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Summary. Let {Xn, N =0, +1, +2,...} be a stationary Gaussian stochastic process

with means zero, variances one, and covariance sequence {ry}. Let Zy = max Xj. Limit
1=ksN

properties are obtained for Zy, as N approaches infinity. A double exponential limit law is

known to hold if the random variables X; are mutually independent, that is 7y = 0, N =+ 0.

BrrMaN has shown that the same law holds in the case of dependence, provided 7y approaches

zero “‘sufficiently fast”. Specifically sufficient conditions are that either lim 7y log N = 0,

o N—oo
or > t% < oo, In the present work, it is shown, however, that lim rx = 0 is not sufficient.
N=1 N—oo

A corresponding law is obtained for a separable, measurable version of a continuous parameter
process. Sufficient conditions are obtained for the ‘“‘strong laws of large numbers”,

ZN—]/2logN—>0, a.s., and ZN/]/2logN—>1, a.s.

in both discrete, and continuous time,

Section 1

Let {Xny, N =0, +1, £2,...} be a discrete parameter stationary Gaussian
stochastic process, characterized by expectation, and covariance function,
respectively:

EXy=0,
EX;Xin=ry, 19=1.

A study is made of some of the limit properties of the r.v.s. (random variables)

ZN=maX{X1,X2,...,XN} (1.1)

as N becomes large. Corresponding laws are also considered for continuous
parameter processes.

If the sequence {Xy, N = 1, 2, ...} consists of independent r.v.s. having the
d.f. (distribution function) F(z), and if there exist sequences {ay} and {by},
ay > 0, and a proper, non-degenerate d.f. A (x), such that

lim P{az*(Zy — by) <2} = A(x) (1.2)
N—oo
on all points in the continuity set of A (x), we say that A (x) is an extremal distri-
bution, and that F(x) lies “in its domain of attraction”. GNEDENEKO [10] has

shown that A (x) can have one of only three forms. These results are summarized
and analyzed in the book by GumsEL [12]. If X is normally distributed; that is if

P{X =&} = B(2) = (2m)12 [ -T2,

—_o0
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then, (1.2) is true, where

ay = (2log N)-1/2,

by = (2log N)v/2 — 1 (2log N)-1/2 (loglog N + log4 7},
and A(x) = exp(— e™7),
as is shown in CrRAMER [5], pp. 374—T75.

In the general case of variables having a stationary kind of dependence, a
start was made by WatsoxN [18]. He showed that the same law (1.2} holds for
an M-dependent process, provided a mild additional restriction is satisfied. He
showed that this condition holds for a Stationary (aussian process. In other
words (1.2) with (1.3), is true provided

ry =0

(1.3)

for all but a finite number of integers N.

This result was extended by BErRmMAN [3], who showed that it is only necessary
to assume that ry approaches zero, as a limit “sufficiently fast’; specifically, that
is, that either

limrylogN =0, (1.4)
N—oo
or
zrfv < o0, (1.5)
N=1

An evident question is whether these conclusions can be weakened still further.
In particular, might
limry =0 (1.6)
N—oo
be a sufficient condition. In Section 2, a class of processes is considered wherein
(1.6) is satisfied but not (1.2), with (1.3). So the conditions (1.4) and (1.5) cannot
be substantially improved.

In Section 3 sufficient conditions are found on the covariance function, and the
spectrum, for stability and relative stability almost surely, (a.s.) or with prob-
ability one; respectively

Zy —)2logN —0, a.s., (1.7
and
Zy[/2logN -1, a.s. (1.8)

Theorems 3.2, and 3.3, show that (1.4) and (1.5) are sufficient. Some of the proc-
esses considered in Section 2, do not satisfy (1.7), and so (1.6) is not a sufficient
condition for it. It is, however, as Theorem 3.4 shows, sufficient for (1.8).

Let {X (f), — o0 <t < oo} be a separable, measurable version of a continuous
parameter stationary Gaussian process, with expectation and covariance, re-
spectively

EX(@) =0,
EX() X(s+t)y=rt), r(0)=1.

In Section 4, the maximum
Z(t) = max X (s)

O=sst
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is considered. Theorems 4.4, and 4.5 give conditions, sufficient for a law of the form
Lim P{(A®))1(Z(t) — B(t)) S«} = A(z).
{—o00

The conditions are of two types. As in the case of discrete parameter processes,
there are “mixing” conditions, which involve the behavior of r(f), as ¢ approaches
infinity. But attention must also be given to “local” conditions, which concern
the behavior of r(f) in the limit, as ¢ approaches zero.

In Section 5, both “mixing” and “local”” conditions are found, in Theorems 5.1,
through 5.5, sufficient for “stability”, and “relative stability’’ almost surely, in
the continuous parameter case.

The author is greatly indebted to Professor StMEoN M. BErMAN, for many
helpful conversations, for his advice leading to simplification of some of the proofs
and improvements in the writing of this paper, and for the references [1], and [4].
The author is also grateful to Professor E. J. GumBzL for introducing him to the
theory of extreme values.

Section 2

The most important known results concerning the limiting distribution of
Zy,(1.1) in the Gaussian case, are summarized below. Then a class of processes
is constructed which shows that these results cannot be significantly extended.

Theorem 2.1 (BErMaAN [3]). If, either

limrylogN =0 2.1
N—>oo
or
Srk <o, (2.2)
N=1
then
lim P{ay*(Zny — by) S x} = A(2), (2.3)
N—>oo
where
ay = (2log N)-1/2,
and
by = (2log N)2/2 — 1 (2log N)~12 (log log N 4 log 4 x),
and

A(x) = exp(—e~%). (2.4)

Theorem 2.1 clearly includes the case of independent r.v.s. (ry = 0, N +0).
The generalization employs Lemma 2.1, below, which makes possible a comparison
between the results using the given measure, and those (known) using the inde-
pendence measure. The measure of a Gaussian process, with means zero and
variances one, is uniquely characterized by the covariance function ry;.

Lemma 2.1 [3]. Let P, and P* be two normalized Gaussian measures, characterized
by the covariance functions, respectively, {ri;}, and {r;}}. Then

N-1

|P{Zy < ¢} — P*{Zy <c}| < Dy=2, |ry— 1| @lc, [71), (2.5)

i=1
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where
(e, |ry]) = (1 — ri#) 2 exp {— /(1 + | ;] )},
and
r;; = max (riy, rf).

If the process is stationary,

Dy < 3 (N=p|rf—nle|r]). (2.52)
j=1

Now it is shown that the condition
limry =0, (2.6)

N—oo
is not sufficient for (2.3). A class of processes is defined for which (2.6) holds,
and such that,

lim P{r;,}(ZNK— V2(1 — ry) logNg) <z} =D(x), (2.7)
K—co
where
D (z) = (2m)~V/2 fxe“"/z dt, (2.8)

and {Ng, K = 1,2, ...} is an infinite subsequence of the set of positive integers.
By the essential uniqueness of such laws (2.7) clearly contradicts (2.3). This is so
since in effect, if a limiting distribution exists for Zy, in a process of this class,
it must be normal.
Now it is useful to define a system of equally correlated r.v.s. Let {ry} be

given by

rg = 1 5

N =0, N0,

This measure will be designated by Py(*).

Lemma 2.2 (Bermax [2]). Let {Xy, N =0, +1, 4-2,...} be a sequence of
equally correlated jointly Qaussian random variables. Then the following represen-
tation vs possible:

Xy=U+ Yy, (2.9)

where {Yn, N =0, 41, +2, ...} are independent, and Gaussian r.v.s. with means
zero, and variances 1 — o, and U is Gaussian with mean zero, and variance g,
and is independent of the Yy .

This representation can be verified directly.

The general method of verifying the property (2.7), is using Lemma 2.1, to
compare, for each Nx the behavior of Zy,, as given in (1.1), under the original
measure P(-), with that under the measure P, (-),

where 0 = TN,

Note that the second measure is, itself, a function of K. The following lemma
shows that if ry approaches zero sufficiently slowly, the limiting distribution of

14 Z, Wahrscheinlichkeitstheorie verw. Geb., Bd. 7
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Zy, under the equal correlation measures with p = ry, is Gaussian. The lemma
does not actually require that ry approach zero, but it includes this possibility.
It is, in effect a generalization of BERMAN’S result [2].

Lemma 2.3. Let {Py(-), N =0, +1, £2, ...} be the sequence of measures:

Py() =P, ().
It

lim 7xlog N/(loglog N)2 = oo, (2.10)

N-—>co
then
lim Py {r5*2 (Zy — 2(1 —rx)logN) <2} = D (z), (2.11)

N—oo
where @ (x) is given by (2.8).
Proof. For a given N, consider the r.v.s. X;, as given by
X;i=U®4 7™,
a representation, which is possible, by Lemma 2.2. Then
Zy=UW 4 Wy,
where Wy =max{Y®, Y™, ..., Y}.
The r.v. to be examined is
ry(Zy — Y2(1 —ry)log N) = r5*2 Uy + rz "B (Wy—)/2(1 — ry) log N). (2.12)
Clearly 751/2 Uy is Gaussian, with mean zero, and variance one, for every N. To

prove the lemma, then, it is sufficient to prove that the second term of the right
side of (2.12), becomes concentrated at 0, with increasing N:

lim Py {ry 2 (Wy — J2(1 —rx)log N) > (< — ¢)}
N—co

= lim Py {)/2log N(Wx/[)/1 — ry — }/21og N) + } (loglog N + (2.13)

N-—>o00
+logdm) > (2ralog N)12 f)/1 — ry 4 } (loglog N -+ log4 )
(£ — (2rylog N)1/2 E/Vl —rx + 1 (loglog N -} log4 m))} .

But WN/]/l — 7y i8, by definition, the maximum of N independent, normalized
Gaussian r.v.s. But by assumption (2.10)

lim (¢(2rylog N)12[)/1 —ry + (—) tloglogN) =0, Ve>0. (2.14)
N—o0
By (2.13) and (2.14), and Theorem 2.1, then (2.11) follows, q.e.d.
Lemma 2.4. Let P(-) refer to a stationary Gaussian process, with non-increasing
covariance sequence {ry}. Let {Ng} be an increasing sequence of integers. Let
Pg ()= Po(),
where 9 = rx,.
If
limry =0, (2.15)

N—>oo
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and 31>0, such that

Nk
Im N> |ry—ry, | =0, (2.16)
K-—oo j=1
then
K-»>o00

where Ag = {7';;/2 (Zy, — me <ux}.
Proof. By Lemma 2.1,
| P{4x} — Px{Ax}| = Dk = Dy,
where Dy is given by (2.5).
2 = (zr{®* + /2(1 — ry)log N)2 = 22ry + 2(1 — ry) log N +
1 20 /2rn (1~ ) Tog .

Let
dn = Suprg, (2.18)
E=N
0% = Sup 2rx/(1 + rx) . (2.19)
E=N

By the conditions of the lemma, it is clear that,

lim oy =0, (2.20)
N—oo
lim 6% =0. (2.21)
N—o0
So Sup(l — )12 = (1 — 6%) 12 < oo,

N=1

and in taking the limit that term can be replaced by a constant (1. We replace
Dy by the sum of D}, and D%, where the former involves summation from one
to [N?] and the latter from [N"] 4+ 1, to N — 1. Both are shown to approach
zero as a limit. Thus

v
Dy = O N-1+2ivgy > |rj| exp2(1 — ry) log N || [/(1 + |r5]) =<
i=1
< O3 N~1+2rv+y+(1~r)8] gy —>0, if y<l1— o,

where gy =exp2z)/2ry(l —ry)logN

approaches infinity more slowly than any power of N, and the inequality holds
for sufficiently large N.

N N
D% < Gy N1t 0=mdfyr) 3 |1y| < OLN#1 Y |y
j=1 i=1
for sufficiently large N. By Lemma 2.1, (2.17) follows, q.e.d.

Theorem 2.2, Let ry be a sequence satisfying the conditions of Lemmas 2.3, and
2.4. Then (2.7) follows directly by combining the results.

Now, a class of processes is constructed, which satisfies the conditions of
Lemmas 2.3, and 2.4, and hence of Theorem 2.2. Thus it is established that (2.6)

14*
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is not a sufficient condition for (2.3). Let
{U]g,'i, E=12,...,1=0,41,12, }

be a doubly indexed sequence of mutually independent normalized Gaussian
r.v.s. Let

§ 1 N+lec
Xy= D ag—=— Uk,i,
k=1 VM i=N+1

(=]
where 2&,‘2c =1.
k=1

Clearly EXy =0,
rNEEXka+NE§:a,%(1___ZV~)+= z a,zc(l_-N—)
=1 M My

{k: Mi> N}
Since ry < zai,
{k: Mi>N}
(2.6) is verified.
Let us choose the sequences {My} and {N}, so that

My < Ny <Mk+1, k= 1,2,...
and furthermore

lim N} (Mg/Ng) =0, (2.22)
k—oo0
and
limsup M} 1 (Ng/Mps1) < o0, (2.23)

k—o0

for some 4 > 0.
Let ¢ be any real constant, 0 < ¢ < 1, and N sufficiently large. Then
N = z

=> a1 — Mpa/Mp) =c > af.
{k: Me—1> N} {k: Mg-1>N}

So ry can be made to approach zero as slowly as desired, by making My approach
infinity sufficiently fast. So (2.10) is verified.
It remains only to verify that (2.16) is satisfied. Note that

1 & (1_L’)+_(1__2l>+=min(N,M)—l
i=1

N M M 2 max(N, M) ’
N oo .
1 o min(N, M) — 1
Hy=— TP —IN)= D @
N szl(’ w) k;k 2 max (N, M)
M,—1 Niy—1
N]);HN,‘=N7;; a? I N, +NIA$ Z aETM,. =
{v: Mpy=Ny} {v: M,> N}
< N} (Mp/2Ng) + M} (Ng/Myi1) > al >0, as k—>oo.

r=k+1
So all of the conditions are verified. Specifically, if
Mk — 2221:, Nlc — 222k+1 (224)

then (2.22) and (2.23) hold, as it does for any {M;} or {N;} which approach co
more rapidly than (2.24).
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It is interesting to note that these processes have a property even stronger
than (2.6). Specifically they are purely non-deterministic. Let Fx be the sub-
sigma field of events spanned by Xy, Xy—1, ... . Let

F oo = my N
N=—oc0
Then & _ is called the tail field. Clearly each of the variables Uy, ; is independent
of #F_.., and consequently, so is Xy for each N.
As is well known, using the spectral representation of a process, (see GRENAN-
DER and ROSENBLATT [11]),

ry = J'costdG(w).

—-n
It is worthwhile to find conditions sufficient for the above results, in terms of

the spectral d.f. G(w). In ZvemunD [19], page 13, it is shown that a sufficient
condition for (2.2) is that

f 92 (w)dw < oo, (2.25)

where G'{w) is absolutely continuous, and
g(w) =dG{w)/dw .

From page 46, it can be concluded that a sufficient condition for (2.1) is that
g(w) satisfy a Lipschitz condition, of order «, for some «. From page 45, it is
possible to conclude, from the absolute continuity of G'(w), that (2.6) holds. But
the spectral distribution function of a purely non-deterministic process, is nec-
essarily absolutely continuous. So absolute continuity is not sufficient for (2.3).
For general (not necessarily Gaussian) stationary processes, CHYBISOV [4] has
found that the limiting distribution of Zy, is, under certain circumstances, the
same as in the case of independence, provided a ‘“‘uniform mixing” condition
holds. It is defined as follows. Let % ; be the sub-sigma field generated by

Xy, Xovr, Xiva, .o, Xy
If Dy = Sup | P{4 B} — P{4} P{B}| >0 as koo

(A&F -0, ~t; BEF i+k,00)
the process is said to be uniformly mixing. KoLMocorov and Rozawov [13] have

proved that if a Gaussian process is uniformly mixing its spectral d.f. must be
absolutely continuous, and furthermore g () can have no diseontinuities. Clearly
then (2.25) holds. So uniform mixing is sufficient for (2.3).

Seetion 3
It follows from (2.3) that
Zy — Y2Tog T 0, ip.
hat is that Zy is “stable in probability”. From this it follows that Zy is “‘relatively
table’ in probability, i.e.
Zn[y2logN -1, ip. (3.1)
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In addition, BERMAN has shown in [3] that (2.6) is sufficient for (3.1).

In this section, conditions are found wich are sufficient, respectively, for
“stability” and “‘relative stability’” almost surely (a.s), or, “with probability one’.
The problem is decomposed into an “upper” one (3.2), and a “lower” one (3.6).

Theorem 3.1. If the variables Xy are normalized, and Gaussian,
P{ limsup(ZN-——l/ZlogN)gO}:l‘ (3.2)

N—eo

Remark. It is important to note that this result does not require any kind
of condition involving the dependence.

Proof of Theorem 3.1. 1t is sufficient to prove that for every ¢ > 0,
Zn > /2108 + ¢

only finitely many times, with probability one. For this it need only be shown
that for every ¢ > 0,

Xy> ]/2 logN + ¢
only finitely many times, with probability one. But

S P{Xy> 20K + &} = [¢(@)dD (&) (3.3)
k=1 0

where -
g(x) = (max: V2logK + e < x) <exp(x — £)2/2.
k

So the integral (3.3) converges and the Theorem follows, by the Borel-Cantelli
Theorem (Lokve [14], page 228), q.e.d.

Now, the “lower” part of the problem (3.6) is considered.

Let ¢ > 0 be arbitrary. Define

N(M) = min: {{/2log K > Me} = [exp M22/2] + 1, (3.4)
K

where [#] denotes the greatest integer less than or equal to x. Thus we have a
subsequence “‘of very low density” of the sequence of integers, which will be
useful in what follows. Define

4,00 = YT og W, (31},
It can easily be seen that, for all ¢ > 0,
MesA(M)=Me4- Mg lexp(—M262/2) (1 +0(l)) as M —>oo. (3.5)
Lemma 3.1. If Ve > 0,
Zyan=d4:(M)—¢
only finitely many times, with probability one, then
P{ liminf(ZN—m)?__O} =1, (3.6)

N-—>oo
Proof. Tt is sufficient to show that for arbitrary ¢ > 0,
Zn = [/2 logN — ¢ (3.7)
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only finitely many times, with probability one. Because ¢ is arbitrary, eq. (3.7)
could as well be written

Zy <}/2log N — 3. (3.8)
Suppose (3.8) holds infinitely many times. Let Ng be so chosen that for all
N (M) > Ny,

ZNS(M) > AE(M) — E&.
Let N’ be an integer, such that (3.8) holds, and

No<N (M) <N =N (M +1)
for some suitable M. Then
Ae(M)— e Zy gy SZn <]2log N —3e < A(M + 1) — 3¢.
So
A(M+1)—A4,(M)>3s—e=2¢. (3.9)

But (3.8) holds infinitely many times. So (3.9) must also. But this contradicts (3.5).
Lemma 3.2, 4 sufficient condition for (3.6) is that

im (log N) P{Zy < }2log N — e} =0, Ve>0. (3.10)

1
N—>oo
Proof. A sufficient condition for (3.6) is that,
Wm M2 P{Zy ) < Ae(M) — e} =0, V&>0 (3.11)

M—>co

since this clearly implies the summability on M of P{Zy ) < A:(M)— &}. So
by the Borel-Cantelli Theorem, and Lemma 3.1, (3.6) is true. But by the de-
finition (3.4) (3.11) is equivalent to (3.10), q.e.d.

Taking the first term of the power series expansion of — log F(x) about
F(x) =1, it clearly follows that

—logF(z)=(1—F@&)1+0(1)), as Fz)—>1. (3.12)
Lemma 3.3 (CrRaMER [5], page 374). If X is a normalized Gaussian r.v.
P{X >z} = d(@),
and lim P{X > z}/d(x) =1, where

Z—>0

& (x) = (2a)-12z-Lexp (—22/2) (3.13)
and so by (3.12) above
lim (— log P{X < a})/d(x)=1.

T—> o0

Lemma 3.4. If {Xy, N =1,2,...} is a sequence of independent, normalized,
Gaussian r.v.s., then

lim(logN)’fP{ZN§V2010gN—a}=0, Ve>0, Ybk>0, C>0.

N—o>oo
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Proof. By Lemma 3.3, and e.g. for any ¢, 0 < ¢ < 1, and sufficiently large N,
— Nlog®()2Clog N — &) > cN ¢ (]/2Clog N — &).
(log N)k D¥(J2Clog N — &) < (log Nyt exp[—c (|2Clog N — ¢)~* X

X expe(|/2ClogN——s)]~—>O, as N oo,

q.e.d.
Theorem 3.2. If

S r% < oo,
N; ¥ (3.14)
ZN—V210gN—>0, a.s.
Proof. By Lemmas 2.1, 3.2, and 3.4, it is sufficient to show that

lim (log N) Dy = 0,

N—oo
where Dy is given by (2.5a), and
2= (]/mﬁ— g)2=2log N —2¢e]/2log N + &2.
Then
- N
(log N) Dy = (log N) (exp2a]/2logN)N—1z |7;] exp (2log IV |7} /(L + |7;])) -
i=1 (3.15)

Consider DY, the expression on the right hand side of (3.15) above, but with
summation from one to [N*] where 0 < ¥ < 1. Then

DY < b1log N(exp2¢)2log NyN-C-9+%" 50, as N->o0

where dy-, and 0% are given respectively by (2.18) and (2.19). Now consider the
remaining part of (3.15), D%,

* N-1
DY <log N(exp2¢]Zlog M) N'IT" 5 |ry],
j=[N7]+1

+  N-1
(D)2 < (log N2 (expde | Zlog M) N 542,
j=[N?]+1

which approaches zero, since (3.14) implies (2.6), and hence (2.21), g.e.d.

Lemma 3.5 (BeErMAN [3]). Let P and P’ be two normalized Gaussian measures
characterized, respectively, by the covariance sequences {ry} and {ry}. If

v < r}vfor all N,
then
P{Z_N _S_ G} é P'{ZN é C}.

In other words P{Zy =< ¢} is a monotonic function of the covariances.
We define the function

L(N) = exp (}/log N/hx) (3.18)
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where iy is a non-decreasing sequence such that

lim hN = 00,
N—oo
Ya>0, lim (logN)—“hN =0,
N->o0
and lim sup %,,/]/8z () log L(N) < co.
N—>co
Let

Ay = 2(1 — 85w log [N]L(N)].
Lemma 3.6. If
limrylogN =0,

N—>oo
li]Il (5L(N) logN = O,
N-—co

and
lim (dy — }/2log N) = 0.

N—oo

Proof. Let
hy = (8w log N)-12,
and
by = by -

Clearly hy satisfies the conditions (3.17). By definition (3.16),

hN log L(N) = 1/1;,%‘_1\7*,

from which (3.19) follows. Eq. (3.20) follows directly.
Lemma 3.7. A sufficient condition for (3.6) is that

Ve>0, lim(logN)P{Zy <Ax—¢}=0.

N->o0

Proof. Note that by Lemma 3.6, for sufficiently large N,
P{fy < Ay— ¢} < P{Zy <]2logN — ¢/2}.

201

(3.17)

(3.18)

(3.19)

(3.20)

The result follows from Lemma 3.2, and the fact that ¢ is arbitrary, q.e.d.

Theorem 3.3. If
limrylogN =0,

N—oo

Zy —|2log N >0, a.s.

Proof. By Lemma 3.7, it is sufficient to prove

Ve>0, lim(logN)P{Zy <Ay— e} =0.
N—eo
Let
ZE’;Z max XkL(N)'

1<EZ[N/L(N)]
Since, clearly Z% < Zy, it is sufficient to prove

Ve>0, I
Now

m (log N) P{Z% < Ay — ¢} = 0.

(3.21)

(3.22)
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But all correlations among the variables in (3.22) are < d1y,. So, by Lemma 3.5,
it is sufficient to prove that

Ve>0, lim(logN)PX{Z¥<Ay—e}=0, (3.23)

N—>co0

where P3(-) is the equal correlation measure with ¢ = Oz But using the
representation (2.9), the expression (3.23) is dominated by

(log N) PH{U < Ay — ¢/2} + (log N) PH{Wx < Ay — 52}, (3.24)

Recalling the definitions (3.18) of 4y, (3.16) of L(N), and Lemma 2.22 the ex-
pression or the left hand side of (3.24) is dominated by

hylog L(N) PE{U[}1 — é1v) < |2log L(N) — £[2} <
< C'hylog L(N)¢ (|2log L(N) — £/2) >0, as N oo,

for any ¢’ >1, by Lemma 3.4, since U/]/ 1 — Oz is Gaussian, with mean zero,
and variance one.

By the definition (3.16) of L(N), Lemma 3.4, and the fact that Wx/]/1— 0z,
is the maximum of L(X) independent normalized (Gaussian r.v.s., the expression
on the right side of (3.24) converges to zero also, q.e.d.

Again it is natural to inquire whether

lim 7y = 0 (3.25)

N-—>00

might be sufficient. To show that it is not, recall the class of processes considered
in Section 2. From (2.7) it can be concluded that, on the subsequence {N}

Ve>0, limP{Zy, — }2(1 —ry)log Ny >} =0. (3.26)
k—o0
This is consistent with (1.7) only if
limry Jlog N =0, (3.27)
N-—>o0

but, it was noted that in this class, ry may approach zero, as slowly as desired.
Therefore (3.27), and hence (1.7) may be violated.

Theorem 3.4, below, will show, however, that (3.25) is sufficient for Relative
Stability.

Lemma 3.8. If for every ¢ >0, a >0

Zymy=al2logNe(M) (1 —¢) (3.28)
only a finite number of times, then for every & > 0, and the same value a,

Zy <al2log N(1 — &) (3.29)
only a finite number of times.

Proof. It is sufficient to show that, under the hypothesis, for any ¢ > 0,
Zy <a)2log N(1 — 2¢) (3.30)
only a finite number of times. Let M be an integer, so chosen that if ¥ = M,
(3.28) does not hold. Let M’, N’ be integers such that
Ne(Mo) S N:(M')= N = No(M' + 1),
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and so that for N’, (3.30) is true. Then
a)2log Ne(M) (1 — &) < Zy, ) < Zy < a)2logN' (1 — &) <

e - = ! o 3.31
<al2logNe(M +1)(1—2¢). (8:31)
Therefore,
a(e +0(1)) (1 — &) —ae()2log No(M) + & +0(1)) =0,
for infinitely many M, which plainly contradicts eq. (3.5), q.e.d.
Lemma 3.9. If, for a fized a > 0
Ve>0, lim(logN)P{Zy <a]2logN(l —&)} =0 (3.32)
N—eo
then
P{limsup (Zy[]/2logN) <a} =1. (3.33)
N—oo

The proof is identical to that of Lemma 3.2
Theorem 3.4. If

limry =0
N—>o00

then ZN/Vﬁﬁ—» 1, a.s.
Proof. From Lemma 3.9, it is clear that what is to be proved is (3.32) with

a = 1. Let g be arbitrary > 0. Let & be so chosen that §; << g, where dy is given
by (2.18). Let

Z¥ = max X, .

1=/<Nk
First, it is proved that
P {libjrninf(Zg,‘)/]/Z logN) = |1 — g}, =1. (3.34)
Since
. log Njk
wone log® 1

it is sufficient for (3.34) to prove that

P {liminf(Z%)/]/2 log Nk) = |1 — e} =1.

N->o00

Substituting N for Nk, by Lemma 3.9, it is sufficient that (3.32) hold with
a = |/1 — p. But using the representation (2.9), (3.32) is dominated by

(log N) P{U <)/2(1 — p)log N — ¢/2} +

+ (log N) P{Wx < J2(1 — g)log N — ¢/2}. (3.35)

First consider the expression on the left side of (3.35). Since U/ Véis normalized
and Gaussian, by Lemma 3.3, and the form of ¢ (2) (3.13), it follows that this
expression approaches zero, as N approaches infinity. Clearly Wy/ ]/1 — p is the
maximum of N independent normalized Gaussian r.v.s. and so by Lemma 3.4,
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the right side also approaches zero. Since clearly

Zn=2Z®,
P {]iminf(ZN/]/2 log V) =1 — e} =1,
N—oo

but ¢ was arbitrary. So the result follows, g.e.d.

It is clear from the remarks at the end of Section 2, that uniform mixing is
sufficient for stability, and that absolute continuity of the spectral density func-
tion is sufficient for relative stability.

Section 4

Let {X(f), — o0 <t < oo} be a separable, measurable version of a stationary
Gaussian stochastic process with real valued parameter space. It is assumed
without loss of generality that

EX(@#) =0,
EX)X(s+t)y=r(),

where 7 (f) is, of course, the covariance function, which, by stationarity, does not
depend on s. Let
Z(t) = max X (s). (4.1)
0=s<t
The limiting behavior of Z(t) is investigated.
Two theorems are stated concerning the sample functions of such processes,
which are due to BrLavev [1].

Theorem 4.1 (BELAYEV). The sample functions of a S.G. 8. P. are either 1) con-
tinious everywhere, with probability one, or 2) unbounded in every finite interval,
with probability one.

Theorem 4.2 (BELAYEV). The sample functions of @ 8.G.S. P. are continuous
everywhere with probability one, if

3> 1:limsup [logt|B(l — r(t)) < oo. 4.2)
t—0

If the sample functions are of the type 2, above, it is apparent that
Z(ty =00, Vt>0.

So, of course, we are only interested in those processes, whose sample functions
are of the type 1. The condition (4.2) is very mild and is easily verified in the
cases considered, hereafter.

For discrete parameter processes, such as those considered in the previous
sections, the conditions imposed consisted entirely of what are called “Mixing
conditions’; that is those which concern the behavior of the covariance sequence
{rn} as N becomes large. For continuous parameter processes, two types of con-
ditions are involved. The “mixing conditions concern the behavior of r(f), as ¢
becomes large. The “local conditions” involve the behavior, as ¢ approaches zero,
as for example (4.2).
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To facilitate some of the proofs, which ensne, the following quantities are
defined. Let £ and w, be two real numbers, such that

0<e<l], O0<ow.
Let the intervals {Ix, k¥ =1,2,...} be defined
i={k—14+¢2)0 <t<(k—¢2)0}, k=1,2,...,

r EOI}‘-
k=1

and let I¢ be the complement of I. Let
Z(e, w; t) = Sup X (8)x (s, w; s},

0=s=t
where
1, tel,
rewoin={" LT
Note that
Z(0, w3ty =Z(t).
Let Zy(t) = max X (kt/N),
1SkSN
and
Zin(e, w3 t) = max X(kt/N) (e, ; kt/N).
1SE<N
In addition to the original measure, we define the measure P%(:) in the
following way. Let
Fro=F{X@#), k—DNoit<ko}.

Clearly 9’:.57( U fk,w),

where & is generated by the entire process. On each sub-sigma field %, let
PSi(-)=P().

Then P*(-), defined on #, is the product measure. To indicate the specific
meaning, let {Xy(f), k = 1, 2, ...} be a sequence of processes, mutually indepen-
dent and each having the measure P(-). Let

X* () = Xy (8) -

Then X*(f) has the measure P (-), which is clearly not stationary.

In addition, if 1 is a positive real number, P%¥%(-) is the measure defined for

X () = Yiyu(®),

where the {Y(f), k = 1,2, ...} are mutually independent processes, each hav-

ing the eovariance function, considered by SLEPTIAN [17]:
rf) = (1 — Alt])+.

It is assumed that Aw < 1. The lemmas which follow, support Theorem 4.3.

Lemmas 4.1, and 4.2, relate Z(¢, w; £) and Zy (¢, w; f) under the measures P(-)
and PE(-).
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Lemma 4.1. Let P(-) be a stationary measure conferring continuity. Let a, A be
two numbers such that 0 <a <1, 4 > 0. If

N < o(l — )2, (4.3)
then
P{Z(s, w;t) —Zn(e, w3 t) > A} <
< NS 2 $(A(1L — a)abjo 2R N)) (44)
k=0
where ¢ (x) is given by (3.13), and
() =201 —r()). (4.5)

The result remains true if ¢ == 0. The lemma is still true, if P¥(-) is used,
instead of P(-).

Proof. Let the events B, By, k= 0,1, 2, ... be defined as follows:
B={Z(e w;t)—Zy(e, 0;t) > 4},
By = {Zgny(e, 03 8) — Zopy(e, 03 8) > A(1 — a)ak}.
By continuity,

o0

Z(e, w3ty — Zn(e, 03 t) = > (Zgenn (e, 03 1) — Zpy(e, 05 1))
=7;;121 (Zorn (e, w3 t) — Zy(e, 03 1)) a.s.
Clearly
P{B} _s_kiop{Bk} . (4.6)

Consider the following sets of points.
Let P =j#2kN, j=1,2,...,2kN.

Evidently the point &9 is midway between the points £ and £9,. The con-
dition (4.3) guarantees that if #;7} belongs to I, so must either £*; or £% or both.
So if By is true, one of the variables X (#7)) must excede its ‘“neighbor” by an
amount greater than or equal to A{l — a)a*. If the “forward” neighbor does
not belong to I, we use the ““backward” one. We call this event ;. Clearly, by
Lemma 3.3,

P{E;} S P{Y;> Al —a)a*} < ¢(A(l — a)ak[o(t[2¥+1N)). 4.7)

But
2% N
Bxc|JE;. (4.8)
j=1
Combining (4.6), (4.7), and (4.8), we get (4.4}, gq.e.d.
Lemma 4.2, Let X (£) be a 8.G.8.P. with covariance function r(t), such that

Ja > 0:limsupt~—2(1 — r(t)) < oo. (4.9)
t—0
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Let N (¢) be an integer function of t, such that

lim N (8) /¢ (log )% = oo, (4.10)
t—co
VB>1,imN ()t =0, (4.11)

{—o0
then
(2logt)\2 (Z (e, w; t) — Zygy(e, w3 1)) =0, i.p.

under both measures P(+) and P¥%(-).

Proof. Clearly the condition (4.9) implies (4.2), and so by Theorem 4.2, the
sample functions are continuous with probability one. Let ¢ > 0 be arbitrarily
chosen. It is sufficient to show that

lim P(f) =0, (4.12)

I— o0
where
P(t) = P{Z(e, w; t) — Zyy (e, w3 1) > &/(2logt)1/2} <
< S 2N () (e (1 — a) a¥/(2log V2 o (4251 N (1) 4.13)
=0

by Lemma 4.1 where a is such that 0 < @ < 1, and will be chosen later, ¢(z) is
given by (3.13), and o2(f) by (4.5). Let p(t) be arbitrarily chosen, so that

limy(t) = o0,

t—>o0

VB >0, limy(t)/tt=0. (4.14)
{—>o0

Let N (t) = t(logt)2/«y(f).
Then N (¢) satisfies the conditions (4.10) and (4.11). It is worthwhile to emphasize
that 1 (¢) can approach infinity as slowly as desired.
By (4.9) there exist constants #y, and Cy, such that, if ¢ < ¢,
1—r() < Cotx/2. (4.15)
By (4.5) and (4.15),
G2(tJ2LN (1)) < Co2~®+D (logt)2y-2(t), (4.16)
provided #/25+1 N (¢) is less than #5. We will say instead that ¢ > ;.
Let us define the quantities
y(t) = Cze(1 — a) 2%/2(log£)12y®/2(f)
O q-202 (4.17)

It is clear that a can be chosen so that C > 1. Then by (4.13), (4.16), and (4.17)
P() S N(@t) 2 28 (yOF) = (N (t)[y(1) 2, (2/C)F exp(— y20%[2) . (4.18)
k=0 k=0
Since C is fixed, ko can be so chosen that if k& > kg,
0% > kC2 .,
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The expression P (t), (4.18) then is expressed as the sum of P; (¢) and Pjy(t), where
the former involves summation from one to kg, the latter from k¢ 4 1 to infinity.
That is

Pa(t) = (N @)/ 2712/(0)3(2/0)’”9111)(— y2O%)[2 =
kE=Fko+1

= (N ()])2my (1)) (2/C) exp(— ko C2y%2)/(1 — (2/C) exp(— C2y22)) .
Clearly then to prove the Lemma, it is only necessary to show that if C; > 1,
lim (N (8)/y (1) exp(— CTy2())/2 = 0.

t—o0

But this is equal to
lim (3 () (log )2/*/y (¢)) exp{logt — OF (e(1 — @) 2%2 (log £)1/2 p/2(1))?/2} =
t—

= lim (p (¢) (log 1)/ #/y (¢)) exp {log ¢ (1 — O] e3(1 — @)22%9%()/2)} =0,  q.e.d.
{—>oco0
The following lemmas concern the upper tail of the distribution of the maxi-
mum for a particular process. The first is due to Suep1AN [17].

Lemma 4.3 (SLEPIAN). Let X (8) be the 8.GQ.8.P. having the covariance function
r() = (1 —|t])*. (4.19)

Let Q(z, t: u) dt be the conditional probability that X (t) reached x for the first time,
in the interval of time t < s <t 4+ dt < 1, given that X (0) = u < =.
Then

Q(z, t:u) = (2m) V2322 — )12 |x — u| exp{— (& — u(l —1))2/2£(2 — 1)},
g.e.d. (4.20)

Lemma 4.4. Let X(f) be a S.G.8.P. defined on the interval 0 <t <1, with
covariance function (1 — A|t|)*. Let &, and w be arbitrarily chosen, so that 0 < & <
< w < 1. Let

Y= max X(s),

{we/2<s<o(l1—¢/2)}
Fx)=P{Y <a}.
Then
lim (1 — F@)/2r)Y2w(1 — &)zexp(—22/2)=1. (4.21)
ZT->00
Proof. Let Q(x, t) be the unconditional version of the probability specified in

Lemma 4.3, and let
o(1—¢/2)

J = [Q(x, t)de.

wef2

Then J is the joint probability that X (0) < x, and that x is exceeded somewhere
in the whole interval we/2 < s < w (1l — &/2). Clearly

JES1—F(x)=J + P{X(0)>«}. (4.22)
First Q(z, t) is evaluated.
Qx,t) = Cm)~V2¢11, (4.23)
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where

I =(2n)y- 12122 —f)-1/2 jplx —u)exp{—(z—u(l —)2/2¢2 — 1)} x

—o0

X exp(— u2/2) du .
First letting u = v + =,

I=02nt@2—)-2 f[ﬂ exp{— (v(1 — ) —x$)2/2¢(2 — &)} exp{— (v + z)%/2} dv.

Now consider the expression in the brackets, multiplied by 2¢(2 — #)
(vl =8~z +t2—1t)(v+2)2 = (0 + 28)2 4+ 22(2f — 2).
Now let w = — (v + 21)/|/#(2 — ¢). Then

I=e %21 + 1), (4.24)
where

It = )12 Yt(2 — 1) [wexp(—w?/2) dw
—at|yi2—1)

= 2m)12)/8(2 — 1) fwexp(— w?(2) dw = (4.25)
2 yie—1)
= (2a) 1212 — t)exp{— 22¢/t(2 — 1)}
since the integrand being odd, the integral from —ztf[/t(2—¢) to xt/]/t(2—t)
vanishes, and
Iy = (27) 2t [exp(— w?(2) dw = 2t D (xt)t(2 — 1)) . (4.26)
=z Vi2—1)
Combining (4.23), (4.24), (4.25), and (4.26),
Q. 8) = (2m)V2e =R (2m)12-V2(2 — )2 exp{— (21)2]26(2 — 1)}) +-
+ @A) 2 e 22 ® (¢ |12 —1)).
Now, if we/2 <t < w(l — ¢g/2), it is clear that

lim @ (x,t)/(27)~V2xe~*"% = 1, uniformly in ¢.

T—> 0

By definition of J, and eq. (4.22)
(1 —F(x)) =J(1+o0()),

where

J=w(l —¢ezexp(—22/2) (1 +o(1)), q.e.d.

Lemma 4.5 shows that a d.f. F(z) lies in the domain of attraction of the d.f,
A(z), if it has the upper tail equivalent (4.21).

Lemma 4.5. Let F(x) be a d.f. such that
lim (1 — F(x))/(27)"Y2cxexp{— ?/2} = 1.

ZT—> 00

15 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 7
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Then
lim Fy(ayx + by) = A¢(x), (4.27)
N—coo
where ay = (2log N)-1/2
and by = (2log N)1/2 4 1 (2log N)~1/2 (log log N — log m)

and A(x) is given by (2.4).
Proof. By the asymptotic relationship (3.12), it is sufficient to prove that
ImN(1 — Flayx + by)) =ce™%. (4.28)

N-—>co
Clearly
anx -+ by = (2log N)1/2 4 (3loglog N[(2log N)1/2) (1 4 o(1)),
(ayx + by)?/2 = » + log Jlog N -+ log N — log ]/:r_z—i— o(1),
from which (4.28) above follows, g.e.d.

Lemma 4.6. Let X (t) be characterized by the measure P%(-). That is assume it
has the covariance function,

r(s,ty=1—2At—s|, if [s/o]=/[Ho],

=0.
Assume also that Ao < 1. Then
lim P{(A ) (Z(e, w3 1) — B()) < 2} = 4119 () (4.20)
t—o00
where
A(t) = (2logt)-12, (4.30)
B(t)y = (2logt)l’2 + 1 (2log#)-1/2 (loglogt — log n) . (4.31)

Proof. First the time axis is stretched. Let 7 = Af. Then

Z(e,w;t) =max Yy, Y*,

1=kt
where
Yi= max X(s),
{(E—1+e/2o<s<(k—e/2)m)
and
Y*= max X(s), if t=({to+¢e2w,
Ho+ej25s <t}
=0, if t<(tlo+e2)o.

By stationarity,
P{A@)(Y*—Bi)) =2}l =
< P[(A (t))—l(ozggf(s) - B(t)) < x] —~1, as t—>o0.
So Y* can be disregarded.
Replacing t again by A, by Lemma 4.4,
lim P{Yz > z}/(2n) Y2 Aew (1 — ) wexp(— x2/2) = 1.

T—>r 0



Maxima of Stationary Gaussian Processes 211

So using the relationship (4.28) in Lemma 4.5,
lim[tjw] ol —e) P{Yr>A{t)x+ B{t)} =41 —¢)e=.

{—o0

Since the variables Y are mutually independent, the result follows from Lemma
4.5, q.e.d.

Remark. It is important to note that the result of Lemma 4.6, is independent
of w.

Lemma 4.7, Let % () < t be a function such that
limsup(t —#() =0 < eo. (4.32)

i—c0

Then
lim P{(4 ()7 (Z(x()) — B(t)) < «}

{—o00
exists if and only if
lim P{4 (5L (Z(t) — B(®) <=}

{—o0

does, and they are both equal, where A (t) and B(t) are given respectively by (4.30)
and (4.31).

Proof. By stationarity,
P{AW®) L Z @) —ZW)>e} S P{AW)2Z(c) >} -0, as t—>oo,

q.e.d.

Theorem 4.3. Let {X (f), — oo <t < oo} be @ 8.G.S.P. with covariance function
r(t}, such that

Imt-1(l—r(@)) =4, 0<i<oo, (4.33)
t—0
Ve>0, lim D(x(t)) =0,
t-—>o00

where

Nty
Dy (t) = t-2(logt)™ > (N (t) — J) | rs(J t/N (1)) | exp {rs (J ¢/(NV (t)) (2logt +
J=1

(4.34)
+loglogt)/(1 + 7o (J¢/N ()} »
and
re{t) = max (r(e), r{t)). (4.35)
Then
lim P{(4 (§))1 (B(t) — B®) <a} = (A@)}r = A — log ), (4.36)

t—>00

where A (¢t} and B (t) are given by (4.30) and (4.31), A(x) by (2.4), N (¢) is such that
(4.10) and (4.11) hold and x(t) satisfies (4.32).

Proof. Let e and @ be arbitrarily chosen, as explained in the beginning of this
section. Let

P(z,1) = P{A®) (&) — B@) <2}

15%
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Let P(x, &, w;1), P*(x, &, w;t), and P§*(z, &, w;t) be similarly defined, using
Z (g, w; t) instead of Z(t) and the measures introduced at the beginning of this
section. Let Py (#, ¢, w; t) and P¥,(x, &, w; t) be the corresponding functions
using Zy (¢, w; t).
Let A-, and A+ be arbitrarily chosen, but so that
1—2-[t—s| Sr(|t—s]) <1 —At|t—s] (4.37)

provided |t — s| = w. Recall that, with the exception of P(-), these measures
assign mutual independence on the various intervals I;. Define the event

= { Sup X(s) > A () + B(t)]
sel0,1N I°

It is the event that 4 (1) x 4+ B(f) is exceeded in the interval {0, {] on the comple-

ment of I. Clearly, by Lemma 3.5,

| P(w,%(8)) — Pz, e, 0,%(t)) | < P{E} =< PX{E} < P¥%_{E}.

Let
yle) = lim Py - {B} =1 — (A@)*e.
Then
liriilp (hgglf) Pz, t) < (g)lirtnjipCiEg;f) Pz, e, w;t) + (—)wle),
and
lim (£) = 0. (4.38)

By Lemma 4.2, and by (4.30),
(Z(e, w;8) — B()) (A1) — (e w3 ) — BE) (A(H)™)
= (2logt)2 (Z (e, w3 t) — Zyy(e, w3 t)) =0, ip.

with respect to both of the measures P(:) and PX(-), and similarly with s(t)
instead of t. By the definitions this implies that
lim sup (lim i.nf) Pz, e,0,%() = () Pyple 4+ (—) &, & w,%(f))

{—>o00 {—>o0

for all ¢’ = 0, and similarly for P*. Now it is shown that
lim | Pyg) (2, &, w, % () — Py (@, & 0,%(#)] =0. (4.39)

{—>oc0
By Lemma 2.1, this expression is dominated by D;(f), (4.34). The term of the
form (1 — r2)~12 can be replaced by a constant, since the use of the & width
intervals empowers the definition (4.35). The summation is assumed to take place
only on those pairs of points such that ¢f/N (£), and j¢/V (f) are both on I. Also,
in this case,
c2 = 2logt - loglogt - O(1).
So (4.39) follows and hence,
lim sup (lim inf) Pz, e, w,2()) = (=) limsup <lim inf) P*x - (—) ¢, 8 0,%(1))

t—>o0 {—o0 {—>00 {—o0

for all &', ¢, and all x.
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But by (4.37), and Lemma 3.5,
PF¥ (w6, 0;8) < P*(z, 6, 0;8) < PF*(x, 6, 0;t).

By Lemmas 4.6, and 4.7,
lim PEE, (z, €, w, % () = (A (x) 719,

{— o0

Combining the above results,

lim sup (liminf> Pa,x(t)) < (=) (A -+ (=) N7+ (—)p(e).

{—c0 l—o0

But ¢ and. &' are arbitrary positive. The result does not depend on w, which is
also arbitrary. The local character (4.33) of the process makes it plain that A+
and A~ can be chosen as close to 4 as desired, by making o sufficiently small.
Recalling (4.38) it follows that

lim P (, % () = (A (x))*,

{—o0

and hence, by Lemma 4.7, the theorem follows, q.e.d.
The lemmas and theorems which follow simplify the condition (4.34).

Theorem 4.4. If
Tmit(1—r@®)) =21, 0<i<oo,

I—co
and
lim 7 (#) (log £)® = 0 (4.40)
{—>c0
then

lim P{(4 () (Z(t) — B®) S} = Ar(x),
{—co

where 4 (8), B(t), and A () are given by (4.30), (4.31), and (2.4).

Proof. It is only necessary to show that the condition (4.34) of Theorem 4.3,
is satisfied. Let D (t) be expressed as the sum of D1 (f) and Dy (t), where the former
contains the sum from one to {{*-1 N (f)], and the latter from [{V-1N(f)] + 1 to
N(@{) — 1, and y, 0 <y < 1, will be specified latter. Let

d(t) = Sup r(s) (4.41)
t<s
and
O* () = Sup 27 (s)/(1 + 7(s)), (4.42)
t=s
and note that (4.40) implies
limr() =0,
{—>o0
and hence lim § () = lim §*(£) = 0.

{—>00 {—c0

So exp {r¢(f) (2logt + loglogt)}/(1 + r4(£))} <
= exp{d(¢) (logt + }loglogt)} = 5 (logt) ¥=2
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Recalling the representation of N (f) and the assumptions (4.10) and (4.11)
Dy(t) St~ A-%N+7 (Iogt)3+9@)2 50, as t-—>o0

since by (4.14), y(f) approaches infinity more slowly than any power of ¢. y is
chosen less than 1 — §(g). This is clearly possible for every fixed ¢ > 0.
Now consider Ds(t). By (4.40) above

lim 6 (t7) (21ogt + loglogt) = 0
t—oo0

and
0 < exp {re(t) (2logt + loglog1)/(1 + re(6)} <
< exp{d(t?) (2logt + loglogt)} -1, as t-—>oo.
So by Theorem 4.3, it remains to prove that

lme2 (gt S (V) —f)relitN(H) =0.

t->c0 P =IO +1
Recalling the definition of N (t), this expression is less than
8(tY) (logf)3y2(t) -0, as {—>oo0, (4.43)
if y2(t) is set arbitrarily equal to
(6 (t7))-1/2 (log#)=3/2 —>00, as t—>o0.

If 9 (#), so defined, does not satisfy (4.14), it can be replaced by a function which
does, and (4.43) is still valid, q.e.d.

Lemma 4.8, If

[+ -]

[r2(@)dt < oo, (4.44)
0
then
limr(f) =0. (4.45)
{—>o00

Proof. It will be shown that if (4.45) is not true, then (4.44) is not. In effect
we assume there exists a real number @ > 0, such that |7 ()| > a infinitely many
times. Consider a point ¢ such that this is true. Let § > 0 be arbitrarily chosen.
Lette (' — &,¢ + 8). Then, by the “Increments Inequality”, (LokvE [14], p. 195)

lr(t) —r()] <212 (L —r(t—)NV2 >0, as t—>t.

So & may be chosen so that t e (' — 4, ¢’ + §) implies |7 (¢)]| > a/2.
v+
So [r2(t)di > da22>0.
ree
But, by assumption, an infinite sequence of such points ¢z can be found whose ¢
intervals are not overlapping. So
oo tx+0

frrmdi= > [ i) dt=oco.
0 k=0 tx—90

Therefore (4.44) implies (4.45), q.e.d.
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Theorem 4.5. If
lime1(l—r@) =4, 0<i<oo,

{—0
and
[r2@ydt < oo, (4.46)
0
then

lim P{(4(#)"1(Z(t) — B@) =} = A*(@),
t— o0
where A (t) and B(t) are given by (4.30) and (4.31), and A(z) by (2.4).
Proof. Let x(t) be a function such that

EINGING + 1<) <t,

where N (£) is subject to the conditions (4.10) and (4.11).
Clearly, by Lemma 4.7 and Theorem 4.3 it is sufficient to show that

Ve>0, imD (x(t)) =0.
t—0
Asin the proof of Theorem 4.4, D¢ (x(t)) is expressed as the sum of Dj (x(f)) and
Dy (%(t)). The former approaches zero as ¢ approaches infinity. It is sufficient to
show that
Ye>0, imDy(x(f)) =0.
{-—>00
We assume this is not so, and show that a contradiction develops. That is, we
assume that there exists a constant 4 > 0, such that for infinitely many ¢,

Ds(x(t)) > A (4.47)

for every possible value of x(#). It is possible to bound D;(f)
NG

D)y S gy @) 2 |r(=@®)/N@)],
F=[ANDI+1
where

g () = (¢ (£))72 (log 2 (£)) ™1 (IV (£))2 (¢ (£))*° p (log ¢ (£)) )
where & (f) is given by (4.41). By (4.46) and Lemma 4.8,
imd(x»()=0.

{—>00
So, if g(t) approaches infinity, it does so more slowly than any power of .
If (4.47) holds for all possible functions x(t), it follows, by integration, for a
fixed ¢, that
¢ (0

gy f > [r(Gu/N@¢)] du =
IN@IN@+1 j=[Y2N(H)]+1

> AE—tN@INEG + 1) ZAYNEG +1=Ah).
Clearly k(t) approaches infinity more slowly than any power of ¢.
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Therefore a sufficient condition is that
N@)
Lim g (8) 2 (6) (N (8))~L 3 |r(ju/N (#)) ]| du=0.

t—oco F=IAN@]+1
By the Cauchy-Schwarz inequality, a sufficient condition is that
Ve>0, limD*()=0,

{—oo
where
N@)
D*@)=g2OBROWE > I
j=F I N@I+1
and
¢
I; = f r2(ju/N (t))du.
IN@IN@G+1
Using the transformation s = ju/N (f),
: N() NG
D*(t) = g®(t)R2 (@) (M) > [ r(s)ds
f=M®H+1 FEO+D
where M (f) = [t N (£)].
Since (j + 1/N + 1) — J/N = 0, there is no overlapping, in summing the
integrals. Hence

i
D*(t) < g2()h2(t) (M ()72 [ r2(s) ds
0

which approaches zero, as ¢ approaches infinity, by the previously observed fact
that g () and A (t) approach infinity more slowly than any power of ¢, and hence
less rapidly than M (), g.e.d.
It seems probable, recalling Section 2, that
limr(#) =0

f—oc0 .

is not a sufficient “mixing condition” for (4.36). Though' the author has not
constructed a counterexample to establish this, it probably would not be im-
possible. Using the spectral representation

rt) = fcos wtdd(w),
what condition on G'(w) is sufficient for (4.33)? It can be written, simply
Im(l — G(w))/w =limG(—w)/|o| = 1/4.

If G(w) is absolutely continuous, we can write
r(t) = j'cos wtg(w)dw

a sufficient condition for the “mixing condition” (4.40), is that g(w) satisfy a
Lipschitz condition of order o for some o > 0. A sufficient condition for (4.46)
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is simply that
[g%(w)dw < 0. (4.48)

—00

Kormoeorov and Rozawov [13] have proven that if a continuous parameter
stationary Gaussian process is “uniformly mixing”, g(w) must be well defined
and. continuous everywhere. Since, obviously,

r(0) =}°g(w)dw< 00,

- 00

(4.48) above, clearly follows. So the uniform mixing condition is sufficient for
(4.36).

Cramir [7] and [8], has obtained analogous results for a different class of
stationary Gaussian processes. He considers processes whose realizations are every-
where differentiable with probability one. They satisfy the local condition:

r(t) =1— w212/2 4 o(1?)
as ¢ —0, and the mixing condition:

Ja>0:lim#r(f) =0.

t{—>c0
The conclusion is the same as that of Theorem 4.3 except that

B(t) = |/2logt — (log (2a/)/ ws)/Y210g ),
with 2= 1.
His method is based on the limiting probability distribution of the number of
upcrossings of a high level. In the present case the realizations are not differentiable,
and so the concept of an upcrossing is not meaningful.

The Ornstein-Uhlenbeck process is the only process, which is both a diffusion
process, and a stationary Gaussian process. It is characterized by the covariance,

r(t) =e~ %,

NEWELL, in his study of diffusion processes [16] has shown that its maxima
have the property (4.36). It clearly satisfies the conditions of both Theorems 4.4
and 4.5. So the result is again proved.

Section 5

In this section “local” and “mixing conditions” are found, which are sufficient
for stability and relative stability, almost surely. As in Section 3, the problem is
divided into the problems, respectively, of “upper”, and “lower” stability. The
former is considered first.

Lemma 5.1. Let {X (t), — o0 <<t <C oo} be @ 8.G.8. P. having a covariance func-
tion r(t) such that

doe > 0: limsupt—*(1 —r(f)) < oco. (5.1)
t—0
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Let 1 — Fy(x) = P{Z(T) > x}
where T' is sufficiently small, so that

r(H) =0, if 0<t<T. (5.2)

The condition (5.1) clearly makes this possible.
Let M (x) be a function, such that

Vy>0, limMx+ pfx)/Mx)=1, (5.3)
and &T—>r
lim M (x)[x¥®* == co . (5.4)
Then
limsup (1 — Fp(2))/ M (z) d(x) <1, (5.5)

where Z (T') is given by (4.1) and ¢ (x) by (3.13).
Proof. Let y > 0 be arbitrarily chosen. Note that
P{Z(T) >z + yla} < P{ZyT) > &} + P{Z(T) — Zy(T) > yla}.
Using Lemma 3.5, and the well known combinatorial formula
P{ZyeT) >} < P{ZyeyT) >} < M (2) P{X > 2} = M (z) ¢ (%),

where P’(-) is the measure conferring independence on the component variables,
and X is a normalized Gaussian r.v.

P(@) = P{A(T) — ZyT) > pJ2} gkﬁop {Di}, (5.6)

where
Dk = {Z2k+1M(z)(T) -_ Z27‘M(x)(T) > }/ak (1 — a,)/x} )

and ¢ is a positive number less than one.
Let
EP = {X((2] — 1) T/2¥) — X (j T/2¥) > yak (1 — a)ja}.

By Lemma 3.3,
P{Egk)} é ¢ (zk) ’

where z; = ya¥(l — a)/z 0,

02 =2(1 —»(T)2kt1 M (x))) =< C12-%% M (x)~2,
for some constant Cy, and sufficiently large z (that is for sufficiently small
(T|M (z))), by the condition (5.1), uniformly for all k. But

2 = C2a*2°H2 (M () 2w = O F (M ()%,
where @ = a-2%2,

Recalling that a can be chosen arbitrarily less than one, it is chosen so that
w>1.
P{Di} = Z P{Ef} = 28 M (@) § (2x) -

j=1
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By (5.6),
P@) S0, 0/ = GE) 2206 o), )

where y(z) = Ca2(M (x))*/2. Since w is fixed, there exists an integer kg, so that
if k> kg,

wk>ko.
The function ¢ (y, w) can be expressed as the sum of two functions g; (y, w), and

g2(y, o), where the former is the sum from one to kg in eq. (5.7), and the latter
from k¢ + 1 to infinity.

92(y, 0) = (2m)~12y~1(2/w) exp (— wy?(2)/(1 — exp (— wy?/2)).

To prove
limsup P{Z(T) > = + p[z}/ M (x) p(x) <1, (5.8)

Z—> 00

it is sufficient to prove that the right side of (5.7) approaches zero, as « approaches
infinity. Hence it is sufficient to prove gs(y(x), ) approaches zero. It need only
be shown then, that

lim (exp (— C3y*(x))/2)/y (x) ¢ () = 0.

T—>00

But this equals
(exp (— O3 O3 (M (2))*[22% + 22[2)) (27) 22y ().
But
(O3 05 (M (2))%/222 — 22[2) = 22/2 (C3 O3 (M (2))%/a% — 1) —oo
as & —> oo. Note that

Hm M (x + yf2) d(x + y/x)[ M () §(x) = eV,

T—>00

Let 2’ be chosen for each z, so that

z=a 4yl
Then
limsup P{Z(T) > «}|M () ¢ (x) = limsup (P{Z(T) > 2’ + p[x'}/ M (2"} X

X ¢(')) M (@) () M (x) §(x) < e?.
Since y was arbitrary, (5.5) follows.
Corollary 5.1. If
do > 0: limsup ~%(1 — r(#)) < oo,

t—0

then V2 > (4)a) — 1, limsup(l — Fr{x))/z*exp (—22/2) < 1.

T—>0c0
The proof follows from Lemma 5.1, and its conditions 5.3, and 5.4, which are
easily seen to be satisfied by

M (x) = 2*+1.

16 'Wahrscheinlichkeitstheorie verw. Geb., Bd. 7
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Theorem 5.1. If

doo > 0: limsup —%(1 — r(t)) < oo.
i—0

Then limsup (Z(t) —}/21logt) < 0 a.s.

f—>00
That is to say that upper stability holds. As in the discrete parameter case,
no “mixing condition” is involved here.
Proof of Theorem 5.1. First note that for any real ¢ > 0, it is sufficient to
prove that

llmsup( ]/2 log Ct) =0, a.s.
t-—>co
Note that
Z(t) —)2log Nt < Z% ., —|2log NT,
where N =1t/T,

Z% = max X§¥,
1SESN

Xi= Sup X(s)
(N —~DT<s<NT}

and T satisfies (5.2). So it is sufficient to establish that

limsup (Z¥ — J2log N) <0, a.s.
N-—>co

So, it must be demonstrated that Ve > 0,

Xy >]2logN +¢

only finitely many times, with probability one. But, clearly

> (2log N + e)texp(—]2Ilog N + )2[2 < oo, Ve>0.

N=1
So by Corollary 5.1, and the Borel-Cantelli Theorem, the theorem holds, q.e.d.
Now consider the problem of “lower stability”.
Theorem 5.2. If
limr(t)logt =0

{—>oc0

then Himinf(Z (f) — J2logt) Z 0 a.s.

—>c0

Proof. Clearly, for all t =0

Z(t) — )2logt = Z; — |2log [{] +- 1,
where

Zy = max X(k). (5.9)
1SksSN

The result then follows immediately from Theorem 3.3, g.e.d.
Lemma 5.2. Let

te(M) = (t: [/21ogt = sM) = exp(M2¢2(2).
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If
Z(te(M)) < (M —1)¢ (5.10)

only finitely many times Ye > 0, with probability one, then
liminf(Z(f) — }/2logt) =0, a.s.
t—>o00

The proof follows, with minor modifications from that of Lemma 3.1.
Lemma 5.3. 4 sufficient condition for “lower stability’’ is

lim (log t) P{Z(t) < ]2logt — &} =0, Ve>0. (5.11)
{—o0

As in the proof of Lemma 3.2, the sufficiency of this condition follows from
the fact that it implies the summability on M, of the probability of the event in
(5.10). See the proof of Lemma 3.2.

Theorem 5.3. If

frz (Hdt < oo,
0
then liminf(Z(f) — }/21ogt) = 0, a.s.
f{—>o0

Proof. Clearly, it is sufficient that for some function #(¢) satisfying (4.32)
Liminf(Z (x(t)) — |2logt) =0, a.s.
{—>o00
But

Z(x(t)) — 2logt < Zyy — Y2 log (6] - 1)
where Zy = max X,
15k<t
The remainder of the proof is a direct result of Lemma 4.7, Theorem 3.2,
and the reasoning of Theorem 4.5, g.e.d.
Theorems 5.1, 5.2, and 5.3, combine to give
Theorem 5.4. If
Jo > 0: limsup -2 (1 — r(f)) < o0,

{—>o0

and etther lim r(f) logt = 0, or fr2 ()dt < oo, then Z(t) — ]/2 logt—0, a.s.
0

{-—>o0

Theorem 5.5. If
Jo > 0: limsup t-*(1 — r(£)} < oo,

t— o0

and
limr(t) =0, (5.12)

{—ro0
then Z(t)/]/2 logt—1, a.s.
Proof. It is sufficient to establish “lower relative stability”. But

Z()[)2logt = Zyy/|21og (1] + 1),
where Zy is given by (5.9). The result follows from Theorem 3.4, q.e.d.

6*
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As remarked at the end of Section 4, a counterexample could probably be
constructed which would show that (5.12) was not sufficient for stability.

The remarks concerning the spectrum and the strong mixing condition are
also valid.

Clearly the absolute continuity of the spectral density function is sufficient
for relative stability.

CraMER has shown [6] that v
lim P | Z(t) — |/2logt| = loglogt[}logt] =0,
{—o00

provided the spectral density is of bounded variation, and is such that
30> 1: [w?(log(l + ©))4g(w)do < oo.
0

It has been shown by SmuUr [16] that, under the same conditions, for any
e>0,

Zt) —12logt << (1 4 &) loglogt/VZ logt

for all sufficiently large t, with probability 1. This implies the present results for
the class of processes satisfying the above conditions on the spectrum. Those
processes satisfy the local condition:

r(t) =1— w2122 4 o(?),
and the mixing condition

Limsup ¢ |r(f)| < oo.

t—o0

It would be worthwhile to obtain similar results for a wider class of processes.
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