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Summary. For independent identically distributed bivariate random vectors
(X1, Y1), (X3, Y5), ... and for large ¢ the distribution of X;+...4+ Xy Is
approximated by asymptotic expansions. Here N(f) is the counting process
with lifetimes Y;, Y5, .... Similar expansions are derived for multivariate X;.
Furthermore, local asymptotic expansions are valid for the distribution of
S(X)+...+f(Xy) when N is large and nonrandom, and X;, i=1,2,...,is a
discrete strongly mixing Markov chain.

1. Introduction and Summary

Let (X, Y), (X1, Y1), (X5, Y3), ... be a sequence of independent identically dis-
tributed bivariate random vectors, where Y is nonnegative. For positive ¢ define

N@#)=max{k: Y, +...+ Y, <t}
and the randomly stopped sum

The stochastic process S(t), t>0, is called a compound process whenever X
and Y are stochastically independent. If in addition the distribution of Y is
exponential, then we have a compound Poisson process which is often used as
a model for the aggregate claims process. In the following we shall drop the
assumption that the waiting times — the Y’s — and the claim amounts — the X’s
— are stochastically independent, and that X is univariate.

Consider a sequence (X, Y), (X, Y1), (X5, Ya), ... of independent identically
distributed p+ 1-variate random vectors, X p-variate, ¥ =0, and define N(f)
and S(¢) as above. The process S(t), t=0 will be called compound process with
dependence. For large ¢, the distribution of S(f) is approximately normal
(Theorem 2.2) and can be approximated by asymptotic expansions. The latter
will be done for pz2 under the assumption that the covariance matrix of
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(X, Y) is nonsingular. We assume that (X, Y) has a lattice distribution or
satisfies a Cramér condition in one of its arguments. For p=1 we shall also
discuss the case of a singular covariance matrix of (X, ¥). On the other hand,
we consider Markov chains &;,&,,... on a countable state space I which
satisfy a strong mixing condition. For f: I —Z we derive asymptotic expansions
for

(1.1) P{fE)+...+f¢n)=2}, z€l.

The main tool for our proof of higher order approximations for compound
processes with dependence and for (1.1) are local approximations for the joint
distribution of (X; +...+ Xy, Y1, ..., Yy), N large, where (X, Y), i=1,2, ..., are
iid random vectors. This idea was used by Bolthausen (1980, 1982) in his proof
for the Berry-Esseen bound for functionals of Markov chains. Asymptotic
expansions for (1.1) can also be obtained from Go6tze and Hipp (1983). For
this, however, we have to assume that &, ¢&,,... satisfies a strong mixing
condition with exponentially decreasing mixing coefficients. The Bolthausen
method used here works also in the case of polynomially decreasing mixing
coefficients.

Laws of large numbers and the central limit theorem for univariate S(f) can
be found in Smith (1955, 1958). Asymptotic expansions for compound Poisson
processes can be found in v. Chossy and Rappl (1983).

It is not possible to compute reasonable absolute error bounds for our
approximations. The fact that the error of approximation has the right order
indicates that the approximations are good for moderate to large N or t.

In Sect.2 we state and prove the results for compound processes with
dependence. The same is done in Sect. 3 for discrete Markov chains. Section 4
contains auxiliar results.

2. Results for Compound Processes with Dependence

Throughout this section we assume that

EY>0
and that for some integer s=2
(2.1) E|X|*+EY*< 0.
Write C for the covariance matrix of

XO_YEXWEY, j=1,....p
and U (¢) for the p-vector with components
Ui()=(t/EY)~V2(S(®)P —tEXD/EY),  j=1,..,p.

The following theorem seems to be well known.
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(2.2) Theorem. Assume that C is nonsingular. Then for t tending to infinity, the
distribution of U(t) converges weakly to the p-variate normal law with mean zero
and covariance matrix C.

Proof. Let 0p(1) denote a generic random variable which converges to zero in
probability when ¢ tends to infinity. For j=1, ..., p define

Wi(t)y=(/EY)~ 12 Y {XV—EXY—(Y,—EY)EXYV/EY}
where the sum extends over 1 <v=<t/EY. It suffices to show that for j=1,...,p

Uj()=W;(0)+ 0, (1).
We have
N()
2 Y V=0 1op(1)

v=1
and hence
N(t)

=12 (Y,~EY)=t""2(t— N(t) EY) + 0p(1)

v=1

Lemma (4.1) yields that

N@)
12 Z (Y,—EY)=¢ 172 Zr(yv_EY)+0P(1)
v=1
and
N@)
Y (XY — EX D)= 12 SUXY — EXD) 4 0p(1).
v=1
Hence

Uj(0) = W;(6)+ 0p(1).

Higher order approximations for the distribution of U(t) will now be
derived under the assumption that the covariance matrix C, of (X,Y) is
nonsingular, that (2.1) holds for some s>3, and that one of the following
conditions is satisfied. ‘

(2.3) The distribution of (X,Y) satisfies the Cramér condition, ie. for all
positive e there exists a positive number d such that

lull +|us|=e  implies |Eexp(iuf X +iu, Y)|<1—d.

(2.4) (X, Y) has a lattice distribution with minimal lattice Z?*!, the set of all
p+1-vectors with integral components, i.c. for fixed zeZ’*! with P{(X,Y)
=z}>0, ZP*' — as an additive group — is generated by the support of (X, Y)
—z

(2.5) Y has a lattice distribution with minimal lattice Z, and the joint distribu-
tion of (X, Y) satisfies a uniform Cramér condition in its first argument: For
all positive e there exists a positive number d such that

|ull=e implies |E exp(iul X +iu, Y)|<1—d.
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(2.6) X has a lattice distribution with minimal lattice Z?, and the joint
distribution of (X, Y) satisfies a uniform Cramér condition in its second argu-
ment: For all positive e there exists a positive number d such that

luj]=e implies |Eexp(iu! X +iu, ¥)|<1—d.

Under conditions (2.4) and (2.5) the random function S(¢) is constant for ¢ in
[r,r+1), r an integer. Under these conditions the distribution of S(¢) will be
approximated for integral ¢ only. The approximations derived under conditions
* (2.3) and (2.6) are valid for all nonnegative .

(2.7) Theorem. Assume that (2.1) holds for some integral s=3, and that the
covariance matrix of (X, Y) is nonsingular. Then there exist polynomials g, and
g¥, r=0,...,s—3, yielding higher order approximations for the distribution of
U(t) in all cases (2.3)-(2.6) in the following sense.

(1) If (2.3) holds, then uniformly for convex measurable A<=R?

s—

(2.8) P{UWeA}= | ¢c(2) 3t_r/2 4, (2)dz+0(t= =212,

r=

Here @ is the density of the p-variate normal law with zero mean and covariance
matrix C.

(ii) If condition (2.5) holds, then (2.8) is true for integral t when g, is replaced
by gF, r=0,...,s—3. '

(iii) If (2.6) holds, then uniformly for AcR?

29) PU(eA} =M, j(4)+ 0@~ 27)
where M, ; is the finite signed discrete measure defined by

Mt.s{u} == #2 nt,s(u)a
u=((t/EY) "2(z;— tEXV/EY);_1. ), 21 ..., zpel.

L 4

s—3

Here n, (9)=0c(2) Y. 1~ 4,(2)

r=0

(iv) If condition (2.4) holds, then (2.9) is true for integral t and

s—3
n,s(2)=0c(z) Y, 7777 g} (2).
r=0
We have in particular for p=1

9o(2)=43(2)=1
q,(z)=%cov(X, Y)(z/o> ~23/d%)
+4var(Y)EX(—2z/6*+23/6%) — L EX z/c?
—tE(X—-Y-EX)*(z3/0%~3z/c%)
qt(2)=q:1(2) +3EX z/o*
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where ¢*=var(X)—2EX cov(X, Y)+(EX)* var(Y) is the asymptotic variance of
U(1), and EY=1 for simplicity.

Proof. In this proof we shall use R and R’ as generic functions in 4 and ¢
satisfying

sup {IR(4, 1)|: A<IR? measurable} =0t~ =212
and

sup {|R'(4, t)|: A<IR? measurable, convex}=0(t~ &~ 22,
respectively.
(a) Truncation. For t 20 define the vectors ‘X, 'X,'X,, ... by

th:le{HX‘,”étl/z}’ V:1,2,...
and
Y'Yy, Yo, by Y=Yy, <oy

Here 1, is the indicator function of the set A. Let S'(t) and N'(¢) be defined as
S(t) and N(r) with ‘X ; and Y; instead of X; and Y;. Then

(2.10) P{S(t)eA}=P{S'(t)e A} +R.
In order to prove (2.10) it suffices to show that for j=1,...,p
POXP+ .+ Xy = X9+ + XP} +P{N@O+N ()} =R.
Lemma (4.2) implies that there exists a positive constant ¢ such that
P{N(t)>ct}=R.
With Chebyshev’s inequality we obtain
PUXP+ .+ XX+ + X =R

Recall that N'(t)=N(z), and inequality can hold if for some k<N(f)+1 we
have

Y +'Y.
Hence
P{N't)N@®)}<(ct+1) P{Y=+'Y}=R.

This proves (2.10).
(b) Representation. For m=0, 1, ... and measurable subsets 4 =IR? define
Q(m, 1, A)=P{((XY+...+'XP);_1, ., JeA and
=Y <'Yy+ .. +Y, St}

Our starting point is the relation

o0

P{S'(t)eA}= > Q(m,t, A).

m=
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Lemma (4.2) implies that
P{S'(1)eA}=>Y'0Q(m,t, A)+R
where the dashed sum extends over m with
(m—t/EY)?* <var(Y)(s—2)t logt/(E'Y)
(c) Approximation. Write Q for the distribution of *Y. Then
O(m,t, A= [ P{((X9+...+'XP);_1, ., )eA and
t—x<'Yi+.. +'Y, 2t} Q(dx).

(c1) Assume that condition (2.3) holds. Lemma (4.3) implies that uniformly
for convex A <R? and x>0

P{X;+...+'Xpedand t—x<'Y; +...+'Y, <1}
.—_”' m— @+ 12 gm(m— l/z(u—mE‘X), Wl’l/z(v—mE‘Y))
L) du Loy o(0) dv
+(L+x)(1+(m Y2t —mE'Y)?)~ 1 O(m~6-1/2)
-.|_0(m—(s+ 1)/2).

Summation over m renders an error of order O(t~“~2"2). We thus obtain

P{S(t)ed}= Z/ Qi(m, t, A+ R’
where

Q:(m, t, A)=E [[m~ @+ V12 g (m=12(y—mE'X), m~**(v—mE'Y))
. ].A(u) du l(t_ty‘ t](U) dU.

(c2) Assume now that condition (2.5) holds and that ¢ is an integer. We have
Q(m, t, A)=)* Of (m, 1, A)
where for integral [
QFm, 1, )=P{ X, +...+'X,eA,'Y,+ ...+ Y, =} P{Y >t -1}
and the stared sum extends over integral I with
t—t12 <<t
Lemma (4.5) implies that uniformly for [eZ and convex AcR”
OF(m, 1, A)={m~ P2 [ g (m~2(u—mE'X),m™ Y*(I-mE'Y))du
+(1 -I—Im‘l/i(t—l—mE’Y)lZ)‘1 O(m— - D2 PLY >t —1}.
Summing over m and then over [ we obtain with

YP{Y>l}<w
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that

P{S'(ed}=>"Qs(m,t, A)+R
where

Qa(m, 1, A)=Y*m~ @2 { g (m=Y2(u—mE'X), m~ Y2(l—mE'Y)) du P{Y>t—1I}.
4

(c3) Assume that condition (2.4) is satisfied. Then by Lemma (4.4) we have
uniformly for ueZ?, veZ

Q¥(m, t, {u})={m P+*V2 g (m= 12y —mE'X), m~ (v —mE'Y))

(Lt e Y2 mEX)| P2 4 e 2 (o mEY )27 )
* O(m“sﬂ% 1)/2)} P{Y> I—U}.

The facts that for positive a, b

(1+a)(1+b)=3(1 +a®+b%)
and

YP{Y>}<w

imply that summation over u and then over v yields an error term of the right
order, i.e.

P{S'(t)ed}= Z’ Qaim, t, A)+R
where

Qs(m, t, A)= Y Z*m—(p+1)/2

uc AnZ?

gu(m™ V2 (u—mE'X), m~ Y2 (0~mE'Y)) P{Y>t—0}.

(c4) Assume now that condition (2.6) holds. Then Lemma (4.6) implies that
uniformly for ueZ? and m in the range of summation

Q(m, t, {u})=| jt“ m- D2 g (m= Y2 (u—mE'X), m™ Y2 (v —mE'Y))dv Q(dx)

inox(t—(s+p+1)/2)

+0(t—(S+p— 1)/2)(1 +|m- 1/2(u—mE’X)||p+ 1)— 1
- max {(1 +(m V2(t—x—mE'Y))?) "1,

~(L+(m™ "2 —mE'Y))*)™ '} Qo(dx)

where @, is the distribution of 'Y. Since

supt™ 2y (1+(m~ 12 (t—x—mE'Y))?) <o
xeR m

we obtain that summation over u and m renders an error term of the right
order, i.e.

P{S'()eA}=>"Q4(m, t, A)+R
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where
t

Qulm,t, A)= 3 [ [ moe+or
ucdAnZP t—x

(M2 (u—mE'X), m™ V2(v—mE'Y)) dv Qo(dx).

(d) Expansion. We shall now derive higher order approximations for
Q;(m,t, A), j=1, ..., 4. For smooth g:IR> >R and nonnegative integer v write

0
5 g(u, U):ﬁ g(u, v). Let Qj(m, t, A) be defined as Q;(m, t, A), where

gn(m™ 2 (u—mE'X), m™ (v —mE'Y))
is replaced by its Taylor expansion of order s—2 at the point
(m~Y"*(u—mE'X), m~ Y2t —mE'Y)).
Then for j=1,...,4
(2.11) Y Qi(m, t, A)=>" Q%(m, t, A)+R.
In order to prove (2.11) we use the relation

[Qj(ma t: A)_Q}(mz L, A)I
<cfmm P2 sup (D5 ! g, (m~ 2 (u—mE'X),
m~Y2(E—mE'Y))|: t— "> < ELt} duEY?,

where ¢ is a positive constant not depending on m or t. From the special
structure of g, we obtain that there exists a positive ¢ such that for all uelR?,
velR

D51 g, v)] S5 * exp(—& ul2—ev?).
Furthermore, if A'(¢) is the range of summation for m,
sup {{m=1? exp(—em™ ' |lu—mE'X|?) du: me A'(t), t 20} < 0.

For the proof of (2.11) it suffices to show that
(2.12) Y 'm~ 2 sup {exp(—em ™ ((—mE'Y)?): t—t'? <<t} < 0.
For jeZ define

Aj={meA'(t): t+ji'? <mE'Y <t +(j+ 1) t/?}.
Then # A;<t'? and for meA;, |j|=2, and t—'? < ¢t

Im= 12 —mE'Y)|Z(t/EY+18,) 2 12 (|j| - 2),

where o,=sup{(m—t/EY)/t: meA'(t)}.
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Now lim g,=0, E'Y >0, and
Yexp(—é(jl—2)<cc forall 6>0
JeZ
implies (2.12).
In each of the Qj(m, t, A) replace E'Y and E'X by EY and EX, respectively,
and denote the new terms by Q(m, t, A). Since

E'Y=EY+0(@ " V/?)
and
E'X=EX+0(t~ 6172

we obtain that for j=1,...,4
Y Qi(m, t, A)=37 Qf (m, t, A)+R.

The terms QF(m, t, A) are linear combinations of expressions of the following
kind:

(213)  m P {m D2 (g HY(m™ Y2 (u—mEX), m~Y2(t—mEY))du
4

for j=1 and j=3, and

14 m Y mm@rD2(p. H)m ™Y (u—mEX), m™Y?(t—mEY))

ucAnZ?

for j=2 and j=4.

Here, ¢c, is the p+ 1-variate normal density with mean zero and covariance
matrix Cq, and H(u,v) is a polynomial. The coefficients of this linear com-
bination and of H do not depend on m or .

For m in the range of summation we have

mjt=1—(t—m)/t=1+o0(t"?logt).

Denote
a=t"Y?(m—r1)
b=t-12(u—tEX).
Then
(2.15) mm 2= U2 (] - V2 gy 12
s—2
—-12y (—1/2> U2 gl ot 622
; [
150

Without increasing the order of the error we may replace m /2 by the
expansion in ¢~ % and a given on the r.h.s. of (2.13) and (2.14), and use Taylor
expansions. The resulting approximations for (2.13) is a linear combination of
terms of the following kind:

(2.16) 1792 [ @co(b—aEX, —a)dcb' =+ 2 gy
4



370 Ch. Hipp

and (2.14) is approximated by a linear combination of terms of the kind

(2.17) t=2 N @ey(b—aEX, —a)a* bt~ @+ 2,

ue AnZr

p
Here, for leZ? and beR? we write b'=[]b%. Using the Euler-Maclaurin
1

summation formula ([2], p. 258, Theorem A.4.3) we see that the sum )’ over m
of the terms (2.16) and (2.17) can be replaced by

t92 [ oco(b—yEX, —y) y* bt~ 7?1, (w) dudy
and
23 [ 2 oo (b—yEX, —y) y*b'dy,

ue AnZP

respectively. Let (U, V) be a p+ 1-variate random vector with Lebesgue-density
(u, v) > ¢c,(u—vEX, —v), and h the continuous Lebesgue-density of U. Then

d(b): =]y ¢c,(b—yEX, —y)dy/h(b)

is the g™ conditional moment of V, given U =b.
The conditional distribution of V, given U=b, is normal with mean

ayy Ag2\ . .
is the covariance

af,arib and variance a,, —al,arta,;, where (

d21 G22
matrix of (U, V). Hence d is a polynomial. Since U has a normal distribution
with mean zero and covariance matrix C, this proves the first part of Theorem
(2.7).

In order to compute g, and g; for p=1 we expand

ZU!)"I(—I)j;t—(k+i+1>/zzl: (‘(k+{+2)/2)
~12_,EYj+1 J =12\ 4z e —
=Y T flez((PCupk)(%( 4 )t yi(b—yEX, y))dy

up to an error of order o(t~!). The relevant expression is

72 [ e, (L—t= 2 y/2)(b—yEX, —y))dy
—t7 [ yoc,(b—yEX, —y)dy+t~"' [(¢pc,p)(b—yEX, —y)dy
—%t—lEYZJ‘DZ (pco(b—yEX, —‘y) dyz:Il +12+I3+I4
Recall that for g=0, 1, 2, 3

[y oc,(b—yEX, —y)dy=0,(b) H,(b)
where
Ho=1, Hi(b)=a,a1ib, Hy=a,;—aiaii +(a;;aiih)%

Hi(b)=3a,, a7 blaz, —ai, ari')+(a; aii b,
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¢, is the normal density with mean zero and variance 62, and - with C,=(g; )=

ay1=0% ay3=—01+EX03:, a33=03;.
Define
Csle (Au A12>'
Ay Ay
Then
Ii+1,+1,

=t"" @ (b)+t7! [ {y(b—yEX) (A (b~yEX)—A,,))2
— ¥ (A12(b—YEX)— A3, y)/2~y
+(022+ 1)(A12(b—YEX), — 42, 9)/2} ¢c,(b—yEX, —y)dy+o(t™)
=72 @, (B)(1+t~Y*{3(0,,+1) A, b]
+H {(D)[—1—3(02+ D)(A12 EX + Az3)+3 44, B7]
+b-Hy(b)[— Ay, — Ay EX14+3H3(0)[ A2, +2EX Ay, +(EX)* A111})
+o(t %)
=t @, (0)1+1t7 2 {3(0,, + ) b[A;, —a,, 07 (A, + EX A,,)]
+aaif b[—14+341,b*1—(az2—aiz a1) b(A1 2+ 41 EX)
—(ar2a1{)? b (A, + Ay, EX)
+3aizari blags —atsar ) (A2, +2EX Ay 2 +(EX)* Ayy)
+3(a12a7{)* b* (A5 +2EX A1, +(EX)? A11)})
+o(t™1).

The relations

Ay —agyaif (A, +EX Ay)= —EX/6?,
ayzaty =(az2—atr ar) (A1, + EX Ayy)
311015011 —(a12a11) (A2 + 411 EX)
+3(a12a1)> (A2, +2EX A1, +(EX)? Ay)=%as, a1,

and (a22 - a%z lell)a 1 :A22 +2EXA12 +(EX)2/111 YIeld

L+1,+1,=t"" ¢ ()1 +t"'?*{~%(0,,+1)bEX/6?
—%a;,b/o* +5a1,b%/6*}) +o(t™ ).

n

~term of the formal Edgeworth expansion for ) X,
n 1
—(EX) Y Y, this proves the formulas for g, and g;. Under conditions (2.4) and

1
(2.6) the factors EY/*!/(j+1) must be replaced by Y FP{Y>1}, i.e. EY* must
be replaced by var(Y). This gives the asserted formulas for ¢§ and gF.

Since I; is the n=*/?

(2.18) Remark. Up to now, the counting process N(t), t=0, was univariate.
However, Theorem (2.7) yields approximations for special compound processes
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with multivariate counting processes. Let, e.g,, N()=(N;(t), N,(t)), t=0, be a
bivariate Poisson process which can be represented as

N@O=Z()+ V(1)
N, () =Z )+ W()
with stochastically independent Poisson processes V(t), W(t), Z(t) (see Aitken
(1944), Holgate (1964), and Dwass and Teicher (1957)).
Let X, X,,X,,... be a sequence of iid. bivariate random vectors, X

=(XD, X@), such that X© and X® are stochastically independent. The bi-
variate compound Poisson process

S(t):((X({)'F +X§Q(t))j=1, 2)

can be represented as
S(t)=S*()+ S**(2)

with S*(t)=X;+... + Xz, the processes S*(f) and S**(¢) are stochastically
independent, and the components of the bivariate process $**(¢) are stochasti-
cally independent. Notice that the counting process for S*(¢) is univariate.
Hence Theorem (2.7) yields approximations for the distributions of S*(r) and
S**(t). Convolution of these approximations renders approximations for the
distribution of S(z).

If p=1 and C, is singular, then either

Y is constant, or

X is constant, or

X =aY+b with a, beR, a+0, var(Y)>0.
If Y is constant, then N(r) is nonrandom. Higher order expansions for the
distribution of S(¢) with nonrandom N(t) can be found in Bhattacharya and
Ranga Rao (1976). If X is constant, then S(t)=0 or there exists a=0 such that
S(t)=aN (t). For this case we include the following
(2.19) Theorem. If Y>0, EY >0, EYS< o0 for some s=3, and if

a) Y satisfies Cramér’s condition, then uniformly for k=0,1,2, ...
P{N(@)=k} =t (7> (k—t/EY))+ 0@~ V3 (1+ [t 2 (k—t/EY)[) L.
Here

s—3
lpl,s(x):‘t_ 12 (pa'(x) Z t—]/z p_](x)
j=0
where ¢*=var(Y)/E>Y and p;, j=0, ..., s—3, are polynomials.

b) If Y has a lattice distribution with minimal lattice Z, then uniformly for
keZ and integral t

P{N@®)=k} =y} (t > (k—1t/EY))
+ O(t_(s" 1)/2)(1 + lf 1/2(k—t/EY)|s/2)* 1
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where

5—

3
F )=t ,(x) ) pFx) e
j=0

with polynomials p¥, j=0,...,5—3.
We have in particular with EY=1, o> =var(Y), us=E(Y—1)%, and z=x/o:

1
pi(x)=0(—z+3z2>—5z6%)+35(32—2%) ps/o’

and
pi)=pi(x)+3z.

The proof of this theorem can be done following the pattern of proof for
Theorem (2.7).

(2.20) Theorem. Assume that X =Y, that Y =0 satisfies EY >0, EY®< c0, and
a) Cramér’s condition. Then uniformly for r=0

P{S(ty<t—r}=[x1(, o)(x) Qdx)+ Ot~ 272

where Q is the distribution of Y.
b) If Y has a lattice distribution with minimal lattice Z, then uniformly for
integral t=0 and reZ

P{S@)<t—r}={(x+1) 14, o) Qdx) +O(t= ¢~ 2/,
Proof. Apply (4.8.a) and (4.8.c).

(2.21) Remark. If X=aY+b with b=+0 and aclR, then by Theorem 2.2 the
distribution of

= Y2(S(t)—t(a+b))

converges weakly to the normal distribution with zero mean and variance
b*var(Y), provided EY=1. Higher order asymptotic expansions could not be
derived with the methods developed in the proof of Theorem (2.7).

3. Results for Discrete Markov Chains

Consider an irreducible discrete Markov chain &, &, &,, ... on a countable
state space I with transition matrix (p;;); jer. Write F, for the joint distribution
of &y, &1, &5, ... when u is the initial distribution, and E, for the corresponding
expectation. If p is concentrated at some i€l then we shall use the symbols P
and E;.

Let Oel be a fixed element of S. Define

To=min{k=0:£=0}, T,=min{k>T,_,:&,=0},
and ¥, =T, —T,_,, m=12, ...
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For f: I - Z we are interested in the asymptotic behavior of

BAAfCE)+...+f(n)=2},

N large and zeZ.

Define X,,=) {f(&): T_1<k<T,}, m=1,2, .... The Markov property im-
plies that — under F, — the sequence (X4, Y1), (X,, Y>), ... is idd.

If EY;<co then there exists an initial distribution = — the stationary
distribution — for which F, is stationary. The asymptotic behavior of B,{f(¢,)
+...+f(€x) =z} is described by the following approximation in variational
norm.

(3.1) Theorem. Let u be an initial distribution, s>3 an integer, and assume that
Eo(SAIfE): 1SVET )y <00, EoYi<w, E,Ti~2<co, and E,(Y{f(&):
1SvE T}~ ?<oo. If, under P, the random vector (X,, Y,) has a lattice distri-
bution with minimal lattice Z*, then for some polynomials q,, ..., q,_, we have

)

ze

Here: xN:N_l/Z(Z—NM)> M=E7L’f(£1):

N s—3
PM{ Z f(é")zz}—N_l/z (pa'(xN) Z N>r/2 qr(xN) =0(Nh(s‘2)/2).

r=0

0 =E(f($1)—M)*+2 i E(f(E)—M)(f (&) —M)>0

and @, is the univariate normal density with mean zero and variance .

Proof. Our starting point is the well known relation (see [3, p. 611)

=1

Notice first that for arbitrary positive ¢ we can omit all terms corresponding to
m with jm—N/Eo Y;| = eN. Furthermore, all terms corresponding to [=NY? or
n=NY2 can be neglected. The total error of these omissions is of order
O(N—%-2/2) Finally, we can omit all terms corresponding to |x|=N'?2 or
|yl= NY? without increasing the order of the error. In order to prove the last
statement consider first the sum over |x| = N'/% Let ) * denote the sum over |m
—N/Ey Y1|ZeN. Using local approximations for

PO{Z Yv=N—n—l}
v=1
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we easily see that
m
z*po{z n:N_n_z}
v=1

is uniformly bounded for all N, n, and I. Hence

Z*i )IED) Pu{vzl:f(fv)=x,Y0=l}

ILn=0 y,zeZ |x| 2 N/2 =1

P(){i XvZZ“X—y, i Yvr‘N'—n_l}PO{if(év):ya Y1>I’l}

v=1 v=1
1

SKY Y Y el{zf(zv)ﬂ,n:z}

Ln=0 yeZ |x|=N1/2 v=1

Po{ilf(év):ya Y1>n}

Yo

éKﬂ{ DAL ZNI/Z}E0Y1
v=1
Yo 5-2

SKE,| ) f(&)| E Y, N-6-22
v=1

with a constant K not depending on N. Similarly,

DD ﬂ{v§1f<5v>=x,yo=z}

ILn=0 x,zeZ |y|zNi/2

PO{Z XVZZ—X—y, Z KzN—n_l}B){Zf(fv)=ya Y1>7’l}
v=1 v=1 v=1
N
=K} R){
n=0
N

SKN" Y Eo(LIfE)N: 1SvS V) =0(N-¢-2/2),
n=0

5 f(m'zw”i Y, >n}

We shall now approximate the terms

(3.2) PO{in:z—x—y, i‘ Yv:N—n—l}

V=1 v=1

in the remaining sum by local asymptotic expansions. In order to apply our
Lemma 4.4 the random variables X, and Y, have to be truncated at N'/2,
Define

NszXv1{|XV|§N1/2} and NYVZ le{yvéNl/Z}, V=1, ...,N,

and in the above sum replace the terms (3.2) by

(3.3) PO{ZNXv=z—x—y, ZNY;zN—n—l}.

=1 v=1
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The error made by this replacement is of order O(N~¢~2¥2), Qur assumptions
for the joint distribution of (X;,Y;) under B are curtailed for a possible
application of Lemma 4.4. We obtain that the terms (3.3) can be replaced by

(3.4) mtg,m 2 (z—x—y—mE,X,),m Y3 (N-n—1-—mEyY})).

The error induced by this replacement is bounded by

2EX X E{Zf(év)=x,YO=I}R,{§f(¢V)=y,Y1>n}

Ln=0 x,y,zeZ =1
CON"F) A+ N z=x—y—mEo X)) "1+ NN —n—I—mE,¥;)*)" L

The factors
NN (14N Y (z—x—y—mEoX;)*)™*

zeZ
and

N
N-Y2 ¥ (14 N"Y(N—n—I—mE, ¥;)?)*

m=1

remain bounded uniformly in x,y,m and N,n,l respectively. Hence the total
error induced by replacing (3.3) by (3.4) is of order O(N—¢=2/2),

Now we replace the terms (3.4) by their Taylor expansions at (m~*/?(z
—mEoX,),m Y?(N—mE,Y,)) of order s—2. As in the proof for Theorem 2.7,
part d, we see that this replacement yields an error of at most the order
O(N~¢=22) The terms of this expansion are of the following kind:

1
2EY Zx“y”l“n“a{ Y f(E)=x,Yo= l}
xy V=1

(3.5) : Po{ Z fE)=»1 >n}m*1 H(z,m) pp(Z, mym™=""2.
v=1

Here, )’ extends over 0=/, n=<N'? the sum over x,y extends over
|xl, |[y|SNY2. H is a polynomial, Z=m ?(z—mEyX,), m=m~Y*(N-mE,Y;),
D is the non singular covariance matrix of (X, Y;) under B, and ¢p is the
bivariate normal density with zero mean and covariance matrix D. Now we
may extend the domain of summation to x,y€Z, and n,leZ. This extension
yields an error which is at most of the order O(N~¢~272), The sums over x, y, 1,
and »n yield moments of the type

Eu YJ3(Z{f(£v) 1 év é YO})Y1

and

S Eq (élf(zsv))”hm}.

nz0

Notice that the last sum converges for r,+r,<s since it is bounded by
Eo YO {If(E): 1=vE Y1})2 As before, define

a=N"Y* m—N/E,Y;)
b=N‘1/2(Z—NE0X1/E0 Yl)
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It suffices to consider only those m and z for which |a|ZlogN and |b|=<logN.
Using

m/N:(EOYl)"l—i—N‘”Za
m= (m/N) 1/2E0Y1a
7= (m/N) 2(b— Eo X, a)

we can replace all powers of m~1/? by powers of N~'/2 and polynomials in

z,m by polynomials in a and b. After this replacement — which does not
influence the order of the error — the terms (3.5) are substituted by linear
combinations of terms of the following kind:

(3.6) N="2Y N 'a"b?pp((Eo Y1)~ H(b—Eo X, a, —a)).

Here the sum extends over all m for which |a|<logN. Now replace the sum by
the sum over meZ and use the Euler-Maclaurin formula. Then (3.6) is replaced
by a linear combination of terms of the kind

(3.7 N="2p 2 N-12 [ g op(Eo Y1) " (b—Eo X, a, —a))da.

As in the proof of Theorem 2.7, part d, we use that the terms (3.7) can be
written as follows:

“2p,(b) o, (b)

with a polynomial p,. To complete the proof we have to show that M
=E,X/E;Y; and ¢%>0 is the one defined in the assertion.

We have EoX;=E, Y E, f(&;) by Wald’s identity (see, e.g., [12, p. 67,
Theorem 1.107]).

The variance ¢2 equals CTDC with C=(1, —E, X, /Eo Y,)" which is positive

by assumptlon Since s=3, ¢ must equal th LE, [ z (f(&)—- M)] which
is the 62 defined in the assertion. V=

For applications the conditions of Theorem 3.1 have to be replaced by
conditions on the Markov chain and on f which are easily checked or at least
more familiar. It is known that the moment condition for Y; can be replaced
by a strong mixing condition of the chain. For details see [3], Theorem 2 and
the Corollaries. The lattice condition of our Theorem 3.1 can be replaced by a
lattice condition for the possible values of f on paths in the chain. To be more
specific, a sequence ig,iy,...,i,_1 of elements of I with P {&,=i, k=0,...,n
—1}>0 will be called a path from iy to i,_; of length n. A path i,...,i,_
avoids i,el if iy +i,, k=0,. n—l The number Y {f(i): 0<k<n—1} is called
the f-value of the path ig,...,i,_1.

A simplified version of our Theorem 3.1 now reads as follows:

(3.8) Corollary. Let a(n), n=1,2,..., be the strong mixing coefficients of the
stationary chain. Assume that f: I>Z is bounded, Zns“za(n)<oo, that p(i,))>0
for some icl, and that there exists a 0-avoiding path from i to i with f-value 31 (i)
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+1 [or 3f())—1]. Then for some polynomials q,, ...,qs_ 3 we have

)

zeZ

s—

Po{ > f(fv)=z}—N-1/2<p,,(xN) S N2 g,x)| = 0N )
v=1

r=0

with xy, M, and &% as in Theorem 3.1.

Proof. All moment conditions of Theorem 3.1 follow from the strong mixing
condition and boundedness of . We have to show that, under Ry, (X;, Y;) has a
lattice distribution with minimal lattice Z2. To this aim we have to find a
sufficiently large subset of the support L of (X, Y;). Since the chain is recurrent
there exists a shortest path from 0 to i with length n; and f-value x4, say, and
a shortest path from i to O with length n, and f-value x,, say. The condition
p(i, i) >0 implies that for all k=0,1,2,... we have

(1 +x,—f@O+kf(),n+n,—1+k)eL.

These values correspond to paths which are constructed taking the shortest
path from 0 to 0 via i and pausing k times in state i. If instead of pausing we
fit into this path the 0-avoiding path k times, we arrive at

(14X +k(f()+1), ny +n,+k(nz—2)el,  k=1,2,...

where n; is the length of the O-avoiding path. We have to show that Z? is
generated by L — L. Since the set L— L remains unchanged if f is replaced by f
+c¢ where ¢ is an integral constant, we may assume w.l.g. that f(i)=0. Then
(0,)eL—L and (1,n3—2)eL—L implies the assertion. The case that the O-
avoiding path has f~value 3/ (i)—1 can be dealt with similarly.

(3.9) Remark. Theorem 3.1 can be extended to more genefal processes
Eo,&1,.... All we need is the existence of a sequence of stopping times
Ty, T;, T5, ... with the following properties (i)—(iii). Define

L=Y{f(&): 1Sv= T}
Xi:Z{f(fv): ’1;—1<V§TLZ}7 i=1,2,...
Y=T,—-1T,_,, i=1,2,...

i) The vectors (X;, Y), i=1,2,... are iid,

ii) Land (X, Y;), i=1,2,... are independent;

iii) (X, Y;) has a lattice distribution with minimal lattice Z2 Under these
assumptions and under certain moment conditions, expansions for P{f (&) +...
+ f(éy)=1z} are valid. Stopping times Ty, 11, ... with properties (i) and (ii) exist
for general renewal sequences &g,¢&;,.... It is not clear, however, whether
property (iii) can easily be checked for general T;.

4. Auxiliar Results
Our first lemma is an immediate consequence of Kolmogorov’s inequality.

(4.1) Lemma. Let X, X,,... be a sequence of independent identically distribut-
ed random variables with mean zero and finite variance, and let N be a positive
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integer valued random variable. Then for all positive integers k,m and for any
positive number e

PUX 4 4+ Xy — (X1 +... + X)|Z e} SP{IN—k|=m} +2mEX?%/e>

Let now Y,Y,,Y,,... be a sequence of independent identically distributed
nonnegative random variables with positive mean and finite moment of order
523, For t=0 define

N(@)=max{k: Y1+...+ L=t}
(4.2) Lemma.
P{N(t)—t/EY|=(var(Y)(s—2)tlogt)*?/EY} =0t~ ¢~ 2%,

Proof. For positive integer r we have N(t)=r iff ¥;+...4+ Y, <t. The lemma
follows from moderate deviation results for the partial sums of the Y’s. See

[11].

Let X, X, X,,... be a sequence of independent identically distributed p-
variate random vectors, assume that for some integers s> 2

E|X|*<w

and that the covariance matrix D of X is nonsingular. For t>0 Ilet
'X,'X,,"X,, ... be the random vectors truncated at t*/?, i.e.

X=X Lz sy
Fix positive constants ¢ and ¢, and define
A@ty={m=0,1,...: [m—ct|Zst}.

For me A(t) let
Hm)="X;+...+'X,.

For nonnegative integral p-vector v=(vy,...,v,) with v; +...+v, <s write y, for
the cumulant of X of order v, and introduce the functions

u—Biu: {1.})
as in [2], p. 51. Furthermore, let
s—3
Suw)="Y. m™"? B(iu: {x.}) exp(—4u" Du).
0

r=

Let g, be the Lebesgue-density of the finite signed measure with characteristic
function f,,. We can write g,(u) as follows:

s—3
gm(u) = (PD(u) Zo m- r/2 Ds, m(u)

r=
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where ¢p is the Lebesgue-density of the p-variate normal law with mean zero
and covariance matrix D, and p,, are polynomials with coefficients which
remain bounded as long as m varies in {m=1}. Write M for the mean of ‘X.
Let p;, p, be positive integers with p; +p,=p. Consider the decomposition X
=(X", X") of X into random vectors X’ and X" which are p,;- and p,-variate,
respectively. Let H'(m), H'(M), M’, M" be the corresponding decompositions of
H(m) and M.

(4.3) Lemma. Assume that E|X|*<oo, that D is nonsingular, and that X
satisfies Cramér’s condition

limsup |E exp(iu” X)|<1.

Then uniformly for convex measurable AcR?', BcR?? and me A(t)
P{m~1*(H(m)—mM)eA x B}
= [ gnlWdu+0(~ =22 2(B)(1+d(0,8B)> )" + 0~ ¢+ 72),

AxB

Here A" is the p,-variate Lebesgue-measure, OB is the boundary of B, and d(x, A)
is the Euclidean distance between the point x and the set A.

(4.4) Lemma. Assume that X has a lattice distribution with minimal lattice Z*.
If E|X||*<co for some s=3 and D is nonsingular, then uniformly for zeZ? and
meA(t) and for arbitrary fixed a>0:
P{H(m)=z} —m~?? g, (m~"*(z~mM))
=0(+2 D) s (14 [ M2z —mM)|) .
(4.5) Lemma. Assume that E || X|*< o, s=3, that D is nonsingular, that X" has
a lattice distribution with minimal lattice ZP>, and X satisfied the following

condition: For all e>0 there exists a positive constant d such that for ueR?,
velRP? with |ul| = e

|Eexp(iu” X' +ivTX")|<1—d.
Then uniformly for convex measurable A<IRY', zeZP?, and meA(t) and for
arbitrary fixed a>0
P{im Y (H'(m)—mM)eA and H'(m)=z}

=m P2 g (um 1 *(z—mM"))du
A
+O( 5P D) (1 + M2z —m M) ).

(4.6) Lemma. Assume that s>p,, E||X|*<oco, that D is nonsingular, that X'
has a lattice distribution with minimal lattice Z?', and X satisfies the following
condition: For all e>0 there exists a positive constant d such that for ueIR?* and
velR?2 with |v]|ze

|E exp(iu? X' +ivT X")| <1 —~d.
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Then uniformly for all convex measurable AcRP?, zeZP', and meA(t), and for
arbitrary fixed a>0

P{H'(m)=z and m~Y2(H"(m)—mM" }cA}
=n"P"2 [ g, (m 2 (z—mM’), v)dv+ O(t~ C TP +p2/2)
A

+ O P21 d(0,04)) 1 2 (A)(L+ 2z —mM )|
The proof of Lemmas (4.3) and (4.6) is based on the following

4.7) Lemma. Let g: R?>R be measurable such that
JA+1x)#7+1) [g(x)ldx < co.

Then for all measurable subsets A<IRP* and B<IR?? (p=p, +pa),

| | g(x)dx|=c(p)max [|D?§(u)ldut’(B)

AxB B
where c(p) is a constant depending on p only, g is the Fourier-transform of g, the

maximum is taken over all nonnegative integral p-vectors f=(f;,..., B,) with B,
+...+B,<p, +1, and D* is the operator

QP+ 4B [ oxET).
If p; =0, then we have

] g(x)dx| = c(p) 18w du i (B).

The proof of Lemma (4.7) is the proof of Lemma 11.6 in [2], p. 98-99.

We sketch the proofs of Lemmas (4.3)«4.6). The proofs are rather technical;
they are based on well known methods which are described in Bhattacharya
and Ranga Rao’s monograph (1976). Lemma (4.3) follows from (20.12), p. 209,
(20.17), p. 210, Lemma (4.7), and the proof of (20.41), p. 210-214 in [2]. Lemma
(4.4) follows from (22.32) and (22.33) in [2], p. 236. Notice that the proof given
there works for arbitrary positive integral s, (which is defined in (22.22),
p. 234). Lemma (4.5) follows from Theorem 9.10 in [2] (expansions for the
characteristic function of H(m)), and from relation (2.20) in [9]. Also here an
arbitrary exponent a can be used since the random vectors under consideration
are truncated.

Now we give a more detailed proof for Lemma (4.6). Let h,(u,v) be the
characteristic function of n=?(H(m)—mM) and f, (u,v) the characteristic func-
tion of the Edgeworth-expansion with density g,(u, v). Define

Limy={m " Y%(z—mM"): zeZP*}.

For meA(t) and ueL(m) let S,(u) and T,(u} be the finite (signed) measures
defined by

A—P{m Y2 (H'(m)—mM')=u and m~Y2(H"(m)—mM")eA}

and A-m P2 (g (u,v)dv,
A
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respectively. It suffices to show that for all polynomials p(u), q(v) we have
uniformly for convex measurable A cR?2, meA(t), and ueL(m)

p(u) U q(0)(Spu) — T, (W) (dv)| = Ot~ C+p1=242) J7(A)
! +O(1~ 6+ptpIiZ), ‘

We may assume w.lg. that p(u)>0. We apply Corollary 11.5 in [2], p. 97-98,
for p(u)S,(u) and p(u)T,(u) instead of p and v, respectively. Choosing ¢
=~ 6+P1+22/2 yields that the second term of the r.h.s. in (11.26) in [2], p. 98, is
of order O(¢t=€*P1+22)2) (notice that A =IR”? is convex). With formula (2.20) of
[9] we now compute the characteristic function of p(u)(S,.(u)— T,(u), say
k. (u,v):

k11, 0) = p(1t) [ exp(iv7 %) (S (1) — Trn(u))(dx)
=p)(2m) =" m= 22 [ exp(—iu’ w)(h,,(w, v) = f,,(w, v))dw
K

where K={weR?: —nmm'?<w;<am'?j=1,...,p;}. The inversion formula
(21.29) in [2], p. 230, implies that k,(u,v) is a linear combination of terms of
the following kind:

m= 2112 [ exp(— iuTw) [DP (W, 0) — fiu(w, v))] dw

where f=(fi,...,p,) is a nonnegative integral vector with f,+...+f, not
exceeding the degree of p. Using Theorem 9.12 in [2], p. 83, and the Cramér
type condition for X, we obtain that for nonnegative integral p-vectors f

‘leﬂkm(u, O Lo <1+ m2) dv

is of order O(t~®~2/2), This together with Lemma (4.7) proves (4.6).
Let X,X,, X5, ... be a sequence of independent identically distributed
nonnegative random variables with positive mean u, variance ¢, satisfying

EX’<wo

for some integer s=3. Write U for the renewal function of X, i.e. for t>0 let

oo

U@ =1+ Y P{X;+...+ X,<t}.

n=1

(4.8) Lemma. a) If X satisfies Cramér’s condition

lim sup|E exp(itX)| <1
t— w0

then

t 2 2
4.9) v@=L4 TTH
w2y

+o(t= 62,
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b) If X has a nonlattice distribution, i.e. for all t0 |Eexp(itX)|=+1, then
(4.9) holds for s=2.

¢) If X has a lattice distribution with minimal lattice Z, then (4.9) is true for
tel.

Better higher order approximations for U(t) are given by van der Genugten
(1969) for the case that X has a moment generating function.

Proof. Part b) is relation (4.5) in Feller (1966), p. 357. Let Y, Y,,... be inde-

pendent normally distributed random variables with mean g, and variance 62,
o0

and U'(t)= ). P{Y;+...+Y,<t}. Then

n=0
U)-U@)=Y'(P{X+...+ X, <t} —P{Y, + ...+ Y,<1})
+o(t= 6= 2/2)
where the dashed sum extends over n=1 satisfying |n—z/ul < et, £>0 small. Let

¥, (t) be the formal Edgeworth expansion for P{n '3(X,+...+ X,—nu)<t},

which has derivative
s—2

009 T 0V p ).

j=

Here py,...,p,_, are polynomials and ¢, is the density of the normal law with
mean zero and variance ¢2.
a) We have uniformly for n in the range of summation

P{X,+. . +X,<t}=¥ (n"?(t—np)
+o(t™ P A+ |0 Pt —np)l)
(see [2], p. 215, Corollary 20.5). Write
a=(t/p)~*(n—rp).
Then
npft=1+(t/w~?a.
Replace n=? and n=#? in ¥, , by suitable expressions in @ and (t/u)~'/2. Then
Ut)—U'(t)= ) WAt (e —nw) +o(t= 272

where ¥¥ has derivative

s—2
@,(x) Y, 177 p¥(x)
j=1

and p¥, j=1,...,s—2, are polynomials. The Euler-Maclaurin formula yields
that for j=1,...,s—2

£ Y (PP A ) =272 [, ) (x)dx + ot 0 P12,



384 Ch. Hipp

This implies that there exist constants ag,...,a,_3 with

s—

3
4.10) U =U'@)+ Y ta;+o( 212
i=0

For U'(t), Theorem 3 in [7], p. 332/333 yields the approximation

U'(0) =t/ + 30> + 422 + o(t= = D7)
ie.

3
U@ =t/u+3(c*+p2)u’+ ), a;t=7?
(4.11) Fo(t= 6= 212), =0
Consider a random variable Y with EX*=EY* k=1,...,s, such that the distri-
bution of Y has a Lebesgue-density and a moment generating function. If we
repeat the above proof for Y instead of X we arrive at (4.11) with the same
constants a;. Comparing (4.11) with (1.12) in [7] we see that ¢;=0, j=0,...,s
— 3. This proves part a) of the lemma.
¢) Corollary 22.3 in [2], p. 237, implies that uniformly for zeZ and » in the
range of summation
IP{X;+ .+ X,=2) = (0 z—np) (L +|n =2z~ np)l)
=o(t~6-112)
where ¥, ; is the derivative of ¥, ;. Then uniformly for zeZ and » in the range
of summation
IP{X1+... + X, <z} = G s(n Pz—np)|(1 +|n~ 2 (z—np)l*?)
=o(t~ 62
where G, ((x) is the approximation for F,(x) in (23.3), [2], p. 238. Since z is an
integer, the argument in the functions S, in (23.3) are zero. Hence we can
repeat the replacement procedure of t~/2 for n~'2 We thus obtain that
uniformly for zeZ and » in the range of summation
|P{X +.. + X, <z} = GE™ 2z —np)| 1+t~ 2z —np)7?)
=o(t~ 6~ 212)

where G, has derivative

s—2
@s(x) Dt p(x)
j=0

and p¥ are polynomials. Now the proof is completed as in case a). The random
variable Y is here chosen such that Y has a lattice distribution with minimal
lattice Z.

Acknowledgement. The author is indebted to K.-L. Bender who checked the formulas.
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