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Summary. Let {XN, N = 0, 4- l ,  4-2 . . . .  } be a stationary Gaussian stochastic process 
with means zero, variances one, and covariance sequence {fly}. Let Zlv ~ max X~. Limit 

properties are obtained for Zlv, as N approaches infinity. A double exponential limit law is 
known to hold if the random variables X~ are mutually independent, that is r~v ~ 0, N ~= 0. 
BE~AN has shown that the same law holds in the ease of dependence, provided fly approaches 
zero "sufficiently fast". Specifically sufficient conditions are that  either lim rN log N = 0, 

or ~ r~v < ~ .  In  the present work, it is shown, however, that  lim rN = 0 is not sufficient. 
~=I ~-+~ 

A corresponding law is obtained for a separable, measurable version of a continuous parameter 
process. Sufficient conditions are obtained for the "strong laws of large numbers", 

z ~  - V ~  + o, ~.s., and z~/V~ log-~ + 1, a.s. 

in both discrete, and continuous time. 

Section 1 

Le t  {Xiv,  N = O, 4-1,  4- 2 . . . .  } be a discrete  p a r a m e t e r  s t a t i o n a r y  Gauss ian  
s tochas t ic  process,  charac te r ized  b y  expec ta t ion ,  and  covar iance  funct ion,  
r e spec t ive ly :  

E X N  = O, 

EX~ XI+N - r~ , r o l l .  

A s t u d y  is made  of  some of  the  l imi t  p roper t i e s  of  the  r . v . s .  ( r andom var iables)  

ZN ----- m a x  {X1, X~ . . . .  , XN} (1.1) 

as N becomes large.  Corresponding laws are  also considered for cont inuous  
p a r a m e t e r  processes.  

I f  the  sequence {X~v, N = 1, 2, . . .}  consists  of  i n d e p e n d e n t  r . v . s ,  hav ing  the  
d . f .  (d i s t r ibu t ion  funct ion)  F ( x ) ,  a n d  ff there  exis t  sequences {aN} and  {biv}, 
air  > 0, a n d  a proper ,  non-degenera te  d . f .  A(x ) ,  such t h a t  

lira P {a~ I (ZN --  blv) <--_ x} = A (x) (1.2) 
N.-->oo 

on all  po in t s  in  the  con t i nu i t y  set  of  A (x), we say  t h a t  A (x) is an  ex t r ema l  dis tr i -  
bu t ion ,  a n d  t h a t  Y ( x )  lies " in  i ts  d o m a i n  of  a t t r a c t i o n " .  GNWDWNKO [10] has  
shown t h a t  A (x) can have  one of  on ly  th ree  forms.  These resul ts  are  summar i zed  
and  ana lyzed  in t he  book  b y  G V ~ E L  [12]. I f  X is n o r m a l l y  d i s t r i bu t e d ;  t h a t  is ff 

g~ 

P { X  ~ x} --  ~b(x) = (2~)-1/2 ye-t2/2dt,  
- - o o  
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then, (1.2) is true, where 

air -= (21og2V)-l/2, (1.3) 
bN ~- (2 log N) 1/2 -- �89 (2 log N)-1/2 (log log N q- log 4 ~) ,  

and ,4 (x) - exp (--  e-x), 
as is shown in C ~ R  [5], pp. 374--75. 

In  the general case of variables having a stat ionary kind of dependence, a 
s tar t  was made by WATSON [18]. He showed tha t  the same law (1.2) holds for 
an M-dependent process, provided a mild additional restriction is satisfied. He 
showed tha t  this condition holds for a Stat ionary Gaussian process. In  other 
words (1.2) with (1.3), is true provided 

r2r - 0  

for all but  a finite number of integers iV. 
This result was extended by  ]3amMAN [3], who showed tha t  i t  is only necessary 

to assume tha t  r2v approaches zero, as a limit "sufficiently fast"  ; specifically, tha t  
is, tha t  either 

lim r~v log2V = 0, (1.4) 
N - - >  r 

o r  

o o  

< (1.5) 
N = I  

An evident question is whether these conclusions can be weakened still further. 
In  particular, might 

lim rN = 0 (1.6) 
N--->  r  

be a sufficient condition. In  Section 2, a class of processes is considered wherein 
(1.6) is satisfied but  not (1.2), with (1.3). So the conditions (1.4) and (1.5) cannot 
be substantially improved. 

In  Section 3 sufficient conditions are found on the covariance function, and the 
spectrum, for stability and relative stability almost surely, (a. s.) or with prob- 
ability one; respectively 

Z N - -  ~/21ogN -->0, a.s., (1.7) 
and 

Z2v/l/21ogN--> 1, a.s. (1.8) 

Theorems 3.2, and 3.3, show tha t  (1.4) and (1.5) are sufficient. Some of the proc- 
esses considered in Section 2, do not satisfy (1.7), and so (1.6) is not a sufficient 
condition for it. I t  is, however, as Theorem 3.4 shows, sufficient for (1.8). 

Let  {X (t), - -  ~ < t < oo} be a separable, measurable version of a continuous 
parameter  stat ionary Gaussian process, with expectation and covariance, re- 
spectively 

EX(t )  =- O, 
EX(s )  X(s-[ - t )  =- r(t), r(O) -=- l .  

In  Section 4, the maximum 

Z(t) -= m a x  X (s) 
O<=s~t 
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is considered. Theorems 4.4, and 4.5 give conditions, sufficient for a law of the form 

lim P{(A (t)) -1 (Z(t) -- B(t)) ~ x} = A(x).  
t---> cx~ 

The conditions are of two types. As in the case of discrete parameter processes, 
there arc "mixing" conditions, which involve the behavior of r (t), as t approaches 
infinity. But  attention must also be given to "local" conditions, which concern 
the behavior of r (t) in the limit, as t approaches zero. 

In Section 5, both "mixing" and" loca l"  conditions are found, in Theorems 5.1, 
through 5.5, sufficient for "stabil i ty",  and "relative stability" almost surely, in 
the continuous parameter case. 

The author is greatly indebted to Professor SIM~.o~ M. B]~RMA~, for many 
helpful conversations, for his advice leading to simplification of some of the proofs 
and improvements in the writing of this paper, and for the references [1], and [4]. 
The author is also grateful to Professor E. J.  GUM~]~L for introducing him to the 
theory of extreme values. 

Section 2 

The most important  known results concerning the lirm'ting distribution of 
Zlv, (1.1) in the Gaussian case, are summarized below. Then a class of processes 
is constructed which shows that  these results cannot be significantly extended. 

Theorem 2.1 (B]~MAN [3]). I/, either 

lim fly log N ~ 0 (2.1) 
37-->0o 

o r  

then 

where 

and 

and 

oo 

< (2.2) 
3 / = 1  

l imP{a~l(zN - -  b~) <= x}  -~ A ( x ) ,  
2u oo 

(2.3) 

aN ~ (2 log N )  - 1 / 2  , 

bN : (21ogN) 1/2 --  �89 (2 log/V) -1/2 (log log N + log4g) ,  

A (x) = exp (--e -z) .  (2.4) 

Theorem 2.1 clearly includes the case of independent r .v.s.  (rlv -= 0, /V *0).  
The generalization employs Lemma 2.1, below, which makes possible a comparison 
between the results using the given measure, and those (known) using the inde- 
pendence measure. The measure of a Gaussian process, with means zero and 
variances one, is uniquely characterized by the covariance function r,j. 

Lemma 2.1 [3]. Let P, and P* be two normalized Gaussian measures, characterized 
by the covaria ce functions, respe tivdv, }. The  

N - - 1  

[ P { Z 2 v < c } - - P * { Z N < c } I  < n 2 v = Z  l~,J-- ~*1 ~(c, Irg~l), (2.5) 
i , j = l  
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where 

(c, ] r~ l )  = (I - rgj2)--2 exp { "  c21(I + I r~ j l ) } ,  
and 

l 

rij -~ max (rl/, r*). 

I f  the process is stationary, 
N - - 1  

DN ~ ~ (N- -  j ) ] r ~ - -  rj[ V(c, Ir~]). (2.5a) 

Now it is shown that  the condition 

lim r N ~ O, (2.6) 
N--> r 

is not sufficient for (2.3). A class of processes is defined for which (2.6) holds, 
and such that,  

�9 -1 - - / 2 ( 1  logNK) < x} = ~5(x), (2.7) l im P {r ~v K (ZN~ - -  r N K  ) .=_ 
K - - >  oo 

where 
x 

~5 (x) ---- (2 :~)-1/2 f e-t~/2 dt ,  (2.8) 
- o o  

and {NK, K = 1, 2 . . . .  } is an infinite subsequence of the set of positive integers. 
By the essential uniqueness of such laws (2.7) clearly contradicts (2.3). This is so 
since in effect, ff a limiting distribution exists for Z~,  in a process of this class, 
it must be normal. 

Now it is useful to define a system of equally correlated r.v.s. Let {rN} be 
given by 

r 0 = l ,  
r N = ~ ,  N~:0 .  

This measure will be designated by Pc( ' ) .  

Lemma 2.2 (B~RMAN [2J). Let {XN,  N ~-- O, :~ 1, -4-2, . . . }  be a sequence of 
equally correlated jointly Gaussian random variables. Then the/oUowing represen- 
tation is possible: 

X ~  = U - ~  Y~v, (2.9) 

where { Y ~ ,  N ~ O, :~: 1, ~ 2 . . . .  } are independent, and Gaussian r.v.s ,  with means 
zero, and variances 1 ~ ~, and U is Gaussian with mean zero, and variance ~, 
and is independent o / the  YN.  

This representation can be verified directly. 
The general method of verifying the property (2.7), is using Lemma 2.1, to 

compare, for each NK the behavior of Z~v~, as given in (1.1), under the original 
measure P(.) ,  with that  under the measure Pc( ' ) ,  

where Q -~- r N K .  

Note that  the second measure is, itself, a function of K. The following lemma 
shows that  ff r~v approaches zero sufficiently slowly, the limiting distribution of 

14 Z. Wahrsche in l i chke i t s theor ie  verw.  Geb,, Bd.  7 
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ZN, under the equal correlation measures with Q ---- rN, is Gaussian. The lemma 
does not actually require that  rN approach zero, but  it includes this possibility. 
I t  is, in effect a generalization of BEI~MA~I'S result [2]. 

Lemma 2.3. Let {Piv('),  N = 0, • 1, •  . . . .  } be the sequence o /measures:  

P2v(')  =- P , ~ ( ' ) .  

then 

I! 
lira rtvlog N/(log log N) 2 = o0, (2.10) 

~,V----> r 

l imP2v{r~ l l2 ( z  N --  ~/2(1 -- rN) logN) --<_x} = r  (2.11) 
N--~  oo 

where ~ (x) is given by (2.8). 

Proo[. For a given N, consider the r. v.s. Xl, as given by 

X~ = U (N) + y~m, 

a representation, which is possible, by Lemma 2.2. Then 

ZN ---- U (N) + W2v, 

where WN --= max { Y(~), y(zr . . . . .  y ~ ) } .  

The r.v. to be examined is 

r~ll2(Z~v - -  ~/2(1 -- r~) logN)  = r~ 112 ON + r~I I2 (WN--V2(1  - -  r2v) log N).  (2.12) 

Clearly r~ 112 U~ is Gaussian, with mean zero, and variance one, for every N. To 
prove the lemma, then, it is sufficient to prove that  the second term of the right 
side of (2.12), becomes concentrated at  0, with increasing IV: 

l imP2v{r~l/2(W2v - -  ~2(1 -- r2~) logN) > e ( ~  -- s)} 
2~--~co 

: lim P N { ~ o o g N ( W N / V 1  --  rN --  #2 iogN) + �89 (loglogN + (2.13) 
~r-->oo 

+ log4~) > (2r2vlogN)l/~ e/~/1 - -  r2v + �89 (loglogN + log4 ~) 

( ~  - -  (2 rNlog N)1/2 e/~/i _ r~v + �89 (log log N + log 4 ~))}. 

But  W2v](l  - -  rN is, by definition, the maximum of N independent, normalized 
Gaussian r.v.s.  But  by assumption (2.10) 

l i m ( e ( 2 r N l o g N ) l / 2 / ~ l  --  rN + (--) �89 ---- oo, Ye > 0.  (2.14) 
_3/-->00 

By (2.13) and (2.14), and Theorem 2.1, then (2.11) follows, q.e.d. 

Lemma 2.4. Let P (.) re/er to a stationary Gaussian process, with non-increasing 
covariance sequence {rN}. Let {NK} be an increasing sequence o/integers. Let 

P K ( ' )  -~ P q ( ' ) ,  

where ~ = r2v,~. 
It 

limrN ---- 0 ,  (2.15) 
N----~ oo 
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and 3 ~. > O, such that 

then 

N K  

l i m N ~ - l ~  Irj-r~vKI = 0 ,  
K - - > ~  j = 1 

l im I P{AK} --  Pg{AK}I  = O, 

- -112  - -  V2(1 -- rzr logNK) < x } .  where AK = {r~v~ (Z~v~ = 

Proof. By Lemma 2.1, 

I P{AK} -- PK {A~;} [ =< DK ~- D~.~ 

where DN is given by (2.5). 

c 2 ---- (xr~ ~" + / 2 ( 1  --  rlv) logN) 9' = x2rN -~- 2(1 -- rN) logN + 

+ 2 x t/2 rTv (1 - rN) log ~ .  
Let 

(2.16) 

(2.17) 

6N = Sup rK, (2.18) 
K > = N  

d* ---= Sup 2rK/(1 + rg). (2.19) 
K > = N  

By the conditions of the lemma, it is clear that,  

lim O~v = 0,  (2.20) 
N--> oo 

lim (~* = 0.  (2.21) 
2V--+ oo 

So Sup (1 -- r~) -1/2 = (1 -- 012) -1/2 < 00, 
2 V ~ l  

and in taking the limit tha t  term can be replaced by a constant C1. We replace 
DN by the sum of D~r and D~v, where the former involves summation from one 
to [N v] and the latter from [N v] + 1, to N -  1. Both are shown to approach 
zero as a limit. Thus 

[N r] 
-- l + 2r~v = D 1 - C 1 N  g u ~ , ] r j [ e x p 2 ( 1 - - r N ) l o g N ] r l ] [ ( l + l r 1 1 ) <  

j = l  

<_~ (fil N - l + 2 r  , if y < l - - d a * ,  

where glv = exp 2 x ~2 rN (1 -- rN) log N 

approaches infinity more slowly than any power of N, and the inequality holds 
for sufficiently large N. 

N N 

9 3 ~ C1N-l+2r~+(1-rN)~ ~, ]rl] ~ C 1 N  ;'-1 ~,[rf] 
i=1 i=1 

for sufficiently large N. By Lemma 2.1, (2.17) follows, q.e.d. 

Theorem 2.2. Let rN be a sequence satis/ying the conditions o/Lemmas 2.3, and 
2.4. Then (2.7) [ollows directly by combining the results. 

Now, a class of processes is constructed, which satisfies the conditions of 
Lemmas 2.3, and 2.4, and hence of Theorem 2.2. Thus it is established that  (2.6) 

1 4 "  
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is not a sufficient condition for (2.3). Let 

{ V s , , , k = l , 2 , . . . ,  i = 0 ,  -V1, •  . . . .  ) 

be a doubly indexed sequence of mutually independent normalized Gaussian 
r.v.s. Le~ 

oo 1 N + M ~  

X N  --k~l i = N + I  
- -  a s ~  ~, Uk, i ,  

where ~ ~ = 1. 

Clearly EX:v :~ O, 

r_~ -~ EXsXs+m" ~ ~, a~ 1 -- M-~k ) ~ M ~ _ ~  a} 1 -- ~ �9 

Since rx  ~ ~ a ~ ,  
{k: M~ >.N} 

(2.6) is verified. 
Let us choose the sequences {Ms} and {Ns}, so that  

M s < N s < M s + l ,  k = l , 2 , . . .  
and furthermore 

lim N~ (Ms/ND = O, 

and 

(2.22) 

then (2.22) and (2.23) hold, as it does for any {M~} or {Ns} which approach co 
more rapidly than (2.24). 

limsup M~+ 1 (Nk/M~.+I) < oo, (2.23) 
k--> co 

for some 2 > 0. 
Let c be any real constant, 0 < c < 1, and N sufficiently large. Then 

rN a ~a~(1 --Ms-1/Mk)>--_ c ~ a~. 
{Ir Mk-1 > I} {k: MI,-1 > N} 

So fly can be made to approach zero as slowly as desired, by making Mk approach 
infinity sufficiently fast. So (2.10) is verified. 

I t  remains only to verify that  (2.16) is satisfied. Note that  

1 iv~ (1 Mfl---') + (1 ~_)+ min(N,M) -- 1 2  max(N, M) 
~ S - - - - i  - -  - -  - -  ' 

1 ~, ~ . 2  min(~, ~ )  - 1 
H N  - ~ -  . ~  (rj  - -  rN) = / _  ~ k  F ~ ,  ~ - ; )  ' 

j = l  k = l  

2 M , , -  1 2 -AT1c- 1 .Y~H~,=N~ 5 ~  ~ m  +N~Xa~ ~ - ~  __< 
{v: My <lq~} {v: M~ > Nk} 

o~ 

M ~ N ~-/u k+l( s/Ms+I)Za~,-->O, as ]c-->oo. 
v = k + l  

So all of the conditions are verified. Specifically, if 

Ms = 22~, N~ ----- 22 .... (2.24) 



Maxima of Stationary Gaussian Processes 197 

I t  is interesting to note that  these processes have a property even stronger 
than (2.6). Specifically they are purely non-deterministic. Let  ~'~v be the sub- 
sigma field of events spanned by XN, XN-1 . . . . .  Let  

c o  

~'-oo - ( ~ N .  
_ ~  - - o o  

Then ~-oo is called the tail field. Clearly each of the variables Ug, ~ is independent 
of ~'-oo, and consequently, so is XN for each N. 

As is well known, using the spectral representation of a process, (see Gg~Azq- 
I)~g and ROS~NBLATT [11]), 

rN = ~ c o s N  ~ dG(~). 

I t  is worthwhile to find conditions sufficient for the above results, in terms of 
the spectral d.f. G(eo). In  Z:zG~UN]) [19], page 13, it  is shown that  a sufficient 
condition for (2.2) is that  

fg2(~)  d o  < oo,  (2.25) 

where G(eo) is absolutely continuous, and 

g (co) = dG(o~)/do. 

From page 46, it  can be concluded that  a sufficient condition for (2.1) is that  
g (co) satisfy a Lipschitz condition, of order a, for some ~. l~rom page 45, it is 
possible to conclude, from the absolute continuity of G(o), that  (2.6} holds. But  
the spectral distribution function of a purely non-deterministic process, is nec- 
essarily absolutely continuous. So absolute continuity is not sufficient for (2.3). 

For general (not necessarily Gaussian) stationary processes, CHYBISOV [4] has 
found that  the limiting distribution of ZN, is, under certain circumstances, the 
same as in the case of independence, provided a "uniform mixing" condition 
holds. I t  is defined as follows. Let  ~-il be the sub-sigma field generated by 

Xi, Xl+l, X~+2 . . . . .  Xj. 

IfD~ -~ Sup [P(A B}--  P{A}P(B}[--->O as /c-+oo 
(A -=o~--oo, - , ,  Be~'~+~,oo) 

the process is said to be uniformly mixing. KOLmOOOR0V and RozAzqov [13] have 
proved that  ff a Gaussian process is uniformly mixing its spectral d.f. must be 
absolutely continuous, and furthermore g (co) can have no discontinuities. Clearly 
then (2.25) holds. So uniform mixing is sufficient for (2.3). 

Section 3 

I t  follows from (2.3) tha t  

- V2% ogN + 0 ,  i.p. 

hat is tha t  Z~ is "stable in probability". From this it follows that  Z~ is "relatively 
table"  in probability, i.c. 

Z2v/]/2~ogN--+l, i.p. (3.1) 
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In addition, B~I~MAN has shown in [3] that  (2.6) is sufficient for (3.1). 
In this section, conditions are found wich are sufficient, respectively, for 

"stabili ty" and "relative stability" almost surely (a. s), or, "with probability one". 
The problem is decomposed into an "upper" one (3.2), and a "lower" one (3.6). 

Theorem 3.1. I I the variables XN are normalized, and Gaussian, 

P{  2r176 < 0 }  = 1. (3.2) 

R e m a r k .  I t  is important to note that  this result does not require any kind 
of condition involving the dependence. 

Proo[ o[ Theorem 3.1. I t  is sufficient to prove that  for every e > 0, 

Z~v > 1/2 log N -4- e 

only finitely many times, with probability one. For this it  need only be shown 
that  for every e > 0, 

> 1/2q -g N + 

only finitely many times, with probability one. But 
o o  o o  

~. P{Xk > 1/2 log K ~- e} ~ Sg(x)dO(x) (3.3) 
k = l  0 

where 

So the integral (3.3) converges and the Theorem follows, by the Borel-Cantelli 
Theorem (Lo~vE [14], page 228), q.e.d. 

Now, the "lower" part of the problem (3.6) is considered. 
Let e > 0 be arbitrary. Define 

N~ (M) ---- min: {1/2 log K > M e} = [exp M 2 e2/2] q- 1, (3.4) 
K 

where Ix] denotes the greatest integer less than or equal to x. Thus we have a 
subsequence "of very low density" of the sequence of integers, which will be 
useful in what follows. Define 

A,  (M) = V2 log Ne (M). 

I t  can easily be seen that,  for all e > 0, 

M e < A , ( M ) < M s + M  - l e  - l e x p ( - M  2eu/2)(1+o(1))  as M - + o o .  (3.5) 

Lemma 3.1. I 1 Ve > 0, 

Z~V,(M) < A~(M) -- e 

only ]initely many times, with probability one, then 

P / lim inf (Zlv -- W 2 log N) > 0 / = 1. (3.6) 
/ N - - ~  co  ! 

Proo/. I t  is sufficient to show that  for arbitrary e > 0, 

Z~ =< V21~g N - -  e (3.7) 
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only finitely many times, with probability one. Because e is arbitrary, eq. (3.7) 
could as well be written 

ZN =< ]/2 log N -- 3 e. (3.8) 

Suppose (3.8) holds infinitely many times. Let  N0 be so chosen that  for all 
N~(M) > No, 

ZNe(M ) > A~(M) -- e. 

Let N'  be an integer, such that  (3.8) holds, and 

No < Ne(M) <= N'  <= Ne(M + 1) 

for some suitable M. Then 

A,(M)  -- e g Z~,(M ) < Z~v, < V 2 log N; --  3 e =< A , ( M  + 1) -- 3 e. 

So 

A~(M + 1) -- A~(M) > 3 e - -  e----- 2e .  (3.9) 

But (3.8) holds infinitely many times. So (3.9) must also. But  this contradicts (3.5). 

Lemma 3.2. A 8u//icient condition/or (3.6) is that 

l im( logN)P{Z•  < V21ogN - e} = 0, Ve > 0. (3.10) 
N - + o o  

Proo]. A sufficient condition for (3.6) is that,  

limM2P{Z~,(M) < A e ( M )  --  e} = 0, Ve > 0 (3.11) 
M . - - > o o  

since this clearly implies the summability on M of P{Z~v,(M)<= A , ( M ) -  e}. So 
by the Borel-Cantelli Theorem, and Lemma 3.1, (3.6) is true. But  by the de- 
fiuition (3.4) (3.11) is equivalent to (3.10), q.e.d. 

Taking the first term of the power series expansion of - - l o g  F(x) about 
F(x) = 1, it clearly follows that  

- - l o g F ( x ) ~ - ( 1 - - F ( x ) ) ( l + o ( 1 ) ) i  as F ( x ) - + l .  (3.12) 

Lemma 3.3 (CRAM]~R [5], page 374). I] X is a normalized Gaussian r.v. 

P {X > x} < r (x), 

and lim P {X > x}/r (x) = 1, where 
g~--> c o  

r (x) = (2 ~)-1/2 x-1 exp (-- x9"/2) (3.13) 

and so by (3.12) above 

lim (-- log P { X  <= x})/r (x) = 1. 
x - > c o  

Lemma 3.4. I] {XN, N = 1, 2 . . . .  } is a sequence o/ independent, normalized, 
Gaussian r.v. s ,  then 

l i m ( l o g N ) k P ( Z 2 v < = V 2 C l o g N - - e } = O ,  r e > 0 ,  V /c>O,  C > 0 .  
N---> co  
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Proo]. By Lemma 3.3, and e.g. for any c, 0 < c < 1, and sufficiently large N, 

- N log ~(V~Vlog N -- 8) > cN r (V2 Olog ~ - ,). 
(~og NI~ r  ,) __< (log ~)~ o~p [-c (V~V ~og N - ~)-~ • 

• as N~, 
q.e.d. 

Theorem 3.2. I/' 
c o  

~ r ~ <  ~ ,  
N = 1 (3.14) 

ZN -- V21og N -+ O , a.s. 

Proo]. By Lemmas 2.1, 3.2, and 3.4, it is sufficient to show that  

lira (log N) Dzr = 0, 

where DN is given by (2.53), and 

c~= (y21og ~ -  ~)~= 2log N -  2 ~ 21/~;0~ N + ~ .  

Then 
N 

(log N) DN ---- (log N) (exp 2 s y 2 log N) N -1 ~, I rjl exp (2 log N I rill(1 + [ r~ [)). 
J = ~ (3.15) 

Consider D~ ), the expression on the right hand side of (3.15) above, but  with 
summation from one to [N ~] where 0 < ~ < 1. Then 

D(~ ) ~ 611ogN(exp2ey21ogN)N-(1-r)+~*-->O, as N - ~ o o  

where ON,, and 6~* are given respectively by (2.18) and (2.19). Now consider the 
remaining part  of (3.15), D~ ). 

* N--I 

D~ ) --__ log N (exp 2 e V 2 log N) N ~[lvr]-' ~ I r l I, 
i = [N~] + 1 

* N - - 1  

(D(~)) 2 ~ (log N) 2 (exp 4 e V ~ log N) N 2~ [Nrl-' Z r~, 
i = [Nr] + I 

which approaches zero, since (3.14) implies (2.6), and hence (2.21), q.e.d. 
Lemma 3,5 (BERMAN [3]). Let P and P'  be two normalized Gaussian measures 

characterized, respectively, by the covariance eequences {rN} and {r~ }. I] 
t 

rN ~ r N ]or all N ,  

then 

P {Z~ ~ c} ~ P'(Z~r ~ c}. 

In other words P (ZN ~ e} is a monotonic function of the covariances. 
We define the function 

L(N) ~ exp (Wlo~/hN)  (3.16) 
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where hN is a non-decreasing sequence such that  

lim h~ = oo, 
N - - ~  

Vg > 0 lim (log N) -~h = O, ' /r 
./g --.-~ O0 

and lira sup h~/VO z (zr log L (N) < co. 
N - - ~  r  

Let  
AN ~-- V2(1 - ~z(.~)) log [NIL(N)]. 

and 

Lemma 3.6. I] 

and 

Pro@ Let 

lim rN log N = 0, 
N----~ r  

lim ~z (~v) 1 ~  N ---- 0, 
N---> cx~ 

lim (AN -- V2 logN) ---= 0. 
2 g - ~  oo 

f 
hN = (Or log N) -1/2 , 

I 
hN = hL(zv). 

Clearly hN satisfies the conditions (3.17). By definition (3.16), 

hN log L(N) = l/Vog N,  

from which (3.19) follows. Eq. (3.20) follows directly. 

Lemma 3.7. A su]/icient condition/or (3.6) is that 

V s > 0, lim (log N) P {Zlv g AN --  e} ---= 0. 
N - §  

Pro@ Note that  by Lemma 3.6, for sufficiently large N, 

P {ZN <= AN -- e} d P {ZN <= V 2 log N -- el2}. 

The result follows from Lemma 3.2, and the fact tha t  s is arbitrary, q.e.d. 

Theorem 3.3. I /  

lim rzr log N = 0, 
N - - ~  oo 

Z N - -  2 ~ N - - > O ,  a.s. 

Pro@ By Lemma 3.7, it is sufficient to prove 

Ve > O, l im( logN)P{ZN <=AN-- e} = O. 
2V.---> oo 

Let 
Z * =  max XkL(Zr 

1 5 k  ~ [NIL(N)] 

Since, clearly ZN* ~ Zzr it  is sufficient to prove 

Ys > 0, lim (log N) P {Z} <= AN -- s} -~ O. 
N - + o o  

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.22) 

(3:21) 



202 J. PICKAI~DS Ill :  

But  all correlations among the variables in (3.22) are ~ 6L(~r So, by Lemma 3.5, 
it  is sufficient to prove that  

V e > 0, lira (log 57) P *  {Z~* ~Azr  -- e} = 0,  (3.23) 
N - - >  r  

where P * ( .  ) is the equal correlation measure with ~-~ ~L(~'). But  using the 
representation (2.91, the expression (3.23) is dominated by 

(log N) P ~ { U  =< AN -- s/2} + (log N) P * { W N  g AN -- s/2}. (3.24) 

Recalling the definitions (3.18) of A2r (3.16) of L(N) ,  and Lemma 2.22 the ex- 
pression or the left hand side of (3.24) is dominated by 

hN log L (N) P~  { U/V1 - O~(~v) ~ V 2 log L (57) - e/2} 

<= C ' h N l o g L ( N ) r  (V21ogL(Ni  -- e /2 ) -~0 ,  as N - + o o ,  

for any C' > 1, by Lemma 3.4, since u/V1 - ($L(2r is Gaussian, with mean zero, 
and variance one. 

By the definition (3.16) of L(57), Lemma 3.4, and the fact that  WIv/V1 - 6~(~r 
is the maximum of L (N) independent normalized Gaussian r.v.s.,  the expression 
on the right side of (3.24) converges to zero also, q.e.d. 

Again it  is natural to inquire whether 

lim rN -= 0 (3.25) 
1V--> oo 

might be sufficient. To show that  it is not, recall the class of processes considered 
in Section 2. From (2.7) it  can be concluded that,  on the subsequence {Nk} 

V e > 0 ,  limP{Z~v~ --  U~-i - - r ~ ) l o g 5 7 ~ >  e } = 0 .  (3.26) 
~--+ r  

This is consistent with (1.7) only if 

lim rN VI~ 57 -~ o, (3.27) 
~'V--) oo 

but, it was noted that  in this class, r~ may approach zero, as slowly as desired. 
Therefore (3.27), and hence (1.7) may be violated. 

Theorem 3.4, below, will show, however, tha t  (3.25) is sufficient for Relative 
Stability. 

Lemma 3.8. I / / o r  every e > O, a > 0 

Z~(M ) ~ aV21ogN~(M ) (1 -- e) (3.28) 

only a ]inite number o/times, then/or every s > O, and the same value a, 

Zzr <_-- aV21og 57(1 - e) (3.29) 

only a/ ini te  number o/ times. 
Proo/. I t  is sufficient to show that,  under the hypothesis, for any ~ > 0, 

ZN g a V2-~og N (1 - 2e) (3.30) 

only a finite number of times. Let  M0 be an integer, so chosen that  if M ~ M0, 
(3.28) does not hold. Let  M',  N'  be integers such that  

Ne(Mo) "< Ne(M')  <: N'  g Ne(M'  + 1), 



Maxima of Stationary Gaussian Processes 203 

and so that  for N', (3.30) is true. Then 

a V2 log N d M  ) (1 -- e) ~ Z~%(M) ~ Z~-, <= a V 2 log N'  (1 - e) 
(3.31) 

<= a V21og N t ( i  4- 1) (1 -- 2e) .  

Therefore, 

a(e 4- o(1))(1 --  e) --  ae (U2logNt(M) 4- e 4- o(1)) ~ 0, 

for infinitely many M, which plainly contradicts eq. (3.5), q.e.d. 

Lemma 3.9. I], ]or a fixed a > 0 

Ve>O,  lim(logN)P{Z~v<=aV21ogN(1--e)}~--O (3.32) 
N - - +  oo 

then 
P{limsup (Z2v/V21ogN) ~ a} = 1. (3.33) 

N - - +  oo 

The proo/is identical to that  of Lemma 3.2. 

Theorem 3.4. I/  
lira rzr =- 0 

N - + o o  

then Zlv/V21og N--+ 1, a.s. 
Proo]. From Lemma 3.9, it is clear tha t  what is to be proved is (3.32) with 

a ---- 1. Let  Q be arbitrary > 0. Let k be so chosen that  ~k ~ ~, where ~N is given 
by (2.18). Let  

Z~ ) = max Xi~. 
1 <-_j • N / k  

First, it is proved that  

(3.34) 

Since 

lim log N/k 
2v-~oo logN - - 1 ,  

it is sufficient for (3.34) to prove that  

p ~ l i m i n f ( Z ~ ) / 2 ~ g  N/k) >= VI-~-~Q} = 1. 
( ] r  oo 

Substituting N for N/k, by Lemma 3.9, it is sufficient tha t  (3,32) hold with 
a = V 1 - ~. But  using the representation (2.9), (3.32) is dominated by 

(log N) P{U ~ V ~ I  Q) log N --  el2} + 
(3.35) 

+ (log N) P{Wsr <= V2(1 - ~) log N - e/2}. 

First consider the expression on the left side of (3.35). Since u[V~is normalized 
and Gaussian, by Lemma 3.3, and the form of r (3.13), it  follows that  this 
expression approaches zero, as N approaches infinity. Clearly W~/V1 - ~ is the 
maximum of N independent normalized Gaussian r.v.s,  and so by Lemma 3.4, 
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the right side also approaches zero. Since clearly 

p {~lvn~nf(Z~/V21og . N ) >  V 1 - - ~ } _ ~  1, 

but  ~ was arbitrary. So the result follows, q.e.d. 
I t  is clear from the remarks at the end of Section 2, tha t  uniform mixing is 

sufficient for stability, and that  absolute continuity of the spectral density func- 
tion is sufficient for relative stability. 

Section 4 

Let  (X( t ) ,  - -r  < t < oo) be a separable, measurable version of a stationary 
Gaussian stochastic process with real valued parameter space. I t  is assumed 
without loss of generality tha t  

E X  (t) - O, 

E X  (s) X (s + t) - r (t) , 

where r (t) is, of course, the covariance function, which, by stationarity, does not 
depend on s. Let  

Z (t) ---- max X (s). (4.1) 
0 ~ s ~ t  

The limiting behavior of Z(t) is investigated. 
Two theorems are stated concerning the sample functions of such processes, 

which are due to B]~T.AYEV [1]. 

Theorem 4.1 (BELx:ZEV). The sample/unctions o / a  S .G .S .P .  are either 1) con. 
tinious everywhere, with probability one, or 2) unbounded in every/ini te interval, 
with probability one. 

Theorem 4.2 (BELAYwV). The sample/unctions o/ a S .G .S .P .  are continuous 
everywhere with probability one, i/ 

3fl > 1: limsup Ilog t]~(1 -- r(t)) < r (4.2) 
t-->0 

I f  the sample functions are of the type 2, above, it  is apparent t h a t  

Z(t) - ~ ,  V t > 0 .  

So, of course, we are only interested in those processes, whose sample functions 
are of the type 1. The condition (4.2) is very mild and is easily verified in the 
cases considered, hereafter. 

For discrete parameter processes, such as those considered in the previous 
sections, the conditions imposed consisted entirely of what are called "Mixing 
conditions"; tha t  is those which concern the behavior of the covariance sequence 
{rN} as N becomes large. For continuous parameter processes, two types of con- 
ditions are involved. The "mixing conditions" concern the behavior of r (t), as t 
becomes large. The "local conditions" involve the behavior, as t approaches zero, 
as for example (4.2). 
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To facilitate some of the proofs, which ensue, the following quantities are 
defined. Let  r and co, be two real numbers, such that  

0 ~ s < l ,  0 < c o .  

Let  the intervals { I~ ,  k = 1, 2 . . . .  } be defined 

I k = { ( l e - - l + s / 2 )  w<--t<~(le--s/2)a)},  l e = l , 2  . . . . .  
co 

I --= (.J I~ 
k = l  

and let Ic be the complement of I.  Let  

Z(~, ~o;t) = Sup  X ( s )Z (S ,  co; s ) ,  
O ~ s < t  

where 

Note that  

1, t e l  
Z(s ,  o~; t) -- c~ , tG Ic  

z (0, co; t) =- z (t). 

Let Z2v(t) =- m a x  X (k t /N) ,  
l ~_k<N 

and 

ZN(e ,  r t) -~ m a x  X (k t /N)  Z(e  , w;  let~N). 
l <~k<N 

In  addition to the original measure, we define the measure P~( . )  in the 
following way. Let  

~ k , ~  - ~ ; ( X ( t ) ,  ( le--  1)o~ < = t <  leco}. 

Clearly 5~- = ~ ( --U-= ~Ir ~) ' k 

where ~ is generated by the entire process. On each sub-sigma field ~ , ~  let 

P~* }(.) = P ( . ) .  

Then P * ( . ) ,  defined on ~ ,  is the product measure. To indicate the specific 
meaning, let {Xk(t), le = l, 2 . . . .  } be a sequence of processes, mutually indepen- 
dent and each having the measure P ( . ) .  Let  

X *  (t) = Xct#oj(t ) . 

Then X* (t) has the measure P*( . ) ,  which is clearly not stationary. 
In  addition, if ~ is a positive real number, ** P~,x ( . )  is the measure defined for 

X * *  (t) ---- Y[t/~l(t), 

where the {Y~( t ) ,  le = 1, 2 . . . .  } are mutually independent processes, each hav- 
ing the covariance function, considered by SLEPIX~ [17]: 

r(t) = (1 -- x Itl)+. 

I t  is assumed that  2~o < 1. The lemmas which follow, support Theorem 4.3. 
Lemmas 4.1, and 4.2, relate Z(e, co; t) and Zlv(e, co; t) under the measures P( . )  
and P*  (.). 
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Lemma 4.1. Let P ( . ) be a stationary measure con]erring continuity. Let a, A be 
two numbers such that 0 <-- a ~ 1, A > O. I] 

t iN ~ co(1 --  e)/2, (4.3) 
then 

P{Z(e ,  co; t) - -ZN(e ,  w; t) > A} 

N ~ 2 ~ r (A (1 -- a) a~/a (t/2~+1 N) ) (4.4) 

k = 0  

where r is given by (3.13), and 

~ (t) = 2 (1 - r ( t ) ) .  (4.5) 

The result  remains t rue  if  e = 0. The lemma is still true, if P~(.)* is used, 
instead of P ( . ) .  

Proo]. Let  the events  B, B~, k ---- 0, 1, 2 . . . .  be defined as follows: 

B -~ {Z(e, w; t) --Ziv(e,  co; t) > A } ,  

B~ ~ {Z2~+~iv(e, co; t) --Z2~N(e, co; t) > A(1 --  a)a~}. 

By cont inui ty ,  

Z(e, co; t) -- ZN(e, co; t) ---- ~ (Z2~+~iv(e, co; t) -- Zz~N(e, co; t) ) 
k = 0  

----lim(Z2~iv(e, co; t) - -ZN(e ,  co; t)) a.s. 
2-000  

Clearly 
r 

P { B }  ~ ~ P{B~} .  (4.6) 
k = O  

Consider the following sets of points. 

Le t  t~ ~)= j t / 2kN ,  j -~  1,2, . . ,2~:N. 

Evident ly  the point  t ()+1) zj-1 is midway between the points t~ .~) and ~j-l.'(k) The con- 
dit ion (4.3) guarantees  t ha t  ~ :r ~2j-l'(k+l) belongs to I ,  so must  either ,(k),j_l, or tl. ~) or both.  
So if  B~ is true,  one of the variables X(t(e~.+_] )) mus t  excede its "ne ighbor"  by  an 
amount  greater  t han  or equal to A(1 - - a ) a  ~. I f  the " forward"  neighbor does 
not  belong to  I ,  we use the "backward"  one. We call this event  E t. Clearly, by  
Lemma 3.3, 

P{EI} ~ P { Y I  > A ( 1 - - a ) a ~ }  ~ r  (4.7) 

But  
2~N 

B ~  c U E j .  (4.8) 
] = 1  

Combining (4.6), (4.7), and (4.8), we get (4.4), q .e .d .  

Lemma 4.2. Let X (t) be a S.G.S.P. with covariance ]unction r(t), such that 

33 > 0 : l i m s u p t - ~ ( 1  --  r(t)) < ~ .  (4.9) 
t----~O 
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Let  N (t) be an in teger /unc t ion  o/ t, such that 

l im N (t)/t (log t) ~/~- = oo,  
t - - > ~  

V fl > 1, l i m N  (t)/t~ -~ O, 
t--+ oo 

then 

207 

(4.10) 

(4.11) 

P( t )  - P { Z ( s ,  co; t) - -  Z~(t)(s,  co; t) > e/(21ogt)  1/2} ~= 
oo 

~ 2 k N (t) r (s (1 - -  a 5 a~/(2 log t) 1/2 a (t/2 k + l N  (t))) (4.135 
k = 0  

by  L e m m a  4.1 where a is such t h a t  0 ~ a ~ 1, and  will be chosen later,  r (x) is 
given by  (3.13), and a 2 (t) b y  (4.5). Le t  ~p (t) be arbi t rar i ly  chosen, so t h a t  

l im yJ (t) = co,  
t ---> o o  

(4.14) 
Vfi  > O, l im~(t) / t t~ = O. 

t---> oo 

Let  N (t) =-t(logt)2/:cy~(t). 
Then  2V (t) satisfies the conditions (4.10) and (4.11). I t  is worthwhile to emphasize 

t h a t  y~ (t) can approach  infinity as slowly as desired. 
B y  (4.9) there  exist constants  to, and Co, such tha t ,  if  t ~ to, 

1 - -  r(t) ~= Cot~ /2 .  (4.155 

B y  (4.5) and (4.15), 

a2 (t/21c+l N (t)) ~ Co 2 -~(~+1) (log t) -2 yJ-~ (t), (4.16) 

provided t / 2k+lN( t )  is less than  to. We will say ins tead t ha t  t ~ tl .  
Le t  us define the quant i t ies  

y( t )  --~ C2 e (1 - -  a) 2~/2(logt)l/2~p~/2(t), 
C ----- a .  2~/2. (4.17) 

I t  is clear t h a t  a can be chosen so t h a t  C ~ 1. Then  by  (4.135, (4.16), and  (4.17) 

r  c o  

P ( t )  _ ~ N ( t ) ~ , 2 t : r  ~) -~ ( N ( t ) / y ( t ) ) ~ , ( 2 / C S ~ e x p ( - - y 2 C 2 k / 2 ) .  (4.18) 
k ~ O  k ~ O  

Since C is fixed, k0 can be so chosen t h a t  if  k ~/Co,  

C 2~ ~ k C 2 . 

where 

(21ogt51/2 (Z(~, co; t5 - -  Z~,(t)(e, co; t)) -->0, i .p. 

under  both measures  P ( .  ) and  P ~ ( .  5. 

Proo/ .  Clearly the condition (4.95 implies (4.2), and so by  Theorem 4.2, the 
sample  funct ions are continuous with probabi l i ty  one. Let  e ~ 0 be arbi t rar i ly  
chosen. I t  is sufficient to show t h a t  

l im P (t) : 0 ,  (4.125 
t - ->  o o  
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The expression P (t), (4.18) then  is expressed as the  sum of  P1 (t) and  P2 (t), where 
the  former  involves s u m m a t i o n  f rom one to ko, the  la t te r  f rom k0 -t- 1 to  infinity. 
T h a t  is 

o o  

P2 (t) ~ (N (t)/ 2V~y(t)) ~ (2/C) ~ exp ( -  y2 C2~)12 = 
b=ko+l 

= (N ( t ) / V ~ y  (t)) (2/c) exp (--  ko C 2 y2/2)/(1 - -  (2/C) exp ( - -  C 2 y2/2)). 

Clearly then  to prove  the  L e m m a ,  i t  is only  necessary to  show t h a t  if  C1 > 1, 

l im (N (t)/y (t)) exp ( - -  C12 y~ (t))/2 = 0 .  
t - - > ~  

But  this is equal  to 

l im (~ (t) (log 02/a/y (t)) exp {log t - -  C2(~ (1 - -  a) 2 ~/2 (log t)1/2 ~0~/2 (0)2/2} = 
t---> o o  

-~- lim(~(t)(logt)~/CC/y(t))exp(logt(1 - -  C~e2(1 - -  a)22~p:c(t)/2)} : O, q .e .d .  
t - ->  r  

The following l emmas  concern the  uppe r  tail  of  the  d is t r ibut ion of the  maxi-  
m u m  for  a par t icular  process. The  first is due to  SLwPIA~ [17]. 

L e m m a  4.3 (Sz~HAN). Let X (t) be the S .G.S .P.  having the covariance /unction 

r(t) = (1 - - I t [ )  + . (4.19) 

Let Q (x, t: u) dt be the conditional probability that X (t) reached x / o r  the/irst  time, 
in the interval o / t ime  t <-- s <_ t ~- dt ~ 1, given that X (O) ~ n < x. 

Then 

Q(x, t: u) -~ (27Q-1/2 t-8/2(2 - -  t) -1/2 Ix - -  u / e x p ( - -  (x - -  u(1 - -  t))2/2t(2 --  t)},  
q. e.d. (4.20) 

L e m m a  4.4. Let X( t )  be a S .G.S .P .  de/ined on the interval 0 <-- t <-- 1, with 
covariance /unction (1 - -  21t I )+. ;Let e, and co be arbitrarily chosen, so that 0 <~ e 
< o~ < 1. Let 

Y = m a x  X ( s ) ,  
{(o ~/2 < s < ~(1 -- e/a)} 

_~(x) -~ P { Y  ~ x } .  
Then 

l im (1 - -  F (x))/(2 7e) -1/2 o~ (1 - -  r x exp ( - -  x2/2) = 1.  (4.21) 
X- ' ->  ~ 

Proo/. Le t  Q (x, t) be the  uncondi t ional  vers ion of the p robabi l i ty  specified in 
L e m m a  4.3, and  let 

co(l--e/2) 
J = ~Q(x ,  t) dt .  

Then  J is the  joint  p robabi l i ty  t h a t  X (0) --< x, and  t h a t  x is exceeded somewhere  
in the  whole in te rva l  eo e[2 --< s _< ~o (1 - -  e/2). Clearly 

J ~ 1 - -  F (x) _--< J ~- P {X (0) > x}.  (4.22) 

Fi rs t  Q (x, t) is evaluated.  

Q (x, t) ~-~ (2 7~) -1/2 t -1  I ,  (4.23) 
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where 
0 

I : ( 2  X )  - 1 / 2  t - 1 / 2  (2  - -  ~)--1/2 f i X  - -  U ] e x p  { - -  (X - -  U ( l  - -  t ) ) 2 1 2  t ( 2  - -  t )}  X 
- c o  

X exp (--  u2/2) d u .  

First  lett ing u ~ v + x,  

0 

I ~- (2 ~ t(2 --  t))-1/2 f I v I exp {--  (v (1 - -  t) - -  x t)u/2 t(2 - -  t)} exp {--  (v -F x)212} dv. 
--oo 

Now consider the expression in the brackets,  multiplied by  2 t (2 - -  t) 

(v(1 - -  t) - -  x t )  ~ + t(2 - -  t) (v -F x) 2 = (v -t- x t )  ~ -F x2(2t - -  t2). 

Now let w : - -  (v -F x t ) / i ~ ( 2 -  t). Then 

I = e -z~12(I1 + I2) ,  (4.24) 
where 

co 

Zl = (2 ~)-1,2 Vt(~_ o f wexv(_w~/2) ~w 
- - x t l l / t ( 2 - - t )  

= (2 ~)-1/2  V't( 2 - t) f w exp  ( -  w2/2) dw = (4.25) 
xt /1 / t (2- - t )  

= (2zl) -1/2 Vt(2 --  t ) e x p { - -  xZ t / t (2  - -  t)} 

since the integrand being odd, the integral from - - x t / I / t ( 2 - - t  ) to x t / V t ( 2 ~ - t  ) 
vanishes, and 

I2  = ( 2 7 0 - 1 / 2 x t f e x p (  - w2/2)dw = x t q S ( x t / V t ( 2  - t ) ) .  (4.26) 
--  x t / t / t (2  -- t) 

Combining (4.23), (4.24), (4.25), and (4.26), 

Q (x, t) = (2 z)-1/2 e-X~lz ((2 ~)-1/2 t~i/2 (2 ~ t) 112 eXp{ (x t)212 t (2 - t)}) -F 

--F (2 ~)-1/2 e-x2/2 x ~b (x W t ~  - t)). 

Now, if  o) s/2 ~ t ~ w (1 - e/2), it  is clear t ha t  

lim Q(x ,  t ) / ( 2 7 0 - 1 / 2 x e  -x~/2 = 1, uniformly in t. 
x--> r 

B y  definition of J ,  and eq. (4.22) 

(1 - -  F(x)) = J ( 1  + o ( 1 ) ) ,  

where 

J ~-- ~(1  --  e) x e x p ( - -  x2/2)  (1 -F o(1)),  q .e .d .  

Lem ma  4.5 shows tha t  a d.f .  F (x )  lies in the domain of  attra, ct ion of the d.f.  
A (x), i f  it  has the upper  tail equivalent  (4.21). 

Lemma 4.5. Le t  F ( x )  be a d . / .  such  that  

lim (1 --  ~ (x))/(2 ~)-z/2 c x exp {--  x 2 / 2 }  : 1 .  

15 Z. Wahrscheinl ichkei~stheorie  verw.  Gob., :Bd. 7 
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Then 

where 

and 
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lim FN (aN x + bN) = A~ (x), (4.27) 

aN = (2 log N)-1/2 

biv = (2 log N)I/2 + �89 (2 log N) -1/2 (log log N -- log ~) 

and A(x) is given by (2.4). 

Proo]. By the asymptot ic  relationship (3.12), i t  is sufficient to prove tha t  

l imN(1  -- JF(aNx + bN)) = ce -x �9 (4.28) 
N - - + ~  

Clearly 
ale x + bN = (2 log N) 1/~ + (�89 log log N/(2 log N) 1/2) (1 + o (1)), 

(aNx + bN)~/2 = x + log VlogN + logN -- log y ~  + o(1),  

f rom which (4.28) above follows, q.e.d.  
$ $  Lemma 4.6. Let X (t) be characterized by the measure P~,a (. ). That is assume it 

has the eovariance ]unction, 

r ( s , t ) ~ l - - 2 [ t - - s [ ,  if  [s /w]=[t /m],  

~ 0 .  

Assume also that 2w ~ 1. Then 

lira P {(A (t)) -1 (Z (e, co;t) -- B (t)) ~ x} = A a(1-~) (x) (4.29) 
l---> oo 

where 

A (t) ----- (2 log t) -1/2 , (4.30) 

B(t) = (21ogt) 1/2 + �89 (21ogt) -1/2 (loglogt -- logTe). (4.31) 

Proo]. First  the t ime axis is stretched. Let  T = 2t. Then 

Z(e, w; t) ~-- max Yk, j r . ,  
1 _~k ~t/oJ 

where 

and 

Y k  -= m a x  X(s), 
{ ( k -  l +eJ2) o~_~<(k--el2)oJ} 

Y* - -  m a x  X(s), 
{t/o~ + el2 ~- 8 ~t} 

- - 0 ,  

By stat ionari ty,  

P { ( A ( t ) ) - I ( Y  * -- B(t)) <~ x} <= 

So Y* can be disregarded. 
Replacing ~ again by 2t, by  Lemma 4.4, 

lira P { Y ~  > x}1(2~)-1/2 t eo (1 -- e) x e x p ( - -  x2/2) = 1. 

if  t ~ (t/o) -t- el2) o~ , 

if t <  (t/o) -[- el2) o~. 
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So using the relat ionship (4.28) in L e m m a  4.5, 

l im [rico/2o9(1 - -  e) P { Y ~  > A (t) x + B(t)} = 2(1 - -  e) e -~ �9 
t----~ o o  

Since the  variables  Ye are mutua l ly  independent ,  the  result  follows f rom L e m m a  
4.5, q .e .d .  

R e m a r k .  I t  is i m p o r t a n t  to note  t h a t  the  result  of  L e m m a  4.6, is independent  
of  co. 

L e m m a  4,7. Let x (t) < t be a/unction such that 

l im sup (t - -  x (t)) ---- C < co .  (4.32) 
t ---)- eQ 

Then 

exists i /and  only i/ 

lira P {(A (0) -1 (Z (~ (t)) - -  B (t)) < x} 

l i m P { A  (t)) -1 (Z(t) -- B(t)) ~_ x} 
t---~ oo 

does, and they are both equal, where A (t) and B(t) are given respectively by (4.30) 
and (4.31). 

Proo/. B y  s ta t ionar i ty ,  

P{(A(t))-I(Z(,~(t)) - -Z(t))  > e} < P{(A(t))-~Z(c) > e}-->O, as t - + ~ ,  

q .e .d .  

Theorem 4.3. Let {X  (t), -- ~ < t <~ oo} be a S.G.S.P. with covariance /unction 
r (t), such that 

l i m t - l ( 1  - -  r(t))---- 2,  0 < 2 < oo,  (4.33) 
t - - -~0 

Ve > 0,  l im De(~(t)) = O, 
t '--> r  

w h e r e  

N(t) 
De(t) = t-2(logt) -1 ~ (N(t) -- J)]re(Jt /N(t))[exp{r~(Jt/(N(t))(21ogt q- 

J ~ l  

+ log log t)/(1 A- re (J t i n  (t)))}, 

and 

(4.34) 

r~ (t) = m a x  (r (e), r (t)). (4.35) 

Then 

l imP{(A(t ) )  -1 (Z(t) -- B(t)) <=x} -=- (A(x))~ = A(x  -- l og2) ,  (4.36) 
t--~ oo 

where A (t) and B(t) are given by (4.30) and (4.31), A(x)  by (2.4), N (t) is such that 
(4.10) and (4.11) hold and z(t) satisfies (4.32). 

Proof. Let  e and  co be arbi t rar i ly  chosen, as explained in the beginning of  this 
section. Le t  

P(x, t) ~ P{(A (0) -1 (Z(t) -- B(t)) <=_ x} .  

1 5 "  
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Le t  P ( x ,  s, co; t), P * ( x ,  s, co; t), and P * * ( x ,  s, co; t) be similarly defined, using 
Z(s ,  co;t) instead of Z (t) and the measures in t roduced at  the beginning of this 
section. Le t  PN(t) (x, s, co; t) and * PN(t)(x, s, m; t) be the corresponding functions 
using Z~(t)(e, co; t). 

Let  A-, and '4 + be arbi t rar i ly  chosen, bu t  so t ha t  

1 - - 2 - [ t - - s  I < r ( l t - 8 1 ) < 1  - ~ + l t -  ~1 (4.37) 

provided It - -  s] _< co. Recall  that ,  with the except ion of  P ( .  ), these measures 
assign mutua l  independence on the various intervals I~.  Define the event  

= / SnpX( )> A(t)x + B(t)/. 
! s ~ [ O , t ] ( ~ I  c ) 

I t  is the event  t ha t  A (t) x + B (t) is exceeded in the interval  [0, t] on the comple- 
ment  of I .  Clearly, by  L e m m a  3.5, 

I P ( x , ~ ( t ) ) -  P ( x , s ,  co, u(t))] . . . . .  ~ P { E }  <_ P*~{E} < P * *  4- {E}.  

Le t  

Then  

~0(s) -- lim P~o,a-{E} = 1 --  (A(x ) )  ~-~ . 
t-->co 

lira sup (l iminf] P ( x, t) << ( > )  lira sup(lira inf) P ( x, s, co; t) + ( - - )~p(e) ,  
t-+oo \ t -~co  / t -+co  \ t -+oo / 

and 
lim ~p (e) = O. (4.38) 

~---> r  

By Lem ma  4.2, and by  (4.30), 

((Z (e, co ; t) - -  B (t)) (A (0) -1 - -  (Zzr co; t) - -  B (t)) (A (t))-l)  

= (21ogt) 1/2 (Z(e, (9; t) - -  Z~v(t)(e, co; t)) - + 0 ,  i .p.  

with respect  to bo th  of  the  measures P ( . )  and P*~(.), and similarly with u(t) 
instead of t. By  the definitions this implies t ha t  

lim sup (lira inf] P ( x ,  e, o,), u(t)) <= ( > )  PN(t)(x + ( - - )  e', s, co, ~(t)) 
t -+co  \ t-~-oo ] 

for all s' > 0, and similarly for P* .  Now it is shown tha t  

l i m l P N ( t ) ( x , e ,  co,~(t)) * - -  Ply(0 (x, s, co, u (t)) I = 0 .  (4.39) 
t - - >  r 

By L e m m a  2.1, this expression is domina ted  by  D,( t ) ,  (4.34). The t e rm of the  
form (1 - -  r2) -1/2 can be replaced by  a constant ,  since the use of the s width 
intervals  empowers the definition (4.35). The summat ion  is assumed to take  place 
only on those pairs of  points such t h a t  i t /N( t ) ,  and j t / N ( t )  are  both  on I .  Also, 
in this case, 

c 9' = 21ogt + loglog t + 0 ( 1 ) .  

So (4.39) follows and hence, 

lira sup (lim inf] P ( x ,  e, w, ~(t)) ~ (_-->)lim sup ( l iminf]  P * ( x  -{- ( - - )  s', s, co, u(t)) 
t -+co  \ t -+co  / t-->or \ t--+co / 

for  all s', s, and all x. 



Maxima of Stationary Gaussian X)rocesses 213 

Bu t  by  (4.37), and Lemma 3.5, 

P*~ +* (x, e, co; t) ~ P*  (x, s, o9 ; t) ~ P*~_* (x, e, ~0; t) .  

By  Lemmas  4.6, and 4.7, 

lira ** P~+(-) (x, e, w, • (t)) = (A (x)) x+(-)(1-~) 
t - > c o  

Combining the above results, 

lira sup (lim inf  I P (x, u (t)) < ( > )  (A (x A- ( - - )  e')) ~+(-)(1- o + ( _ )  ~f (e). 
t - > c o  \ t - + c o  / 

But  s and s' are arb i t rary  positive. The result does not  depend on w, which is 
also arbi t rary.  The local character  (4.33) of the process makes i t  plain tha t  ~+ 
and ~-  can be chosen as close to ~ as desired, by  making c~ sufficiently small. 
Recalling (4.38) it  follows tha t  

lim P (x, z (t)) = (A (x))~, 
t - - ~  oo  

and hence, by  Lemma 4.7, the theorem follows, q. e. d. 
The lemmas and theorems which follow simplify the condition (4.34). 

Theorem 4.4. / /  

] i m t - l ( 1 - - r ( t ) ) = ~ ,  0 < ~  < oo, 
t - > c o  

and 

then 

lira r (t) (log t) a = O (4.40) 
t - - ~  oo  

lim P {(A (t)) -1 (Z(t) - -  B(t)) < x} = A~(x) , 
t----> co  

where A (t), B(t) ,  and A(x )  are given by (4.30), (4.31), and (2.4). 

Proo/. I t  is only necessary to show tha t  the condition (4.34) of Theorem 4.3, 
is satisfied. Le t  D (t) be expressed as the sum of D1 (t) and D2 (t), where the former 
contains the sum from one to [tv-lN(t)],  and the la t ter  from [t~-lN(t)]  ~ -1  to 
N(t)  - -  1, and y, 0 < 7 < 1, will be specified latter.  Le t  

(t) = S u p  r (s) (4.41) 
t N s  

and 

and note  tha t  (4.40) implies 

8" (t} ----- Sup 2 r (s)/(1 -[- r (s)), (4.42) 
t ~ s  

lira r (t) = O, 
t ---> c o  

and hence lim (5 (t) = lira (~* (t) = O. 
t - - >  r  t---> o o  

So exp{re(t) (21ogt + loglogt)/(1 -+- re(t))} =< 

< exp {~ (s) (log t ~- �89 log log t)} = t ~(0 (log t) ~(0/e 
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Recalling the representat ion of /V( t )  and the assumptions (4.10) and (4.11) 

D1 (t) ~ t -(1-~(O)+v (log t) 3+~(~)/2 --> 0 ,  as t --> 

since by  (4.14), ~p(t) approaches infinity more slowly than  any  power of t. ~ is 
chosen less t han  1 - -  8 (e). This is clearly possible for every  fixed ~ > 0. 

Now consider D2 (t). B y  (4.40) above 

lira 8 (tv) (2 log t + log log t) ----- 0 
t'-'~ r 

and 

0 g exp {re (t) (2 log t + log log t)/(1 + re (t))} g 

< exp {8 (tv) (2 log t + log log t) } --> 1,  as t --> r 

So by  Theorem 4.3, i t  remains to  prove t ha t  
iv(t) 

lira t -2 (logt) -1 ~ (N(t) --  i) re(it/N(t)) = O. 
t--* ~ i = It ~-1  ~ ( t ) ]  + 1 

Recalling the definition of  h r (t), this expression is less t han  

8(tr) (logt)3~02(t)-->0, as t - ->oo,  (4.43) 

ff ~02 (t) is set arbi t rar i ly  equal to  

(8 (tv))-l/2 (log t) -a/2 -+ co ,  as t -+ oo.  

I f  v 2 (t), so defined, does not  satisfy (4.14), i t  can be replaced by  a funct ion which 
does, and (4.43) is still valid, q .e .d .  

Lemm a  4.8. I /  

f r 2 (t) dt < r (4.44) 
0 

then 
lira r (t) ---- 0 .  (4.45) 

t---> co 

Proo]. I t  will be shown tha t  if (4.45) is not  t rue,  then  (4.44) is not.  In  effect 
we assume there  exists a real number  a > 0, such t ha t  I r (t) [ > a infinitely many  
times. Consider a point  t such tha t  this is true.  Le t  8 > 0 be arbi t rar i ly  chosen. 
Le t  t e (t' - -  8, t' + 8). Then,  by  the " Increments  Inequa l i ty" ,  (Loi~vv, [14], p. 195) 

I r ( t ) - - r ( t ' ) l  _<21/2(1- - r ( t - - t ' ) ) l /2 - - ->0 ,  as t--->t'. 

So 8 m a y  be chosen so t ha t  t e (t' - -  8, t' + 8) implies I r (t) [ > a/2. 

So f r  2(t) dt > 8a2/2 > O. 

But ,  by  assumption,  an infinite sequence of  such points t~ can be found whose 8 
intervals  are no t  overlapping. So 

j'r2(0dt> ] r2(t)dt= ~ .  

0 k ~ 0  t~--t~ 

Therefore  (4.44) implies (4.45), q .e .d .  
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Theorem 4.5. I] 

and 

then 

l i m t - l ( 1 - - r ( t ) ) = k ,  O < k < ~ , 
t--~O 

o o  

S rU (t) dt < ~ ,  (4.46) 
0 

lim P{(A  (t)) -1 (Z(t) -- B(t)) <= x} = A~(x),  
t - ~  

where A (t) and B(t) are given by (4.30) and (4.31), and A(x)  by (2.4). 

Pro@ Let  g (t) be a funct ion such tha t  

tN(t)/N(t) + 1 <__~(t) <= t,  

where N(t) is subject  to the conditions (4.10) and (4.11). 
Clearly, by  Lemma 4.7 and Theorem 4.3 it  is sufficient to show tha t  

Ve > 0, l imDe(u(t))  = 0 .  
t-->0 

As in the proof  of Theorem 4.4, De (u (t)) is expressed as the sum of D1 (z (t)) and 
D2 (u (t)). The former  approaches zero as t approaches infinity. I t  is sufficient to 
show tha t  

Ve > O, l imD2(z(t))  --~ 0 .  
t - - ) - c ~  

We assume this is not  so, and show tha t  a contradict ion develops. Tha t  is, we 
assume tha t  there  exists a constant  A > 0, such tha t  for infinitely m a n y  t, 

D2 (u (t)) > A (4.47) 

for every  possible value of u (t). I t  is possible to bound D2 (t) 
iv(t) 

D2(t) g g ( t ) ( N ( t ) )  -1 ~. ]r(i~(t)/N(t)) l , 
] = [ t~ ' - lN( t ) l  + 1 

where 
g (t) - (u (t)) -2 (log u (t)) -1 (N (t))z (u (t)) ea('(t)) y (log u (t)) ~(~(t)) 

where ~ (t) is given by  (4.41). By  (4.46) and Lemma 4.8, 

lim ~ (~v (t)) = O. 
t---> o o  

So, if  g (t) approaches infinity, i t  does so more slowly than  any power of t. 
I f  (4.47) holds for all possible functions x(t), i t  follows, by  integration,  for a 

fixed t, t h a t  
t N(t) 

g(t)(N(t))  -1 f ~ Ir(]u/N(t))]du>= 
tN(t)lN(t) + 1 j = [t~ '-1 N(t)] + 1 

>= A ( t -  tN( t ) /N( t )  -t- 1) >= A tiN(t) + 1 -----A/h(t). 

Clearly h (t) approaches infinity more slowly than  any  power of t. 
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Therefore a sufficient condition is that 

N(t) 
limg(t)h(t) (N(t))-i  ~ [r( ju/N(t)) ldu = O. 

t--> 00 j = [ tY -1N(t)]  + 1 

By the Cauchy-Schwarz inequality, a sufficient condition is tha t  

V s > O ,  l i m D * ( t ) = O ,  
t - > c o  

where 

and 

/v(t) 
D*(t) =g2(t)h2(t)(N(t))-I  ~ I i ,  

J = i t v - ~  N ( t ) ]  + 1 

t 

I i =  f r2(Ju/N(t)) du. 
tN( t ) /N( t )  + 1 

Using the transformation s ---- ]u/N (t), 
N(t )  j t /N(t)  

D*(t) ~g2(t)h2(t)(M(t))- i  ~. ~ r2(8)d8 
] = M(t )  + 1 i t / (N(t )  + 1) 

where M (t) : [tV-I N (t)]. 
Since (] + 1/N + 1) - -  J / N  >= O, there is no overlapping, in summing the 

integrMs. Hence 
t 

D*(t) g g2(t)h2(t) (M (t) )-l Sr2(s)ds 
0 

which approaches zero, as t approaches infinity, by  the previously observed fact 
tha t  g (t) and h (t) approach infinity more slowly than any power of t, and hence 
less rapidly than  M (t), q.e.d. 

I t  seems probable, recalling Section 2, tha t  

lira r (t) = 0 
t - -> o o .  

is not a sufficient "mixing condition" for (4.36). Though the author has not 
constructed a counterexample to establish this, it probably would not be im- 
possible. Using the spectral representation 

o o  

r(t) ---- ]cos  cotdG(co) , 
- - c o  

what condition on G(co) is sufficient for (4.33)? I t  can be written, simply 

lim(1 - -  G(co))/co = lim G(--  co)/] c0] ---- 1/2. 
~o---> o o  ~o - + o o  

I f  G (co) is absolutely continuous, we can write 
oo  

r(t) = fcos  co tg(co) dco 
- -oo  

sufficient condition for the "mixing condition" (4.40), is tha t  g(co) satisfy a 
Lipschitz condition of order ~ for some zr > 0. A sufficient condition for (4.46) 
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is simply that  
o o  

fg2(~)  ~ < oo. (4.4s) 
- - o o  

KOLI~OGOI~OV and RozAl~lov [13] have proven that  if a continuous parameter 
stationary Gaussian process is "uniformly mixing", g(~o) must be well defined 
and continuous everywhere. Since, obviously, 

c o  

r(0) = ] g ( ~ ) d ~  < ~ ,  

(4.48) above, clearly follows. So the uniform mixing condition is sufficient for 
(4.36). 

C~AM~R [7] and [8], has obtained analogous results for a different class of 
stationary Ganssian processes. He considers processes whose realizations are every- 
where differentiable with probability one. They satisfy the local condition: 

r (t) = 1 - -  oJ2 t2/2 + o (t 2) 

as t--> 0, and the mixing condition: 

~:r > 0: l imt~r( t )  = O. 

The conclusion is the same as that  of Theorem 4.3 except tha t  

B(t) = V2 Oog 
with 2----1. 

His method is based on the limiting probability distribution of the number of 
upcrossings of a high level. In the present case the realizations are not differentiable, 
and so the concept of an upcrossing is not meaningful. 

The Ornstein-Uhlcnbcck process is the only process, which is both a diffusion 
process, and a stationary Ganssian process. I t  is characterized by the covariance, 

r (t) = e -  ~t. 

N~swELL, in his s tudy of diffusion processes [15] has shown that  its maxima 
have the property (4.36). I t  clearly satisfies the conditions of both Theorems 4.4 
and 4.5. So the result is again proved. 

Section 5 

In this section "local" and "mixing conditions" are found, which are sufficient 
for stability and relative stability, almost surely. As in Section 3, the problem is 
divided into the problems, respectively, of "upper",  and "lower" stability. The 
former is considered first. 

Lemma 5.1. Let  {X(t), --  oo < t < oo} be a S . G . S . P . h a v i n g  acovariance ]unc- 
t ion r (t) such that 

3cr > O: l imsupt-~(1 --  r( t ) )  < 0o. (5.1) 
t - -+O 
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Let 1 -- 2'~ (x) =-- P (Z (T) :> x} 
where T is suHieiently small, so that 

r ( t ) ~ O ,  i/ O < _ t < _ T .  

The condition (5.1) clearly makes this possible. 
Let M (x) be a/unction, such that 

V'/> O, l i m M ( x  + ~/x)/M(x) = 1, 
X'- '+ O0 

Then 

and 

(5.2) 

(5.3) 

where 
D~ ~ (Zs~+IMC~)(T) --Z2~M(~)(T ) > za~(1  - -  a)/x} , 

and  a is a posi t ive n u m b e r  less t h a n  one. 
Le t  

E~ ~) -- {X ((2 ~ - -  1) T]2 ~+1) -- X (j T]2 ~) > ~a ~ (1 - -  a)Ix).  

B y  L e m m a  3.3, 
v {E~ ~>) __< r (~) ,  

where z~ = ~a~(1 - -  a)/xq, 

a 2 -~ 2 (1 - -  r (T/2 ~+1 M (x))) ~ C 1 2 - ~  M (x)-a ,  

for some cons tan t  C1, and  sufficiently large x ( tha t  is for sufficiently small  
(TIM(x) ) ) ,  b y  the  condit ion (5.1), un i formly  for  all k. B u t  

z~ >= O~ ak2 ~/~ (M (x) )~/2/x = O~ o~ (M (x) )~12lx, 

where m ----- a .  2 ~/2. 

Recall ing t h a t  a can be chosen arb i t rar i ly  less t h a n  one, i t  is chosen so t h a t  

~ o > 1 .  
2 ~ M (x) 

P {D~} _~ ~ P {Ej} < 2~ m (~) r (~,). 

l imsup  (1 --  E~c (x)) /M (x) r (x) < 1, (5.5) 

where Z ( T )  is given by (4.1) and r by (3.13). 

Pros/. Le t  7 ~ 0 be a rb i t ra r i ly  chosen. Note  t h a t  

P { Z ( T )  > x + ~]x} "< P{ZM(x)(T ) > x} -[- P { Z ( T )  --  ZM(~)(T ) > 7]x}. 

Using L e m m a  3.5, and  the  well known combinator ia l  fo rmula  

P (ZM(x)( T ) > x} • P'(ZM(~)( T ) > x} g i (x) P {X > x} ~ M (x) r , 

where P ' ( .  ) is the  measure  conferring independence on the  componen t  variables,  
and  X is a normal ized  Gauss ian  r .v .  

OO 

P(x) -- P{Z(T)  -- Z~(AT) > ~1~} <= ~ P{D~}, (5.6) 
k ~ 0  

l im M (x)/x 4/~r = r . (5.4) 
---~ OO 



Maxima of Stationary Gaussian Processes 219 

By (5.6), 
oo 

P (x) ~ g (y (x), oJ)/r (x) = (r (x))-i  ~, 2~ r (y (x) o~), (5.7) 
k = 0  

where y(x) -~ C2(M(x))~12. Since o) is fixed, there exists an integer k0, so tha t  
ff  k > k o ,  

The function g (y, w) can be expressed as the sum of two functions gl (Y, co), and 
gg.(y, co), where the former is the sum from one to k0 in eq. (5.7), and the latter 
from k0 ~- 1 to infinity. 

g2 (y, ~o) ~ (2 z)-1/2 y-1 (2/w) exp (-- co y2/2)/(1 -- exp (-- ~o yS/2)). 

To prove 

limsup P { Z ( T )  > x ~- ~,lx}lM(x)r < 1, (5.8) 
X-->co  

it  is sufficient to prove that  the right side of (5.7) approaches zero, as x approaches 
infinity. Hence it is sufficient to prove g2 (Y (x), co) approaches zero. I t  need only 
be shown then, tha t  

lim (exp (-- C3 y2 (z ) )12)ly (x) r (x) = O . 

But this equals 

But 

(exp (-- Ca C~ (M (x) ) ~/2 x 2 + x2/2) ) (2 g) 1/2 x/y (x) . 

(C3 C~ (M (x) ) ~/2 x s --  x2/2) = x212 (C3 C~ (M (x)) ~/x 4 -- 1) -->oo 

as x--> oo. Note that  

lim M (x -J- y/x) r (x -}- y /x) /M (x) r (x) = e-v. 
g~---> o o  

Let  x' be chosen for each x, so that  

x = x' + ~/x'. 

Then 

limsup P (Z ( T) :> x} /M (x) r (x) = limsup (P (Z ( T) > x' -}- 7 /z ' } /M (x') x 
x---~ oo x - ->  oo 

• r (x')) M (x') r (x')/M(x) r (z) <= e~. 

Since y was arbitrary, (5.5) follows. 

Corollary 5.1. I /  
3:r > 0: limsup t-~(1 -- r(t)) < oo, 

t - - ~ 0  

then V2 > (4/~) -- 1, limsup (1 -- Fm(x))/x '~ exp (--x2/2) < 1. 

The Woo/follows from Lemma 5.1, and its conditions 5.3, and 5.4, which are 
easily seen to be satisfied by 

M(x) = x~+l. 

] 6  W a h r s c h e i n l i c h k e i t s t h e o r i e  v e r w .  G e b . ,  B d .  7 
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Theorem 5.1. I f  
3~ > 0: limsup t-~(1 -- r(t)) < oo. 

t - - > 0  

Then limsup (Z(t) - -  ]/2~ogt) < 0 a.s. 
t---', oo 

That is to say that  upper stability holds. As in the discrete parameter case, 
no "mixing condition" is involved here. 

Proo] o/ Theorem 5.1. First note that  for any real C > 0, it is sufficient to 
prove that  

l i m s u p ( Z ( t / -  V2 -W0/) =< 0,  a s .  
t - - + o o  

Note that  

where N = t /T ,  

Z (t) -- V ~ log N t  <= z'N+1 - V 2 log N T ,  

Z* -= max X*,  
I < ~ < N  

x *  = Sup X (s) 
{(N--1)T~_s<=NT} 

and T satisfies (5.2). So it is sufficient to establish that  

l imsup(Z* -- <_- 0,  a s .  
N-- ->  c o  

So, it  must be demonstrated that  Ve > 0, 

x*> N+e 
only finitely many times, with probability one. But, clearly 

~ ( 2 1 o g N A - e ) ~ e x p ( - - V 2 1 o g N + e ) 2 / 2 < ~ ,  V e > O .  
N = I  

So by Corollary 5.1, and the Borel-Cantelli Theorem, the theorem holds, q. e. d. 
Now consider the problem of "lower stability". 

Theorem 5.2. I]  

lim r (t) log t ---- 0, 
t---> o o  

then liminf(Z(t) -- V21o~) ~ 0 a.s. 
t---~ o o  

Proo[. Clearly, for all t >= 0 

Z (t) -- V 2 log t > z t  - V 2 log [t] + 1, 
where 

Zzr = max X(k).  (5.9) 

The result then follows immediately from Theorem 3.3, q.e.d. 

Lemma 5.2. Let 

t s (M)  -~ (t: V2 log t =  eM)-~ exp (M 2 e212). 
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I1 
Z( te(M))  < ( M -  1)e (5.10) 

only/ ini tely  many times ~/ e > O, with probability one, then 

liminf(Z(t) -- 2 1 ~ )  ~ 0, a.s. 
t - + o o  

The proo] follows, with minor modifications from that  of Lemma 3.1. 

Lemma 5.3. A su/ficient condition/or "lower stability" is 

l im( log t )P{Z( t )  _<y21ogt - e} = 0 ,  r e > 0 .  (5.11) 
t---> co  

As in the proof of Lemma 3.2, the sufficiency of this condition follows from 
the fact that  it implies the summability on M, of the probability of the event in 
(5.10). See the proof of Lemma 3.2. 

Theorem 5.3. I /  
o o  

f r2( t )dt  < ~ ,  
0 

then liminf(Z(t) -- V21~gt) >= O, a.s. 
t--> oo 

Proo]. Clearly, it is sufficient that  for some function u (t) satisfying (4.32) 

liminf(Z(g(t)) -- 2 1 ~ )  ~ 0, a.s. 
t ---> oO 

But 

Z(g(t))  -- V2 log t <=z[t ] - V2 log ([t] + 1) 

where Z[t ] -~ max Xk,(t)/t. 
l s  

The remainder of the proof is a direct result of Lemma 4.7, Theorem 3.2, 
and the reasoning of Theorem 4.5, q.e.d. 

Theorems 5.1, 5.2, and 5.3, combine to give 

Theorem 5.4. / ]  
3~r > O: limsup t-*c(1 -- r(t)) < o o ,  

t - -+  oo 

oo 

and either lira r (t) log t = O, or f r  2 (t) dt < oo, then Z (t) -- V 2 log t ---> o, a.s. 
t--+oo 0 

Theorem 5.5. I /  

and 

3~ > O: limsup t-~(1 -- r(t)) < oo, 
t----> oo 

lim r (t) = 0, 

then z ( t ) /V21ogt  ---> 1, a.s. 
Proo/. I t  is sufficient to establish "lower relative stability". But 

Z(t)]V2 log t _~ z[q/ 2V2~g~t j + 1), 

where Z2v is given by (5.9). The result follows from Theorem 3.4, q.e.d. 

(5.12) 

6 *  
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As remarked  at  the end of  Section 4, a counterexample could probably  be 
const ructed  which would show t h a t  (5,12) was no t  sufficient for stability. 

The remarks  concerning the  spect rum and the s trong mixing condition are 
also valid. 

Clearly the absolute cont inui ty  of  the  spectral  densi ty  funct ion is sufficient 
for relative stability. 

C~A~i~  has shown [6] t h a t  

lira P [[ Z (t) - -  V2]og t i  > log log t/Vl  gt ] = o, 
t - + c o  

provided the spectral densi ty  is of  bounded  variation,  and is such t h a t  

c o  

3a  > 1 : ]co2( log(1  ~- ~))ag(~o)d(o < oo. 
0 

I t  has been shown by  S~u~ [16] tha t ,  under  the  same conditions, for any  
~ > 0 ,  

Z (t) - -  V ~ log t < (1 Jr e) log log t/V21~gog t 

for all sufficiently large t, with probabi l i ty  1. This implies the present results for 
the class of  processes satisfying the  above conditions on the  spectrum. Those 
processes satisfy the local condit ion:  

r (t)  ---- 1 - -  co2 t 2 / 2  - ~  0 ( t 2 ) ,  

and  the  mixing condit ion 

l imsup t I r(t)[ < oo. 
t----> r  

I t  would be worthwhile to obtain  similar results for a wider class of  processes. 
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