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Diffusion Processes Associated with Lévy Generators

Daniel W. Stroock *

Diffusions associated with a Lévy-type generator ¥ are discussed from the
point of view of solving the martingale problem for .. Existence of solutions
is demonstrated under the assumptions of continuity. As for uniqueness, a
localization procedure is developed to show that uniqueness for the whole
process follows from uniqueness up until the first time has a jump of size greater
than & This fact is then applied to prove uniqueness for various special classes
of &#s.

0. Introduction

In [7], the martingale problem associated with a time dependent, second
order elliptic differential operator
2

R 4 . d
Lt =7 Z Lll‘l(t, X) + ; bl(t, X) 57
1 i

0x;0x;
was introduced and discussed. That is, we said that a probability measure P on
C([0, ), RY) solves the martingale problem for L, starting from (s,x) if
P(x(s)=x)=1 and f(x(t))— (L L, f(x(u)du is a P-martingale for all fe CZ(R%).
It was shown there that if a is bounded, positive definite valued, and continuous,
and if b is bounded and measurable, then the martingale problem for L, is well-
posed, in the sense that for each (s, x) there is exactly one solution to the martingale
problem for L,. The point of formulating the theory of diffusion processes in this
way was to make precise what is the connection between diffusions and differential
operators. The idea was that the martingale condition is the minimal property
connecting a process with an operator. What is interesting is that in some cases
it turned out to completely determine the process.

In the present paper, we will carry out a similar program for the class of
Lévy generators £,=L,+K,, where L, is as before and

K, f()=] (f(Hﬁ—f(ﬂ—%) M(t,x; dy).

Here M (¢, x;-) is a Lévy jump measure for each (¢, x). That is, M(z, x;.) is a o-finite
measure on R?~ {0} such that
| Iyl?
L+[yl?

is finite. The martingale problem for %, is that of finding for each (s, x) a prob-
ability measure P on D([0, o), RY) (the space of right-continuous functions

M, x; dy)

* The author was partially supported by N. S. F. grant GP-40383 while doing this research.



210 D.W. Stroock

having left limits) such that P(x(s)=x)=1 and f(x(t)—['Z, f(x(w)du is a
martingale for all fe C7(R?) and proving that there is at most one such P.

This program is carried out as follows. In Section (1) we develop the stochastic
calculus associated with such processes. Section {2) is devoted to the proof of
existence. The proof of uniqueness is broken into three parts. Section (3) develops
a localization procedure which enables us to use perturbation theory. The actual
proofs of uniqueness are done in Sections (4) and (5).

Aside from the desire to extend the class of processes to which the martingale
procedure applies, the motivation for this work comes from the study of dif-
fusions with boundary conditions {cf. [8] and the thesis of Anderson [1]). In [8],
it was shown how the problem of uniqueness for a diffusion satisfying boundary
conditions can be split into proving uniqueness of the process up until it first
hits the boundary and then proving uniqueness of the so called boundary process.
The boundary process turns out to be governed by a Lévy generator. Unfor-
tunately, the results in this paper cannot be used to handle the boundary processes
which arise in [8]. However, they are just what is needed in Anderson’s work.

The techniques developed in this paper can be adapted to prove existence and
uniqueness for the martingale problem associated with operators

L,=a(t,x)S“+K,,

where a(t, x) is a bounded, continuous positive function,

d
s e=f (£t 00~V G 1ac)
and ( ‘
K S 0=1 (£~ 0= B L) w0

where M(t, x;.) is a Lévy jump satisfying
lim sup | |yl*M(t, x; dy)=0.

dNO it x lylso
It has recently come to the author’s attention that an article by Komatsu [10]
on this subject has appeared. Komatsu’s approach is quite different from the one
taken here in that it carries out the perturbation and piecing arguments in a more
analytic way. His results and the ones here do not imply one another, but they
do have a large region of intersection.
Finally, it is a pleasure to acknowledge the contributions of S.R.S. Varadhan,
E. Fabes, and N. Riviére to this paper. The basic ideas of most of what follows
were hashed out, over a period of years, in conversations with Varadhan; and
the IP-estimates which appear in the appendix were obtained with the help of
Fabes and Riviére.

1. Stochastic Calculus

Let Q=D([0, ), RY) be the space of right continuous functions w on [0, co)
into R? having left limits. Given we, let x(t, ») denote the position of w at
time t. For 0<s<t, set 4 =%[xu): sSu=<t], and take M =0 (| ), 5,4;).
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Throughout this section we will be dealing with the following quantities.
The function a:[s,0)xQ—S; is bounded and s-non-anticipating (ie., a is
By, o) % M*-measurable and a(r) is .4;-measurable for each t>s). (Here, and
later on, S, is used to stand for the class of symmetric, real, non-negative definite
d x d-matrices.) The function b: [s, c0) x 2 — R?is bounded and s-non-anticipating.
From g and b, we form the operator

d
=324
1
Finally, M: [s, 00) x X #Bga._ 0, [0, 00} is function with the following properties:

(i) for each t=s and weQ, M(t, w;.) is a o-finite measure on R?~ {0} satisfy-
ing the condition

62
0x;0x

4 bi 0
+; (t)_a—;;

i

y[* ,
t>pj | lz (t7w5dy)<w7
wef2

(11) for each FEng\{o}:

2
j—LM( w; dy)

is an s-non-anticipating function.
With M we associate the operator

3 Vf(x)

K 1 0)={ (£ () =r 0 --20

) M(t; dy)
on C}(R%), the space of bounded functions on R having two bounded, continuous
derivatives.

Let a: [s, 0) x Q- R? be an s-non-anticipating function which is right con-
tinuous and has left limits. The following Theorem is proved in exactly the same
way as Theorem (2.1) in [8].

Theorem (1.1). Let ¥, =L,+ K,. Suppose P is a probability measure on {Q, #*).
Then the following are equivalent :

(1) fl@)- L, flaw)du is a P-martingale for all feC3(RY (ie.,
Sl =t L, floa(w) du, A5, Py is a martingale) (CF(RY) is the used of C*
Sfunctions having compact support),

Q) f(t, a(8)— f’( )f(u,oc(u))du is a P-martingale for all

feCy*([s, o) x RY) (the space of bounded functions on [s, 00)x R* having one
bounded continuous derivate in t and two bounded continuous derivatives in x ),
(3) for all uniformly positive fe Cy?([s, o) x RY),

0
((3_,,+ 3,,) S (u, o(w)
(w2 (w)

St at) exp |- jf du

is a P-martingale,

15 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32
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(4) for all 0eR?,
exp [i<0,oc(t)—a(s)—§tb(u)du>+%jt (0, a(u) 6> du

Saug o1 L ]

is a P-martingale.

Let P be a probability measure on {Q,.#*) and let 7 be a finite s-stopping
time (i.e., 7: @ [s, 00) satisfies {t<t}e#F for all ¢ s). Define

M={AeM®: An{t<t}ed for all t2s}.

It is not hard to see that .#°=2[x(t A1): t=s]. In particular .4} is countably
generated. Thus there is a mapping o — B, such that

(i) for each w, B, is a probability measure on {2, .#*>,
B (x(tAt)=x(t At(w), o) t25)=1,

(i) for Aed®, w—E,(A) is .4;-measurable and P(A)=P(A|.%7) (a.s., P).

Such a map is called a regular conditional probability distribution of P given
M; (abbr. repd. of P|.#7). Its existence was discussed in [7] in a slightly dif-
ferent situation. For a more up to date account of these matters, see [4]. The next
Theorem is proved in the same way as Theorem (3.1) of [7].

Theorem (1.2). Let P be a probability measure on {(Q,.#*> such that
fle@)— [t %, f (a(w)du is a P-martingale for all fe Cg (R%). Given a finite s-stop-
ping time 1, let B, be a r.c.p.d. of P|M;. Then there is an N € 4 such that P(N)=0
and when w¢ N

tv (o)

fla(tvi@)— | &, f(aw)du
T(w)
is a P,-martingale for all fe C(RY).

For t=s and I'e#ga_p(, 5> where 06>0 and B(0,0)={x:|x| <4}, define
n(t, N=Y <, Zr(a(w)—am—)), the number of jumps of a(u), sSu<t, such that
a(u)—o(u—)el. It is easy to check that (¢, I') is a finite s-non-anticipating func-
tion.

Theorem (1.3). Let P be a probability measure on {Q,.#*> such that
fle@)— 12, f(«(u))du is a P-martingale for all fe C3(R?). Let g be a bounded
measurable function on R® which vanishes in a neighborhood of the origin. Then
for all 0eR?:

exp [i <0, a(t)—a(s)— | b(u) du>+ [ e n(t, dy)+3 [ <0, a(u) 6 du

Ko,y
1+ |yf?

t
._j'duj'ei<9,y>+g(y)_1 M(u;dy)]

is a P-martingale.
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Proof. Clearly it is enough to prove the assertion when s=0 and
ge CT(RI~{0}).

Let t,>0 be given and suppose P, is a r.c.p.d. of P|.#). Then P-almost
surely,

_a(*
" f(a(t)_a (%» w —’j"%fzf(:)ia (gcn))» "’

o L2 (&
(s (£ o - f‘; (E(u)a ((k);) du

for £§t0§t and fe CZ(R% which are uniformly positive. Hence if fe CZ(R?) is
n

uniformly positive, then for each n=1:

(e o] B

k
Tk f(oc(u)—a (;1—))
is a P-martingale.

Let ge C3 (R~ {0}) and 0eR? be given. Clearly the preceding applies to
f(x)=¢<®*>+2® Hence

X, ()= exp[<9 ()~ (0) j (u)du>
+ig( (k“ /\t)—oc(%At))—f—%j(@,a(u),f))du

—jduj (eiw,y>+g<An<u)+y)—g<An(u»_1_ Onif+ Vg(f,,(u))) )M(u, dy)
0 1+]yl

— 21'(]; B, a(u)Vg(A4,(u)dud— (j) Lug(An(u))du]

is a P-martingale, where 4, (u)=a(u)—« ( Lnu] ) Note that
n

‘j (ei<e,y>+g(A,.(u>+y>—g(A,.(u»_ | 010+ Vg(4,@)
L+]yl?

is bounded independent of u, w and n. Hence EF[|X (£)|*]< e, and so for

each ¢, {X,(t)}{° is uniformly P-integrable. Since 4,{u)— 0 for all but a countable

k+1 k
number of u and )7 g(oc (%) At)—oc (7/\1‘> - [ g)n(t, dy), we see that

X ,(?) tends in L'(P) to the asserted martingale.

15*

)M(u,dy)‘
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Corollary (1.3.1). Define #i(t, [)=n(t, ') — [, M (u; I'du. Then for measurable
Iyl? .

5> Yiylz ,dy) P-al-

1+,y,2 5|y|=sg(Y)’7(t y) Cll

most surely converges uniformly in t as £]0 to a P-martingale ( g(y)ii(t, dy) which

is right continuous and has left limits. In fact,

g on R*~{0} satisfying the condition |g(y)|*<C

t 1 t
exp [i<6,,a(t)—a(s)— | b(u)du> + [ g, dy)+7j {8, a(w))0> du

t . . 9)
—jduj (e:<9,y>+g(y)__1_ ;<+|;:|>2 __g(y)> M(u; dy)]

is a P-martingale for all e R®.
Proof. Given ¢>0, set g,(1)=%;, ,(1y}g(y). Then

X,()=exp [i<0, a(t)—ofs)— § b(u)du> + [ .07, dy)+%f {0, a(u)8>du

£ . i<0,
_Eduj (ez<6,y>+ge(y)_1_ 1<+1)J;)]>2 ‘gs(Y)) M (u; dy)]
is a P-martingale. Moreover, it is easy to check that EP[| X (t)|*] < Ae®, where
A and B are independent of £>0. Hence it is enough to prove the asserted conver-
gence of | g,(3)7 (¢, dy). To this end, take 6 =0 and replace g by Ag in the definition
of X (¢). Differentiating once and then twice with respect to A, one sees, after
setting 1=0, that
§ 8. dy)
and

(§ 2.7, dy))> — [ du | g2 ()M (u; dy)

are P-martingales. Hence, if 0<¢, <¢,,

B[ 2,00 9= [ g, 0V ) =7 [[u | g20)M; )|

s e1<)yl<ez
-0

as &, ¢ | 0. Applying Doob’s martingale inequality, we conclude that | g,(y)7(z, dy)
P-almost surely converges uniformly with respect to ¢ in compacts.

Corollary (1.3.2). Given 6>0, define
=)~ | yilt,dy)— § yntdy)

|yl<é lylz
and

o=b@+ § P vy | L My,
|y|<51+,y]2 |y|251+]y,

Then y(t)=7,(t)— |% cs(w)du is independent of §>0. Moreover, for all 6, ¢, and
0"eR?,
Xo(t) Yo () Z4..(2)
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is a P-martingale, where:
_ o
Xy(0=exp [1€0,70 =7+ ] <0,a)0) du] :

BO=exp [i8, [ yieany—{du | (0P =1=ic0 )M )]

[y| <o [yl <o

Z,(t)=cxp l<9" | yitedy) - Jau | ( ’“’”’”-DM(“;dy)]-
[ylz

s irlz

Proof. For R>4, take gg(y)=i<0'—0, y> X 51y +i<0"—0,y>Z; (ly]) in
Corollary (1.3.1). One then sees that:

H®(t)=exp [i<9,oc(t)-oc(8)— {oynedy)— | yn@dy)— fca(u)du>

lyi<o 3Z|yl=R

1 t
51 a0y du| x Y, @ xexp 10", | ynt.ay)
35IyI<R
j t<6”%[a, rRIYD+OZ (R, ) (I¥])s ¥ __ 1)M(u, dy)]

s é

is a P-martingale. Since EP[|(H®(1))|?] <Ae® independent of R>0, it follows
that X (1) Y,.(1)Z, {t) is also a P-martingale.
Corollary (1.3.3). Given 6>0, let
aO)=a()— [ yn(t, dy),

[ylzo

by(t)=b(®)— |

———=M(t,d
Iyl>51+| IZ (a0

Then for any bounded measurable function h: R*— R, we have:

exp [i <0, o (8) — o5 (s) — jt bs(u) du>'

1 t _ ‘ i0yy 1 __ i<0,y>
+Zsj<0,a(u)6> sfdulyljd (e 1 T2 )M(u, dy)]

xexp | [ o)t dy)-[duf @01 Ms )|
¥ylzo s
is a P-martingale.

Corollary(1.3.4). Define y(t) as in Corollary (1.3.2). Then y(t) admits a stochastic
calculus like the one developed in [7]. In particular, if 0: [ 5, o0) x Q- C* is bounded
and s-non-anticipating, then [*{0(u), dy()> is a continuous P-martingale, and, in

fact,
exp [j(@(u), dy(u)> — I(H(u) a(u) 0(u)>du] X Yo (t) X Z g (1)
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is a P-martingale for all 6, 0" €R". Thus, if c: [s, ) x Q— R is s-non-anticipating
and P’ is defined on {(Q, #*) so that for all t>s

dpP’ ! t
dI; ‘}:Z: =exp Lf(c(u), dy()) *%5(6(14), a(u) c()) du],

then

f(oc(t))~—jt($u+(a(u) c)- V) f (a(u)du

is a P’-martingale.

' _Proo]". The only assertion that isn’t immediate from [7] is the last. However,
it is easily proved by putting 8(u)=i0+c(u), taking 0'=0"=46, and applying
Theorem (1.1).

2. Existence

The purpose of this section is to show how to construct a solution to the
martingale problem for a given Lévy generator. Our basic result in this direction
is the following perturbation theorem.

Theorem (2.1). Let &, =L, +K, be a Lévy generator. Assume that there exists
a family of probability measures Q, ., (s,x)€[0,00)x R%, on {Q, #*y such that
Q, , is a solution to the martingale problem for &, starting at (s, x) and (s, x) — Q, (4)
is By, % Bra-measurable for Ae.M". Let M: [0,00)x R* X Bra._ 0y~ [0,00) be a
uniformly bounded jump measure and define

K, f(x)=[(f (x+y)=f () M, x; dy).
Then there is a family of probability measures B, ., (s, x)e[0,00) x RY, on {Q, 4*)

such P, . solves the martingale problem for &, + Kt’starting at (s, x) and (s,x)— B, (A)
is B g, ,, % Bra-measurable for A€ M. Moreover, if M is the jump measure associated
with K, and Ty€Bra_q, is a set such that M'(t, x; R' I)=M(t, x; I,)=0, then

P, , can be chosen so that:

M'(t,x(t—); T nT)
M (z, x(z=); )

P, (x(x)—x(z—)el |t and x(r) for t<1)= (as., B )

on the set where t=inf{t=s: x(t)—x(t —)el} is finite.

Proof. Let 3=Q x [0, 0)", where N={0,1, ..., 7, ...}. Define x(t, ®)=x(t, )
and 7, (&) =0,, 120, where & =(w; g, .-, %, ...). Put ME=B[xWu), T, SSust
and 0<k<n} and A, =0(| )iz ,#y ). Given n20 and e, let p, 5 be defined
on %[z} so that

Iy 1.a([1 00))=exp [— { M’(u,x(u,cb))du]

(@)

where M'(t, x)=M'(t, x; R*~. {0}). Define for n=1

Qg,) = [5 5«) @ er,(d)), X (T(@) —, @)+ y M,(Tn((b)’ X(Tn((b) s éb), dY)]

X Saoqan X 7 X Ogian X Mat 1,8
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if 7,(®)< o0, and
) _
09 =6, x 510(5;) X Xy X Mni 1,

otherwise. Here
M'(t,x;T)

M (t,X;F)E M’(t,x;Rd\{O}

and 5w(>t9Qt,x(x‘,m) is the measure on {Q, .#*) satisfying

5(0 Q? Qt,x(t—,w)(A mB):‘%‘A(w) Qt,x(t—,w)(B)
for Aeo(| Js<u.#;) and Be.#'. Given n20, define B™ on <Q,.4*,> so that
Efec) = Qs,x X 5{s} and
ROV (A)=E"= Q4 (A)].
It is clear that (s,x)— P"(A) is Bo, X Brameasurable for de.#', and that
P(x(s)=x)=1. We will show that if s<t, <t,, de.#:, and fe CP(R%), then

t2

B [ £ (ett) = ] (Bt 2, oK) £ (x00) ) 2,
@.1)

ty
=B (f ()= [ (2, KD S (st ) 7,
The first step in the proof of (2.1) is to show by induction that for n>1:
EP [ f (x(2,)) g tons1] =E5R [ f(x (tl))‘%ﬂAn{rn>t1}]
1)
2@, L 2, KD (@) du]
ty

B[4, 2, M x(0) £ () |

First note that

2
—§ M(u, x(u)du

]

BP0 [y ey S (@)= E2 [ 2, £ (x(2) e

3
~ | Mo, x())do
du]

= EC [, f(x(t))e ¢ T T
4+ E9s. _%Af(gu_M,(u’x(”)))f(X(u))e J

=EMN [, f(x (), ..,]
FER| 2, [ 2, (S M (o x(@) (x(u))du]

=EP§})"[3{A f(x(t1))‘%nn >t1]
_ t
FEPY 2, [ (X =.7,‘+ﬂ’m>uK;)f(>C(u))ﬁlu]
- t

T1>U

_EP [%A Ty cue M (1, x(00) (X(u))du]-
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We have used here the martingale version of the Feynman-Kac formula (cf.
Lemma (2.3) in [8]). Next assume (2.2) holds. Then

EFSLY [%Anuﬂ oo S (22))]
FE g nenmia SN+ EP 213 < o S X))

and
(") [%‘A(\{‘C“St2<tn+l}f(x(t )]

B [%Anmsn}f (x(tz))
n= n - fl M’ (4, x(u)) du.
=Em:Y [‘%n@)gnEQg’) [SZA f(x(tz))e () ]]

+EFERY [‘%‘An{11<rn(w)<t2}EQ% [/ (x()e
=EPR [ st <o S (2 ED)]

+ P [%nmsmf L sl Lum M, x () f (x(”))du]

iz |G )M (e 65 )]

12

L EF [9%2, ez § T Lo MY x (W) f (x(u))du]

Tn

'”EP(“) [%Ah{fnstl<rn+l}f(x(tl))]
(n) ['%An{rnsn).‘ rn+1>u(gu_~Ml(u’ x(u)))f(x(u))du]

IM (u, JC(u))ﬂiu]

- J M(N x(u))du]]

B[ § o 1 0+9) M 0 )|

P‘") [%An{rn>t1} S T EULThy 1("5’011 ~M/(u’ x(u))) f(x(u))du]
it [%An{mm <xn+11f(x(t1))]
B[, (2 o (B M X0 (10

B[, 1, o] 0 9)M 05 )]

Using the induction hypothesis, we now conclude that (2.2) holds for n+1.
One next has to check that

(n)

EP‘ x [‘%’A Aty < Tn <14} f(x (IZ))]

—EPS(;?c [%’A 5 Ta—1 SUL Ty du § f(x (u)+y) (u’ x(u); dy)] (23)

7]
EPS( J)c [%An{rn>t1} 5 g{:ngu gu f(X(U)) du]
151
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and
EPS("; [‘%'A N{tn St} f(x (tZ))]

(1)

2 2.4
= EP [y s S, ))]+EPS * [%An{rn§t1} § &, fx(w) du].
L5
These relations are proved in much the same manner as was (2.2), only they are
much easier and do not involve induction.
Combining (2.2), (2.3), and (2.4), we arrive at (2.1).

Finally, set %,=%[x(u): sSu<rt,]. Since

n—1 /ltk
PO, St+s)S1—e? Y (k') ,
5 !

where 1= sup M'(t, x), it is easy to see (for instance by Tulcea’s extension theorem)

that there i 1s 2 unique probability measure B on (£, .4°,) such that P\’ =P®
on %,, n=1. Let B, be the measure induced on {Q, .#*) by B2, Clearly P,
has all the asserted properties.

Theorem (2.2). Let Z,=L,+ K, be a Lévy generator. Assume that:
(i) the diffusion coefficients a of L, are bounded and continuous,

(ii) the drift coefficients b of L, admit the decomposition: b=ac, + ¢,, where ¢,
is bounded and measurable and c, is bounded and continuous,

(iii) the jump measure M of K, has the property that for all peC,(RY),

|yl
J 3

1+]yl

Then for each (s, x)e[0, o) x R? there is a solution P, ,, to the martingale problem
for Z,.

Proof. In view of Corollary(1.3.4), we may assume that ¢, =0. Let yeC®
be chosen so that 0S¢ <1, Y (y)=0 for |y| <4, and ¢ (y)=1 for |y|> 1. Given § >0,

M°(t,

deﬁne M? so that féM—((—;%——%, where ;()=y(y/8). Set c;(t, x)=
M?(t, x; dy). Then ¢, is bounded and continuous. Let IZ=L,—c;- V.

o(y) M(t, x; dy)is bounded and continuous

jl 1_+_’ |2
By Theorem (4.1) in [7], there is for each (s, x) a solution Q7 _ to the martingale
problem for I starting from (s, x). By standard selection theorems (see, for
example, Kuratowski and Ryll-Nardzewski [5]), we can choose Qf . so that
0 ((A) is By ;X Bra-measurable for Ae.4'. Hence, by Theorem (2.1), we can
construct a P’ which solves the martingale problem for L, + K?, where

<y V)

K= (i —1e— 52

) MO, x; dy).

By Theorem (A.1) in the appendix, {P’,: 6>0} is relatively weakly compact.
Moreover, K¢ f(x)— K, f(x) uniformly on compacts for fe CP(R). Hence, every
limit point of P?_, as 6|0, is a solution to the martingale problem for %, starting
from (s, x).
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3. Unigueness, General Considerations
The point of the present section is to give a procedure for localizing the
problem of proving uniqueness of solutions to the martingale problem. Through-
out, we will be dealing with the following situation.
Y,=L,+K, and ¥/ =L,+K, are Lévy generators. There exist (sq, X,), ¢>0,
T >s,, and an open set Gox, such that

(i) a'(s,x)=a(s, x) in [s,, T] x G,

D b ~b B y
(i) b'(s, x)=b(s, x) lyés-——l_i_lylz

(i) M'(s,x; I=M(s,x; T'nB(0,¢)), (s, x)e[sy, T]x G and

M(s,x; dy) in [sy, T]x G, (3D

I’e%’Rd\{o}.

Here, of course, a, b, and M and 4/, ', and M’ stand for the diffusion, drift, and
jump parts of .&, and &/, respectively. We will also be assuming that there is a
measurable family {P/, : (s, x) [0, 0c0) x R%} of solutions to the martingale problem
for &,. Our aim is to show how uniqueness of solutions for the .#/-martingale
problem implies uniqueness for the .#-problem.

In accordance with the notation used in Section (1), set

>€£(t)=x(t)—l II yn(t, dy).

yvize

By Corollary (1.3.3),if B . is a solution of the martingale problem for .%, starting
from (sq, x,) and fe C}(R%), then

t

flx0)— § L2 (x,w) du

S0

is a B, -martingale, where

a9 (u)=a(u, x(u)),

O . Y .
b (u)=b(u, x(u)) |y|j;s~—1+|J’|2 M (u, x(u); dy), (3.2)

M®9(u; I'y=M(u, x(u); I nB(0, ¢)),

are the diffusion, drift, and jump parts of #.
Theorem (3.1). Let 6 =inf{t = 5,: x()}¢ G} A T and t=inf{t=s,: |x(t)—x(t—)|=e}.
Put { =0 A 1. Given a probability measure P on (8, 4**) such that P(x(s,)=xo)=1

and .

Flx0)— § L2 f(x, W) du
is a P-martingale for all fe CXH(R%), define
0,=0, ® B, x. (@) o)
L(w)

and BA)—EP[Q,(A)], Ac.™,
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Then P solves the martingale problem for £, starting from (sy, xo). In particular,
one can take P=P

Sp. X0 "

Proof. Let s,<t, <t, and Ae.#;°. Then

EP[ %, f(x ()] = E [ %y i Sl ]+ EP [ Zi iy <p iy ETE@ 5@ [f ()]
HE [Ty <y E®[Z, SN =L+ 1, + 1.
Note that

L= B [ Fan <con O+ B [y o0y [ 20w
14
and so .
I +1, :EP[%Am{C>t1}f<xs(C A tz))] +Eﬁ [%An{t;<{§t2} Cf g;:f(x(”)) d“]

{nty
:EP[%An{btl}f (x(e))]+ E [%Am{bm [j L fx,w) du]

+EF [%Am(bu}g an fﬁf(x(u)) d“]

Aty

= Eﬁ['%m{pn} f(x(tx))] + EP [QﬂAn{bn}fgz:f(x(”)) du] s

since £ f(x,(w) =, f(x(w) for u<{. Also,

L=EP[ %0y S (0] +EP [gAn{gém fzgﬁ Sx@w) d”] .
Thus, l
B[, S]]~ EF[2, S]]+ B [ 2, § 2, flx(w) du].

Corollary (3.1.1). Let P, P, and { be as in Theorem (3.1) and define A =
BLx,(tAD): t25,). If there is only one solution K, . to the martingale problem
Jor & starting from sy, x,), then P=F, . on M.

We now see that uniqueness for %] implies uniqueness for B . on 4 .
Our next step is to show that uniqueness of P, . implies uniqueness of B
on .#;°. To do this it suffices to prove that the distribution of E;|  [n({; I')|.4° ]
1s uniquely determined for I'e Bra._ g0, - What we are going to find is that there
is an .#;° -measurable function ¢’ such that for I'e Bra_p(o, 5"

. t
G — [ M@ (u, x(t L)) du

Eg o@D AP = fe ™ M{t, x,{t A 0); T) dt, (3.3)

where M(s, x}=M (s, x; R~ B(0, ¢)}. Eq. (3.3) will be proved under the assump-
tion that B, . is unique.
We will use the following lemma; its proof is elementary.

Lemma (3.1). Let {M,%#,P) be a probability space and 4,, t=0, a non-
decreasing family of sub o-algebras. Suppose X, Y: [0, 0)x M~ C are locally
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bounded, right-continuous, non-anticipating functions such that X(t), Y(t), and

d

X (t) Y(t) are P-martingales. If t is a bounded stopping time and d—%= Y(z), then
X (1) is again a Q-martingale.

Theorem (3.2). Let I be an index set and for each ael let X,: [s,00)x Q—-C
be a locally bounded, right continuous, s-non-anticipating function. Suppose M'
is a sub c-algebra of M° and P’ is a probability measure on {Q, #"» such that for
any probability measure P on {Q, #*) satisfying

(i) P=P on MM,

(i) X,(t) is a P-martingale for all el
P=P on #'. Let Y: [0, 0)x Q—[0, 00) be a locally bounded right continuous,
s-non-anticipating function such that Y(s)=1. If P is a probability measure on
{Q, My satisfying (i), (ii), and

(ili) Y(2) and Y (t) X,(t) are P-martingales for all ael,
then for any bounded s-stopping time o, E*[Y(0)|.4']=1 (as., P).

Proof. Define Q on {Q, .#°) by %%= Y(o). Given s<t, <t, and Ae .4,
EC[X,(t,) ZJ=E'[X,(t;) Y(0) Z,]
=E"[X, () Y(0) 4]
where we have used Lemma (3.1). Hence X, (t) is Q-martingale for all x1. Also, if
Ae;, then Q(A)=E"[Y(0) Z,1=E*[Y(s) Z,]=P(A). Hence Q=P on MM '
This shows that Q=P on .#’, and so for Ae.#':
EF[Z,E[Y(0)|4']]=EF[%, Y(0)]=0Q(4)=P(4).

Theorem (3.3). If there is only one solution E; _ to the martingale problem for
&, starting from (s,, x,), then there is an M -measurable function o’ Q— [s,, T]
such that Eq.(3.2) holds for any solution E, . to the martingale problem for %,
starting from (sy, x,). In particular, B, is uniquely determined on J°.

Proof. Let
X,(0)=exp [i<9, x, () —x,(50)— | 5@ (u) du> +4§<6,d® W) 0) du

S0

_ K0y

t
_ i<0,y> _
s{duj(e 1 R

) MO ]
and .
Y,(f)=exp [ln(t, )= {duf(e™—1)M(u, x(u); dy)] ,
So r
where a®, b®, and M® are given in (3.1) and AeR and 8eR’. By Corollary (1.3.3),
X,(t) Y,(?) is a P_ . -martingale for all e R% Hence, by Theorems (3.1) and (3.2),
ERexo[Y, i A #42]=1  (as. B, ). (34)

Since ¢ is a s,-stopping time and ¢ < T, we can find a measurable function
i (RY = [s, T] and s, <ty < - <t,<--- < T such that

o=f(x(to), ..., x(t,), ...).

0> X0
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Define & = (Xt A D), oo X, (8, A D)y o).

It is easily checked that o=0¢"if T>0.
We now compute B, . ([ <t|.4;°). Note that

(el )= 46V B, o (t> 0 VM) + B (TS0 ntll2)
= Z0,4(0") E™>*[1=n({; RN (B, )| 42 ]
+EPoxo [yt AL RO B0, 9))| 42 ].

so Xo 50, X0

According to (3.4),

tAl
ERoxo[y(t AL D)l _]=EPo % [ § M(u, x(w); ) du). 3 ]
K (3.5)
j s0, xo(C>” %SO)M(u x (unl); F)

for any I'e#pa. p(o, - In particular, we get

Ry xo LS tA2)

50, X0

_.Zio a {¢") ( f %o, xo(C>uI%gz)Mf€)(u, x (un C)) du)

+§ 2 w0 E> U AE0) M (u, x,(u A D)) du

and so tas
— T OM® u, xau A D) du

VN (2 N SR E PN (S T I
Plugging this back into (3.5) and setting ¢t = T, we obtain Eq. (3.2).
Finally, since x({)=x,({) ‘Hlyl > y1({; dy), we now see that the distribution of

~ x({) under B given .#;° is uniquely determined, and, therefore by Corollary
BLI, R, ., is uniquely determined on .4;°.

Corollary (3.3.1). Let &, be a Lévy generator. For each (s,, x,)€[0, c0) x R?
suppose there exists a Lévy generator &|, for which the martingale problem is
well-posed, and an e=¢(s,, X)), for which (3.1) holds with T=sy+¢ and G=B(x,, &).
If e(sq, X,) is uniformly positive, then the martingale problem for &, starting from
any point has at most one solution.

Proof. Let B solve the martingale problem for ., starting from (sy, X,).
Define { =5, and
G =(Inf{t2L,: [x(@)—x{=)Zeor |x()~x( Nz el A, +e),

where >0 is chosen so that &(s, x,) =& for all (s, x). Using Theorem (3.3) together
with Theorem (1.2), one can prove by induction that B, is uniquely determined
on #;° for all n. Hence it is enough to check that £, ({,>t)—lasn— cofori>s,.

First note that by the proof of Theorem (A.1) in the appendix,
B, sup Ix(w)—x(s)l2e2) S Ct—9),
sZfust
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where C is independent of s, x, and the particular solution F, | of the martingale
problem for &, starting from (s, x). Hence we can choose 0 <& <e so that

(CS<S+5)~2a
where {*=(inf{t>s: |x(t)—x(s)|gs or |x(f)—x(t—)|=e})A(s+e). Set {5, ="
Then P (G, Ss+0)=P ((<s+8,05, S5+0)
=EP e s B (G 1 S5+ 6)]
SB[ Do g0015 B, (T L6 () + )]
SIR.(Gss+9),

where P, is ar.c.p.d. of B, |.#;;. We have used here the fact that E, is P, , — almost
surely a “solution of the martmgale problem for &, starting from (Cs (), x(CS (w), ©)).

T
hos B (Ss+)<2
We next prove by induction on m= 1 that

sup P ({{<s+md)—0 as n—> 0.
Indeed, 5%

B ((5.Ss+m+1)O)=R ((=s+md)+E LG zs4+md, 5, S<s+(m+1)9)

M p (s tmd, iy, Ss 1) 5)SERH[B (O E0)+)]

where P, is as before. Hence

sup P, ( in_s+(m+l)5)<2supP ((E<s+md).

8, X

4. Uniqueness, the Elliptic Case
In this section we will prove uniqueness for the martingale problem associated
with Lévy operators %, = L, + K, whose coefficients satisfy:
(i) a: [0, c0)x R?-> S, is bounded and continuous and each afs, x) 1s
positive definite,
(i) b: [0, o) x R?— R* is bounded and measurable, (4.1)
y
W Iy
Actually, the proof will be first carried out under the more stringent conditions:
(@) a:[0, 00) x R? - §,is bounded, uniformly continuous, and uniformly
continuous,
(i) b=0,

2
(iid) j ly |l B M(s, x; dy) is bounded and continuous for all

M(s, x; dy) is bounded and continuous for all I'e Bga. (o;-

4.2)

|y]?
I'e%Bga and limsu M(s, x; dy)=0.
R {0} Elo(sg|y|5<a 1+ 1y ( y) )

Once this has been done, it will be easy to relax these assumptions to those in (4.1).
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The idea behind our proof will be to take advantage of the localization
procedure developed in the preceding section. Under the conditions in (4.2), one
can find for each ¢>0 a §> 0 such that

(l) Ha(taJ’)“a(S,x)”ZE Z |aij(tay)—aij(sax)|2<82

Lj=1

for (¢, y)e[s, s+6) x B(x, d), 4.3)

2
(ii) B(Oj: ) lfllylz M(s, x; dy)<e for all (s, x).
Hence, by Corollary (3.3.1), it suffices for us to show that if AeS, is positive
definite, then there is an ¢>0 such that
(1) la(s, x)— Al <e for all (s, x),
lyI?

(ii) IWM(s,x; dy)<e and M(s, x; R*\.B(0,1))=0 for all (s, x)

implies uniqueness holds. The critical step in this proof is to obtain the estimate
contained in Theorem (4.1) below.

Lemma (4.1). Let a: [5, 0)xQ— S, and M: [s, 00)x Qx Bra- 0;~ [0, 00) be
s-non-anticipating functions. Assume that

(4.4)

2
1) ul0*<,a@)0>< |6L| , te[s, 00) and BeR?, for some u>0,
(il) a(t)=a (s+[N—(tN_£)l), tels, o0), for some N2> 1,

(i) M(z, R*~ {O}) < B, te[s, o), for some B< oo.
Let a: [s, 00) x Q — R? be an s-non-anticipating, right-continuous function having
left limits and suppose P is a probability measure on {Q, #*> for which:

exp [i(@, a(t) —afs)> +%f {0, au) 0> du— jt du [ (¥ —1) M (u, dy)]

d+2
is a P-martingale for all 6eR®. Then if p> * and T>s:

E* I:j.f(ta a(t)) dt] S Collf leqs, Tixreys  f€Co([s, T]x RY).

Proof. First note that since M (¢, RY~. {0}) is bounded, we can let §=0 in
Corollary (1.3.2) and obtain:

a(t)=y(t)+ yn(t, dy).

t

Bt)=[a *(u) dy(w).

s

Next set

Then $(-) is a P-Brownian motion and

Y =y(8)=] a*(w) dB (w).
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Define 7,=s and
Tuy =(inf{t 27, 1t RY)>n(c,, RO} A (”M) N

N
Since M (t; R*~.{0}) is bounded, 5(-, R% has only a finite number of jumps in
[s, T]. Hence 7,=T for all but a finite number of n’s. Let P denote the r.c.p.d.
of P[.4L2..

Given fe Cy([s, T]x R%) which is =0, we now have:

EP [jT 0 dt] =§ e[ T (e, a) dt] ~

L,
- T

EP | [ Zio,o{t()) B (t.arn0)+ @ (@) (O~ Bz, () dt

IIA

B (0,15 [ 0] gt =700 y=2(5)) it ) |

o8 o[V1s

1A

S AN S legs, 11x ra Y EF [(Z10, 1)(7a)]
)

where p>—d'£—2,

fY) == e
8 ) = et o ¢

for positive definite ceS,, and

: v
A= swp (Jdeflgyrdy) et

u1§c§%1 s

Finally, note that )’ %, ,(t,) is the number of n’s such that t,<T. Hence
Y8 o, n(T) =1+ N(T—s)n(T, R%, and so

Z EF [3&"[0’ T)(tn)] <1+NB(T-s)% 4.5)
0
Lemma (4.2). Let a: [s,00)xQ—58,, b:[s5,00)xQ—>R* and M: [s, 0)x Q
~ Bra 0, [0, 0) be s-non-anticipating functions. Assume that a, b, and
2
j" 1~:)|y|2 M(t,dy) are bounded. Let «: [s, ©0)x Q— R? be an s-non-anticipating,

right continuous function having left limits. Suppose that there exist T >s,
1<p,<p, <o and C, <00, p; <p<p,, such that

T
EQ[jf(t,a(r))dr] <Clf oo r1arey  fECols TIX Ry,

whenever Q is a probability measure on {Q, #*> for which

exp [i <9, 2(6)—a(s) | b(u)du> +%§ <0, a(u)0ydu

—jjduj(e“"’”—l— if}yy;)M(u,dy)]
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is a Q-martingale for all OeR®. Then for p, <p<p,:

EP [jT 1. oc(t))dt]

whenever P is a probability measure on {Q, #*> such that

= Cl’_‘;ﬁl eBp(TQS)”f”Lp([s, T]x RY> fE CO([S, T] X Rd)a

exp [i <9, (i) —a(s)— | b’(u)du> +%3‘ <6, a(u)0> du

—iduj (01~ ﬁyy'i) M dy)|

is a P-martingale for all 0 R%, where b’ =b + ac and c: [5, 00) x @ — R% is a bounded,
s-non-anticipating function. The constant B, depends only on the interval (p,, p,),
and the bounds on a and c.

Proof. Let P be given, and define y(-) accordingly as in Corollary (1.3.2).
Define

X (t)y=exp [— j c(u)dy(u)—%f {c(u), a(u)c(u)}du].

d
Then X (f) is a P-martingale and so we can define Q on <@, .#*) by 9 —X (®
on ./#;, t=s. By Corollary (1.3.4),

exp [i <6, o(t)—ou(s)— jE b(u)du> —!——;jf {0, a(u)0>du

_sjtduj(e“"’”—l— ﬁlyylz> M(u, dy)]

is a Q-martingale for all 9eR?. Hence

EF [y f(t,oc(t))dt] —|E® [( szf(t, ) dt) X*(T)”

é(EQ [szlf(t, O((t))]“dt])l/"(T_S)l/v(EQ[X—u(T)])UU

1 1 .
for 1<u<oo and —+—=1. Given p,<p<p,, choose 1<u<oo so that
u v

p/u=(p+p;)/2. Then

=C +p1 ”f”LP([s,T]de)'

E© Ljrlf(t, a(t))}"dt]

Moreover,

E°[X~*(T)]=E"[X*°(T)]
—EPexp [(1—u)§c(t) dy(t

v D j<c(t),a(t)c(r)>dz],

]

xexp[

16 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32
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and therefore:

1
s B(T —5)

(E2[X (1)) <e =
where B= sup Lelt), a(t) e(t)).

Theorem (4.1). Let a: [s, 00) x Q—S,, b: [s,0) x Q— R and
M: s, 0) x Q x Bra_0,~ [0, 0)

be s-non-anticipating functions, and let o: [s, 00) x Q— R? be an s-non-anticipating,
right continuous function having left limits. Given a positive definite AeS; and
d+2

—2—< p, <p, <0, there exists an £>0 such that

@) sup [la()—A] <&

and .
(i1) supj" lyll 2 M(t,dy)<e
imply
T
E [j £ (6 2(0) dt] <Co T f oo 1o S€Colls TIXRY),

for p,<p<p, and T>s, whenever P is a probability measure on {Q, #°*) for which
t 1 t
exp [i <6, a(t)—a(s)— | b(u)du> o <0, () 6> du

—jduj(ef<M>—1— ll<-f|;|2) M(u, dy)]

is a P-martingale for all 6eR®. The ¢ dependends only on the interval (p,, p,) and

the largest number p>0 such that p|0> <<6, A(9>§i |01 The constants C,
and B, depend on ¢, (p, p,), p and the bound on b.

Proof. In view of Lemma (4.2), it suffices to prove this estimate when P makes

exp [i(@, a(t)—a(5)>+%§t <0, a(u) 05 du @ é)

— du [ (4P 1 =10, y> T po,1,(9)) Mw, dy)]

into a martingale for all feR*. By Lemma (4.1) and (4.2), we know that if a and M
satisfy the conditions of Lemma (4.1), then for such P:

EF [jT £(t,2() dt]

=C ” f “ LP([s, T]1 x R9)

2 . .
for p>d—_*2_—. What we must show is that by a proper choice of ¢, this constant C

can be made independent of the N and B in Lemma (4.1). To this end, define

GT¢(t,x)= [ dufg,(u—~t,y—x)d(u, y)dy.



Diffusion Processes Associated with Lévy Generators 229
Then, if f=GT¢ and ¢peC®([s,T)x RY):
T
_EP[f(s, a(9)]= —E [j (1, 2(u)) du]

ot f
0x;0x;

4 J

o B [ I3 (@)-4") (o ) |

T
+EP [ fduf(f (o) + ) —f (1, 20)) — T g0, 1,0) . Vo f (at ci))> My d y)] .

Define v on % 1, ga by

v ()= EF [j Vs, cx(u))du], e C,([s, T] x RY).
Then :

1 d a2 2\ %
st e (55))
ey ( sup |/ x+y)—f (6 x)— <y, V f (& ) )

|yi=t IJ’|2
+48(T—S)”f”L°°([s, T]x R9)*

Assuming that @ and M satisfy the conditions of Lemma (4.1) and therefore that

d+2
vel¥([s, T]x RY for i]<—;—, we now find that

1 ’

1__ 4 A
VlLall@ll, A, (T—s5)¢ 27 II¢JILP+f2—”HVHLqH¢IiLP

1__d_ 1
+ 28 AL VIl Dl +4eA(T—5)T 22 (bl

Hence if
A’ 1
8( 2” +2A;)§—2—, 4.7
then
1_ a4 14
||v]|Lq§2Ap((T—s)‘1 P 44e(T—s)0 27 ). (4.8)

The constants A4, A}, and A, are derived in the appendix. Clearly, & can be
chosen so that (4.7) is satisfied for all p, <p <p, simultaneously.

Now suppose that @ and M satisfy the conditions of theorem and that P
makes (4.6) into a martingale for all e R%. Assume that ¢ is small enough that
(4.7) holds for all p, <p<p,. For 6>0, define

LO)=a(t)— | yi(, dy).
lyl<o
Then, by Corollary (1.3.1), ’

oxp [i(@, o2(t)— (s> +%j <6, a(u)0> du

—fdu [ (€O —1-iC0, 5> Ty0,1,0)) M, dy)]

s |ylze
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is a P-martingale for all eR% Next set

B [a s
Then f(-) is a P-Brownian motion and

y(O)=7(s)=J a*W)dp(u).

Choose a,: [s, 00) x 2 — S, so that each g, satisfies the condition (ii) of Lemma (4.1)
and condition (i) of this theorem and E” [!|a,(u)—a()|*du—0 as n—oo for
each t>s. Put

o (6)=e’(t)—y(®)+ | @} (u)dB(u).

Then
EP[lod(t)—,(0)*)] >0 as n—oo and 4]0

for each t=s. Defining
t
B =E" [[ (2],

we now see that v2 —»v weakly. Finally,

exp [i(ﬂ, o (1) =B (5)) +% [ €6, a ()0 du
- du [ (¢4 <1109 B, 0) M )]
is a P-martingale for all 8eR% and so
VIS D, N llpogs, rx ks> SEColls; TIXRY),
for p; <p<p, and D, the constant in (4.8). Thus v satisfies the same inequality.
Lemma (4.3). Let >0 and ¥< p, <p,<oo be given. Suppose Ae€S,
satisfies u|0|><<0, A6 |(Z|2 , 0eR® and let a: [0, 0)x R*— S, and M: [0, c0)

X RYX Bra_0,— [0, 00) satisfy the conditions in (4.4) with & chosen so that (4.7)
holds for pe(p, , p,)- Define

d 2
A0 )= £ 5Tt [ )= 09O P D) M e o)
Then for 0<s<T and pe(p,,p,):

”(gt(o) —% AA) ° GTﬁb”LP([s, T]x R9) é% ”¢||LP([s, T]x R9)>
2

5%0%, and GT is given by:

where: A,=Y14 AY

GTb(t, )=  du | g (u—t, y— ) (1) dy.



Diffusion Processes Associated with Lévy Generators 231

In particular, HY =(1—(%?~%4,)oG")™" exists as a bounded operator on
I7([s, T]1 x R% onto itself and is consistently defined for pe(p,, p,)-

Proof. The proof of everything except the consistency has been essentially
carried out in the proof of Theorem (4.1). The proof of consistency is an immediate
consequence of the representation of HY in terms of a Neumann series.

Theorem (4.2). Let u>0, (p,,p,), A, & a and M be given as in Lemma (4.3)
and define G* and HY accordingly. Suppose P is a probability measure on {Q, #°)
such that P(x(s)=x)=1 and

exp [i(@, x () —x(s)> +—;— i <6, a(u, x())0)du

— [du] (PP —1=iC0, y> Ty 0,100 M, x(); dy)]

s

is a P-martingale for all 6eR% Then for 0<s<T:
t
EF [j 8. x(t))dt] —GToHT§(s.x),  deCo(ls T]x RY). (49)

Proof. Let @={¢peC,([s, TIxRY): G' o H ¢ C}*([s, T] x RY)}. Then & is
dense in I?([s, T]x R%. Thus, since both sides of (4.9) are IP-continuous, we
need only prove (4.9) for ¢peP. But ¢pe® implies

f=G"<HT¢(T,-)=0 and (%+$§°)>f=—¢, sSt< T,

where %9 is given as in Lemma (4.3). Hence
tAT

GToHI Q(t AT x(AAT)+ [ ¢(u, x(w)du
is a P-martingale, and so (4.9) holds. )

Corollary (4.2.1). Under the conditions stated in Theorem (4.2), the martingale
problem for £ is well-posed, where £ is the operator described in Lemma(4.3),

Proof. Existence has already been established. To prove uniqueness, note that
for each (s, x} and 1> s, there is a probability F(s, x; t,I') on R? such that

P(x(t)el'=F(s,x; t,I), T'€Bpa,
for any solution P starting from (s, x). In fact,
G'*ho Hit (s, x)— G o H b (s, x)
h

for ¢eCy(R%. In particular F(s,x;t,I') is measurable in (s, x) for all £>s and
I'e%#g,.

Now suppose that P and P’ are solutions starting at (s, x). We will show that

P(x(t))ely, ..., x(t,)eL) =P (x(t;,)el}, ..., x(t,)€l})

foW)F(s, x; ¢, dy)=lim

foralln=1,s<t, <---<t,,and I, ..., I, € Bg.. This is obvious from the preceding
paragraph when n=1. Assume it for n, and let P, and P, be the r.c.p.d’s of P|.4;;
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and P'|.#°, respectively. Then P and P, are each as. solutions starting from
(t,, x(t,, )') and so

Q,(x(tn+1)eﬂ+1)=F(tn, x(t,, 0);t,, . ,) (as,P),
Bi(x(t,, )€l ) =F(t,, x(t,, ) t,,1.,,,) (as,P).

n4+1°n+1

This completes the induction.

Theorem (4.3). Suppose a, b, and M satisfy the conditions of Eq.(4.1). Then the
martingale problem for &, is well-posed. Moreover, if P, , denotes the unique solution
starting from (s, x), then the family {F, . (s, x)€[0, o) x R% is strong Markov.

Proof. The existence assertion is contained in Theorem (2.2). To prove
uniqueness, first assume that the conditions in Eq. (4.2) are met. Then uniqueness
is an immediate consequence of Corollary (4.2.1) and Corollary (3.3.1). As a
consequence of uniqueness and weak compactness, it follows that in this situation
P, — P, . weakly as (s,,x,)—(s,x), and therefore {P, ,: (s, x)e[0, o0) x R%} is
measurable Note that, by Corollary (1.3.4}, uniqueness of solutions and measur-
ability of {P, ,: (s, x)e[0, 00) x R?} continues to hold even when b#0. We can
now drop the assumptions of uniformity on a and M. In fact, given (s, x), choose
ay and My for N21 so that ay=a and My=M on [s,s+N]x B(x, N) and ay
and M, satlsfy the conditions of (4.2). Then for each N, the martingale problem
assomated with ay, b, and My is well-posed. Moreover, if P, and P%) are
solutions associated with a, b, and M and ay, b, and M, respectively, startlng
at (s,x), then P =P until (™, the first exit time from [s,s+N]xB(x, N)
(cf. Corollary (3 1. 1). Since (™ o0 as N oo, this show that P, is uniquely
determined and is measurable with respect to (s, x).

Finally, to show that the strong Markov property holds, one need only take
the rcp.d. of B, |.4; and use uniqueness to see that for almost all @ it must
equal P on M,

Remark. Proceeding as in [7], one can improve Theorem (4.2) and show that
the process is actually strongly Feller continuous. Moreover, IF-estimates on

1(w), x(t(w), w)

d+2
EP==[ [T f(t,x(t))dt] can be obtained for all —;—< p<oo and coefficients

satisfying (4.1). The details of these arguments are very similar to those in [7].
Remark. Using uniqueness and the final assertion in Theorem (2.1), one sees
that if t=inf {t=s: |x(t)—x(t —)|=¢}, then
M(t,x(t=); T)
Mz, x(t—); R~ B(0,¢))

P, (x(x)—x(x—)el |t and x(t) for t<1)=

on the set {t< oo} for '€ Bga_po.,> and

T
— § M(u, xs(un1); RENB(0,8)) du
P (t>Tix(t) for t<t)=e °

where x, () =x(u)— ;5. y1(t dy)-
Remark. With a little more work, one can show that the existence and unique-

2
1 Iy|| 5 M xidy)

ness of solutions remains true under the assumptlon that .
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lyl?

is bounded and measurable for all I'e . (o and f, STa P

M(t,x;dy)—0

uniformly on compacts as 0| 0. In order to do this one has to use I?-estimates of
the sort obtained in Theorem (4.1) above.

5. Uniqueness, the Parabolic Case

In this section, Q=D([0,00), R‘*!). Given xeR**™', we will write x=
(xo, X)eR x R% The Lévy operators .# =L+K with which we will be dealing
are of the form:

2

Lf(X)= Z ”(X) -I-Z b‘(X) .
i, 1 i
) 5P G
Vo fx
Kf)=1 (f(x+y)—f(x)— —yuw—) M(x, dy)
where
(i) a: R"'> S, is bounded, continuous, and a(x) is positive definite for
each x,

(if) b: R**! > R? is bounded and measurable,
. Yol +131?
)
L+|yol+1¥l
I'eBra 0

Since ¥ is independent of time, the martingale problem is that of finding for
each xeR**! a P on (©, .#°) such that

P(x(0)=x)=1

M(x,dy) is bounded and continuous for all (5.2)

and
f(x@)— [ ZLf (x(s))ds
0

is a P-martingale for fe CP(R1).
Obviously, all the results of Sections (1), (2) and (3) apply to this situation.
In fact, the present set-up reduces to the one considered up until now by taking:

d(x)= (0 a? ))

N Yo ) B »2
b{(x)=1{1 — d
(x) ( + yle(x,dy),b(x) 19 s MOs ).
L= ¥ @57+ 3 5oL,
i,j=0 i i
Rf9=] (f(x+y>—f(x)—<iiffl—f;|(?l) M(x, dy),

and noting that ¥ =1+ K. In particular, existence of solutions has been estab-
lished. Also, the localization procedure worked out in Section (3) can be used
here. Hence, our method of proving uniqueness will parallel very closely the one
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developed in the preceding section. For that reason, the proofs in this section
will not be as detailed of those given there.

Lemma (5.1). Let a:[0,0)x Q2—S, and M: [0, c0)x Qx Bra. 0y~ [0, 0) be
non-anticipating functions. Assume that

.16
)
.. _ [Nt]
(ii) a(t)—a( N
(iii) M(t, R+ {0})<B for some B< .
Let o:[0,0)+Q-R*"' be a non-anticipating, right-continuous function
having left limits and suppose P lS a probability measure on {Q, #°) such that:

exp [l<9,a(t) oc(O)—te0>+ §<e a(s) 6>ds—§dsj ‘<‘”>—-1)M(s,dy)]

<(0,a()0>=u|f|? HeR? for some u>0,

), t=0, for some N=1,

is a P-martingale for all 6eR**? (éo is the unit vector (1,0)eR x R%). Then for

A>0 and p>£;~2~,

E? Efe-h f(oc(t))dt]

Jor some C,< .
Proof. As in the proof of Lemma (4.1), we see that

SC I pomaryy,  SEC R,

a(t)—a(0)=t8,+ | a*(s) dB(s)+ [ yn(t, dy),
0

where B(-) is a d-dimensional P-Brownian motion and #(t,*) is defined as in
Section (1). Now set 7,=0 and define

(A =(inf{tgrn: n(r, R*1)> n(rn,R““)})/\ (%ﬂ) .
Given a non-negative fe C,(R**'), we have:
[ [ e f (aft) dt] ZE” [j et f(oc(t))dt]

[ ]

©
ZZEP [e——lrn 5 dte——l(t-r,.)
0

Tn

[ Bagey (=T Y=, () S (2 (z0) + 1~ T, y)dy]

§A “f“Lp(RdH) ZEP[eAM'l]
0

for p>d——’2_~2—. Finally,
;Ep[e”’“"] =1 _+_;L(j)" e~ *TEP [; ﬂ;o,t)(‘c”)] di

S1+ANB{e *¢dr.
0
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Lemma (5.2). Let a:[0,00)x Q—S,, b: [0,00)x Q->R* and M: [s,00)x Qx
Brari o)™ gO, o) be non-anticipating functions. Assume that a,b, and
jMTM (t,dy) are bounded. Let «:[0,0)x Q—R** be a non-anti-

L+1yol+1yl
cipating, right continuous function having left limits. Suppose that there exist
T>0, i>0, 1<p, <p,<o0, and C,< o0, p<p<p,, such that

E¢ [jne—“f(a(t))dt]

§Cp]|f“1,p(ﬂd+1), fECo(Rd+1),

whenever Q is a probability measure on {Q, #°Y for which

exp [i(@, o(t)—a(0)— § (é0+5(u))dvz> +% fr {8,a(u)0) du
0 0

o182

is a Q-martingale for all 6 R**. Then for p, <p<p,:

Bp-NT _

é Cp—pl _‘_—“f”LP(R4+1)’

E?f [ie‘l‘f(a(t))dt] A B 7

whenever P makes

t

exp [i <9, a(t)—a(0)— (&, +l_7’(u))du> +—;—§ {6,aw)8>du
0

0

—(j:duf (ei<9’y>—1— ;i—g}yylz) M (u, dJ’)]

into a martingale for all 8R!, where b'=b+da¢ and ¢: [0, 0)xQ@—>R? is a
bounded non-anticipating function. The constant B, depends on the interval (py, p,)
and the bounds on a and C.

Proof. The proof is essentially the same as that of Lemma (4.2).
Theorem (5.1). Let a:[0,0})x 2—S, and M: [0, 0) X QX Bga1_g,—[0, 0)
be non-anticipating functions, and let o: [0, 00)x @ — R**! be a non-anticipating,

right continuous function having left limits. Given a positive definite A€S, and
d+2 ,
~2—<p1 <p, <0, there exists an ¢>0 such that
() sup la(9) - ] <z,
IYOH'WIZ
L+yol+(31?
imply for p; <p<p, and 1> 0:

E [Ee_“ f(x(t))dt]

(i) sup§ M(s, dy)<e

écp,).l|f“Lp(Rd+1), feCO(Rd+1)’
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whenever P is a probability measure on {Q, #*> for which

exp [i(@, cx(t)—oc(O)—téO>+%j£ €6, a(u)0>du

t
S duf (@ —1-i, y)%B(O’I)(i))M(u,dy)]
0
is a P-martingale for all 8eR***. The ¢ depends only on the interval (p,,p,) and
the largest p for which p|8|*<<0, A0Y<u|6|% 0cR’ The C, ; depends on e,
(py>py) and pu.

Proof. The outline of the proof is the same as that of Theorem (4.1). The only
place that it differs at all is in the proof that the estimate holds when a and M
satisfy the conditions of Lemma (5.1) as well as those of the theorem. To carry
out this step, define

T
v, 1) =E" [ge"’ltw(fx(t))dt], e Cy(RIH).

d+2
Then, by Lemma (5.1) and (5.2), v, ;€I4(R**") for all 1<q<%~. We have to

show that for small enough &, the norm of v, ; is independent of the quantities
N and B in Lemma (5.1). To do this, define

G;ﬂb(x): j e—l(yo—xo)ng(yO_xo’y_)—c)qﬁ(y)dy
For ¢eCP(R*), if f=G,¢, then feCP(R**!) and

(1= ge =g 4a) S0
Hence .
e TEP[ £ (x(T)]— E° [ £ (x(0))] = — E” [(y) e‘“qﬁ(x(t))dt]
+%EP[§6_’“(i,jizl(a”(t)—A”)) P izf (x(1))d ]

+E | TeHae § (000 +3) 1 (20) = . Ve (10) Ty, ) M6 ).

If $ =0, then f=0, and so (cf. the appendix for the IP-estimates):

[ Jerute)ar] <1l +§E[5e(i( af;f ) o) 4]

1

g 17O+ —f (@0) = G VS @)
#26E" e~ sup AR a]

g
+T||f”L"°

S(1420) e Wl (52 4247) 1001 v e

Rl
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Hence if 2 )
(eon)ed
for p, <p<p,, then
2¢ A
Warlie2 (147) =2
4 T
A2p 4

for g, <q<gq,. Since this estimate is independent of T, we conclude that

E"[j"e““¢(t)dt] _2(1+—2i>—j£’—1,
0 2 FETar
The rest of the argument is exactly like that given in the proof of Theorem (4.1).
Theorem (5.2). Let ¥ =L+ K, where L and K are given as in Eq. (5.1) and the
coefficients satisfy the conditions in Eq. (5.2). Then the martingale problem for £ is
well-posed. Moreover, if P, is the solution starting at x, then {P: xeR**'} is a
strong Markov, temporally homogeneous family.
Proof. Starting from Theorem (5.1), the proof of this theorem can be accom-
plished by exactly the same reasoning as we used to pass from Theorem (4.1) to
Theorem (4.3). The only difference is that G, plays the role here that G did there.

Remark. With a little more work one can show that {P.: xeR?*'} is Feller
continuous, even when b(x) is just bounded and measurable. However, it will
no longer be true, in general, that the family is strongly Feller continuous. The
same equations hold for the conditional distributions of the first jump place and
time as we gave in the second remark at the end of Section (4).

Appendix

Compactness of Measures
Let Q=D([0, oc), RY) be the endowed with the Skorohod metric. Then Q
becomes a complete, separable metric space, and so the Prokhorov theory applies.
That is, a family 2 of probability measures on Q is relatively weakly compact if
and only if it is tight. That is for £>0 there is a K <= Q (“=c” is used to denote
compact subsets) such that sug P(K)=1—¢ Our purpose here is to state a suffi-
Pe

cient condition for thightness in terms of the Lévy parameters.

Theorem (A.1). Let I be an index set and for each o€l let a;: [0, 0)x Q—S,,
b,: [0, 00)—> R’ and M,: [0, 00) x Q X Bpa_ 0y~ [0, 00) be non-anticipating functions.
Assume that :

sup sup la,(s)|| < 4 < o,

acl s20

Sup sup 1b,(s) < A4 <0,
2

p sup [~ ',2 M(s, dy) = A.

aeI 520

For each ael, let P be a probablllty measure on (Q My such that
exp[ <0 x(H)—x(0)— jb (s)ds>+ (<0, a,(5) 0> ds

, 16,
—of dsf (e -1 ;<+|yy|z ) s
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is a B martingale for all 0, and assume that

lim sup P(|x(0)|=R)=0.

R- o ael

Then {B: acl} is relatively weakly compact.

Proof. The idea of the proof is this. Let t,=0 and

T, =inf{tz 1, [x(f)—x(z,)| =e}.
Define
oy =inf{t,—7,_,:7, | <T}.
We must show that
lim sup B(67=0)=0 (A1)

0l0 ael

for all T>0 and &> 0. The critical step is the following observation. Let ¢pe C;°(R%)
be chosen so that 0=¢ <1, $(0)=0, and ¢=1 off B(0,s). Given n20, let B
be the r.c.p.d. of B|.#2. Then (as., B)

EATR+1

P AT, )=x(5,@) - | £, olxw-x(,()du

Tn()

is a B™-martingale. Thus:
BT i1 1@ ZO) S B {1x(5, 1 A (5,(0) + ) —x(z, () 2 )
ES [¢(x (50417 5(00)+8) = x(x, ()]

o n(®) + 8
w[ | |$u¢(x(u))|du]§C5.

Trm(®)

IIA

IIA

The constant C here depends only on the bound 4 and the C*-norm of ¢.
From this estimate, it is reasonably easy to get (A.1).

IP-Estimates

The estimates which we want to derive are:

T T d+2
G (s, N=AT—=9" NPl e, 110 P> (A2)
d OGTqb )2)_%
§A, Hd)“ x R4)? 1<p< 0, (A3)
(ZI: ( 0x,0%; ) | oo mywmey 7 A0 DXRY

up GO0 =GO~V GO |
[yl>0 |}’|2 LP([0, T} x R%)

. d+2
_S_AP |l¢”LP([O,T]xR‘1)’ '—2—*<P<00a (A4)
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and
1_d d+2
G, p(x)| =4, A 22D ora+s)s p>T, (A5)
odtyy| oy
<A d+1ys l<p<oo, A.6
(B 52E))] .. sl p (A6

G, p(x+y)—G, () =<3 Ve G, 4 (x)>

su =
e |yl +171* (R (A7)
d+2
éA,p”|¢|‘U(Rd+l)7 T<p<00
Here

G (s, x)= 5 dt [{gA(t—s,y—X) () dy,

G d)(x j‘e'-/l(yo——xo)dy j‘gA Xoa?—f)ﬁb(Y)dﬂ

X0

. Zox® (A ixy2t

8l X) =50 i3 (et )7 © ;

and AeS, is positive definite. The constants 4,, A4, and 4, depend only on the
greatest and least eigen values of A. (This can be seen by making the obvious
change of coordinates.) Thus we will always take A to be the identity matrix and
will drop the subscript on g,.

The inequalities (A.2) and (A.5) are easy consequences of Holder’s inequality
and don’t warrant further comment. Inequality (A.4) follows from (A.7); and (A.3)
and (A.6) are really the same thing, Thus we will devote our attention to (A.6)
and (A.7). Actually, (A.6) is a special case of a singular integral result first derived
by B.Frank Jones [3]. In order to discuss his and related results, we use the
function p(x) on R**+! defined by

=12 T14 L4 x 2t
pty= (IO 40

This function was introduced by Fabes and Riviére [2] in their work on singular
integrals with mixed homogeneity. Its importance is that p(x) is the number p
satisfying:

,x_g_ﬁzl
pt ot

and so if f is a function of R?*' with parabolic homogeneity of order « (ie.
f(A% x4, A%) =21 (x4, x), >0), then

oo (3 55)
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That is, f(x) is the product of p*(x) and a function on the d-sphere. For instance,
any of the functions:

d -
ko(x):: ax g(xO’x)a
0

2

kij(x):—gxi*a;;g(xosx)a 151217
can be written in the form I
X
ko (x)zﬁ;(%)y_ﬁ’
I(x)
kij(x)=W

where I; and I;; have parabolic homogeneity of degree 0. It is easy to see that I
and I}, are smooth away from the origin, and so for all xeR**:

§ o lko(x—y)—ko(—y) dy<B,
P 2 2p(x)
§lkyx—y) =k (= dy<B.

p(y) Z 2p(x)

Moreover, we can compute k, and IEiJ. explicitly:

R i
(= S0
(%) (& +1E1%)°
R _EE
ko(H)y=—— 2t
ilS) (& +1EP)

In particular, these are bounded. Hence, by Theorem (1) in Fabes and Riviére [2]
(cf. Stroock [9] for a more probabilistic proof), we have:

Hko*¢l|LP(Rd+1)§Cp“¢”LP(Rd+1), 1<p<00,
Hki}'*d)“U’(Rd“)éCp”¢“1p(1{d+1), 1<p< 0,

where “x” stands for convolution (in the sense of principle value evaluation).
The inequality (A.6) follows from this once one observes that

G,
0x,; 0x; B

In order to obtain (A.7), we need a refinement of inequality (A.8) due to
Riviére [6]. For £¢>0, define

kg)(x) = '%.[s, co)(p (X)) ko (x)a
k()= %, )0 () ki)
The theorem of Riviére is that

1|s1>113|k<g’*¢>| S Coll@ll, 1<p<oo,

(A.8)

ki (@—1G,¢) and ||AG,¢[,=1¢l,, 1=p=oo.

[sup K9 x| < C, 91 1<p<co.
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The proof of (A.9), as well as of (A.7), turns on the following variation on the
Hardy-Littlewood inequality.

Lemma (A.1) (¢f. Riviére [6]). For 6>0, let B,(6)={xeR*"': p(x)<d}. Given
fELl(Rd+1)">L1(Rd+1) -
M, f(x)= sup

1
B, ) dy,
where |S| is used to denote the Lebesque measure of the set S. Then

d+1

I/ pgasyys  A>0.

{x: M, f(x)2A}|=

Because the proof of this special case is.considerably easier than the general
casc treated by Riviére, we will include here the derivation of (A.9) from this
lemma.

Proof of (A.9). We will carry out the proof for k,. The first- thmg we need
is to show that:

| § (ke —8—ko() f(y+x)dy| S CM, f(x) (A.10)

ply)Z2e

for p(é)<e To do this, we note that when p(£)<¢ and p(y)=2e:

Ikoly — &) — ko )| £ €, ((p(y‘g))m 5 (yf)d+3).

Changing coordinates to y,=p>w,, ¥, =p®,, ..., y,=pw,, p>0 and WEY 4.1
we see that dy=p?*!'J(w)dp dw, where J(w)e C*(},, ) Hence

| T (koly =8 —koy) fy+x) dy]

P22

! 1
§Cz( fa’3o_d+1 (“fxﬂ’)ldy)dmrgj'g ZW

Eda“( ] |f(x+y)|da)da),‘

Bo(o)
"and integrating by parts we obtain (A.10).
We now write
I,= <)£2 ko) f+x)dy=— ()!2(ko(y—é)—ko(y))f(y+X)dy
— koW fy+E+x)dy+ | ko) fy+E+x) dy=1()+1,(E)+1;(&).
p(y)=2¢

Integrate both side as a function of ¢ over B,(¢) and dividing by |B,(e)|, we get:

I I (
1ol = B ()IB"L)l 'f)ld€+|B ()IB{S)'I (€|d§+ ()IB{E)I L) de.

By (A.10),

|B &)l 5 j(e) I (Qde= CM,fx)=C (Z\/Ip|f|p(x))1/p.
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Also

! 1 i/p
WB,L) (N de= ( 1B, (£)|er§(£) lko* fIP(E+) df)

<(M, [k f17(x)

and
_1_ L(& df< 1 k x ’ 1/p
B, a0 > =(m3p{£,' 0@, 00 IP(E+) dE)
1 1/p
é(m}}; |k0*(‘%x+39(25)f)(§+x)|p)
1 1/p dt2
gcp (m “%‘x-}—BP(Zg)fuip) écpz 4 (A/Ip‘fip(x))lli’)’
Hence

sup [k x f1(x) < C, (M, I fIP())?,  1<p<oo.
e>0

But, by Lemma (A.1),

d-+1

AP

[ (M P P 2B S 11

and so, by the Marcinkiewiez interpolation theorem, (A.9) follows.

Theorem (A.2). Let ¢ C2(R**") and f(x)=g*p(x). Then for d+2

<p< o,

§Cp Hd)HLP(RdH)-
I,P(Rd+‘)

fx+y)—f(x)=<5, Ve f(x) | }
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d+2

For <p<oo:
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Similarly,

Also,
2p 1
WIS | We@IbE 4R dEsT [ ( | ptx0ldddo

p)=2p Y By (o)

SC'M, ()= C'(M,|917)"F.

I ()| =B, M, |$]°(x).

Finally, by Taylor’s Theorem:
(8(¢o— P70, é—p?)—g(é)—p@, A1)

=p"7oko(E)+ Zku &) +p*4, () +p4,(9),

and (4, (é)l<wD~ Hence,

where (4, (O ———ir v @

D,
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The supremum over p of the first two terms was estimated in Theorem (A.2).
The last two terms are handled in the same way as we handled 7, (x). The rest of the
proof is completed in the same way as we completed the proof of Theorem (A.2).
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