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Introduction 

As has been reported in Dubins and Freedman (1979), there are exchangeable 
probabilities which are not presentable, that is, there are some which are not 
mixtures of power probabilities. The exchangeable probabilities constructed in 
Dubins and Freedman (1979) are, in fact, singular with respect to all present- 
able probabilities. This will become evident once a simple condition given 
below, meaningful for members of a certain class of exchangeable processes, is 
shown to be necessary and sufficient for one of its members to be singular with 
respect to all presentable processes. 

(In order for an exchangeable probability, P, not to be a mixture of power 
probabilities, it is necessary that P be defined for events or random entities 
that are not determined by any finite number of coordinates. This necessity is 
formally demonstrated in Dubins (1981); a weaker version of this necessity is 
in Hewitt and Savage (1955), and it is implicit in de Finetti's earlier work on 
exchangeability.) 

w 1. Statement of the Condition for Singularity with Respect 
to Presentable Probabilities 

Let S be a subset of the closed unit interval I endowed with the sigma field 5 p 
of its Borel subsets, and let ~(S) be the countably additive probabilities on 
(S, 5~). Let 5 ̀,(2) be the smallest sigma-field of subsets of ~(S) such that, for 
each Ae5  p, the map: ~b~qSA of ~ ( Y ) ~ I R  is measurable and, using a no- 
tational device introduced by de Finetti, let ~2(S) be the set of all countably 
additive probabilities /~ on (N(SP),5~(2)). Each /~E~2(5 ~ will, in this note, be 
called a prior, or an S-prior when greater precision is needed. 

As usual, S ~~ denotes the cartesian-product of a denumerable number of 
copies of S, and 5 p~ is the corresponding product of copies of 5 P. 

* Research supported by National Science Foundation grant no. MCS-80-02535 



2 L.E. Dubins 

For f a bounded, measurable, N-valued function defined on S ~~ and 
q ~ ( S ) ,  let fq~ be the expectation o f f  under the power probability ~b ~. 

As writers subsequent to de Finetti use the term, for a probability P on 
(S ~~ 5 :~) to be exchangeable, or S-exchangeable, it must not only be invariant 
under the usual permutation group, but it must also be countably additive and 
defined for all elements of 5 :~. 

For # ~ 2 ( S ) ,  let f i#e~(S ~) be defined, thus. 

(1.1) (fl#) (f)  =# f ,  

for all bounded Borel, R-valued functions, f defined on S ~. In (1.1), the 
convention, also introduced by de Finetti, of using the same symbol for a 
probability measure as for the expectation it determines is, of course, being 
used. In more familiar, but less compact notation, 

(1.1") ( f i#)f=~ ~f#(d(9)  

or  

= S r 
As accords with the definition in Hewitt and Savage (1955), an S-exchange- 

able, P, is S-presentable if 

(1.2) g=f i#  for some #e~2(S). 

F o r  # E ~ 2 ( / )  and 113 ranging over the Borel subsets of I ~176 the formula 

(1.3) P(IB nS o~) = (fi #) (113) 

defines a countably additive probability, P, on (S ~~ 6 :~176 if, and only if, (fi#) (IB) 
=1 whenever IBDSC When this holds, flit is said to have a trace on S ~~ and 
P is its trace. 

(1.4) Theorem. Let #E~2(I), S~I ,  such that fl# has a trace on S ~, say P. 
Then, for P to be singular with respect to every S-presentable probability, it is 
necessary and sufficient that the set, q~, of (9~( I )  under which S has outer 
probability one, be a #-null set. 

(The meaning intended by various terms used in the statement of Theorem 
(1.4) is probably clear, but to dissipate certain possible ambiguities, they are 
defined thus: Countably additive P and Q are mutually singular if, for some 
event f P ( f ) = Q ( 1 - f ) = l .  For qS~(I )  and S c I ,  S has outer probability one 
under ~b if each Bore1 subset of I which includes S has @probability one. 
Finally, a set, N, is a null set under # if N must receive probability zero under 
every nonnegative finitely additive extension of # to N.) 

w 2. Preliminaries to the Proof of Theorem (1.4) 

For 0 ~ ( S ) ,  let 1 0 ~ ( I )  be defined for Borel subsets B of I by: 

(2.1) (1 0)(B)= O(BnS). 
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Verify that q~ is in the range of l if, and only if, the outer q%probability of S, 
namely qS*S, is 1; that is, if and only if ~be~. 

Similarly, for each P ~ ( S ~ ) ,  let lP be defined for Borel subsets 113 of I ~ by: 

(2.2) (l P) (113) = P(IB c~S~176 

Finally, for 7eN2(S), let 17E~2(I) be defined as the 7-distribution of l, 
Plainly, #'E~2(I) is 17 for some 7eN2(S) if, and only if, for every Borel subset 
17 of N(I) which includes ~b, #'(/7) = 1. 

With the conventions now in force, the l operation commutes with the 
operation of taking cartesian products and with the barycentric operator fl, 
that is, 

(2.3) l(O ~)=( l  o) ~ (voe~(s) ) ,  

and 

(2.4) (l fi) 7 = (fi l) 7 (VTe~a(s)) �9 

The last equality can be visualized in terms of the commutative diagram: 

~2(S ) t ,~z( I )  

1 
~(s)--T~ ~(I) 

(2.5) Lemma. For # and #' elements of r these two assertions are equiva- 
lent: 

(a) # and I~' are mutually singular; 
(b) fi # and fi #' are mutually singular. 

Proof Suppose (b) holds. Then, for some Borel subset IB of 1% (fi g)(I13)= 0 and 
(fi #') (IB) = 1. That is, 

(2.6) ~ ~b~176 (IB) #(dq~) = 0 = 1 - ~ ~b ~176 (IB) #'(d4). 

Since /~ and #' are countably additive probability measures, the set of ~b such 
that ~b~176 1 has #-measure zero but #'-measure 1. Therefore, (a) holds. 

Now suppose that (a) holds. For some Borel subset, /7, of ~(I), #(H)=0 
and # ' (H)=I .  Let 113 be that subset of I ~176 consisting of all (xl,x2,. . .)  whose 
empirical distribution converges to a q56/7, that is, such that, for all f~C(I),  

1 

!~ , f ( x i )  ( l < i ~ n )  converges to ~f(t)(a(dt). Apply the strong law of large 
0 

numbers to each f in a countable dense subset of C(I) to conclude that IB has 
probability zero under fi#, but probability one under fi#'. Hence (b) 
obtains. [] 

For future reference, record here this easily verified fact. 

(2.7) Lemma. For P and Q elements of ~(S), these two assertions are equiva- 
lent: 
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(a) P and Q are mutually singular; 
(b) 1P and IQ are mutually singular. 

(2.8) Lemma. Let # be a probability, q~ a set, and suppose that # is singular 
with respect to every probability that assigns cb outer probability one. Then ~b is 
a null set for IX. 

Proof Suppose �9 is not null for #, let e > 0 be the infimum of the Ix-probability 
of all measurable sets which include ~, and let A be a measurable set, A = q5 
for which IX(A)= e. Let IX' be a probability measure which vanishes off A and is 
proportional to IX on A. Then q5 has outer-probability one under IX', but # and 
IX' are not mutually singular, for their infimum is simply # on A and zero off 
A. [] 

w 3. Proof of Theorem (1.4) 

Sufficiency. Suppose the condition holds. So, for some Borel subse t / /  of .~(I), 
H includes ~b and Ix(//)= 0. Let Q be S-presentable or, equivalently, let Q be/? 7 
for some S-prior 7, and let Ix' be the / -pr ior  17. As noted early in w 2, Ix'(H)= 1. 
So Ix and Ix' are mutually singular. As Lemma (2.5) now implies, /?IX and /?Ix' 
are mutually singular. Next, note that 

(3.1) /?Ix'=/? 17 =I /?7=lQ,  

where the second equality holds in view of the general commutativity relation 
(2.4). Since/?Ix is, of course, 1P, IP and lQ are mutually singular. Now Lemma 
(2.7) applies. 

Necessity. Suppose # ~ 2 ( I ) ,  PE~(S~ IP=/?#, and P is singular with respect 
to every S-presentable Q, or equivalently, suppose P is singular with respect to 
/?7 for all 7~2(S) .  By Lemma (2.7), lP is singular with respect to 1/77 for all 
7s~2(S). By the commutativity relation (2.4), lP is singular with respect to/?  I7 
for all 7 or, equivalently, 1P is singular with respect to /?IX' for every 
Ix 'e~ 2 (I) which assigns outer-probability one to 4~. Since I P=/?Ix,/?Ix is singular 
with respect to all such /?Ix'. As is implied by Lemma (2.5), # is singular with 
respect to all such Ix'. Hence by Lemma (2.8), ~b is a null set for/1. [] 

w 4. Existence of (~t, S) Which Satisfy the Condition of Theorem (1.4) 

Call IX~2(I) doubly nonatomic if IX is nonatomic and the set of nonatomic 
qSe~(I) has probability 1 under #. Call a Borel subset, E, of ~(I) distal if there 
is a Borel map O o f / o n t o  Z such that, for each q~eZ, the set, Bo, of all x e I  such 
that ~b(x)=~b has @probability one; and call #e~2(I) distal if, for some distal 
subset Z of ~(I), #(Z) = 1. 

(4.1) Theorem, Suppose # ~ 2 ( I )  is distal and doubly nonatomic. Then there is a 
subset, S, of I such that the trace of ~ 0 ~ Ix(dO) on S ~ is an exchangeable process 
which is singular with respect to each countably additive S-presentable process. 
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Proof of Theorem (4.1). A transfinite argument given in Dubins and Freedman 
(1979) delivers an S with these two properties: (a) S ~ has outer probability one 
under /3/~; (b) for #-almost all 05, the intersection of S with B e is a countable 
subset of I; hence, for g-almost all 05, S is a @null set. By (a), the trace o f /~#  
on S ~~ is an S-exchangeable probability P. By (b), the condition of Theorem 
(1.4) obtains. [ ]  

In view of Theorem (4.1), to see that some exchangeable processes are 
singular with respect to all presentable ones, it is only necessary to see that 
there is a / ~ 2 ( i )  which is distal and doubly nonatomic. That there are such 
becomes evident by considering any nonatomic # which is distributed over the 
set of biased-coin distributions, as in Dubins and Freedman (1979). 

For a conclusion related to Theorem (1.4), see Freedman (1980). 
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