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Diffusion Processes Associated with L6vy Generators 

Daniel W. Stroock* 

Diffusions associated with a L6vy-type generator Y are discussed from the 
point of view of solving the martingale problem for 2'.  Existence of solutions 
is demonstrated under the assumptions of continuity. As for uniqueness, a 
localization procedure is developed to show that uniqueness for the whole 
process follows from uniqueness up until the first time has a jump of size greater 
than e. This fact is then applied to prove uniqueness for various special classes 
of d ' s .  

O. Introduction 

In [7], the martingale problem associated with a time dependent, second 
order elliptic differential operator 

d 1 d ~2 ~ bi(t, X) C3 L , = ~  ~ a ' J ( t , x ) ~ +  Ox~,, 

was introduced and discussed. That is, we said that a probability measure P on 
C([0, oo),R a) solves the martingale problem for L t starting from (s,x) if 
P(x(s) = x)= 1 and f (x(t))-  f; L,f(x(u))du is a P-martingale for all f~ C~(Ra). 
It was shown there that if a is bounded, positive definite valued, and continuous, 
and if b is bounded and measurable, then the martingale problem for L t is well- 
posed, in the sense that for each (s, x) there is exactly one solution to the martingale 
problem for L t. The point of formulating the theory of diffusion processes in this 
way was to make precise what is the connection between diffusions and differential 
operators. The idea was that the martingale condition is the minimal property 
connecting a process with an operator. What is interesting is that in some cases 
it turned out to completely determine the process. 

In the present paper, we will carry out a similar program for the class of 
L~vy generators ~ =L t + Kt, where L t is as before and 

( f ( x+y) - f ( x )  (y, Vf(x)) 1 +]y[2 )M(t,x;dy). Ktf(x)=~ 
\ 

Here M(t, x;. ) is a L~vyjump measure for each (t, x). That is, M(t, x; .) is a o--finite 
measure on R a.. {0} such that 

lY12 M(t, x" dy) 
f 1 + [yl a 

is finite. The martingale problem for ~ is that of finding for each (s, x) a prob- 
ability measure P on D([0, oe), R a) (the space of right-continuous functions 

* The author was partially supported by N. S. F. grant GP-40383 while doing this research. 
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having left limits) such that P(x(s)=x)=l and f(x(t)-[t~Sfuf(x(u))du is a 
martingale for all f e  C~ ~ (R e) and proving that there is at most one such P. 

This program is carried out as follows. In Section (1) we develop the stochastic 
calculus associated with such processes. Section (2) is devoted to the proof of 
existence. The proof of uniqueness is broken into three parts. Section (3) develops 
a localization procedure which enables us to use perturbation theory. The actual 
proofs of uniqueness are done in Sections (4) and (5). 

Aside from the desire to extend the class of processes to which the martingale 
procedure applies, the motivation for this work comes from the study of dif- 
fusions with boundary conditions (cf. [8] and the thesis of Anderson [1]). In [8], 
it was shown how the problem of uniqueness for a diffusion satisfying boundary 
conditions can be split into proving uniqueness of the process up until it first 
hits the boundary and then proving uniqueness of the so called boundary process. 
The boundary process turns out to be governed by a L6vy generator. Unfor- 
tunately, the results in this paper cannot be used to handle the boundary processes 
which arise in [8]. However, they are just what is needed in Anderson's work. 

The techniques developed in this paper can be adapted to prove existence and 
uniqueness for the martingale problem associated with operators 

L t --= a(t, x) S (~) + K t ,  

where a(t, x) is a bounded, continuous positive function, 

and 

S(~)f (x) = ~ ( f  (x + y) . f  (x) 

K t f (x) = ~ ( f  (x + y ) - f  (x) 

(y,f(x))] dy 
] lyla+~ ( 1 < . < 2 )  

(y,f(x)) 
] M ( t ,  x" dy) l+]yl  2 ! 

where M(t, x;.)  is a L6vy jump satisfying 

lim sup S [Yl~M(t,x;dy) =0" 
a \ o  t,x irl_<a 

It has recently come to the author's attention that an article by Komatsu [10] 
on this subject has appeared. Komatsu's approach is quite different from the one 
taken here in that it carries out the perturbation and piecing arguments in a more 
analytic way. His results and the ones here do not imply one another, but they 
do have a large region of intersection. 

Finally, it is a pleasure to acknowledge the contributions of S. R. S. Varadhan, 
E. Fabes, and N. Rivi6re to this paper. The basic ideas of most of what follows 
were hashed out, over a period of years, in conversations with Varadhan; and 
the LP-estimates which appear in the appendix were obtained with the help of 

Fabes and Rivi6re. 

1. Stochastic  Calculus 

Let f2=D([0, oo), R a) be the space of right continuous functions co on [0, oo) 
into R a having left limits. Given coef~, let x(t, o~) denote the position of co at 
time t. For O<_s<_t, set/r s<_u<_t], and take J~=a(~t__>~J/d[). 
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Throughout this section we will be dealing with the following quantities. 
The function a: [s, co)xO--+Sa is bounded and s-non-anticipating (i.e., a is 
Nts, oo) x-g*-measurable and a(t) is Jg[-measurable for each t>s). (Here, and 
later on, S e is used to stand for the class of symmetric, real, non-negative definite 
d x d-matrices.) The function b: [s, co) x O --+ R e is bounded and s-non-anticipating. 
From a and b, we form the operator 

Lt=�89 ~ aiJ(t) F-~ bi(t)ax ' 
1 ~ X i ~ X j  1 i 

Finally, M: Is, co) x f2 x NRd \ {o} ~ [-0, co) is function with the following properties: 
(i) for each t>s and ~oe~2, M(t, e); .) is a o--finite measure on Rex {0} satisfy- 

ing the condition 

sup~ ly[2 M(t,~o;dy)<co, 
t ~  l + [ y [  2 
O) E~ 

(ii) for each Fe~Rd,{o}, 

ly12 M(t, co;dy) 
! l+lyl 2 

is an s-non-anticipating function. 

With M we associate the operator 

K.l(x)=s )M(.;,.) l + l y l  2 

on C 2 (Rd), the space of bounded functions on R e having two bounded, continuous 
derivatives. 

Let e: [,s, co) x O--+R e be an s-non-anticipating function which is right con- 
tinuous and has left limits. The following Theorem is proved in exactly the same 
way as Theorem (2.1) in [--8]. 

Theorem (1.1). Let ~Lf t = L t + K t. Suppose P is a probability measure on ( f2, Ms). 
Then the following are equivalent: 

(1) f ( e ( t ) ) - ~ , f ( e ( u ) ) d u  is a P-martingale for all f ~ C ~ ( R  e) (i.e., 
(f(c~(t))-~q~uf(o~(u))du, Jgts, P) is a martingale)(C~(R d) is the used of C ~ 
functions having compact support), 

(2) f(t,~(t))-~(~--Tx+~P,)f(u,c~(u))du is aP-mart ingale  for al l  

f e  C~' 2([,s, co) x R e) (the space of bounded functions on [,s, co) x R e having one 
bounded continuous derivate in t and two bounded continuous derivatives in x), 

(3) for all uniformly positive f e  C~" 2(Is, co)x Re), 

[' l f(t,e(t))exp - i  ( ~ +  Sf") f(u'e(u)) 
, f ( u ,  a(u)) du 

is a P-martingale, 
15 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32 
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(4) for all OeR d, 

[(0 . )  exp i ,e( t)-c~(s)-!b(u)d +�89 (O,a(u)O)du 

' ( ) ] _ S d u  S ei<O,,>_l_ i(O,y) M(u, dy) 
s I+[Y[ 2 

is a P-martingale. 
Let P be a probability measure on (~,  ~ s )  and let ~ be a finite s-stopping 

time (i.e., ~: ~2--* Is, oo) satisfies {v___t}eJg~ for all t>_s). Define 

Jg~={A~J/Zs: Ac~{z<_t}eJg~ for all t>s}. 

It is not hard to see that ~ = N [x(t/x ~): t > s]. In particular ~ is countably 
generated. Thus there is a mapping co ~ P~, such that 

(i) for each co, Po is a probability measure on (f2, Jgs), 

P,o(x(t /x ~)= x(t /x r(co), co), t >= s)= 1, 

(ii) for AeJ/[ ~, co--*P~o(A) is ~ - m e a s u r a b l e  and P(A)=P(AIJCL~) (a.s., P). 

Such a map is called a regular conditional probability distribution of P given 
J//~ (abbr. r:c.p.d, of P IJg~). Its existence was discussed in [7] in a slightly dif- 
ferent situation. For a more up to date account of these matters, see [4]. The next 
Theorem is proved in the same way as Theorem (3.1) of [7]. 

Theorem(1.2). Let P be a probability measure on (f2, JC[ ~) such that 
f (a (t))- ~ ~ ,  f (~ (u)) du is a P-martingale for all f e  C~ (Rd). Given a finite s-stop- 
ping time % let P~ be a r.c.p.d, of PI~g. Then there is an NeJg~ such that P(N)=0 
and when co r N 

t v z(~) 

f(a(tv'r(co)))- j" 5(',,f(o~(u))du 
,c(~,) 

is a P~-martingale for all f ~ C~ (Ra). 

For t>=s and F~NR~\mo, o),where 6 > 0  and B(0, b)~-{x: ]x[<8}, define 
17 (t, F) = ~ ,  ~t f r  (~z (u)-  a (u-)),  the number of jumps of c~ (u), s <_- u =< t, such that 

(u)-  e ( u - ) e  F. It is easy to check that t/(t, F) is a finite s-non-anticipating func- 
tion. 

Theorem (1.3). Let P be a probability measure on ( f 2 , ~  ~) such that 
f(a(t))-S~q~,f(a(u))du is a P-martingale for all feC~(Rd). Let g be a bounded 
measurable function on R e which vanishes in a neighborhood of the origin. Then 
for all OeRd: 

! )  exp i , a( t )-  e(s)-  b(u) du + ~ g(y) t/(t, d y ) + l ~  (0, a(u) O) du 
S 

l_ i<O,y> M(u,dy)] 
s l+ ly I  2 

is a P-martingale. 
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Proof Clearly it is enough to prove the assertion when s=0  and 
ge c ;  ~ (R ~ \ {0}). 

Let to>0 be given and suppose Po is a r.c.p.d, of P]J//t~ Then P-almost 
surely, 

exp 

exp I - i ! .  5~" (~(u) -~  ( k ) )  du I 

k 
for - -  < t o < t and fa C~ (R a) which are uniformly positive. Hence if f e  C 2 (R a) is 

y/ 

uniformly positive, then for each n > 1: 

o ~_~ f e (u) -  e 

is a P-martingale. 

Let g~C~~ and OeR e be given. Clearly the preceding applies to 
f (x)=e i<~ Hence 

X,(t)=exp [ilO,~(t)-c~(O)- i b(u)du ) 

+ o g o~--Atn --0: A t  + 2 o  

o I+]Y[ z 

' i ] - 2 ~ f  CO, a(.)Vg(A.(~))d~)- r.g(A.(u))du 
o o 

is a P martingale, whero ( )Note that 

l+[yl2 )M(u, dy) 

is bounded independent of u, co and n. Hence Ev[IX,(t)IZ]<Ae m, and so for 
each t, {X,(t)}F is uniformly P-integrable. Since A,(u)~ 0 for all but a countable 

/ - 7 . ~ - 

~ g(c~ ( ~ - ) A t ) - - C ~ ( ~ A t )  --, ~g(y)rl(t, dy), we see that number o f u  and 

X~(t) tends in L~(P) to the asserted martingale. 
15" 
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C o r o l l a r y  (1.3.1). Define Fl(t , r )=t / ( t ,  r ) -  jt o M (u; r)du. Then for measurable 

g on Ra--.{0} satisfying the condition [g(y)]2_<C /Y12 _ l+]y]--~-, Jmxm~g(y)~/(t, dy) P-al- 

most surely converges uniformly in t as ~J,O to a P-martingale ~ g(y)~(t, dy) which 
is right continuous and has left limits. In fact, 

exp i O,,e(t)-c~(s)- b(u)du + ~g(y)~(t, dy)+-~ (O,a(u))O)du 

i(O'Y) g(y) )M(u;dy)]  
- i du S ( ei(~ l + l y l  2 

is a P-martingale for all O~R a. 

Proof. Given r > 0, set g~(y) = ~t~, ~o~(t Y I) g (Y). Then 

s 8 

- ~ d u 5  e i(O'y>+ge(y) 1 i (O,y)  
. 1+[y12 g~(y) M ( u ; d y )  

is a P-martingale. Moreover, it is easy to check that EP[IX~(t)] 2] <Ae ~, where 
A and B are independent of r > 0. Hence it is enough to prove the asserted conver- 
gence of ~ g~(y) ~l (t, dy). To this end, take 0 = 0 and replace g by 2g in the definition 
of X~(t). Differentiating once and then twice with respect to 2, one sees, after 
setting 2 = 0, that 

J g~(y)~ (t, dy) 
and 

t 

(~ g.(y)0 (t, dy)f  - ~ du ~ g~ (y)M (u; dy) 

are P-martingales. Hence, if 0 < r < r 

el<iyi<e2 
~ 0  

as r r +0" Applying Doob's  martingale inequality, we conclude that j g~(y)~/(t, dy) 
P-almost surely converges uniformly with respect to t in compacts. 

C o r o l l a r y  (1.3.2). Given 6 > O, define 

and 

~a(t)=~(t)-- j yF1(t, dy ) -  j yq(t, dy) 
lyl<~ lyl >~ 

c~(t)=b(t)+ j YlYf~ M(t ;dy)-  S Y U(t, ay). 
l + ] y ]  2 l +]y] z 

byl<~ lyl>--~ 

Then 7(t)-~yo(t)-~ c6(u)du is independent of 6 >0. Moreover, for all 0, 0', and 
0" ~ R a, 

Xo(t) Yo' (t) Zo"(t) 
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is a P-martingale, where: 

1 t 
 o(t,=exp [i O !  O,a(u,O du] 

[i o ' ] Yo,(t)=exp ~< y~l(t, dy))-!dul,l<~I (e~<~ M(u; dy) 

Zo,,(t)=exp[i(O", ~ yFl(t, d y ) ) - i d u  ~ (e i (~ 
[yl>~ s [yl>~ 

Proof For R > 3, take gg(y) = i ( 0 ' -  0, y)  ~o, ~)(] Y ]) + i ( 0 " -  O, y)  ~ ,  m([ Y ]) in 
Corollary (1.3.1). One then sees that: 

H(m(t)=exp [i , e ( t ) -c~(s ) -  ~ y~l(t, dy ) -  ~ yrl(t, dy)-!c~(u)d 
ly[<,~ 6<IyI_-<R 

+ ~ ! ( O , a ( u ) O ) d u  x Y0,(t)xex p i(O", I yr/(t, dy)) 
6NIyI~R 

-idu y (e'<~176176 dy)] 
s Irl__>o 

is a P-martingale. Since E e [[(H(R)(t))[ 2] < Ae nt independent of R > 0, it follows 
that Xo(t ) Yo,(t)Zo,,(t ) is also a P-martingale. 

Corollary (1.3.3). Given 3 > O, let 

c~(t)=c~(t)- ~ ytl(t, dy), 
lyl>~ 

Y M(t, dy). be(t)=b(t)-  f l+ly12 

Then for any bounded measurable function h: R d---, R, we have: 

exp i ,eo( t ) -c~(s)-  S b~(u)d 
8 

+~I(O,a(u)O)-!du ~ e'<~ i(O,y) Yt(u, dy) 
s lyl<a 1 _+_ ]y]2 

x exp h (y) r I (t, dy) - ~ du l ( eh(')- 1) M(u; dy) 
l yl = ~ s 

is a P-martingale. 

Corollary(1.3.4). Define y(t) as in Corollary (1.3.2). Then 7(0 admits a stochastic 
calculus like the one developed in [7]. In particular, if O: Is, o~) x g2 ~ C d is bounded 
and s-non-anticipating, then ~t(O(u), d~(u)) is a continuous P-martingale, and, in 
fact, 

exp (O(u),dT(u))-�89 (O(u),a(u)O(u))du x Yo,(t)xZo,,(t ) 
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is a P-martingale for all 0', i f 'dR a. Thus, if c: [s, oo) x Q ~ R  a is s-non-anticipating 
and P' is defined on (~,~r so that for all t>s  

d p l - - = e x p  (c(u), dT(u))-�89 a(u) c(u))du , 

then 
l 

f (a(t))-  l (~ ,  + (a(u) c (u)). V) f (e(u)) du 
s 

is a P'-martingale. 

Proof The only assertion that isn't immediate from [7] is the last. However, 
it is easily proved by putting O(u)=iO+c(u), taking 0 '=0"=0 ,  and applying 
Theorem (1.1). 

2 .  E x i s t e n c e  

The purpose of this section is to show how to construct a solution to the 
martingale problem for a given L6vy generator, Our basic result in this direction 
is the following perturbation theorem. 

T h e o r e m  (2.1). Let s t = Lt + Kt be a L&y  generator. Assume that there exists 
a family of probability measures Q ....  (s, x)~[0, oo)x R d, on (~ ,  2"~) such that 
Q,,x is a solution to the martingale problem for ~ t  starting at (s, x) and (s, x) ~ Q,, x(A) 
is ~[o,q x ~Rd-measurabIe for A ~ Jr Let M' : [0, oo) x R d x ~Rd,{O} ~ [0, o0) be a 
uniformly bounded jump measure and define 

K; f (x) = ~ ( f  (x + y) - f  (x)) M'(t, x ; dy). 

Then there is a family of probability measures P~,x, (s, x)s[O, oo) x R a, on ( f2, j//s) 
such P~, ~ solves the martingale problem for ~ t  + K, starting at (s, x) and (s, x)--~ P~, x(A) 
is ~to, ,J x ~R~-measurable for A~Jr Moreover, if M is the jump measure associated 
with K t and F o ~ NRd.. {0} is a set such that M'(t, x; R a'-. Fo) = M(t, x; Fo)-~ O, then 
P~,, can be chosen so that: 

M ' ( ~ ' x ( ~ - ) ; F m F ~  (a.s., P~,~) 
P~, x (x (z) -  x (z - )~ C[z and x (t) for t < z) = M'(z, x (z - ) ;  Co) 

on the set where ~=inf{t>=s: x ( t ) - x ( t - ) S F o }  is finite. 

Proof Let ~ = f 2  x [0, oo) ~, where N =  {0, 1, ..., n . . . .  }_ Define x(t, &)=x(t ,  o3) 
_ ..., ~ , , - ~  Ix(u), z~: s<_u<_t and % ( & ) = % , n > 0 ,  where cS=(co;%, %, ...). Put ~ - 

and O<_k<_n} and J ~ , =  a([ J,>=,~Cgg,,). Given n > 0  and cSe~), let/~,.,~ be defined 
on ~ [%] so that  [ '  ] #~+~,r oo))=exp - ~ M'(u,x(u ,&))du 

where M'(t, x )=M'( t ,  x; R a'-. {0}). Define for n>= 1 

[I | Co);dy 
I -  Zn 

• ~{~o((5)} • --- x ~{zn{ts)} • ]/n+l,~5 



Diffusion Processes Associated with L~vy Generators 217 

if z. (&) < 0% and 

otherwise. Here 
M'(t ,  x; F) 

~. '( t ,  x; F ) -  M'( t ,  x; R a \  {0} 

6 and ~, ~ G,x(x_,,~ is the measure on (~,  ,/N~} satisfying 

s 

3~ Qt Qt, x(t-, ~,)(A c~ B) = f A(O)) Qt, x(t-, r 

for A6a(U~_<.<tJ/d~) and U ~ d  t. Given n~0 ,  define P~I~ on (r  .} so that 
p(o) = Q~ x and 

p(.  + t ) (~ll -- Ee(. "~ ro(.  + ', (.d]q 

It is clear that (s, x)--* (") - P~,x(A) is ~to,~jxN~-measurable for A e ~ ' .  and that 
P~}"2(x(s)=x)=l. We will show that if s < q < t 2 ,  Ae /d t~  , and f e C ~ ( R e ) ,  then 

t2 

.p(n) [ ( f ( x (  ))--ff(~'~u ~tn>uK1u) f( ') ) ~ A ]  . . . .  t 2 + x(u du 

. (2A) 

= g P~?)x ( f (x(tl))-- ! (~u ~- ~.>.K'u) f (x(u))du) f A] " 

The first step in the proof of  (2.1) is to show by induction that for n > 1: 

Ee~G [ f  (x(t2))~ar~{zn>t2}] = EPs('n2 [ f ( x ( q ) ) f  A~(*. >m] 

V 'i ,t] ryP (n) t + ~  ~,~ ( ~ ~  . . . . .  K. x(u du 
I- t l  

] F?P( n ) ~__ t 

First note that 

t 2 

EV2~[fA~(, ,  >t2} f (x( t2))]  =EOs' x [ f a  f (x ( t2 ) )  e-~s M'(.,x(.))a.] 
t ,  

= Ees, ~ [35 A f (x (q)) e - j  M'(., ~(.))d.] 

+ E  Q . . . .  M ' ( u , x ( u  x(u e-L 
t- t l  A 

=EPE~ [~YAf(X(t,))s >t,] 

-P~" - M  u,x(u x(u du +15 ~,* ~>,, 
t. t l  J 

p ( t )  
= E s, ~ [~f A f (x(t,))gf~, >t,] 

rypO)  t + r~ ~,~ + K x(u u l > u  O>U u 
L t t  

t l  
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We have used here the martingale version of the Feynman-Kac formula (cf. 
Lemma (2.1) in [8]). Next assume (2.2) holds. Then 

and 

Ee,.+.[•. f( ))] 
p(n) pin) 

= E., '~ [us a,-,l.., >,.i f(x (t 2))] + E., - [~a o (~,, ~ t, <.,,+ o f(x (t 2))] 

UP(nJ 
t 2 

~p(,~) r ~  ~ /  , .  ~ - ~ M ' ( u , x ( u ) ) d u q  

t2 

-.,~ [~. [~.y(~(~.)).-~ o = r - ,  ~ , x  .(o~) =<tt E Q ~  ) (u ,x(u))du 

t 2 
p ( n -  1) r ~ r  - ,~ - J M'(u,x(u))du-~3 

+E ~,~ [oqfe.~(q<~(6)<t2)E ~t~ [f(x(tz))e ~"(~) JJ 

p(nJ 
~E., '<[Y'.,io(~.~t~ .... ,)f(x(tO)] 

p(n) 

L t l  

tTP(n) [ ' ~ ,  f ( x ( z , - ) +  y)M (z., x ( z . - ) ,  dy)] -J-E, s, x l_JCA~l t  1 ~z,,  <=t:2} ~ - - t  " 

Tn 

ET~D(n) 

E,p(n) ~ ~r 
-~J~a .,ar t.At~{.tl~t, } i 2 ~171.I + i ).il (~ll- M / (  ~'~' X ( ~ ) ) ) f ( x ( ~ l ) ) d ~ ]  

t l  

+ E "<.:: [~. 7 ~. ,,.<~ d~ S s(~(~)+ ~)~'(~, ~(~); d~)] 
i- t l  - - -  

t l  

L t 1 

L t I ~ = 

Using the induction hypothesis, we now conclude that (2.2) holds for n + l .  
One next has to check that 

p(n) 
E : ' "  [ r  ~(,, < ~. ~ t . / f ( x  (t~))] 

" ] 
""' [Y'n S ~ .  ,<.<, .  du ~ f(x (u)+ y) M'(u, x (u); dy) (2.3) 

L t /  

tl  
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and 
p}") 

E '~[XA~{~,<_t,}f(x(t2))] 
/1~ (n, p(.) [ t2 " ] (2.4) 

tl 

These relations are proved in much the same manner as was (2.2), only they are 
much easier and do not involve induction. 

Combining (2.2), (2.3), and (2.4), we arrive at (2.1). 

Finally, set ~ , - - ~ [ x ( u ) :  s<u<z ,] .  Since 

. -  1 (,~ t)~ 
g}'2(%<t+s)<=l-e-** 2 k! ' 

0 

where 2 = sup M'(t, x), it is easy to see (for instance by Tulcea's extension theorem) 
t , X  

that there is a unique probability measure P(~) on (~,  d/7~o ) such that P3 ~) =P_(") s , x  $ , x  $~x 

on ~ , ,  n>  1. Let P, ~ be the measure induced on <0, ~ '*)  by p(~o) Clearly P , ,  
- -  , * s ,  x " , 

has all the asserted properties. 

Theorem (2.2). Let ~-cf t = L t + K t be a L&y  generator. Assume that: 
(i) the diffusion coefficients a of L t are bounded and continuous, 

(ii) the drift coefficients b of L t admit the decomposition." b = a q  + c2, where q 
is bounded and measurable and c 2 is bounded and continuous, 

(iii) the jump measure M of K t has the property that for all epoCh(Re), 
lyl ~ 

1 +IY[2 ~o (y) M(t, x; dy)4s bounded and continuous 

Then for each (s, x)e[0, oo) x R e there is a solution P~,~ to the martingale problem 
for G. 

Proof In view of Corollary(1.3.4), we may assume that c 1 =0. Let 6 e C  ~~ 
be chosen so that 0 < r =< 1, 6 (Y) = 0 for < 1 lYl =X, and ~b (y) = 1 for [Yl > 1. Given 6 > 0, 

d m  ~ (t, x; .) 
define m ~ so that dm( t , x ; . )  =r  where tpa(y)=r Set co(t,x)= 

1 + ylyl 2 Ma(t, x; dy). Then c a is bounded and continuous. Let Lat=Lt-ca . V. 

By Theorem (4.1) in [7], there is for each (s, x) a solution Q,a  to the martingale 
problem for /2t starting from (s, x). By standard selection theorems (see, for 
example, Kuratowski and Ryll-Nardzewski [5]), we can choose Q a,~ so that 
Qa,,~(A) is ~to t]x ~R,-measurable for A e d r  t. Hence, by Theorem (2.1), we can 
construct a p a~ which solves the martingale problem for L, + K~, where 

K~f(x) = ~ ( f ( x  + y) - f (x)  (y, Vf(x)) 1+ly12 ) Ma(t,x; dy). 

By Theorem(A.1) in the appendix, {P~: 6>0} is relatively weakly compact. 
Moreover, K~f(x)--*Ktf(x ) uniformly on compacts for f e  C~(Rd). Hence, every 
limit point of P~Ox, as 6~0, is a solution to the martingale problem for 5e t starting 
from (s, x). 
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3. Uniqueness, General Considerations 
The point of the present section is to give a procedure for localizing the 

problem of proving uniqueness of solutions to the martingale problem. Through- 
out, we will be dealing with the following situation. 

~t=Lt+Kt and L.QPt=I~t+K ~ are  L6vy generators. There exist (So, Xo) , e>0,  
T>so,  and an open set G~x o such that 

(i) if(s, x) = a(s, x) in [-s o, r ]  x G, 

Y M(s, x; dy) in ]-s o r ]  x G, (3.1) (ii) b' (s ,x)=b(s ,x) -  S l+[y[2 
ly]>~ 

(iii) M'(s, x; F)=M(s,  x; F n B ( 0 ,  8)), (s, x)~[So, T] x G and 

F~ ~R~-. C0}" 

Here, of course, a, b, and M and a', b', and M' stand for the diffusion, drift, and 
jump parts of ~ t  and ~t', respectively. We will also be assuming that there is a 
measurable family {P~' ~: (s, x)~ [0, ~ )  x R d} of solutions to the martingale problem 
for ~t'. Our aim is to show how uniqueness of solutions for the ~t'-martingale 
problem implies uniqueness for the ~,r 

In accordance with the notation used in Section (1), set 

x~(t)=x(t)-  ~ ytl(t, dy). 
[y[>~ 

By Corollary (1.3.3), if P~o, ~o is a solution of the martingale problem for ~ starting 
from (so, Xo) and f s  C~(Rd), then 

f (x , ( t ) ) -  i ~(~"' f(x~(u)) du 
80 

is a P~o,~o-martingale, where 

a(~)(u) = a(u, x(u)), 

Y M(u, x(u); dy), (3.2) b(~)(u)=b(u,x(u)) - ~ l+ly[~- 
]yl>~ 

M (~)(u ; F) = M (u, x (u); C c~ B (0, 8)), 

are the diffusion, drift, and jump parts of ~ ) .  

Theorem (3.1). Let a = inf{t > so: x(t)q~ G}/x r and z = inf{ t > s o : Ix(t)- x ( t -  )1 > ~}. 
Put ~ = a A Z. Given a probability measure P on ((2, J/d ~~ such that P(x(so) = xo) = 1 
and 

f(x~(t))- i ~q~(~~ f(x~(u)) du 
SO 

is a P-martingale for all f ~ C2b(Rd), define 
$0 

and P (A) = E e [-Q~,(A)], A ~ jg~o. 
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Then P solves the martingale problem for LP[ starting from (s o, xo). In particular, 
one can take P = P,o, ~o" 

Proof. Let So < t 1 < t  2 and A s~dti~ ~ Then 

EP I r a  f(x(tz)) ] = Ee[~YA~> ,2~ f(x~(t2))] + EP[ f An{tl < r Ee'~(o)'x~(~ [ f  (x(t2))]] 

+ Ee [r ~ t~ E(2~ [Yfa f ( x  (tz))] ] = I t + 12 + 13 . 
Note that 

t2 

and so 

11 + I z -: Ee[W A ~ (r >,,} f(x~(( A t2))] + E p :YA ~,(t, < r t~} f 5r f ( x  (u)) du 
r 

= E ' [ X  A ~ >  < f(x~(q))] + E e YrA~ >< I S(.~)f(x~(U)) du 
H 

~ ~,t~ 

= EP[XA~,, ,~ f(x(tO) ] + E p 9fA<r m ~ L~f(x(u))  du , 
tt 

since ~(~)f(x~(u))=Y[,f(x(u))for u < :. Also, 

t2 

Thus, 
t2 

EP[~fA f(x(t2))] ~ EP[~A f(x(tl))] + E p [&rat ! ~ f(x(u)) du] . 

Corollary (3.1.1). Let P, P, and ~ be as in Theorem(3.1) and define ~ / ~  = 
,N[x~(t A ~): t > so]. I f  there is only one solution P~'o,xo to the martingale problem 
for ~ t  star~ing from (So, Xo) , then P = P/so, ~o on ~ ,  

We now see that uniqueness for s implies uniqueness for P~o,~o on jg~o. 
Our next step is to show that uniqueness of Ps implies uniqueness of P~o,~o 
on ~/~~ To do this it suffices to prove that the distribution of E,o, ~o [tl (~; F) I~r  
is uniquely determined for FeNn~ \ ~(o, ~). What we are going to lind is that there 
is an ~4g[~ function a' such that for F ~ , m o , ~ ) :  

a" _ ~ M(~)(u, x~(u ^ O) du 

E~o,.o[r/(~; Fl[~d~*~ ] = .[ e "~ M(t, x,(t A {); F)dt,  (3.3) 
80 

where M~)(s, x)=M(s,  x; Ra\B(O,  ~)). Eq. (3.3) will be proved under the assump- 
tion that Ps is unique. 

We will use the following lemma; its proof is elementary. 

Lemma(3.1). Let ( M , ~ , P )  be a probability space and Nt, t>O, a non- 
decreasing family of sub a-algebras. Suppose X,  Y: [0, ~ ) x M ~ C  are locally 
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bounded, right-continuous, non-anticipating functions such that X(t), Y(t), and 

X(t)  Y(t) are P-martingales. I f  z is a bounded stopping time and ~5~D= Y(z), then 
X (t) is again a Q-martingale. 

Theorem (3.2). Let I be an index set and for each ~ I  let X~: [s, oo)x O--*C 
be a locally bounded, right continuous, s-non-anticipating function. Suppose J/[' 
is a sub a-algebra of ~[s and P' is a probability measure on ( Y2, J/['} such that for 
any probability measure P on (0 ,  jgs} satisfying 

(i) P = P' on J/r c~ #l[', 

(ii) X~(t) is a P-martingale for all ~ I ,  
P = P '  on d/['. Let Y: [0, oo)x (2~[0 ,  oo) be a locally bounded right continuous, 
s-non-anticipating function such that Y ( s ) -1 .  I f  P is a probability measure on 
( Y2, JA/S} satisfying (i), (ii), and: 

(iii) Y(t) and Y(t)X~(t) are P-martingales for all ~ I ,  
then for any bounded s-stopping time a, EP[Y(a)[d/I '] = 1 (a.s., P). 

dQ Y(a). Given s_<_ t I < t 2 and A E Jgt~l, Proof  Define Q on (f2, j g s )  by ~fi- = 

E~ [X~ %) ~A] = E" [X~ %) V(a) G ]  

--- E P [X~(t,) r(a)  :Ya] 

where we have used Lemma (3.1). Hence X~(t) is Q-martingale for all ~ I .  Also, if 
A ~J#~, then Q (A) = EP[ Y(a) s = E P [ Y(s) YfA] = P (A). Hence Q = n '  on J#~ c~ J / ' .  
This shows that  Q = P  on Jg' ,  and so for A 6 J / ' :  

EP [:YA E [ Y(a)] J g ' ] ]  = E e [LY A Y(a)] = Q (A) = P (A). 

Theorem (3.3). I f  there is only one solution Ps xo to the martingale problem for 
~.~; starting from (So, Xo) , then there is an J/Z~~ function a': 0 ~ [So, T] 
such that Eq. (3.2) holds for any solution P~o, xo to the martingale problem for 5f t 
starting from (So, Xo). In particular, P~o.xo is uniquely determined on jg~o. 

Proof Let 

SO / S0 

so 1 + ly] 2 / 
and 

so /" 

where a ("), b ~), and M ~") are given in (3.1) and 2eR  and OER e. By Corollary (1.3.3), 
Xo(t) Y~(t) is a P~o,~o-martingale for all OeR e. Hence, by Theorems (3.1) and (3.2), 

EeSo. ,o [ yz (t A #) [ j#{o] = 1 (a.s., P~o, ~o)" (3.4) 

Since a is a So-stopping time and a-<__ T, we can find a measurable function 
f :  (Rn) N --* [s o , T] and s o _< t o <-- .  < t, < . . .  < T such that  

a =f(x( to)  . . . .  , x(t,), . . .).  
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Define 
a' = f(x~(t o A ~), ,.., x~(t, A (), .,.). 

It is easily checked that  a = a' if r > a, 

We now compute P~o, so (( =< t } ~Q-~ �9 Note  that  

= ~o,,~(~') E "s~176 - . ( ; ;  R ~-. (B(0, ~))1~#?_] 

+ E  ,~~176 [tl(t A ~; Ra\B(O,  e))lJ~~ 

According to (3.4), 
r~^r ] 

5 O (3.5) 

= i P~o, ~o(r > u I~ug~ M(u, x~(u A 0;  r )  du 
$o 

for any F~R~,,B(o,~ ). In particular, we get 

P~o,,o g < t I~g  ~ ) 
g t \ 

t 

8o 

and so ~ ~ o  M~ (u, x~(u ̂  O)d u 

Plugging this back into (3.5) and setting t = T, we obtain Eq. (3.2). 

Finally, since x (0 = x~(0 + ~lyl =>~ y r/((; dy), we now see that  the distribution of 
x (~) under P~o, ~o given ~/~o is uniquely determined, and, therefore by Corollary 
(3.1.1), P~o, ~o is uniquely determined on J/Q~ 

Corollary (3.3.1). Let ~ be a L~vy generator. For each (so,Xo)~[O , ~ ) x R  a 
suppose there exists a L~vy generator ~ ,  Jbr which the martingale problem is 
well-posed, and an e=e(So, Xo), for which (3.1) holds with T = s  o + g and G= B(xo, e). 
I f  8(s o, Xo) is uniformly positive, then the martingale problem for LF t starting from 
any point has at most one solution. 

Proof. Let P~o,~o solve the martingale problem for 5~ starting from (So, Xo). 
Define (o ~ So and 

~,+1 = ( in f{ t>~ , :  [ x ( t ) - x ( t - ) ] > e  or Ix(t)-x(~,)l>=e})A(~,+~), 

where e > 0 is chosen so that  ~(s, Xo) > ~ for all (s, x). Using Theorem (3.3) together 
with Theorem (1.2), one can prove by induction that  P~o, ~o is uniquely determined 
on ~r for all n. Hence it is enough to check that  ~o, ~o((, > t) ~ 1 as n ~ ~ for t > s o . 

First note that  by the proof  of  Theorem (A.1) in the appendix, 

~,,,( sup Ix ( u ) -  x (s)l > ~/2) < C (t - s), 
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where C is independent of s, x, and the particular solution P~,x of the martingale 
problem for ~ t  starting from (s, x). Hence we can choose 0 < 3 < ~ so that 

x(~<s+a)__<�89 

where ~ = ( i n f { t > s :  [x(t)-x(s)[>=~ or [x(t)-x(t-)[>~})A(s+& Set ~,+1=~ ~. 
Then ~,,,(~.+1 <s+a)=~,x(~. <s+3, ~.+1 <__s+3) 

<= Ee~o, ~o [y'{D =<,o + a p~ ({{:~ __< ~so ((o)+ 6)] 

<~P_ (C<s+5), 
~ A  S , X \  n -~ -  

where P~ is a r.c.p.d, of P~, ~ IJg~. We have used here the fact that P~ is P~, xo - almost 
surely a solution of the martingale problem for 2', starting from (~,(eo), x(~,(m), m)). 
Thus 

P~,~(~ < s +  a )<2-" .  

We next prove by induction on m > 1 that 

s supg,~(r  as n--,oo. 
Indeed, ~' ~ 

~ , . (~ .~  s+(m + 1) a)~e~,~(~s+ma)+~,~(~.~s+ma, ~ .=s+(m + 1) a) 

and s s P~, x(~. > s + ma, (2. = s + (m + 1) 6)=< E e~, ~ [p,~ ({~.(,o) <_ ~ (o9) + 5)] 

where P~ is as before. Hence 

sup P~.,((~, < s + (m + 1) 5)<2supP~.,~({~,<s+m6). 
s , x  s , x  

4. Uniqueness, the Elliptic Case 

In this section we will prove uniqueness for the martingale problem associated 
with L6vy operators s = L, + K~ whose coefficients satisfy: 

(i) a: [0, oe) x R n -+ Sn is bounded and continuous and each a(s, x) is 
positive definite, 

(ii) b: [0, oo) x R d ~ R e is bounded and measurable, (4.1) 

Y M(s, x; dy) is bounded and continuous for all F~ ~R~ \ (o}- (iii) f 
1 + ly? 

Actually, the proof will be first carried out under the more stringent conditions: 

(i) a: [0, oo) x R ~ + S d is bounded, uniformly continuous, and uniformly 
continuous, 

(ii) b --- O, (4.2) 

}Y12 M(s, x; dy) is bounded and continuous for all (iii) j 1 + l y[ 2 

FeMR,..(o} and l imsup ~ [Y12 M(s,x; dy)=0.  
~o(~,X) l~l<~ 1-t-lYl2 

Once this has been done, it will be easy to relax these assumptions to those in (4.1). 
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The idea behind our proof will be to take advantage of the localization 
procedure developed in the preceding section. Under the conditions in (4.2), one 
can find for each s > 0 a 6 > 0 such that 

(i) 
d 

Ila(t, y ) - a ( s ,  x)ll z -  ~ laiJ(t, y ) - d J ( s ,  x)l 2 <e z 
i , j = l  

for (t, y)e[s,  s + 6) x B(x,  6), (4.3) 

1Yl2 M(s, x; d y ) < s  for all (s,x). (ii) ~ l+ ]y l  z 
B(O, a) 

Hence, by Corollary (3.3.1), it suffices for us to show that if A ~ S  d is positive 
definite, then there is an s > 0 such that 

(i) Ila(s, x ) - A l l  < s  for all (s, x), 

]Yl2 M ( s , x ;  d y ) < s  and M ( s , x ;  R d \ B ( O ,  1))=0 for all (s,x) (4.4) (ii) S 1 + I Y l 2 

implies uniqueness holds. The critical step in this proof is to obtain the estimate 
contained in Theorem (4.1) below. 

Lemma (4.1). Let a: [s, oo) x f2 ---, S a and M: [s, oo) x f2 x "~Rd..{O}--+ [-0, 00) be 
s-non-anticipating functions. Assume that 

(i) # 1012 < (0, a(t) O) < 1012 , te  [s, oo) and OeR a, for some # > O, 
# 

a(t)=a(s4- [ N ( t - s ) ]  , te[s ,  oo),for some N>__ 1, (ii) 

(iii) M(t,  R d \  {0})_--< B, te[s ,  oo), for  some B <  oo. 

Let u: [s, oo) x f2 ~ R d be an s-non-anticipating, right-continuous function having 
left limits and suppose P is a probability measure on (f2, J/g~} for which: 

[ ' , ] exp i (0, ~ (t) - e (s)} + �89 S (0, a (u) 0 } du - ~ du ~ (e i <o, y> _ 1) M (u, dy) 
s s 

.r d + 2  
is a P-martingale for  all O~R d. Then zj p > ~  and T >  s: 

f(t,c~(t))dt <CpllfllLP(t~,rl• feCo([s,T]xed). 

Proof. First note that since M(t ,  R d \ { O } )  is bounded, we can let 6 = 0  in 
Corollary (1.3.2) and obtain: 

~(t) =7( t )+  S y~l(t, dy). 
Next set 

t 

fl(t)= ~ a-~(u)  d7(u). 
s 

Then fl(.) is a P-Brownian motion and 

( t ) -  7 (s)= i a~(u) dfl(u). 
$ 
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Define Zo = s and 

z,+l=(inf{t>_=%: q(t, Rd)>tl(z,,Rd)})^ (s-~ [N(%NS)]+I ) A T. 

Since M(t; Rex{0}) is bounded, r/( . ,R d) has only a finite number of jumps in 
Is, T]. Hence % = T for all but a finite number of n's. Let P(") denote the r.c.p.d. 
of PlJg~.  

Given f e  Co(IS , T] x R e) which is >0,  we now have: 

E v f(t,c~(t))d = 2 E V [ ~  f(t,a(t))dt 
0 L z n  

< ~o Ev No, r)(Z.) I dt I g.(~.)(t- %, y -  a(r.))f(t, y) dy 
z n  

oo 

< AII f [[ L-(t~, zlx R~) ~ EP [No, r)(%)] 
o 

1 
go(t, y)= (2rct)d/~(de t c) ~ e -<r'c-~r>/zt 

where p > d + 2  
2 

for positive definite ceSa, and 
( !  ) a/q 1 1 

A =  sup dt~lgc(t,y)lqdy , - - + - - =  1. 
~i_<c_< 1_i P q 

- -  - / . t  

oo .~ Finally, note that ~o ~to, r)(,) is the number of n's such that z . < T .  Hence 
~.~o ~to, r)(%) ----< 1 + N ( r -  s) ~/(T, Re), and so 

o o  

2 Ee [Xto, T)(Z,)] ----< 1 + NB ( T -  s):. (4.5) 
o 

Lemma (4.2). Let a: Is, o o ) x ~ S  d, b" Is, oe)xO-~R d and M: Is, o o ) x ~  
--* NRd .. (o/ -~ [0, o0) be s-non-anticipating functions. Assume that a, b, and 

l Y12 M(t, dy) are bounded. Let o~: Is, oo)x Q-~ R e be an s-non-anticipating, 
l+lYl  2 

right continuous function having left limits. Suppose that there exist T>s, 
1 < P l  < P 2  < oo and Cp< o% pt < P < P 2 ,  such that 

I 11 E Q f(t,~(t))dt <CpllfLIL'(t~,rlxRd)' feCo([S, T] xRd), 

whenever Q is a probability measure on ( f2, dg s) for which 

exp[ i  ,ct(t)-ct(s)- b(u)d + 1  (O,a(u)O)du 
8 

' (  t ] - ~ du ~ e ~<~ 1 i(O, y )  M(u, dy) 
s I+[Yl 2 
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is a Q-martingale for all O~R d. Then for Pl <P<P2:  
T 

EP [! f (t, ~(t))dt] <-- C.+,, f ~ Co([S, T] x Rd), 

whenever P is a probability measure on <f2, J//~> such that 

exp i ,c~(t)-~(s)-  b'(u)d + ~  (O,a(u)O>du 

- idu~(e i<~ i-<O'Y)]M(u, dy)] 
l+IY121 

is a P-martingale for all O~R a, where b'=b + ac and c: Is, oo) x (2 ~ R d is a bounded, 
s-non-anticipating function. The constant Bp depends only on the interval (Pl, P2), 
and the bounds on a and c. 

Proof Let P be given, and define ?(-) accordingly as in Corollary (1.3.2). 
Define 

X(t)=exp [ -  ! c (u )d , (u ) -2  ! (c(u),a(u)c(u))du ]. 

Then X(t) is a P-martingale and so we can define Q on ( f 2 , ~  '~) by a ~  =X(t)  
dr  on ~/~, t>s. By Corollary (1.3.4), 

exp i ,a(t)-c~(s)-!b(u)d +~!(O,a(u)O>du 

t (  i(O'Y> ) M(u, dy)] 
-~du~  ei<~ l+ly12 

$ 

is a Q-martingale for all OmR d. Hence 

1) lju <= E a f(t ,  a(t))]Udt (T-s)I/V(EQ[X-V(T)])llv 

1 1 
for l < u < ~  and - - + - - = 1 .  Given pl<p<p2, choose l < u < ~  so that 

U V 

p/u = (p + Pl)/2" Then 

Ea [flf(t,c~(t))l "dt] <Crop, f LPr215 

Moreover, 

E e [X-V(T)] = E P [X 1 -V(T)] 

W (1 --V) 2 i<c(t) ' a(t) c(t)>dt =EFexp (l--v) c(t)dy(t) 2 s 

[v(v-1) r ] 
• exp - - 2  s ~ (c(t), a(t) c(t)> dt 

I6 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32 
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and therefore: 
1 v - -1  B ( T - - s )  

(E Q [X-"(T)]) ~ _-< e ~- 

where B =sup(c(t) ,  a(t) c(t)>. 
t > s  

Theorem (4.1). Let a: Is, oe) x f2--. Sa, b: Is, oo) x f2 ~ R a, and 

M: [s, oe) x f2 x ~R~\t0/~ [0, 00) 

be s-non-anticipating functions, and let ~: [s, oo)x t2--, R a be an s-non-anticipating, 
right continuous function having left limits. Given a positive definite A~S  e and 
d + 2  

2 <Pl <P2 < ~ 1 7 6  there exists an e > 0  such that 

(i) sup [la(t)-A[I <e 
t ~ S  

and 

lylZ M(t, dy)<e 
(ii) supt>__s S 1 + lyl 2 

imply 

EV[!f(t,o~(t))dt] <=Cve"v(T-s)llf"Lv(ts, Tl• ), f ~Co([ s ,T]xRa) ,  

for Pl < P < Pz and T > s 1 whenever P is a probability measure on < f2, dg ~) for which 

o ! u ) 1! exp i , ~ ( t ) - e ( s ) -  b(u)d + ~  <O,~(u)O>du 

l 
s 1 + ly[ 2 ] M(u, dy)a 

is a P-martingale for all OeR a. The e dependends only on the interval (Pt, P2) and 

the largest number /~>0 such that #]OI2<_<<O, AO>< 1-- [012. The constants Cp 
and Bp depend on e, (Pl, P2), 1~ and the bound on b. # 

Proof In view of Lemma (4.2), it suffices to prove this estimate when P makes 

I li exp i @ , ~ ( t ) - e ( s ) ) + ~ -  (0, a(u)0>du 
(4.6) 

] - I du I ( e/<~ 1 -i<O, Y)Y(sto, i)(Y))M(u, dy) 
s 

into a martingale for all OeR a. By Lemma (4.1) and (4.2), we know that if a and M 
satisfy the conditions of Lemma (4.1), then for such P: 

t,a(t dt <CIIIllL"(f~,T1• 
d + 2  

for p > ~ .  What we must show is that by a proper choice of e, this constant C 

can be made independent of the N and B in Lemma (4.1). To this end, define 
T 

Gr (a(t,x) = ~ du ~ g a ( u - t , y - x ) ( ~  
t ^ F  
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Then, if f =GT 4) and (oeC~([s,T)x Rd): 
T 

1 p Td i j  02f 
* f i E  [!~(aiJ(u)-A ) ~ ( u , o ~ ( u ) ) d u ]  

T 

+ ~" [! ,uS (z(u. ~(~)+ , ) - s  (u. ~(u~))- ~<o. ,,(,) <,, < ~(u. ~(u))> M(u.,,)]. 
Define v on ~t~, r~ • Rd by 

T 

Then 

+ 2ev \lrl_-<*( sup If(t, x + y)-f(t,lyl 2x)- (y, V~f(t, x))l ) 

+ 4e ( T -  s)[If liLt(t,, T1 • R~)" 

Assuming that a and M satisfy the conditions of Lemma (4.1) and therefore that 
d + 2  

veLq([s, T] x R d) for 0 < ~ ,  we now find that 

t • e eAp 
IIvlILqlI~SIIL < A,(T_s)~ 2, II~IIL~+~--IIVI[LqlI4) IIL, 

1 d 
f f  + 2~A, IIvlIL~II411L~+g~Av(T_s) O 2p +~ll4~IIL,. 

Hence if 

then 

P " < - -  (4.7) e +2Ap 2 ' 

1 d 1 d 

ilVila<2Ap((T_s)q 29+4e(T_s)q zp+l). (4.8) 
t t t  The constants  Ap, Ap, and A v are derived in the appendix. Clearly, e can be 

chosen so that (4.7) is satisfied for all Pl <P <P2 simultaneously. 
Now suppose that a and M satisfy the conditions of theorem and that P 

makes (4.6) into a martingale for all OeR d. Assume that e is small enough that 
(4.7) holds for all Pl <P <P2- For 6 > 0, define 

cd( t )=~( t ) -  ~ y~l(t, dy). 
lYI<~ 

Then, by Corollary (1.3.1), 

exp [i(O,~a(t)-~a(s))+l ! (o,a(u)O)du 

t 

- ~ du ~ ( e  i ( ~  - -  1 - -  i(O, y)  Y(mo, 1)(Y))M(U, dy)[ 
1 

J 
/6" 
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is a P-mar t ingale  for all OeR a. Next set 

t 

f l ( t )= 5 a-}(u)dy(u). 
8 

Then fl(.) is a P-Brownian  mot ion  and 

t 

( t ) -  ~ (s) = ~ a}(u) dfl(u). 
$ 

Choose a,: Is, oo) x ~ ~ S d so that each a, satisfies the condit ion (ii) of Lemma (4.1) 
and condition (i) of this theorem and EP~*=lla.(u)-a(u)ll2du-~O as n-~oo for 
each t > s. Put  

t 

c~a,(t)=o~a(t)--~(t)+ ~ �89 a, (u)dfl(u). 
s 

Then  
EP[[o~a,(t)-c~,(t)[2]-->O as n -*oo  and 6~0 

for each t => s. Defining 

v~(~)=E P t,c~ t t , 
L 8  J 

a __> v weakly. Finally, we now see that  v, 

exp i(O, ea.(t)-ea.(s))+~ - (O,a . (u)O)du 
t 

- I du  I ( e~<~ 1-i<0, y>~.~o, dy))m(u, dy)] 
s ly[>-a 

is a P-mar t inga le  for all OeR a, and so 

]V~.(~)l<Dpll~llLp(~.,rl• feCo([s, T]• 
for Pl < P < P 2  and Dp the constant  in (4.8). Thus v satisfies the same inequality. 

d + 2  
L e m m a  (4.3). Let # > 0  and ~ < p l < P 2 < O e  be given. Suppose A e S  a 

satisfies #[O[2~(O, AO) < 1012 , O~R d, and let a: [0, ~ ) x R a  ~Sd  and M: [0, oo) 
# 

• Rdx YJR,\{O)--+ [0, oe) satisfy the conditions in (4.4) with e chosen so that (4.7) 

holds for pE(p 1 , P2)- Define 
1 a . .  2 

a"(t, + dy). <(~ f (x)= 5 

Then for O < s < T  and pe (p l , p2 ) :  

H(~(o)_�89 AA) o T G ~llL..(t~.r1•189 IIr215 
~2  

where: AA= ~ AiJ~xlt?x ~ and G r is given by: 

t 

GT(o (t, X) = ~ du ~ gA(U -- t, y -- X) d? (u, y) dy. 
8 
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In particular, H[=(I- (~f (~189 -1 exists as a bounded operator on 
LP(Es, T] • R e) onto itself and is consistently defined for Pe(Pl , P:). 

Proof. The proof of everything except the consistency has been essentially 
carried out in the proof of Theorem (4.1). The proof of consistency is an immediate 
consequence of the representation of H~ in terms of a Neumann series. 

Theorem (4.2). Let /~>0, (PI,P:), A, e, a and M be given as in Lemma (4.3) 
and define G T and H r accordingly. Suppose P is a probability measure on ((2, dr ~) 
such that P(x(s)= x)= 1 and 

[ 1 
i @, a(u, x(u))O)du exp [i(O, x ( t ) -  x(s)) 

t 

- ~ du i ( e'<~ 1 - i (O,  y)f,(o,1)(y))M(u, x(u); dy)] 
$ A 

is a P-martingale for all OeR e. Then for O<=s<T: 

Proof. Let ~0={~beCb(I-s, T] xR"): GroHrOeC~'Z([s, T] xRd)}. Then ~ is 
dense in LP([s, T] x Re). Thus, since both sides of (4.9) are LP-continuous, we 
need only prove (4.9) for ~b~ ~. But q5 e~b implies 

/ 0 .o)\ f=GToHr~o(T, ' )=O and ( ~ - + ~ ) f = - ( o ,  s<=t<T, 

where s ~ is given as in Lemma (4.3). Hence 

t A T  

GTo H i,(tA Zx(tA T))+ I t,(u,x(u))du 
s 

is a P-martingale, and so (4.9) holds. 

Corollary (4.2.1). Under the conditions stated in Theorem (4.2), the martingale 
problem for ~(t ~ is well-posed, where ~Cf (~ is the operator described in Lemma (4.3). 

Proof. Existence has already been established. To prove uniqueness, note that 
for each (s, x) and t>s, there is a probability F(s, x; t, F) on R e such that 

P(x( t )~F)=F(s ,x;  t,F), F ~ R d  , 

for any solution P starting from (s, x). In fact, 

G, +h o +h(s, x ) -  G' o r (s, x) 
O(y)F(s, x; t, dy) =l im 

h+O h 

for ~b~ Co(Re). In particular F(s, x; t, F) is measurable in (s, x) for all t>  s and 
re~R.. 

Now suppose that P and P' are solutions starting at (s, x). We will show that 

P(x( t l )eV 1 . . . . .  X(tn)eF n) = P'(X(tl)eV 1 . . . . .  x(tn)~Fn) 

for all n => 1, s < q <. - .  < t,, and F 1 . . . . .  F, e~Rd" This is obvious from the preceding 
paragraph when n = l .  Assume it for n, and let P~, and Pd be the r.c.p.d.'s of PIJr 
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and P'lJCd~ s , respectively. Then Po and R E are each a.s. solutions starting from 
(t,, x(t,, co~, and so 

po(x(tn+l)eF,+l)=F(t,,x(t,,co); t.+l,F,+l) (a.s., P), 

' t r . + l )  (a.s., P). Ps ( ~, x(t,, on); t ,+l ,  

This completes the induction. 

Theorem (4.3). Suppose a, b, and M satisfy the conditions of Eq. (4.1). Then the 
martingale problem for 5r t is well-posed. Moreover, if P~ x denotes the unique solution 
starting from (s, x), then the family {P~, x: (s, x)~ [0, ~ i  x R a} is strong Markov. 

Proof The existence assertion is contained in Theorem (2.2). To prove 
uniqueness, first assume that the conditions in Eq. (4.2) are met. Then uniqueness 
is an immediate consequence of Corollary (4.2.1) and Corollary (3.3.1). As a 
consequence of uniqueness and weak compactness, it follows that in this situation 
P~ . . . .  ~ P~,x weakly as (s,, x,) ~ (s, x), and therefore {P~, ~: (s, x) ~ [0, ~ )  x R d} is 
measurable. Note that, by Corollary (1.3.4t, uniqueness of solutions and measur- 
ability of {P~,~: (s,x)e[0, m ) x R  d} continues to hold even when b+0. We can 
now drop the assumptions of uniformity on a and M. In fact, given (s, x), choose 
a N and M N for N > 1 so that aN=a and MN=M on Is, s+  N] x B(x, N) and a N 
and M N satisfy the conditions of (4.2). Then for each N, the martingale problem 
associated with a N, b, and M N is well-posed. Moreover, if P~,~ and p(ms,~ are 
solutions associated with a, b, and M and a N, b, and M N, respectively, starting 
at (s,x), then P~ x=P~!~ until ~(m, the first exit time from [s , s+N]xB(x ,N)  
(cf. Corollary (3.'1.1)). 'Since ~(m__.~ as N ~ m ,  this show that P~,x is uniquely 
determined and is measurable with respect to (s, x). 

Finally, to show that the strong Markov property holds, one need only take 
the r.c.p.d, of P~ ~ ~ and use uniqueness to see that for almost all o~ it must 
equal P~(~),~(~),o~) on J/F ~'~ 

Remark. Proceeding as in [7], one can improve Theorem (4.2) and show that 
the process is actually strongly Feller continuous. Moreover, LP-estimates on 

d + 2  
Ee,,~[~Tf(t,x(t))dt] can be obtained for all ~ < p < ~  and coefficients 

satisfying (4.1). The details of these arguments are very similar to those in [7]. 

Remark. Using uniqueness and the final assertion in Theorem (2.1), one sees 
that if ~ = i n f { t > s :  Ix( t ) -x( t - ) l>e} ,  then 

M(v, x( 'c-) ;  F) 
P ~ , & ( ~ ) - x ( v - ) e r  I ~ and x(t)for t < z ) =  M(z, x ( z - ) ;  Ra\B(O,e)) 

on the set { ~ < ~ }  for FeNR~,n~o,,); and 
T 

- I M(u, xe(u^  ~); Ra'-.B(O,e))du 
P~,x(z>TIx(t) for t < ~ ) = e  " 

where x~ (u) = x(u)- ~lrl >_~ Y tl(t, dy). 
Remark. With a little more work, one can show that the existence and unique- 

ness of solutions remains true under the assumption that f lY]2 M(t, x; dy) J r  1 "+" [yl 2 
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lyl2 M ( t , x ; d y ) ~ O  is bounded and measurable for all Fe~R~,{0} and fty[<6 1 +lyl  2 

uniformly on compacts as ~$; 0. In order to do this one has to use LP-estimates of 
the sort obtained in Theorem (4.1) above. 

5. Uniqueness ,  the Parabol ic  Case  

In this section, f2=D([O, oo),Rd+l). Given x ~ R  d+l, we will write x =  
( X o , 2 ) e R x R  d. The L6vy operators ~ = L + K  with which we will be dealing 
are of the form: 

(~ d ~2  d 

L f ( x ) = w + i , ~ i a ~  bi(x) ~?x~ 
(5.1) 

[ f ( x + y ) - f ( x )  (y, V~f(x)) K f ( x ) = ~  M(x, dy) 
l + l y l  2 ! 

where 
(i) a: R a + I ~ s  a is bounded, continuous, and a(x) is positive definite for 

each x, 
(ii) [~ : R d + 1 ~ R e is bounded and measurable, 

lY~ M(x, dy) is bounded and continuous for all (5.2) 
(iii) Sr l_t_lYo[+lYl 2 

Y E ~ R  d \ {0}" 

Since ~ is independent of time, the martingale problem is that of finding for 
each x c R  a+x a P on (Q, d//~ such that 

P(x (0) = x) = 1 
and 

r 

f(x(t))- yf(x(s))ds 
0 

is a P-martingale for f e  C; ~ (R~+I). 
Obviously, all the results of Sections (1), (2) and (3) apply to this situation. 

In fact, the present set-up reduces to the one considered up until now by taking: 

~ 0) 
a(x ' 

~ 1 d a 
L f ( x ) = ~ i ~ o f i i j ( x )  02 f  + Of  

, - a ,a i ,=Y'o ' 

( f ( x + y ) - f ( x )  (y, V~f(x)) / ~ f (x ) =  j" M(x, dy), 
1 + [y]2 -1 \ 

and noting that 2*~163 In particular, existence of solutions has been estab- 
lished. Also, the localization procedure worked out in Section (3) can be used 
here. Hence, our method of proving uniqueness will parallel very closely the one 
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developed in the preceding section. For that reason, the proofs in this section 
will not be as detailed of those given there. 

Lemma (5.I). Let a: [0, ~ ) x  f 2 ~ S  e and M: [ 0 , ~ ) x  f2 XNRd~O~[0 ,  ~ )  be 
non-anticipating functions. Assume that 

(i) IOl '~(O,a(t )O)~#[O[2,  OER a, for some # > 0 ,  

(ii) a ( t ) = a ( - ~ ) ,  t>O, forsome N>_I, 

(iii) M(t, R ~+1 \ {0})=<B for some B< ~ .  
Let ~: [ 0 , ~ ) + f 2 ~ R  a+l be a non-anticipating, right-continuous function 

having left limits and suppose P is a probability measure on (f2, j / o )  such that: 

exp i(O, e(t) - ~(0)-  t~o) +~-  ~ (0, a(s) O) ds - ~ ds ~ (d ~~ '~ - 1)M(s, dy) 
Z 0  0 

is a P-martingale for all OeR e+~ (eo is the unit vector (1, O)eR x Re). Then for 
d + 2  

2 > 0  and p> 2 ' 

EP [ i e -~ '  f (~(t))dt l  <cpllfllr~(Rd+~ ~, f~Co(Ra+l),  

for some Cp < ~ .  

Proof As in the proof of Lemma (4.1), we see that 

t 

( t ) -  ~ (0) = t eo + ~ a~ (s) dfl (s) + ~ y rl(t, dy) ,  
0 

where /~(.) is a d-dimensional P-Brownian motion and ~/(t, .) is defined as in 
Section (1). Now set "c o = 0 and define 

Given a non-negative f e  C o (Re+~), we have: 

~rt 

Ev~ [e_XZn~ te_X(t_rn ) = d 
z n  

�9 ~ g~(~.)(t - z . ,  y - ~. (z.)) f (~o  (%) + t - ' c . ,  y )de ]  
(X3 

< A  [[fI[L,(R"+') ~ EV[ e-a~"] 
0 d + 2  

for p > - - ~ - - .  Finally, 

Ee[e-X~"]= l + 2 ~ e-z~ Ee o,t)(%) 
O 0 

oo 

<-_I + 2 N B  ~ e-att~ dt. 
0 

dt 
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Lemma (5.2). Let a: [0, oo)x f2--*S d, b: [0, oo)x s'2~R d and M: [s, oo)xf2x  
NR~+,..r ~ [0, oo) be non-anticipating functions. Assume that a, b, and 
f lYoI+IYl 2 
J ~ 1 ~ o [ + ~  M(t, dy) are bounded. Let ~: [0, o o ) x f 2 ~ R  d+l be a non-anti- 

cipating, right continuous function having left limits. Suppose that there exist 
T > 0 ,  2>0 ,  l < p ~ < p 2 < o o  , and Cp<o% P~<P<P2, such that 

whenever Q is a probability measure on (f2, j go )  for which 

[ exp i(O,e(t)-c~(O)-~(~o+[~(u))du) 1 t +~- S (0, a(u)O) du 
o z o 

_ idu~(e i (O , ,>_  1 i(O,~) 

is a Q-martingale for all OER d+l. Then for Pl < P < P 2 :  

IE~'[ie-~'f(e(t))  dt] ~CP2Pl eWP-z)r--1 B,- )~  JIf[IL,,(R~+,), 

whenever P makes 

exp[i@'c~(t)-c~(O)-i(e~ o 

into a martingale for all OER d+l, where b '=b+a~  and -d" [0, o o ) x f 2 ~ R  a is a 
bounded non-anticipating function. The constant Bp depends on the interval (p~ , P2) 
and the bounds on a and-d. 

Proof. The proof is essentially the same as that of Lemma (4.2). 

Theorem (5.1). Let a: [0, oo)x f2 ~ S d and M: [0, oo)x #2 x ~R~+I-. ~0}--' [0, o0) 
be non-anticipating functions, and let e: [0, co)x f 2 ~ R  a+l be a non-anticipating, 
right continuous function having left limits. Given a positive definite A e S  d and 
d + 2  

2 < p l < p 2 < o o ,  there exists an e > 0  such that 

(i) sup Ila(s)-Zll<~, 
S 

lY~ M(s, dy)<e 
(ii) sups  l+[Yol+[y l  2 

imply for pl <p<p2 and 2 > 0 :  

e-atf(x(t)) dt < @,x[IflILp(R~§ feCo(ea+~), 
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whenever P is a probability measure on (f2, Jr176 for which 

exp i(O, c~( t ) -a (0 ) - t~o)+__o  (0, a(u)O)du 
Z o 

t 

- ~ du I ( e'<~ '> - 1 - i(O, y> Y'mo, 1)(Y)) M(R, dy) ] 
0 A 

is a P-martingale for all OeR a+l. The ~ depends only on the interval (p~, P2) and 
the largest # for which nlOlZ<(O, AO)<l~lOI 2, OeR a. The Cp, a depends on ~, 
(Pl , P2) and #. 

Proof The outline of the proof is the same as that of Theorem (4.1). The only 
place that it differs at all is in the proof that the estimate holds when a and M 
satisfy the conditions of Lemma (5.1) as well as those of the theorem. To carry 
out this step, define 

T 

d + 2  
Then, by Lemma (5.1) and (5.2), Vz, reLq(Ra+l) for all 1 < q < ~ .  We have to 

show that for small enough e, the norm of vz, T is independent of the quantities 
N and B in Lemma (5.1). To do this, define 

oo 

Gz(9 (x) = I e -  ~(yo-~,o) ~ gA(Y0 -- XO, Y -- 2) (9 (y)dy. 
xo 

For O6C~(Ra+l), if f = G z (  9, then f e C ~ ( R  a+l) and 

8 1 AA ) f=(9 .  
2 8x ~ 2 

Hence 

e-  ~r EP [ f (x( T))] - Ee [ f (x(0))] = - E 1" [ i  e-  ~t (9 (x(t))dt ] 

d 
_k 1 El,[ie-Zt(i~j=l(aiJ(t)_Aii)) 02f 

2 [o 
T 

+ E I> [{ e-X'dt ~(f (e(t)+ y)-f (e(t)- (~, V~f (~(t))) '~"B<0, I>(Y))M (t, dy)]. 
If (9 >0, then f > 0 ,  and so (cf. the appendix for the LP-estimates): 

T 

E e[!e-a'(9(x(t))dt ]~HfHL ~-#-2 Ee[ie-a'(~l {kOxi~xj]Oaf ~2(o~(t)))\~ -Idtj 
" ] +e e P [ I  e-"' sup - y  (y, dt 

ko Ir l -  -<l lyol+lYl 2 
2e 

+ ~ l l f l l L :  

(T) 2e Ap [ --P +2A"]  
< 1+  a +~ r l (911L,+e 11(911~,llv,~.rll~,. 
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Hence if Ap) 1 
< _ _  e 2 " 
= 2  

for Pl < P < P2, then 
IlVa, rltL.<2 1+ ~ + •  

~ 2 p  q 

for q2 < q < q l .  Since this estimate is independent of T, we conclude that 

E v Se-Zt(a(t)dt <2 1 + ~ -  d +1 , 
co ~ 2 ~  u 

The rest of the argument is exactly like that given in the proof of Theorem (4.1). 

Theorem (5.2). Let 5~=L + K, where L and K are given as in Eq. (5.1) and the 
coefficients satisfy the conditions in Eq. (5.2). Then the martingale problem for 5f is 
well-posed. Moreover, if P~ is the solution starting at x, then {P~: x~R d+l} is a 
strong Markov, temporally homogeneous family. 

Proof Starting from Theorem (5.1), the proof of this theorem can be accom- 
plished by exactly the same reasoning as we used to pass from Theorem (4.1) to 
Theorem (4.3). The only difference is that Gz plays the role here that G r did there. 

Remark. With a little more work one can show that {P~: xeR d+l} is Feller 
continuous, even when b(x) is just bounded and measurable. However, it will 
no longer be true, in general, that the family is strongly Feller continuous. The 
same equations hold for the conditional distributions of the first jump place and 
time as we gave in the second remark at the end of Section (4). 

Appendix 

Compactness of Measures 
Let ~2=D([0, oo),R a) be the endowed with the Skorohod metric. Then 

becomes a complete, separable metric space, and so the Prokhorov theory applies. 
That is, a family ~ of probability measures on Q is relatively weakly compact if 
and only if it is tight. That is for e>0  there is a K c c f 2  ( " c o "  is used to denote 
compact subsets) such that sup P(K)> 1-e .  Our purpose here is to state a suffi- 

PEt~ 

cient condition for thightness in terms of the L6vy parameters. 

Theorem (A.1). Let I be an index set and for each ~ I  let G: [0, oo) x O~Sd, 
be: [0, oo)~R d, and Me: [0, oo) x ~2 x NRd,{O}--+[0, oO) be non-anticipating functions. 
Assume that: sup sup IJG(s)lJ < A <  oo, 

e e l  s > 0  

sup sup [b=(s)l < A <  o% 
e e l  s > 0  

sup sup~ lY[2 M(s, dy)<A. 
e~x s~O l+ ly [  2 

For each c~I, let P~ be a probability measure on (f2, dd~ such that 
t t 

exp [ i / 0 ,  x( t ) -x (O)-  ~o be(s) ds) + �89 ~o (0, G(s) O) ds 

_ i ds S (ei<O,y>_ 1 i(O, y) ) Me(s ' dy)] 
o 1 + lyl z / 
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is a P~ martingale for all O, and assume that 

lim sup P~(Ix(O)I>=R)=O. 
R ~  oo a ~ I  

Then {P~: c~E1} is relatively weakly compact. 

Proof The idea of the proof is this. Let r o - 0  and 

Define 

We must show that 

z,+l =inf{t>-c �9 Ix(t)-x(z,)[ >e}. 

~) = i n f { z - z , - a "  z,-1 < T}. 

hm sup P~( r<__b)=0 (A.1) 
6 5 0  ~ I  

for all T>O and e>O. The critical step is the following observation�9 Let OeC~(R a) 
be chosen so that O<q~<l, ~b(O)=O, and qS=l off B(O,e). Given n_>O, let P(") 
be the r.c.p.c[ of P~I~/~ Then (a.s., P~) 

tA~n+ l  

4,(x(t~.+O-~,(~.(~o)))- ~ ~ e  4,(x(u)-x(~.(~o)))au 
z.(~o) 

is a P~(,"~)-martingale. Thus: 

(n) "C < 

p(n)  

__< e ~ ~ [~(~(~.+1 ^ (~.(~)+ ~))- ~(~.(~1))] 

The constant C here depends only on the bound A and the C2-norm of qS. 

From this estimate, it is reasonably easy to get (A. 1). 

L P - E s t i m a t e s  

The estimates which we want to derive are: 

1 d 

[GT d?(s,x)[< Av(T_s)a 2v ][~b[IL~t~,Tl• 

GT 4)(t, x + y)--GT 4)(t, X)--(y, V x Gr4(x))  

supy >o [yl z LP([O, T I •  d ) 

d + 2  tt 
< Ap I[ 4)[I ~(to, rL ~ Rd), 2 

d + 2  
p > - - ,  

2 

l < p < ~ ,  

- - < p <  cO, 

(A.2) 

(A.3) 

(A.4) 
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and 
1 d 

IG;. q~(x)l<Ap 2~ 2PllqSIl~(Rd+'), 

- 0G'a 0 (x)/2]�89 < A', 114,11,~R~+,,, 

sup G,(o(x+y) -G;O(x ) - f y ,  gGzO(x)) ~a~+,) 
~ + 1  ]Yol + I)12 

d + 2  
P>  2 ' 

l < p < o e ,  

d + 2  
<A"  [I d) IF < p <  oo. 
=--p "* "~(g~+*)' 2 

(A.5) 

(A.6) 

(A.7) 

Here 
T 

GT (o(S, x)=  j" dt ~ gA(t-- s, y--x) (o(y) dy, 
S R d 

o:3 

Gx 40 (x)= ~ e-~(Y~ d y ~ ~ gA(Yo- XO, Y -  2) 4)(Y)dr2, 
x o  R a 

gA(t, x) = 5Fro, oo)(t) e_<X.A l x ) / 2 t ,  

(2 rr t) d/2 (det A) ~ 

/ t/ and AeS e is positive definite. The constants Ap,Ap and Ap depend only on the 
greatest and least eigen values of A. (This can be seen by making the obvious 
change of coordinates.) Thus we will always take A to be the identity matrix and 
will drop the subscript on ga" 

The inequalities (A.2) and (A.5) are easy consequences of H61der's inequality 
and don't warrant further comment. Inequality (A.4) follows fi'om (A.7); and (A.3) 
and (A.6) are really the same thing. Thus we will devote our attention to (A.6) 
and (A.7). Actually, (A.6) is a special case of a singular integral result first derived 
by B. Frank Jones [3]. In order to discuss his and related results, we use the 
function p(x) on R e+* defined by 

P ( x ) = (  ]~12+([2142 + 4 x i ) } f "  

This function was introduced by Fabes and Rivi6re [-2] in their work on singular 
integrals with mixed homogeneity. Its importance is that p(x) is the number p 
satisfying: 

2 
Xo .}_[X]22 =1 ,  
p4 p 

and so if f is a function of R a+l with parabolic homogeneity of order e (i.e. 
f (2  2 x o, 2~) = 2~f(Xo, x), 2 > 0), then 

X 0 X ) 
�9 
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That is, f(x) is the product of p~(x) and a function on the d-sphere. For instance, 
any of the functions: 

(x) = ~ g (x o, ~), ko 

a z 

k~j(x)= Oxi~xj g(Xo,2 ), i,j>=l, 
can be written in the form 

to(x) 
ko ( x ) =  (v (x)) ~ + ~ , 

r~j(x) 
k , j (x )=  (v(x)) d+ ~ 

where F o and Fij have parabolic homogeneity of degree 0. It is easy to see that F o 
and F~; are smooth away from the origin, and so for all xER d+l" 

]ko(x- y ) - k o ( -  y)] dy~ B, 
p(y) >_- 2p(x) 

Ik,j(x- y)-k~j(-y)l dy< B. 
P(Y) >= 2p(x) 

Moreover, we can compute Fc o and fc~j explicitly: 

~ o ( 0 =  i~o 
(i~o+1~12) ' 

- ~ 4~ 
fciJ (0=  (i~o+1~12) �9 

In particular, these are bounded. Hence, by Theorem (1) in Fabes and Rivi6re [2] 
(cf. Stroock [9] for a more probabilistic proof), we have: 

Ilko .4)ll~(gd+~) < Cpll4)llU,(R~,), l < p < o o ,  
(A.8) 

il k~j, 4)II,~(R~ +,) < Cp Ilq~ [I v,(R~+~), 1<p<o% 

where " , "  stands for convolution (in the sense of principle value evaluation). 
The inequality (A.6) follows from this once one observes that 

02GxdP=kij*(~)-)~axgp) and II;tGaq~ll~<ll4,1[~, l < p < o o .  
Ox i Oxj 

In order to obtain (A.7), we need a refinement of inequality (A.8) due to 
Rivi6re [6]. For g > 0, define 

k~)(x) = ~rt~ ' ~)(p (x)) ko (x), 
( 0  _ ki; (x) - ~t~, ~)(P (x)) k,i(x). 

The theorem of RiviOre is that 

[Isuplk~).~pll[w<CelfdJllw, 1 < p <  ~ ,  

IlSUop k?.o I1~< c~ll~,.., 1 < p <  oo. 
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The proof of (A.9), as well as of (A.7), turns on the following variation on the 
Hardy-Littlewood inequality. 

Lemma (A.1) (cf Rivikre [-6]). For 6 > O, let Bp(6)= {xeR  d, 1: p(x)<6}. Given 
feLa(Rd+a)~L~(R ~+~) 

1 
Mp f(x)=sup~>0 IB~olB! [f(x+y)l dy, 

where [St is used to denote the Lebesque measure of the set S. Then 

2d+l 
[{x: M p f ( x ) > 2 I I < - - I l f l r L r  ,~>0. 

= 2 

Because the proof of this special case is~.considerably easier than the general 
case treated by Rivi6re, we will include here the derivation of (A.9) from this 
lemma. 

Proof of (A.9). We will carry out the proof for k o. The first thing we need 
is to show that: 

I ~ (ko(Y-~)-ko(Y)) f (Y+X)  dYl < CMpf(X) (A.10) 
p(y) >__ 2e 

for p(~)<e. To do this, we note that when p(~)<=e and p(y)>2e:  

]ko(Y-r Ca (p(y))a+4 § (p(y))d+ 3 �9 

Changing coordinates to Yo =P2eso, Y~ =Pes~ . . . . .  Y2 =Pesd, p > 0  and ese~,~+~, 
we see that dy=p  d+l J(es)dp des, where J(es)e C~~ Hence 

I ~ (ko(Y--~)--ko(Y))f(Y+x)dyt 
p(y) _>-- 2e 

o) ~ C  2 2 f a - 3  1 d 1 d , 2~ a a+x da ( ~ l f (x+y) ldy)d~+s ~ ~-z  a a+x &r ( ~ If(x+y)ld~)d , 
B e 2e Bv(a ) 

a n d  integrating by parts we obtain (A.10). 
We now write 

Io - f ko(y) f (Y + x) dy = - I (ko(y-  4 ) -  ko(y)) f (Y + x) dy 
p(y) > 2s p(y) >--_ 2c 

- ~ k o ( Y ) f ( Y + r  f ko(Y)f(Y+~+x)dy=I~(~)+I2(~)+I3(~).  
p(y) < 2s 

Integrate both side as a function of ~ over Bo(e ) and dividing by ]Bo(s)k we get" 

1 1 1 
I/o] < ~ [ I i ( ~ ) [ d ~ - [ - - - -  ~ [/2({)]d{q ~ [Ia(~)ld{ - 

= [Bp (e)[ IBp (e)[ [Bo (s)] Bo(~) Bv (~) B o (a) 

By (A.10), 

1 
II1 (4)1 d~ < CMof(x)< C(M o If  Iv(x)) lip. 

IBp(S)l Be(o 
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Also 

1 IBo@)I ,f IS~(r d~__< (. _1 ~.lko,flp(~+x)d~) 1i" IBp(e)l'Bo(~> Bo(e) 

< (M o I ko �9 flP(x)) lIP 
and 

,Bo-e-, llo(~) Bo ~) 

< Ik o*(y{x+Bo~2~)f)(~+x)l v\i/p 

<Cp I[Y'+Bo(z~)fllp ! < @ 2  p (MolflP(x)) alp. 

Hence 
sup [k~)* fl(x)=< C'v(M o IflP(x)) l/p, 
e>0 

l < p <  ~ .  

But, by Lemma (A.1), 
2d+l  

I{x: (MplflP(x))llp> 2 } [ < - ~  - IlfllL, 

and so, by the Marcinkiewiez interpolation theorem, (A.9) follows. 

d+2 
Theorem (A.2). Let 4) ~ C~ (R e + 1) and f(x)  = g * 4) (x). Then for ~ < p < oo, 

II f ( x + y ) - f ( x ) -  (y, Vef(x)).  ~(R~+,)< Cp llq~ll~r 
r~a.+~ sup (p (y))2 = 

Proof Let y =(p27 o, p~), 7 =(Yo, Y)6~,+I. 

f ( x  + y ) - f ( x ) -  (y, ge f (x))  
(p(y))2 

1 g(~) 4b(~+x) d~ 
p2 0(r 

1 
l 0 p(O< 2p 

+@Zp(r162 o .  = p2yo ~ p~) g(r p (~  V~g(~)))qS(r 

= 11 (x) + I z (x) + 13 (x) + 14 (x). 
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F d + 2  

II,(x)l~-pl~( j" Ig(~o-P27o, ~-p~)l~ dO~/q( f. IC)(g + x)l" d#) '/z' 
P ( O ~ 2 p  p ( ~ ) ~ 2 p  

= p~ ~r S IO(~+x)l~) ~/~ 
0 p ( ~ ) ~ 2 p  

B t 2 d 
_ _  p l / p <  tt <= pf p~ ~( .f I,~(~+x)l) =B,M~I4,1"(~). 

P ( O N 2 P  

Simi l a r ly ,  

Also ,  

II~(~)1< 1_ 5 
t 0 p({) < 2p  

112 (x)[ ~ B~ M o [q51 p (x). 

c~ y  1 
IV~g(O114,(~+x)l  d { < - p - !  - ~ - q -  ( ~ I~b(x+{)l  d~)da 

B o (a) 

< C ' M  ~ r C ' (M o [OlP) x/p. 

F i n a l l y ,  b y  T a y l o r ' s  T h e o r e m :  

(g (~o - P ~ ~o, ~ - P ?) - g ( 0  - P (Y, V~ g ( 0 ) )  
p2 d 

= p~ ~o ko (0 +-~- ~ k,~(O + p~ A1 (0 + P~ A 2 (0, 

w h e r e  [A1 (~)l-<-- (p(~--~)a+4 a n d  [A2(~)[<= (p(~))a+~ " 1 ) 2  H e n c e ,  

d 

P ( { ) > 2 O  1 O ( O ~ 2 p  

+p~l .f Al(Or ~ a2(Oe(~+x)d~J. 
p(O-->2p p(O=>2p 

T h e  s u p r e m u m  over  p of the  first two  t e rms  was e s t i m a t e d  in T h e o r e m  (A.2). 
The  las t  two  t e rms  are  h a n d l e d  in the s ame  way  as we h a n d l e d  I 1 (x). The  rest  of the  
p r o o f  is c o m p l e t e d  in the same  way  as we c o m p l e t e d  the  p r o o f  of  T h e o r e m  (A.2), 
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