 / 2 ( u - - r E X ) .  

Then 

(2.15) m-  1/2 = t -  1/2(1 + t -  1/2 a)-  1/2 

=t  -1/z ~ t-1/Z al +o(t-(s-2)/2). 
leo 

Without  increasing the order  of the error we may replace m 1/2 by the 
expansion in t -  1/2 and a given on the r.h.s, of (2.13) and (2.14), and use Taylor  
expansions. The resulting approximat ions  for (2.13) is a linear combina t ion  of  
terms of  the following kind: 

(2.16) t -  J/2 S (PCo( b - aEX,  - a) a k b I t-(P+ 1)/2 du 
A 
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and (2.14) is approximated by a linear combination of terms of the kind 

(2.17) t -~/2 ~ ( P c o ( b - a E X , - a ) a k b l t  -(p+1)/2 
uEAc~Ze 

p 

Here, for I~Z~_ and b~]R p we write bl=I-[b~ ~. Using the Euler-Maclaurin 
1 

summation formula ([2], p. 258, Theorem A.4.3) we see that the sum ~ '  over m 
of the terms (2.16) and (2.17) can be replaced by 

and 

t -~/2 ~ Cpco(b - y E X ,  - y )  yk b l t-p~2 1A(u) du dy 

t -J/2 ~ St-(e+l)/Z(Pco(b--yEX,--Y)Ykbtdy, 
u c A n Z P  

respectively. Let (U, V) be a p + 1-variate random vector with Lebesgue-density 
(u, v ) ~  ~Oco(U-vEX, -v) ,  and h the continuous Lebesgue-density of U. Then 

d(b): = ~ yq ~Oco(b - y E X ,  - y )  d y/h(b) 

is the qth conditional moment  of V, given U = b. 
The conditional distribution of V, given U=b,  is normal with mean 

T -1 where (all  a121 is the covariance arzaF(b  and variance a22-a12a l l  a21, \a21 a22! 

matrix of (U, V). Hence d is a polynomial.  Since U has a normal  distribution 
with mean zero and covariance matrix C, this proves the first part  of Theorem 
(2.7). 

In order to compute qo and ql for p = 1 we expand 

~,( j ! ) - l (_l )J~t-( t ,+J+l , /2~t  ( - ( k + ~ + 2 ) / 2 )  
j k 

t -  1/2 EYJ+ 1 

up to an error of order o(t- 1). The relevant expression is 

t -  1/5 y ~OCo((1 - t -  1/5 y /2 ) (b  - y e x ,  -y)) dy 

- t - 1  y y~Oco(b - y E X ,  -y)  d y  + t -  1 [~ (eCo p~)(b - y E X ,  - y) d y  

- � 89  t -  1 E y2 f D2 q)Co( b -  yEX,  - y )  d y =: 11 + 12 + 13 + 14. 

Recall that for q = 0, 1, 2, 3 

where 

yq q)co(b - yEX,  - y) d y = ~o ,(b) Hq(b) 

Ho---1, Hl(b)=a12a?~b,  H2=aez-a22a~11+(a12a{~b)  2, 

H3(b) ----- 3al 2 ai-11 b(az2 - a~2 a?l 1) + (a12 a~l 1 b) 3, 
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(p, is the normal density with mean zero and variance 0 "2, and - with C O =(0.i) - 

a11=r 2, a12 = - - r  + E X 0 . 2 2 ,  a22 = 0"22 . 
Define 

Then 

= (Al l  A12~ 
C61 \A21 A22]" 

11 +12+14 

= t -  1/2 ~0~ (b) + t -  1 S {Y (b - yEX) (A 11 (b - yEX) - A 12 y)/2 

- y2(A12(b - y E X ) - A 2 2  y ) / 2 -  y 

+ (0.22 + 1)(A12 (b - yEX), - A22 y)/2} qOco (b - yEX,  - y) d y + 0 (t- 1) 

= t -  1/2 ~G(b)( 1 + t -  1/2 {�89 + 1) A12 b] 

+ Ha (b) [ -  1-�89162 + 1)(A12EX+A22)+�89 b 2] 

+ b. H2 (b) [ -  A12 - AI~ EX] + �89 (b) [A22 + 2EXA12 + (EX) 2 A113 }) 
+o(t 1) 

= t-1/2 q~(b)(1 + t -  1/2 {�89162 + 1) b [A12 -a12 a[~ (A22 + E X A  12)] 

+a12 aFd b [ -  1 +�89 b z] -(222 -a22 a71) b(A12 + A l l  EX) 

-(a12 a7~) 2 b3(A12 + Al l  EX) 

+~a12 ai -d b(a22- a22 a~)(A22 + 2EXA12 + (EX) 2 A11) 

+�89 2 aa-tl) 3 b3 (A22 + 2EXA12 + (EX) 2 A11)}) 
+ o(t- 1). 

The relations 

A12 - a12 a~-~ (A22 + E X  A12 ) = - EX/ f f  2, 

a12 ai-11 = (a22- a~2 aFd)(A12 + EXA11) 

� 89  a12 ai-11 -- (a12 2111) 2(A12 + A l l  EX) 
+�89 ai-11) 3 (A22 + 2EXA12 + (EX) 2 A11) =�89 2 a;?, 

and (a22 -- a212 ai-11) - 1 = A22 + 2EXA12 + (EX) 2 A11 yield 

11 + 12 + 14 = t -  1/2 ~oa (b)(l + t -  1/2 { _ 1 ( 0 . 2 2  + 1) bEX/0.  2 

_�89 +~a121 b3/0.4})+o(t-1). 

n 
Since I3 is the n-1/Z-term of the formal Edgeworth expansion for ~ X i  

- ( E X )  Y~, this proves the formulas for qo and ql. Under conditions (2.4) and 
1 

(2.6) the factors EYJ+I/( j+I)  must be replaced by ~ lJP{Y>l} ,  i.e. EY a must 
be replaced by var(Y). This gives the asserted formulas for q* and q~. 

(2.18) Remark. Up to now, the counting process N(t), t>O, was univariate. 
However, Theorem (2.7) yields approximations for special compound processes 
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with multivariate counting processes. Let, e.g,, N(t)=(Nl(t) ,  N2(t)), t>0 ,  be a 
bivariate Poisson process which can be represented as 

N1 (t) = Z ( t )  + v ( t )  

We(t) = Z(t) + W(t) 

with stochastically independent Poisson processes V(t), W(t), Z(t) (see Aitken 
(1944), Holgate (1964), and Dwass and Teicher (1957)). 

Let X, X, ,  X2, ... be a sequence of i.i.d, bivariate random vectors, X 
=(X (1), X(2)), such that X ~*) and X (2) are stochastically independent. The bi- 
variate compound Poisson process 

s ( t )  = ( ( x ~  + . . .  (J~ + XNj(o)j= 1, 2) 

can be represented as 

s( t )  = s*  (t) + s**  (t) 

with S * ( t ) = X ~ + . . . + X z m ,  the processes S*(t) and S**(t) are stochastically 
independent, and the components of the bivariate process S**(t) are stochasti- 
cally independent. Notice that the counting process for S*(t) is univariate. 
Hence Theorem (2.7) yields approximations for the distributions of S*(t) and 
S**(t). Convolution of these approximations renders approximations for the 
distribution of S(t). 

If p = 1 and Co is singular, then either 

Y is constant, or 

X is constant, or 

X = a Y + b  with a, b~lR, a+0 ,  var(Y)>0.  

If Y is constant, then N(t) is nonrandom. Higher order expansions for the 
distribution of S(t) with nonrandom N(t) can be found in Bhattacharya and 
Ranga Rao (1976). If X is constant, then S ( t ) - 0  or there exists a=l = 0 such that 
S(t)=aN(t) .  For this case we include the following 

(2.19) Theorem. I f  Y>O, EY>O,  EYS<oo for some s>3,  and if 

a) Y satisfies Cramkr's condition, then uniformly for k =0, 1, 2 . . . .  

P {N(t) = k} = 0t, s( t -  1 /2 (  k - -  t/EY)) + O(t-  (~- 1)/2) (1 + I t -  1/2(k - t/EY)]S) - 1. 

Here 
S- -3  

Ot, s(X)=t-1/2 ~o~(x) ~ t-Y/2pj(x) 
j=o 

where a 2 = ear (Y)/E 3 Y and p j, j = O, ..!, s -  3, are polynomials. 

b) I f  Y has a lattice distribution with minimal lattice Z, then uniformly for 
k e Z  and integral t 

n {N(t) = k} = ~*s (t- ,/2 (k - t / E  Y)) 
-t- O ( t - ( s -  1)/2)( 1 q_ It- l / 2 (k -  t / E y ) l s / 2 )  - 1 
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where s- 3 

IJt~s(X ) =, t -1 /2  (Pa(X) Z p~f (X) t - j/2 
j=o 

with polynomials p*, j = 0 . . . . .  s - 3. 
We have in particular with E Y = I ,  o-2 =var(Y) ,  #3 = E ( Y - 1 )  3, and z = x / a :  

and 

po--p'd= l, 

P l (x) = a ( - z + �89 z 3 - �89 z a 2) + ~ (3 z - z 3) #3/a 3 

p*(x)=pl(x)+�89 

The proof  of this theorem can be done following the pat tern of p roof  for 
Theorem (2.7). 

(2.20) Theorem. Assume that X =  Y,, that Y > O satisfies E Y  > O, EYS< o% and 

a) Cram&'s condition. Then uniformly for r > 0 

P {S(t) < t -  r} = ~ x l(r, ~)(x) Q(dx) + O(t-  (s- 2)/2) 

where Q is the distribution of Y 
b) I f  Y has a lattice distribution with minimal lattice 7l, then uniformly for 

integral t >O and r~TZ 

P {S(t) < t -  r} = y (x + 1) l(r, oo) Q (dx) + O(t-  (~- 2)/2). 

Proof Apply (4.8.a) and (4.8.c). 

(2.21) Remark  If X = a Y + b  with b=~0 and ae]R, then by Theorem 2.2 the 
distr ibution of 

t 1/2(S(t)- t(a+b)) 

converges weakly to the normal  distribution with zero mean and variance 
b E var(Y), provided E Y =  1. Higher  order  asymptot ic  expansions could not  be 
derived with the methods  developed in the proof  of Theorem (2.7). 

3. Results for Discrete Markov Chains 

Consider  an irreducible discrete Markov  chain 40, 41, ~2 . . . .  on a countable  
state space I with transit ion matr ix  (Plj)i, j~x. Write P, for the joint  distribution 
of ~o, 41, ~2, ... when # is the initial distribution, and E ,  for the corresponding 
expectation. If # is concentra ted at some i~I then we shall use the symbols P~ 
and Ei. 

Let  0 e I  be a fixed element of S. Define 

T o = m i n  {k>O: G--O}, Tm=min{k>Tm_l :  ~k=O}, 

and Y m = T , ~ - T m _ l , m = l ,  2 , . . . .  
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For  f :  I ~ ; g  we are interested in the asymptotic behavior of 

Pu {f({1) + . . .  +f(~N) = z}, 

N large and ze7Z. 
Define Xm = ~ {f({k): Tin_ i < k <  Tin}, m =  1, 2, .... The Markov  property im- 

plies that - under Po - the sequence (X1, Yi), (Xa, Y=),... is idd. 
If  E Y , < o o  then there exists an initial distribution = - the stationary 

distribution - for which P= is stationary. The asymptotic behavior of Pu{f({1) 
+ � 9  is described by the following approximation in variational 
norm. 

(3.1) Theorem. Let  p be an initial distribution, s>=3 an integer, and assume that 
E o ( ~ { l f ( r  EoYl~<Oo, E u r ~ - 2 < o o ,  and Eu(~{l f (~v) l :  
1 _<v-< To}) ' -2< oo. I f  under Po, the random vector (X1, I11) has a lattice distri- 
bution with minimal lattice Z z, then for some polynomials qo . . . .  , q~-3 we have 

z~e p ~ { ~  1 } s-3  f (~O = z - N -  1/2 gOa (XN) 2 N -  ~/z q~ (XN) = 0 ( N -  ('- 2)/2). 
V r = O  

Here, XN = N -  1/2(z -- NM) ,  M = E~ f (~ l), 

c r 2 = E ~ ( f ( ~ l ) - M ) 2 + 2  ~ E ~ ( f ( ~ I ) - M ) ( f ( ~ ) - M ) > O  
v=2 

and qg~ is the univariate normal density with mean zero and variance cr 2. 

Proof  Our starting point is the well known relation (see [3, p. 61]) 

= ~ ) = x ,  Vo=l 
1, m, n= 0 x, yeZ k v =  1 

�9 Po X v = z - x - y ,  Y ~ = N - n - l  
v v=l 

�9 Po f ( ~ 0 = y ,  Y l > n  . 
v 

Notice first that for arbitrary positive e we can omit  all terms corresponding to 
m with t m - N / E o  YII>=eN. Furthermore,  all terms corresponding to l>=N 1/2 or 
n>=N ~/2 can be neglected. The total error of these omissions is of order 
O(N-(S-2)/2). Finally, we can omit  all terms corresponding to ]x]>=N ~/2 or 
]y f>N 1/z without increasing the order of the error. In order to prove the last 
statement consider first the sum over Ix[ >= N 1/2. Let ~ *  denote the sum over Im 
- N/Eo I711 <= eN. Using local approximations for 
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we easily see that 

~* Po Y ~ = N - n - l  
v 1 

is uniformly bounded for all N, n, and 1. Hence 

E* Y, E E e. J(~v)=~,Yo =~ 
I , n = O  y, ze2g Ixl>=NW 2 v 

�9 Po X ~ = z - x - y ,  Y ~ = N - n - I  Po ~O=Y, YI> n 
V=I V 

-</~ F, 2 Y, P~ f (r  ro =l  
- -  l , n = O  y d g  I x l > N  ~/z ; 

I(o Is--2 
-<KE~ v__~l f({v) Eo Y, N -(~- 2)/2 

with a constant K not depending on N. Similarly, 

•* E ~, Y', P, f(~v)=x, Yo =l 
l , n=O x, ze2~ [y l>N1/2  v=  

"Po Xv=z - - x - y ,  Y ~ = N - n - 1  12o ~O=y, Yl>n 
v v = l  v 

N 

<=KN -s/2 ~ Eo(~lf(~01: l_<v_< Y1)s=O(N-(S-2~/2). 
n = 0  

We shall now approximate the terms 

(3.2) Po X~---z-x-y, Y~=N-n-l 
k v = l  v = l  

in the remaining sum by local asymptotic expansions. In order to apply our 
Lemma 4.4 the random variables Xv and Y~ have to be truncated at N '/2. 
Define 

NX~=X~I{Ix~L<=N~/~} and N y =  Y~l{r~__<n~/~}, v =  1 , . . . ,N,  

and in the above sum replace the terms (3.2) by 

} (3.3) Po NX~=z-x-y, ~Y~=N-n-I . 
~ v = l  v = l  
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The error made by this replacement is of order O(N- (~-2)/2). Our assumptions 
for the joint distribution of (X,, Y1) under Po are curtailed for a possible 
application of Lemma 4.4. We obtain that the terms (3.3) can be replaced by 

(3.4) m - l g m ( m - 1 / 2 ( z - x - y - m E o X 1 ) , m - 1 / i ( N - n - l - m E o Y 1 ) ) .  

The error induced by this replacement is bounded by 

E#l E E P, f(r Yo=l Po f ( {~)=y,Y~>n 
, = 0  x , y ,  zeTZ k v = l  v= 

�9 O(N-*/2)(1 + N - l ( z - x - y - m E o X 1 ) 2 ) - I ( 1  + N - a ( N - n  - l - m E o  I71)2) -1. 

The factors 

and 

N 1/2 ~ ( I + N  : ( z - - x - y - m E o X 1 ) 2 )  -* 
z e Z  

N 
N-l/2 (l+N-i(N-n-l-meor )2) 

remain bounded uniformly in x,y ,m and N,n,l, respectively. Hence the total 
error induced by replacing (3.3) by (3.4) is of order O(N- (s- 2)/2). 

Now we replace the terms (3.4) by their Taylor expansions at (rn-i/2(z 
-mEoX1) ,m-1 /2 (N-mEo  Y1)) of order s - 2 .  As in the proof for Theorem 2.7, 
part d, we see that this replacement yields an error of at most the order 
O(N-(S-2)/2). The terms of this expansion are of the following kind: 

E,E'Exr,yr t',n 
X, y V 

(3.5) �9 Po f ( ~ ) = Y ,  I11 >n rn-lH(~,r~)~ov(~,~)m ~/2 

Here, ~ '  extends over O<l, n < N  1/2, the sum over x,y  extends over 
Ix[, lYI<N ~/2. H is a polynomial, ~=m-1/2(z-mEoX1),  N=m-1/2(N-mEoY1) ,  
D is the non singular covariance matrix of (X~, Y1) under Po, and qo9 is the 
bivariate normal density with zero mean and covariance matrix D. Now we 
may extend the domain of summation to x, yeZ ,  and n, le2g. This extension 
yields an error which is at most of the order O(N -(~- 2)/2). The sums over x, y, l, 
and n yield moments of the type 

and 
E~ y~3(~{f(~,): 1 _< v < Yo}) F1 

( )r2 n~Eo f(r l{r~ >.}. 
n > O  v =  

Notice that the last sum converges for r2+r~<=s since it is bounded by 
No Y(4(~{]f(~v)l: 1 -<v< I11}) r2. As before, define 

a = N -  U2(m - N/Eo I71) 

b = N -  1/2(z - NEo X1/Eo Y1). 
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It suffices to consider only those m and z for which l a [ < l o g N  and Ib l<logN.  
Using 

m/N=(Eo Y1) -1 q- N-1/Z a 

= - (re~N)- i/2 Eo Yi a 

~= (m/N)- 1/2(b - Eo X i  a) 

we can replace all powers of m - 1 / 2  by powers of N - 1 / z ,  and polynomials in 
z, m by polynomials in a and b. After this replacement which does not 
influence the order of the error - the terms (3.5) are substituted by linear 
combinations of terms of the following kind: 

(3.6) N -  ~/2 ~ N 1 a,1 b~2 qoD((E ~ Y1)- l(b - Eo X1 a, - a)). 
m 

Here the sum extends over all m for which lal < l o g N .  Now replace the sum by 
the sum over m e Z  and use the Euler-Maclaurin formula. Then (3.6) is replaced 
by a linear combination of terms of the kind 

(3.7) N -  r/2 br2 N -  1/2 f at' qOD((Eo Y1)- 1( b - -  Eo X i  a, - a)) da. 

As in the proof  of Theorem 2.7, part  d, we use that the terms (3.7) can be 
written as follows: 

N r/2pr(b)~o~(b) 

with a polynomial p,. To complete the proof  we have to show that M 
=EoXi /Eo  I11 and 0 .2 > 0  is the one defined in the assertion. 

We have EoXi=EoY1E,~f (~ i )  by Wald's identity (see, e.g., [12, p. 67, 
Theorem 1.10]). 

The variance 0 -2 equals CrDC with C = ( 1 , - E o X 1 / E o  Yl) r which is positive 

by assumption. Since s > 3, a2 must equal lim N - i  Eo ( f ( ~ j -  M) which 
is the 0.2 defined in the assertion. N = 

For applications the conditions of Theorem 3.1 have to be replaced by 
conditions on the Markov chain and on f which are easily checked or at least 
more familiar. It is known that the moment  condition for Ya can be replaced 
by a strong mixing condition of the chain. For  details see [3], Theorem 2 and 
the Corollaries. The lattice condition of our Theorem 3.1 can be replaced by a 
lattice condition for the possible values of f on paths in the chain. To be more 
specific, a sequence io , i l , . . . , i , _ l  of elements of I with Pio{~k=ik, k=O, . . . ,n  
- 1 } > 0  will be called a path from i0 to i,_~ of length n. A path io . . . .  ,i,_a 
avoids i, e I  if ik~=i,, k = 0 ,  ..., n - 1 .  The number ~,{f(ik): O < k < n - 1 }  is called 
the f-value of the path i0,. . . ,  i,_ 1- 

A simplified version of our Theorem 3,1 now reads as follows: 

(3.8) Corollary. Let cffn), n= 1,2,.. . ,  be the strong mixing coefficients of the 
stationary chain. Assume that f: I--*Z is bounded, ~nS-2cffn)<oo,  that p(i,i)>O 
for some isI,  and that there exists a O-avoiding path from i to i with f-value 3f(i) 
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+ 1 [or 3 f ( i ) -  1]. Then for some polynomials qo,. . . ,  qs- 3 we have 

~z Po Z f(~O = z  --N-1/2(4~ E N-~/2q~(xN) O(N-(~-2)/2) 
[ v = l  r=O 

with xN, M, and ~2 as in Theorem 3.l. 

Proof. All moment conditions of Theorem 3.1 follow from the strong mixing 
condition and boundedness o f f  We have to show that, under P0, (X1, I11) has a 
lattice distribution with minimal lattice 2U. To this aim we have to find a 
sufficiently large subset of the support L of (X1,111). Since the chain is recurrent 
there exists a shortest path from 0 to i with length n~ and f-value xa, say, and 
a shortest path from i to 0 with length n2 and f-value x2, say. The condition 
p(i, i) > 0 implies that for all k = 0, i, 2,... we have 

(xl + x2 - f ( i ) +  kf(i), na + n2 - -  1 + k)6L. 

These values correspond to paths which are constructed taking the shortest 
path from 0 to 0 via i and pausing k times in state i. If instead of pausing we 
fit into this path the 0-avoiding path k times, we arrive at 

( x l + x 2 + k ( f ( i ) + l ) , n l + n 2 + k ( n 3 - 2 ) ) ~ L ,  k = l , 2  .. . .  

where n3 is the length of the 0-avoiding path. We have to show that Z z is 
generated by L -  L. Since the set L -  L remains unchanged if f is replaced by f 
+c  where c is an integral constant, we may assume w.l.g, that f ( / )=0 .  Then 
( 0 , 1 ) e L - L  and (1, n 3 - 2 ) e L - L  implies the assertion. The case that the 0- 
avoiding path has f-value 3 f ( i ) -  1 can be dealt with similarly. 

(3.9) Remark. Theorem 3.1 can be extended to more general processes 
4o ,~ t , . . . .  All we need is the existence of a sequence of stopping times 
To, T1, T2,... with the following properties (i)-(iii). Define 

L = ~ { f ( ~ O :  1 <v_< To} 

X~= ~{f(~v): Ti_a < v < Ti}, i=  1,2, ... 

Y~ = T~- T~_ ~, i=1 ,2 , . . .  

i) The vectors (Xi, Y0, i=  1, 2 . . . .  are lid; 
ii) L and (Xi, Y0, i=  1, 2,... are independent; 

iii) (Xt, Y1) has a lattice distribution with minimal lattice 7l. 2. Under these 
assumptions and under certain moment conditions, expansions for P { f ( ~ l ) + . . .  
+ f(~N)= z} are valid. Stopping times To, T1,... with properties (i) and (ii) exist 
for general renewal sequences ~0,~1,. . . .  It is not clear, however, whether 
property (iii) can easily be checked for general T~. 

4. Auxiliar Results 

Our first lemma is an immediate consequence of Kolmogorov's inequality. 

(4.1) Lemma. Let Xa, X2, .,. be a sequence of independent identically distribut- 
ed random variables with mean zero and finite variance, and let N be a positive 
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integer valued random variable. Then for all positive integers k, m and for any 
positive number e 

P{ IX ,  +. . .  + X N - ( X ~  +. . .  + Xk)l > e} < P{ IN  - kl >m} + 2 m E X 2 / e  2. 

Let now Y, I71, Y2 . . . .  be a sequence of independent  identically distr ibuted 
nonnegat ive  r a n d o m  variables with positive mean  and finite m o m e n t  of order  
s > 3. F o r  t > 0 define 

g ( t ) = m a x { k :  Y1 + ... + Yk <t}  . 

(4.2) L e m m a .  

P{LN(t) - t /E YI > (var(Y)(s - 2)t log t)l/2/E Y} = o( t -  (~- 2)/2). 

Proof For  posit ive integer r we have N ( t ) > r  iff Y1 +- - .  + Y~<t. The l emma  
follows f rom mode ra t e  deviat ion results for the part ial  sums of the Y's. See 
[11]. 

Let  X, X1 ,X2 , . . .  be a sequence of independent  identically distr ibuted p- 
var iate  r a n d o m  vectors, assume that  for some integers s > 2 

ELIXb7 < oo 

and that  the covar iance  matr ix  D of X is nonsingular.  Fo r  
'X,  t X , , t X 2 , . . ,  be the r a n d o m  vectors  t runcated at  t ~/2, i.e. 

t > 0  let 

t __ 
X v -  Xvl{llXvl I <ti/2}. 

Fix positive constants  e and c, and define 

A( t )={m=O,  1, " l m - c t l < e t } .  

For  mEA(t) let 
H(m) ='xl  +. . .  +'Kin. 

For  nonnegat ive  integral p-vector  v=(Vl ,  ..., vp) with vl + ... +vp<=s write Z~ for 
the cumulan t  of  X of order  v, and introduce the functions 

u--+ff~(iu: {Zv}) 

as in [2], p. 51. Fur thermore ,  let 

s - 3  

fro(u)= ~, m-'/2 ~(iu: {Z~I )exp( - �89  Du). 
r=O 

Let gm be the Lebesgue-densi ty  of the finite signed measure  with characterist ic 
function fro. We can write gin(u) as follows: 

s - 3  
g re(u) = ~ OD(u) E m -  r/2 Pr, m(u) 

r=O 
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where (Po is the Lebesgue-density of the p-variate normal  law with mean zero 
and covariance matrix D, and Pr, m are polynomials with coefficients which 
remain bounded as long as m varies in {m> 1}. Write M for the mean of tX. 
Let Pl,P2 be positive integers with p~+pz=p.  Consider the decomposition X 
= ( X ' , X " )  of X into random vectors X' and X"  which are pa- and p2-variate, 
respectively. Let H'(m), H"(M), M', M" be the corresponding decompositions of 
H(m) and M. 

(4.3) Lemma.  Assume that E llXtlS<o% that D is nonsingular, and that X 
satisfies Cram&'s condition 

lim sup [E exp( iur x)l  < 1. 

Then uniformly for convex measurable A c lR m, B c lR p~ and meA(t) 

P{m-X/2(H(m)-  mM)~A x B} 

= ~ gm(u)du+O(t-(s-z)/z)2"(B)(l+d(O,~B)P=+l)-x +O(t-(s+l)/2). 
AxB 

Here 2" is the p2-variate Lebesgue-measure, •B is the boundary of B, and d(x, A) 
is the Euclidean distance between the point x and the set A. 

(4.4) Lemma.  Assume that X has a lattice distribution with minimal lattice Z p. 
I f  E IIXllS< ~ for some s> 3 and D is nonsingular, then uniformly for z e Z  v and 
m~A(t) and for arbitrary fixed a > O: 

P {H(m) = z }  - m- ,/2 gin(m- 1/2(z - raM)) 

= O ( t  - ( s+v-  2)/2) g<(l § ][m-1/2(z-mm)[[a) - ~. 

(4.5) Lemma.  Assume that E I[XI]S< oo, s > 3 ,  that D is nonsingular, that X"  has 
a lattice distribution with minimal lattice ~E v2, and X satisfied the Jbllowing 
condition: For all e > 0  there exists a positive constant d such that for u~lR m, 
y e n  v2 with Ilulf > e  

[E exp(iur X'  + ivr X")l < 1 - d. 

Then uniformly for convex measurable A c N  pl, ze7lv2, and m~A(t) and for 
arbitrary fixed a > 0 

P{m-  1/2(H'(m)- mM')eA and H'(m) = z} 

= m w/2 S gin(u, m- 1/2(z - raM")) du 
A 

+ O(t -(s+vz 2)/2)( l § Ilm-1/Z(z-mM")l]a) -1. 

(4.6) Lemma.  Assume that s>p2, El/XllS<o% that D is nonsingular, that X'  
has a lattice distribution with minimal lattice Z m, and X satisfies the following 
condition: For all e > 0  there exists a positive constant d such that for u~lR pl and 
ve I (  p2 with Ilvll > e  

[E exp(iur X'  + ivr X")] <= 1 - d .  
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Then uniformly for all convex measurable A c 1 R  v2, z ~ Z  m, and msA(t) ,  and for 
arbitrary f ixed a > 0 

P {H'(m) = z and m -  1/2(H"(m)-  m m " ) ~ A }  

= n-  pl/2 ~ gin(m- 1/Z(z-- mm') ,  v) dv + O(t-(s+m +p2)/2) 
A 

q- O ( t - ( s + v l -  2)/2)( 1 _Jr_ d(0, OA)a) - 12"(A)  (1 + lira- 1/2(z - ram')1[")- 1. 

The proof of Lemmas (4.3) and (4.6) is based on the following 

(4.7) Lemma. Let  g: IRP---*IR be measurable such that 

~(1 + ]lxl[ v*+l) Ig(x)[ dx < c~. 

Then for all measurable subsets A c 1R "1 and B c 1R w (p = pt + P2), 

I ~, g(x)dxl<c(p)max f, [De~,(u)Idua"(B) 
AxB 

where c(p) is a constant depending on p only, ~ is the Fourier-transform of g, the 
maximum is taken over all nonnegative integral p-vectors f i=(fl l  . . . .  ,tip) with fll 
-? . . . - b f l p ~ P l  q- 1, and D t~ is the operator 

J~+ +"/(ax~e'...0xev'). 
I f  Pl = 0, then we have 

t f g(x) dx I <= c(p) 5 I~(u) l du,V'(B). 
B 

The proof of Lemma (4.7) is the proof of Lemma 11.6 in [2], p. 98-99. 
We sketch the proofs of Lemmas (4.3)-(4.6). The proofs are rather technical; 

they are based on well known methods which are described in Bhattacharya 
and Ranga Rao's monograph (1976). Lemma (4.3) follows from (20.12), p. 209, 
(20.17), p. 210, Lemma (4.7), and the proof of (20.41), p. 210-214 in [2]. Lemma 
(4.4) follows from (22.32) and (22.33) in [2], p. 236. Notice that the proof given 
there works for arbitrary positive integral So (which is defined in (22.22), 
p. 234). Lemma (4.5) follows from Theorem 9.10 in [2] (expansions for the 
characteristic function of H(m)), and from relation (2.20) in [9]. Also here an 
arbitrary exponent a can be used since the random vectors under consideration 
are truncated. 

Now we give a more detailed proof for Lemma (4.6). Let hm(u,v) be the 
characteristic function of n - l / 2 ( H ( m ) - m M )  and f,~(u,v) the characteristic func- 
tion of the Edgeworth-expansion with density gin(u, v). Define 

L(m) = {m- 1/2(Z -- raM'): z~Zm}.  

For m~A(t)  and u~L(m) let Sin(u) and T~,(u) be the finite (signed) measures 
defined by 

A ~ P {m- 1/2(H'(m) - ram') = u and m-  1/2(H"(m) - ram") cA}  

and A--+m -pl/2 ~g,,(u,v)dv, 
A 
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respectively. It suffices to show that for all polynomials p(u), q(v) we have 
uniformly for convex measurable A cNP2,  m~A(t),  and uaL(m) 

p(u) [~ q(v)(S.~(u) - Tm(u))(dv)l = O(t-(s-]Pl- 2)/2)2"(A) 
A + O(t-  (~+m + p~)/2). 

We may assume w.l.g, that p(u)>O. We apply Corollary 11.5 in [2], p. 97-98, 
for p(u)S~(u) and p(u)T,,(u) instead of # and v, respectively. Choosing e 
= t  -(~+m+p~)/2 yields that the second term of the r.h.s, in (11.26) in [2], p. 98, is 
of order O(t -(~+m+p~)/2) (notice that A c l R  p~ is convex). With formula (2.20) of 
[9] we now compute the characteristic function of p(u)(Sm(u)-T,,(u)),  say 
kin(u, v): 

kin(u, v) = p(u) ~ exp(ivT x)(Sm(u) -- Tm(u))(dx) 

=p(u)(2rc)-P~m -m/2 ~ exp( --iuTw)(hm(w, v) -- f,,(w, v))dw 
K 

where K = {w~IRPl: - 7cm 1/2 ~ wj < 1cml/Z,j= 1 . . . . .  Pa}- The inversion formula 
(21.29) in [2], p. 230, implies that kin(u, v) is a linear combination of terms of 
the following kind: 

m-pl/2 S e x p ( -  iurw)[DP(hm(w, v ) -  fro(w, v))] dw 
K 

where f l=(f l l  . . . . .  tip) is a nonnegative integral vector with f l~+. . .+f lp  not 
exceeding the degree of p. Using Theorem 9.12 in [-2], p. 83, and the Cram6r 
type condition for X, we obtain that for nonnegative integral p-vectors fl 

IDa kin(u, v)l 1{i I ~ II ~,' . . . .  +p2~/2~ dv 

is of order O(t-(s-2)/2). This together with Lemma (4.7) proves (4.6). 
Let X, XI ,  X2, ... be a sequence of independent identically distributed 

nonnegative random variables with positive mean #, variance a z, satisfying 

E X  s < oo 

for some integer s > 3. Write U for the renewal function of X, i.e. for t > 0 let 

U ( t ) = l +  ~ P { X I + . . . + X , < t } .  
n = l  

(4.8) Lemma. a) I f  X satisfies Cram~r's condition 

lira sup [E exp( i t X )  ] < 1 
t ~ o o  

then 
__ t -~  0 -2 2f_/A 2 O t--  (s-- 2) /2  

(4.9) U ( t ) - ~  2 ~ T - +  ( ). 
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b) I f  X has a nonlattice distribution, i.e. for all t=t=O [Eexp( i tX) l#: l ,  then 
(4.9) holds for s = 2. 

c) I f  X has a lattice distribution with minimal lattice Z,  then (4.9) is true for 
t eZ .  

Better higher order approximations for U(t) are given by van der Genugten 
(1969) for the case that X has a moment generating function. 

Proof  Part b) is relation (4.5) in Feller (1966), p. 357. Let Y1, Y2 .. . .  be inde- 
pendent normally distributed random variables with mean #, and variance ~r 2, 

oo 

and U'(t)= ~ P{Y1 q-... + Yn <t}. Then 
n = O  

U ( t ) -  U ' ( t )= ~ ' (P{X1  + ... + X. < t} - P { Y 1  + ... + Y~ < t}) 

+ o(t- (2- 2)/2) 

where the dashed sum extends over n>  1 satisfying [n- t /g[  <et,  e > 0  small. Let 
T,,8(t ) be the formal Edgeworth expansion for P{n i / 2 ( X i + . . . + X , - n g ) < t } ,  
which has derivative 

8 - - 2  

~o~(x) ~ n-J/Zp:(x). 
j=o 

Here Po . . . . .  Ps-1 are polynomials and ~o~ is the density of the normal law with 
mean zero and variance ~r 2. 

a) We have uniformly for n in the range of summation 

P { X i  + ... + X , <  t} = ~,~(n-i /2( t - -n#))  

-b O(t-(8- 2)/2)( 1 +ln-1/2(t--  nit)lg-1 

(see [2], p. 215, Corollary 20.5). Write 

a = (t/It)- 1/Z(n- tit). 
Then 

nit/t = 1 + (t/#)- 1/2 a. 

Replace n -~/2 and n -~/2 in ~,8 by suitable expressions in a and (t/it) -1/2. Then 

u ( t ) -  F'(t) = ~ '  ~*( t -  1/2(t- nit)) + o(t-~8- ~)/~) 

where Tt* has derivative 
8 - - 2  

q3,(x) ~ t-J/2p*(x) 
j=l 

and p*, j = l  . . . . .  s - 2 ,  are polynomials. The Euler-Maclaurin formula yields 
that for j = 1 . . . . .  s - 2 

t -j/2 ~'(qg~p*)(t-1/2(t --nit)) = t -V-i) /2 ~ ~%(x)p*(x)dx + o(t-(s 2)/2). 



384 Ch. Hipp 

This implies that there exist constants a0, . . . ,  as_ 3 with 

s - 3  

(4.10) U(t)= U'(t)+ ~, t -J/2at+o(t-(s-2)/2 ) 
t = o  

For U'(t), Theorem 3 in [7], p. 332/333 yields the approximation 

u'(t) = t/~ + �89 + ~ ) / ~  + o( t -~-  ~)/~) 
i.e. 

s - - 3  

u(0 = t/~ + �89 + ~2)/~ + F, art-;/2 
(4.11) +o(t_(s_z)/2). t=o 

Consider a random variable Y with E X k = E Y  k, k =  1 . . . .  ,s, such that the distri- 
bution of Y has a Lebesgue-density and a moment generating function. If we 
repeat the above proof for Y instead of X we arrive at (4.11) with the same 
constants a t. Comparing (4.11) with (1.12) in [7] we see that aj.=0, j = 0 , . . . , s  

- 3. This proves part a) of the lemma. 
c) Corollary 22.3 in [2], p. 237, implies that uniformly for z~Z and n in the 

range of summation 

[P{X1 + ... + X, = z} --@n,s(rt-1/l(z--n#))l(1 -[-In-1/z(z--rt#)l s) 

where On,~ is the derivative of ~,~. Then uniformly for z e Z  and n in the range 
of summation 

[P{X1 + ... + X, < z} -G, ,~(n- l /Z(z-nl~)) l (1  +ln-1/Z(z-n#)[s/2)  

= o ( t - ( s - ~ ( ~ )  

where G,,~(x) is the approximation for F,(x) in (23.3), [2], p. 238. Since z is an 
integer, the argument in the functions S~ in (23.3) are zero. Hence we can 
repeat the replacement procedure of r 1/2 for n -~/2. We thus obtain that 
uniformly for ze2~ and n in the range of summation 

IP{XI  +. . .  + X ,  < z} - g ~ ( t -  1 / 2 ( Z  - -  n~))l (1 +It-- l / 2 ( Z  - -  n#)l s/2) 

where G* has derivative t, s 
s - 2  

j=0  

and p.* are polynomials. Now the proof is completed as in case a). The random J 
variable Y is here chosen such that Y has a lattice distribution with minimal 
lattice ~g. 

Acknowledgement. The author is indebted to K.-L. Bender who checked the formulas. 
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