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Summary. The purpose of this paper is to give a probabilistic approach to 
studying the regularity at the boundary of the transition probabilities of 
certain hypoelliptic diffusions with boundary conditions. The main tools are 
last exit decompositions of Brownian motion, the Malliavin calculus, the 
theory of excursions, and the calculus of variations on Brownian excursions. 

The purpose of this paper is to show how it is possible to use probabilistic 
methods to prove the regularity at the boundary of the transition densities of 
certain hypoelliptic diffusions. We essentially use the Malliavin calculus of 
variations [3, 14, 21-23, 27, 30-32] and the calculus of variations on Brownian 
excursions which we developed in [6]. 

Before going into details, we first explain how analysts proceed to study the 
regularity at the boundary of the solutions of certain partial differential equa- 
tions with boundary conditions. We here follow Treves [34] - Chap. III. 
Namely, let P be a second order differential operator in the variables (z, x ) E R  + 
x R n which can be written as 

02 
e = ~ + Q  (0.1) 

where Q is an elliptic operator of degree 2, whose partial degree in z is < 1. 
Modulo regularizing operators [34], P can be factored as 

Using (0.2), boundary problems on the partial differential operator P in the 
region R § x R n can be transformed into a problem of the type 

(~+e+) u=v (~,)~=o--g 

(~--~+P-)v=Ru+f 
(0.3) 
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where N is the so-called boundary operator of the problem, and R is a 
regularizing operator. The analysis of the boundary problem is then easier in 
the form (0.3). 

In the simple case where Q is the Laplacian A in the variable xeR", (0.2) is 
the exact 

a _  2 
O z2 ~- A = (0~7-1/-~A-) (0~z + ] / ~ ) .  (0.4) 

Now a factorization of the type (0.2) has some obvious formal connections 
with the Wiener-Hopf factorization of the generators of certain independent 
increment processes studied by Prabhu [25], Greenwood and Pitman [12], 
Silverstein [28], and also considered by H. Kaspi [19] for certain Markov 
processes with discrete state space. 

In this paper, we will obtain a factorization of hypoelliptic operators in the 
form (0.2) which is associated to a certain Williams decomposition of the 
trajectories of Brownian motion in terms of its local maxima. It is then natural 
to put this description of Brownian motion at work simultaneously with the 
Malliavin calculus of variations and the calculus of variations on Brownian 
excursions, to give a direct proof of the regularity at the boundary of the 
transition probabilities of certain hypoelliptic diffusions with boundary con- 
ditions (this problem is not covered by the technique of (0.2)-(0.3)). The 
product form of the generator is then a consequence of one Williams decom- 
position, but is not used as such in the proof of regularity, since we directly 
work on the paths. 

Also note that in [12, 19, 25, 28], techniques of duality on Markov 
processes are used to establish a factorization of the type (0.2). We will instead 
use excursion theory on Brownian motion, which lends itself to an easy 
analytic treatment, without any potential theoretic formalism. Still the reader 
will notice some obvious connections with results on the time reversal of 
Brownian motion. In particular the result of Pitman [24], stating that if z is a 
reflecting Brownian motion and L its standard local time at 0, z+L is a Bes(3) 
process, plays a key role in our factorization of the form (0.2). Of course, it is 
known by Ikeda-Watanabe [14], Williams [36] that Pitman's result is strongly 
connected with the time reversal of Brownian motion. 

The paper is divided in three sections. In Sect. 1, we calculate the excursion 
law of the Brownian motion out of 0, by assuming that a certain time t is 
chosen at random (using the Lebesgue measure) during the excursion. This 
leads us to still another description of the excursion law of Brownian motion, 
besides the one by L6vy-It6-McKean [15], and the other by Williams [35-36], 
Rogers [26]. 

In Sect. 2, we exhibit several explicit factorizations of second order differen- 
tial operators, using local maxima or last exit decompositions. 

If Po denotes the law of the Brownian motion z starting at 0, local maxima 
decompositions and last exit decompositions for z.At are found under the o-- 
finite measure 1,__> o d t dPo (z). 

In Sect. 3, these results are applied to studying the regularity at the bound- 
ary of transition probabilities. 
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We use much some now well known results of the Malliavin calculus, the 
techniques of excursion theory (Williams [35, 36], lkeda-Watanabe [14]) as 
well as our results on Brownian excursions [6]. 

Let us also point out that Dynkin-Vanderbei [ I1]  have studied some of the 
processes considered here in the elliptic case. 

Also observe that Derridj [37] studied the Dirichlet problem for second 
order differential operators verifying HiSrmander's assumptions [13], and this 
by using a priori estimates. In our paper, we work under conditions which are 
slightly less general than H6rmander ' s  to study the regularity at the boundary 
of the transition probabilities with Dirichlet or Neumann boundary conditions. 

Finally we have recently received a paper by Ben Arous, Kusuoka  and 
Stroock [38], in which these authors consider the Dirichlet problem and prove 
the regularity of the Poisson kernel on the boundary under the assumptions of 
H6rmander  [13]. It may well be that the techniques of [38] can be adapted so 
that our results would also hold under H6rmander ' s  assumptions, although our 
problems do not fall within the reach of the techniques of [38]. 

In the whole text C~(R") (resp. C~(R")) denotes the set of C ~ functions 
which are bounded and have bounded differentials (resp. which are C ~ with 
compact  support). 

If Xt is a semi martingale, d X  will denote the differential of X in the sense 
of Stratonovitch, and 6X its differential in the sense of It6. 

I. Another Description of Brownian Excursions 

At the present stage, there are two descriptions of the Brownian excursion 
measure n + of a reflecting Brownian motion out of 0: 

�9 One by L6vy, I t6 -McKean  [14, 15] describes the Brownian excursion, 
conditionally on its length a, as a Bes(3) bridge, the law of cr being itself 
known. 

�9 The other by Williams [35, 36], Rogers [26] in which the excursion is 
described by means of two independent Bes(3) processes, stopped when they 
first hit the maximum of the excursion, whose law is also known. 

In this section, we give a description of the measure lt<_~dtdn + by means 
of two independent Bes(3) processes stopped at their last exit from a ~ R  + 
chosen at random with the law l ~ o 2 d a .  Of course this gives us a third 
descriptions of n +. 

As pointed out in the Introduction, our need is to find the structure of a 
Brownian excursion cut "at  random",  or more precisely to know the structure 
of the excursion before a certain time chosen at random. 

Of course, the derivation of this third description is obtained by using the 
results of Williams [35, 36] - Rogers [26]. 

In a), we first recall without proof  a few facts on standard Brownian 
motion, which are mostly taken from I t6-McKean [15], in the hope that a few 
explicit calculations will make clear the remainder of the paper. 

In b), we give the description of Brownian excursions which we will later 
need. 
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a )  A F e w  Facts  Concerning Brownian Mot ion  

We first detail a few facts concerning Brownian motion, some of which are 
proved in I t6-McKean [15] Chap. 1, and others are consequences of last exit 
decompositions or of excursion theory. Since these facts will receive a proof 
using excursion theory, we do not give any justification for the moment. 
However, we feel that what follows will give some intuition for the less 
intuitive analytic part of the paper. 

On Cg(R+; R), whose standard element is z, we consider the filtration 
{Ft}e>__o associated to the a-fields 

F t = ~ ( z ~ l s < t ) .  (1.1) 

Let Po be the Wiener measure on Cg(R+, R), with Po(z(0)=0)= 1. 
Le is the local time of z at 0 (i.e. L is twice the standard local time of z 

at 0). A {Fe}teo-Brownian martingale Be exists such that 

I zel = Lt + Be (1.2) 
and moreover 

Le= sup (-B~).  (1.3) 
O<_s<_t 

Me is the process 

Mt=  sup zs. (1.4) 
O <_s <_t 

If ~ is the process 

= Mt  - ze. (1.5) 

is a reflecting Brownian motion (which has the same law as Ize]). Set 

/ t=sup {s<t ;  zs=0} 

m r = s u p { s < t ;  ~ = 0 } .  

We also define 

Clearly, 

x2  

p e ( x ) = = e - ~  t>0 ,  x ~ R  
] / 2 n t  

X x2 

qx(t)--  _ _ e - ~ 7  t>0 ,  x > 0 .  

(1.6) 

(i.7) 

ape(x) 
q x ( t ) -  t>0 ,  x > 0 .  (1.8) 

ax 

Moreover for t>0 ,  p t ( x ) d x  is a semi-group of probability laws on R whose 
t~  2 

Laplace transform is eT .  Similarly for x > 0 ,  qx(t)L>=odt is a semi-group of 
probability laws on R +, whose Laplace transform is e -xV~g. 

For t>0 ,  the law of (L,  lt, z0 is given by 

dPLt, t .... (L, l, z) = 1L >= O, 0 <_1 <~t qL(1) qlzl (t -- l) d L  d l d z  (1.9) 
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so that by integrating in l 

dPL .... (L, z )=  1L=>0 qL+l~l(t) dLdz.  (1.10) 

Of course (1.8) is also a consequence of (1.10). 
Moreover ,  condit ionally on (lt = l), (zs I s _-< l) and (zs I I < s < t) are independent.  

Condit ional ly on (/t=l), (zsls<l) is a Brownian bridge on the time interval 
[0 , / ]  (with Zo=Z,=0) .  Condit ional ly on (It=l, zt=z), (Izz+sl IO<_s<_t-l) is a 
Bes(3) bridge on the t ime interval [0, t - I ] ,  starting at 0, and ending at JzJ. 

Assume now that  t is also a r andom variable independent  of z, whose law 
is the Lebesgue measure lt__>0 dt (which is not a probabil i ty measure). 

Set 
l't= t -  lt. (1.11) 

Inspection of (1.9) shows that  

�9 (Lr, It) and (l~, z,) are independent.  

�9 The  law of (Lt, zr) is 
1L>=odLdz. 

�9 Condit ional ly on (Lt, zr), the law of (lt, l~) is 

ll>=o,r ~o qLt(1) qlz~l(l') dl dl'. 

�9 Condit ional ly on (Lt, zt), (zs[s<It) and (zz,§ are independent.  
Their  laws will be determined in Theorem 2.17. 

Similarly, under  Po, the probabil i ty law of (Mr, mr, ~) is given by 

dP(M ..... et)(M, m, z-) = 1M_>O, ONm<=t,z>=O 2qM(m) q ~ ( t - m ) d M d m d ~  (1.12) 

and the law of (Mr, St) is 

dP(Ms e~)(M, z-) = IM> o, e > o  2 qM+~(t) dM dZ. (1.13) 

Condit ional ly on (mr=m), (zslO<s<m) and (Ym+,lO<_s<_t-m) are inde- 
pendent.  Condit ional ly on (mr=m, ~=z3, (Ym+~[O<_s<_t-m) is a Bes(3) bridge 
starting at 0 at t ime 0, ending at Y at t ime t - m  (this fact follows from the 
theory of excursions on z). A time reversal argument  shows that condit ionally 
on (mr=m, Mr=M), M - z s  (O<s<m) is a Bes(3) bridge starting at M at t ime 0, 
ending at 0 at t ime m. 

If t is a r andom variable independent  of z, whose law is L>_odt, if 

m~ = t - m~ (1.14) 

inspection of (1.12) shows that 

�9 (Mr, mr) and (m~, ~) are independent.  

�9 The law of (Mr, ~) is 

1M>=o,e>=o2dM d~-. (1.15) 

�9 Condi t ional ly  on (Mr, N), the law of (mr, m~) is 

lm _> o, m'~ o qMt(m) qz~(m') dm din'. (1.16) 
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�9 Conditionally on (Mr, ~), (zs[O<s<mt) and (M-zm~+slO<s<=m't) are inde- 
pendent. Their laws will be determined in Theorem 2,16. 

Of course, since Z has the same law as I z.], these two series of results are 
obviously connected. Moreover  observe that under the measure lt~=odtdPo, 
conditioned by ( l+ l ' =  t) or by (m + m ' =  t) (we have dropped the subscripts t for 
obvious reasons), we go back to the Brownian motion z on the time interval 
[0, t] considered at the beginning. By making t a random variable, we in- 
troduce more flexibility in the description of z. 

b) How to Cut at Random an Excursion Bridge 

Let ~-be a reflecting Brownian motion on [0, + oe [ . L  t denotes its standard 
local time at 0. If/~t is defined by 

~=Lt+ /3~ .  (1.17) 

/~, is a Brownian martingale. 
Set 

A s = i n f { A > 0 ;  LA>S}. (1.18) 

~ +  is the set of continuous functions e(s) defined on R + with values in R + 
such that 

�9 e(O) = 0 .  
�9 There is 0.>0 such that if O<s<o- ,  e(s)>O, and if s>o-, e(s)=O. 

{Gs}s~o denotes the filtration in ~/U + associated to the o.-fields 

Gs = ~(e(u)[u < s). (1.19) 

6 is a cemetery point. 
Let et be the process valued in ~r ~ {6} defined by 

et(s) = 6 i f  A t _  = At 

=2at+~ on [O, At-At-] . ;  0 for s > A t - A t - ,  if A t - A t - + O .  

The theory of excursions of It6 (see I t6 -McKean  [15], Ikeda-Watanabe 
[14]) shows that et is a Poisson point process, whose characteristic measure on 
~ +  is noted n +. 

Definition 1.1. if+ is the o.-finite measure on R + x ~ +  

dff + (t, e) = lo _<t_<~(e)dt dn + (e). (1.20) 

For aeR,  P~ denotes the probabili ty law on Cg(R+;R) of the Brownian 
motion z with z(0)= a. 

For  roeR  +, Qro is the probabili ty law on (g(R+; R +) of the Bes(3) process 
r . ,  with r(0)= r0. 

We then have the following result. 
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Theorem 1.2. On R + x (g(R+; R +) x ~(R+;  R+), consider the c-finite measure 

dR(a, r, r ' )--  la> 0 2dQ0(r) dQ.o(r') da. (1.21) 

Let A, A' be the random variables 

Set 

A = s u p  {seR +, rs=a} 

A ' =  sup {s~R +, r'~=a}. 

e(s)=rs if O<_s<_A 
r' if A<s<-A+A' A + A ' - s  

0 if s>A+A'.  

(1.22) 

(1.23) 

Then the law of (A, e) is exactly dff + (t, e). 

Proof. Let  f be a C ~ function on R, whose compact  support  is included in 
]0, + oo[. There is e > 0  such that  f ( x ) - - 0  if x<e. 

For  tER +, Ot is the usual translat ion opera tor  on (g(R+;R) which to 
z. e Cg(R +; R) associates (0t z) = z. +t e (g(R +; R). 

Hs(z), H'~(z) are two processes defined on R + x Cg(R+; R) which are bounded  
and predictable (with respect to the filtration {Ft}t ~ 0). We will now evaluate 

j" f(e(t))Ht(e)Hco(Ote)dff+(t, e) 
R + x ~ W ' +  

= ~ l~>=of(e(t))Ht(e)Hco(Ote)dtdn+(e). (1.24) 
R +  x ~/~+ 

Let Lt(a) be the local t ime at aeR + of e( . )  (i.e. Lt(a) is twice the s tandard 
local t ime of e( . )  at a). 

(1.24) is equal to 

[ ~ lt>-of(e(t))Ht(e)Hco(Ote)dLt(a)da]dn+(e) 
.,#f+ R + x R +  

R + ~ ' +  l_ 0 

Of course in (1.25), T~ is the stopping time 

T, = inf {s > 0; e(s) = a}. (l.26) 

By Ikeda-Watanabe  [14], under n + and  condit ionally on G ,  the law of Ore 
is the law of z.,,ro under  P~(0" Since the support  of dLt(a ) is {e( . )=a},  (1.25) is 
equal to 

+ c o  

da ~ dn+(e) ~ lro<+cof(a)Ht(e)Eeo[Hco(z.^ro)]dLt(a). (1.27) 
R + q//+ 0 

By a result of Williams, Rogers  [26, 35, 36] under  n +, and condit ionally on 
(T~< + oo), e(s) (O<s<= T~) is a Bes(3) process starting at 0 and stopped when it 
hits a,e(s) (T,<=s<=c) is a Brownian mot ion  independent  of e(s) (O<s<T~) 
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starting at a and stopped when it hits 0. Clearly, if x > 0 

Px(T~ < To) = 1 if x > a  
X 

- i f  x < a .  a 
Set 

A"(z)=sup{s>=O; s<To :  zs=a}. 

(1.28) 

(1.29) 

From (1.28) it is not hard to see for P~, the dual predictable projection of 
dL.  ^ To(a) 

d(lt~aa(z)) is 2a . (1.27) writes 

2 ~ ada ~ dn+(e)lTo<+oof(a)HA.(r (1.30) 
R + ~g/+ 

Now using (1.28), it is easy to see that under P,, zs (O<s<_Aa(z)) has the 
same law as rs (0<s_<AO(r)) under Q,. It follows that under n +, conditionally 
on (T~< + o  o), the law 
(0<s<Aa(r))  under Q0. 

Then, classically [36] 

(1.30) is then equal to 

of e(s) (O<_s<Aa(e)) is equal to the law of rs 

1 
n+(T~< + oo)=- 

a 

2 S da~f(a)HAa(r)(r)[En"Ho~( z" AWo)] dQo(r). (1.31) 
R + 

Finally, a result in [14-36] (which is also a consequence of Pitman [24]) 
shows that under P~, the law of Zwo-s (ONSNTo) is the same as the law of rs 
(O<s<A"(r)) under Qo- The Theorem is proved. 

Corollary. Under the a-finite measure 

dR(a, r, r') (1.32) 
A + A '  

the law of e is exactly n +. 

Proof. Clearly for one ecYC + 

dff+ (t, e)=a(e)dn+ (e). (1.33) 
R + 

The result is now obvious from Theorem 1.2. [~ 

Remark 1. Of course under dR(a, r, r'), rA s (O<s<A) and r' - A'-~ (O<s<A') are 
two independent Brownian motions starting at a and stopped when they hit 0. 
This gives another useful description of dff + (t, e). 

Moreover conditionally on A, A', rs (O<=s<A) and r'~ (O<s<A') are two 
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Bes(3) bridges (with the obvious end points), as well as rA_s ( O < s < A )  and 
r'._= (O<__s<__A'). 

Finally, it is striking that in Williams's description of n + [35-36] A,A '  are 
replaced by the corresponding hitting times. 

II. Williams Decompositions of Brownian Motion and Factorization 
of Second Order Differential Operators 

In this section we consider a n + l  dimensional diffusion (xt,  z,) where zt is a 
Brownian motion with a drift b(x, z). The generator of the process (xt, zt) is 

1 ~3 2 0~ z • (2.1) 
~ z ~ - +  b + 2 ' '  -~ ~? t 

where 2 ' '  acts only on the variables x. 
In this section, we show how to factor exactly the operator  (2.1) in the form 

(2.2) 

It is in fact shown that this factorization of (2.1) is directly related to the 
decomposition of Williams of the Brownian motion z. ^t under the o--finite 
measure l,>=odtdPo(z) (dPo(z) is the Brownian measure). K is shown to be the 
generator of the jump process associated to the local maximums of z (which 
Dynkin-Vanderbei [11] call a stochastic wave). K'  is obtained from K by using 
the results of Sect. 1 and Pitman's construction [24] of a Bes(3) process by 
means of a Brownian motion. We also use some results in Jacod E16] on the 
Girsanov transformation on point processes, and our results [6] on the effect 
of a Girsanov transformation on the excursion measure of a Brownian motion. 

In a), we introduce the main assumptions and notations. In b), a new 
Markov jump process is introduced, and its generator is explicitly found. This 
is the stochastic wave of Dynkin-Vanderbei Ell].  In c) the stochastic wave is 
turned upside down, and a new jump process is defined. In d), the factorization 
(2.2) is derived. In e) we describe some other factorizations of (2.1) which are 
related to last exits of z., and explain the interrelations of these different 
factorizations. Finally in f), we give a Williams decomposition and a last exit 
decomposition of z.^t under the a-finite measure lt>>_odtdPo(z ). In f), we 
still use the results of Sect. 1. 

Let us point out that we have not tried at all to justify analytically the 
various decompositions (i.e. for instance to show K ' K  is well defined), but 
directly interpret what is obvious on the paths of the Brownian motion in terms 
of operators. 

This section is useful to understand the connection between what we will 
do in Sect. 3 and the work done by analysts (see Treves [34]), but of course, in 
Sect. 3, all the analysis will be done on paths without using (2.2). 
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Note that the various operators are given in a form explicit enough so that 
the proof that (2.2) is not purely formal should raise no difficulty. 

Let us again point out that our product form (2.2) is nothing else that an 
extension of the Wiener-Hopf factorization results of Prabhu [25], Greenwood- 
Pitman [-12], Silverstein [28], Kaspi [19] in the context of multidimensional 
diffusions. 

a) Assumptions and Notations 

Xo(x, z). . .Xm(x, z) denote m + l  C ~~ vector fields defined on R n x R  with values 
in R n, whose components belong to C~ (R ~ x R). 

b(x, z) is a C ~ function defined on R~x R with values in R, which belongs 
to C~ (R" x R). 

f2' is the space Cg(R+; R"). The standard element of f2' is w=(wl...wm). The 
filtration {Ft'}t~0 is defined on ~2' by 

F[=~(ws[s<t) .  

P' denotes the Brownian measure on ~2', with P' (Wo = 0)= 0. 
is the probability space Cg(R+; R)x f2' endowed with the filtration {/~}t__>0 

defined by 
-~= Ft | F;. 

The general element of ~ will be denoted (5. Take (Xo, 2-o)cR~xR. On 
(~, Po | P'), consider the stochastic differential equation 

dx = Xo(x, z-) dt + Xi(x, z-).dw i 

x(O)  = Xo 

d~-= dz (2.3) 

e(o)=zo  

(we omit the summation sign ~ in (2.3)). 
i=1 

Let ~o.(eS, .) be the associated flow of C ~ diffeomorphisms of R" x R onto 
itself (Bismut [1] - Theorems 1.1.2 and 1.2.1), so that in (2.1), P0| a.s. 

(x,, ~) = qo,(es, Xo, Zo) 

(Xo, 3o) are now temporarily fixed, (xt, Zt) are defined by (2.3). 

Definition 2.1. On (f2, Po | P'), Zt is the Girsanov martingale 

Zt = exp b(xs, ~) 6z - b 2 (x~, zs) ds . (2.4) 
0 

/5 is the probability measure on f2 such that for any t > 0 

d/5 r~ 
d(Po| = Z t  
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Under/5,  (xt, ~) is a Markov process, whose generator s is given by 

1 8 2  ~z  ----~1 5 e -  2 ~z 2 +b(x, z) +Xo(x, z)+ 1 X~(x, z). (2.5) 
i= 

For a discussion of how to reduce locally a second order differential 
operator to the form (2.5) when (z=cst) is non characteristic, see Remark 2 in 
Sect. 3. 

For  a>2-o, set 
T~ =inf{ t  >0,  ~ = a } .  

To simplify the argument which follows, we will assume that for any 
(Xo, To),/5 a.s., T, < + 0% or equivalently (see [6]) that 

E P~ | P" Z T a  = 1. (2.6) 

This is the case if b>=0, or if the support of b is compact. The discussion 
which follows can be extended even if (2.6) is not verified, but the argument is 
slightly more involved. For  a discussion of (2.6) in terms of F611mer measures, 
we refer to [6]. 

b) The Time-Changed Process 

(to, T, Xo)~R x R + x R n is now fixed. 

Definition 2.2. On (Q, P), the process Ya with values in R x R + x R" is defined by 

Y~ =(2-o + a, T~o+a + T, XTzo+a)" 

Of course Y~ is right continuous with left hand limits. The strong Markov 
property of (Z, x) shows immediately that Ya is also strong Markov. 

Y~ is exactly the stochastic wave process considered by Dynkin and Vander- 
bei [11]. 

We will now find its formal generator. Recall that under n § conditionally 
on a, we know that e is a semi-martingale, since it is a Bes(3) bridge (see 
Ikeda-Watanabe [14] p. 225). Of course this result also follows from Theo- 
rem 1.2 and its corollary. 

Definition2.3. Take (g'o,x'o)eRxR". On (~tg'+xf2',dn+(e)| we con- 
sider the stochastic differential equation 

dx'=Xo(x' ,  g')dt+Xi(x' ,  g').dwi; X'(0)  = X~) 

d~'= -de ;  ~'(0)=go. (2.7) 

Z',(e, w) is the process 

{, , } Z',(e, w)= exp - f b(x', g') a e -  k 5 b ~-(x ', 7')as . (2.8) 
0 0 

Of course Z',(e, w) depends on (T o, xb). We do not note this dependence 
explicitly. 



76 J.-M. Bismut 

We first have a technical result. 

Proposition 2.4. As (To, Xo) varies in R x R" 

[,l~,<=llZ'~(e,w)-ll2+lr (2.9) 
~#" + x .Q' 

is uniformly bounded. 

Proof. We proceed very much as in the proof of Proposition 3.25 in Bismut 
[-6]. Set 

f t  = Z't - 1. (2.10) 

Clearly 
d f =  -(f+l)b(x' ,~')~Se, f(O) =0. (2.11) 

Let ak be the stopping time 

a k = i n f { t > 0 ;  If~l >k}  a a .  

1~_~o dcr 
Now by Ikeda-Watanabe [-14], the law of cr under n + is ~ 2 ~ j 3 '  so that for 
t > 0  

aAtdn+(e)= 4 tl/2" (2.12) 

From Ikeda-Watanabe [-14] p. 309, we know that 

[. If~kAd2 dn+(e)dP'(w) 
.,/,g + x g?, 

G k At 

= ~ ~ I f+ll2b2(x' ,Z)dsdn+(e)dP'(w).  (2.13) 
" /#  + x f2 '  0 

Using (2.12), it is clear that the r.h.s, of (2.13) is < + oo. Moreover from 
(2.13), we see that 

S IL~^*lZdn+(e)dP'(w) 
, ,W+ x D ,  

(2.14) 

Using (2.12), (2.14) and Gronwall's lemma, we find that for k e N ,  t< 1, 

S If~kA,f2dn+(e)dP'(w) 
" /#  + x f 2 '  

is uniformly bounded. By making k--. + o% we obtain the boundedness of 

If~^ll2 dn+(e)dP'(w) �9 (2.15) 
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Condit ional ly on (o->1), e, ( l < t < a )  is a Brownian mot ion  stopped when it 
z; 

hits 0. Condit ional ly on (a > 1), Z~- * (1 < t < o-) is a positive martingale, and so 

Now 

N o w  

that  

E"+| z" ] 
z~  1 GI@F1; G~I ~1. (2.16) 

Z'I 1o>=1 dn+ (e)dP'(w) 
" f l /  + x .Q' 

= ~ (Z'~^t-1)lr (2.17) 
"fl/- + x .Q' 

n + ( o > l ) <  +c~.  Using (2.15) and Cauchy-Schwarz 's  inequality, we see 

[. IZ',,1-1]l~>ldn+(e)dP'(w) (2.18) 
,,W + x ..Q, 

is uniformly bounded.  F r o m  (2.15)-(2.18), we obtain the Proposit ion.  

Definition 2.5. If  f e  C~(R x R x R"), we define the function K f  on R x R x R" 
by 

Kf(zo, T,x'o)= ~ {l~<=l[f(-zo, T+~,x'~)-f(go, T,x'o) 
"#" + x f2' 

- i  (cl~ f (-eo, T+ s, X's), X,(x;, %)5 aw'] 
0 

+ 1~ >, I f ( % ,  T +  or, x ; ) -  f ( % ,  T, x;)]} dn + (e) dP'(w) 

+ [. [f(-~'o,r+a,x;)-f(-~'o,r,x'o)](Z'~-l)dn+(e)dP'(w). (2.19) 
~/# + x ~ "  

Of course 

f (Z'o, T+ ~, x') - f (Z'o, T, X'o) 

. . . . . .  _ ,  -o  ~(z~176176 T+s,x',) 

ff 

+~X,1 2 , zs)f(z o,-' T+s,x's) ds+[Xi(x'~,z-'~)f($'o,T+s,x',)aw i (2.20) 
0 

(in (2.20) 
variable x). 

F r o m  (2.20), we find that 

]Kf(,'o,T,x'o),<c[~ j• ~. {1~__< 1 cr + 1~> t 

(~ f6wi + ) -}- l~r __< 1 f X i  o" ] Z ; - -  1[ 
o 

+ l~> l Z;} dn+ (e)dP'(w).] . 

f and its derivatives are calculated at ~{~ and X0, X~ act on the 

(2.21) 
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N o w  

a 2 

~, ! X i f S w  i dP'(w)<Da. (2.22) 

Using (2.22), Proposition 2.4, and Cauchy-Schwarz's inequality, it is clear that 
the integrals in the r.h.s, of (2.21) are uniformly bounded, so that KS is indeed 
well-defined and uniformly bounded. 

Remark 1. It would not be difficult to prove that K f e  C~~ x R x R'), by using 
the flow properties in (2.7). This is left to the reader. Such a statement is useful 
if we want to define the product of two operators like K. 

We now have: 

Theorem 2.6. Under fi, for any f e C~~ x R x Rn), 

f (Y~) - !  + K f  (Y~)dc (2.23) 

is a {~ffTo}~ >- o-martingale. 

Proof. To simplify the notations, we will assume that ~o = 0. Set 

Mr= sup 2-s. 
O<_s<_t 

First assume that f has compact support and that b = O. Under Po | P', we 
know that 

t 

x,, io 
t 

= f ( 5 o ,  7", xo)+Sx, faw i. (2.24) 
0 

In the integrals of the r.h.s, of (2.24), f and its differentials are evaluated at 
(~I,, T+s, xs), while Xo, Xi are evaluated at (xs, G). Since f has compact 
support, all the terms in (2.24) calculated at T, are integrable, and 

Ta 

S (Xif)  6 w' 
0 

is a {FTo}a ~= o-martingale. 
Now z'~ = M s - G  is a reflecting Brownian motion whose standard local time 

at 0 is ~rs. {fTo}a~O is exactly the canonical filtration of the corresponding 
point process (to which w is added as in [6]). It follows that 

f (%+a,  T +  T~, XTo)--~ (C, r+  T~,xro)dc 
0 

a [ i <  -[dc [, ~ ( c ,  r+r~+s,x;)+Xo(x',5')f(c, r+r~+s,x;) 
0 " ~ +  x ~ '  

1 2 , x:)) ds] dn+(e)dP'(w) (2.25) +~X, (x, ~')f(c, T+ T~+s, 



Last Exit Decompositions and Regularity at the Boundary 79 

is a {Z#Ta}a_>0-martingale (in the r.h.s, of  (2.25), the integral  with respect to 
d n + (e) dP '  (w) is evaluated with x~ = XTo, gO = C). 

Using (2.20) and the fact that  on o-> 1, the stochastic integral  5Xifc~w i gives 
0 

a 0 cont r ibut ion  in the integral  5 [ . . . ]  dn+(e)dP'(w), we find that  if f has 
W-+ x O ,  

compac t  suppor t  and if b = 0, (2.23) holds. 
By approx ima t ing  f e C ~ ( R x R x R  n) by a sequence f k e C ~ ( R x R x R  n) 

uniformly on compac t  sets, (2.23) is seen to hold with b = 0  for a general 
f e C~ (R • R x R"). 

N o w  f rom Bismut  [6]. Theo rem 3.24, we know that  the Gi r sanov  transfor-  
mat ion  on each FTo induces a corresponding Gi r sanov  t rans format ion  on the 
excursion measure,  so that  the new excursion measure  is now 
Zg'~~ (we here note explicitly the start ing point  of the 
excursion (a, XTo)). Since (2.23) is necessarily the compensa ted  sum of the j umps  
of f(Y~) for the measure  P o |  we find f rom Jacod [16] and Bismut  [6] - 
Sect�9 that  if K ~ is the opera to r  K calculated with b = 0 ,  then K is the 
opera to r  acting on Cb(R x R x R") defined by 

(Kf)(2o, T, X'o) = (K~ x'o) + ~ (f(Zo, T+ cr, x ' ) - f (Zo,  T, x'o)) 
~ / +  x f2' 

�9 ( Z ' -  1)dn+(e)dP'(w) 

so that  unde r /5  

is a {/TTo},=>o-martingale. The  p roof  is finished�9 

f (Y~)- i  (~z+ Kf)(Y~) dc 

D 

(2.26) 

(2.27) 

c) How to Push Down a Stochastic Wave 

Let B be a one dimensional  Brownian  mot ion  with B o=0 .  Po still denotes its 
probabi l i ty  law of Cg(R+; R) endowed with the corresponding fil tration {Ft}t__>o. 
Set 

N t =  sup Bs 
O<s<_t 

z't=Bt-2N. (2.28) 

An essential result of  P i tman  [24] shows that  -z~  is a Bes(3) process start ing 
at 0, and that  moreove r  

N, = i n f -  z;. (2.29) 
s>--t 

On ((2, dPo(B)| we still put  the fi l tration {~}t__>o. We consider 
Eq. (2.3), in which z is replaced by z', i.e. 

dx=Xo(x,  z-)dt+Xi(x, z-).dwi; x(0) = Xo 

dZ=dz'; ~-(0) = 2-o. (2.30) 
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F o r  c < ~o, we define the r a n d o m  variable  

U~=sup {s>0 ,  Ys=C}. 

If  T; is the s topping t ime 

clearly, 
T~' = i n f  {s > 0; Bs=a}  

(2.31) 

(2.32) 

(2.33) u.= T~o_a 

so that  U, is also a {Ft}t=>o s topping time. 
(2-o, T, Xo) is now given in R x R x R". 

Definition2.7. On (~ ,dPo(B) |  Y~' denotes  the process with values in 
R x R x R n given by 

Y~' = (Zo - a, Ueo- a + T, xveo_,) (2.34) 

K ~ denotes  the ope ra to r  K defined in Defini t ion 2.5 calculated with b = 0 .  
To  simplify the exposit ion, we first state a result cor responding  to Theo rem 2.6 
with b = 0. 

Theorem 2.8. Under dPo(B) |  Y~' is a strong Markov process with respect 
to the filtration {ffra}a->O- For any f e C ~ ( R  x R x R"), 

0 

is a {Fra}a _-> o-martingale. 

Proof. The s t rong M a r k o v  p rope r ty  of the Brownian  mot ion  shows that  Bt+r, 
- B r a  is a Brownian  star t ing at 0 independent  of ffrk, so that  - (z ' t+ra-Z'r , )  is 
still a Bes(3) process s tar t ing at 0 independent  of  {Fra}. The  fact that  Y~' is a 
s t rong M a r k o v  is now obvious.  

First  assume that  f has compac t  support .  Then  

0 0 

t 

= f ( ~ o ,  T, Xo)+ 5 (Xi f )c~w i. (2.36) 
o 

z ~ = N s - B s  is a reflecting Brownian  mo t ion  whose local t ime at 0 is Ns. 
{Fr,}a_>_o is still the canonical  fi l tration of the cor responding  point  process, and 
of course the characteris t ic  measure  is still n +. By reasoning as in T h e o r e m  2.6, 
we easily deduce than  

f ( Y 2 ) - !  - + K O f  (Yc')dc (2.37) 

is a {fir-}. __> o-martingale.  We then proceed  as in T h e o r e m  2.6. [3 
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The in t roduct ion  of the Girsanov t ransformat ion has to be done with some 
care. To  make the probabilist ic interpretat ion easier, we will assume that  b is 
> 0, but  this will be entirely irrelevant in the sequel. 

If (x, z-) are given by (2.30), and if we replace z. by z' in (2.4) we get 

2 , = e x p  b(xs, f~)6z'-�89 b2(xs, f,)ds (2.38) 
0 

or equivalently, if we use (2.28) 

Z,=exp ( - i  2b(xs,~s)dNs ) 

so that 

{i t } exp b(xs, Z~)6B~-�89 Ys)ds (2.39) 
0 

(--i2b(XT;,Zo--C) dc b(x~,zs)6Bs -1S  b2(xs, z~) ds �9 (2.40) Z~4=exp  
0 0 

Since b is >0 ,  it is easy to find that 

~exp  b(xs,2-~)6B~-�89 ! b2(x~,Y~)ds dPo(B)dP'(w)=l. (2.41) 

The first term in (2.40) introduces an extrakilling at the (>0)  rate 2b(xr~; 
~0 - c). We will now define a new measure/5 ,  by means of its density with respect 
to dPo(B)| We assume that the reader is familiar with killings. 

Of course after being killed, all the processes (including excursions) go to 
one cemetery {6} and remain there (b is >0!) .  Let ~ be the death time. 

Definition 2.9. fi' is the probabil i ty measure on ~ such that  for each t > 0 

dP' p t = 2 , .  (2.42) 1, <r d(Po | P') 

Under  fi' the process Y~' will be killed at t ime Nr All functions defined on 
R x R x R n are given the value 0 on {6}. b'(< t, x) is defined to be equal to 
b(x, ~. 

We now have 

Theorem 2.10. Under if', the process Yd is a strong Markov process with respect 
to the filtration {ffra}a->o. For any f e C~(R x R x R"), 

f (Yd)- i  ( - ~ z  + K f  -2b ' f  ) (Y~')dc (2.43) 

is a martingale. 

Proof. The term -2b ' f (Y~' )  in (2.43) comes from the killing in (2.40). More-  
over, under/5, ,  and before killing, the excursions of the processes considered in 
Theorem 2.8 are the same as in Theorem 2.6. The theorem follows easily from 
the proof  of Theorem 2.6. D 
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d) Factorization of a Second Order Differential Operator 

The second order differential operator ~ has been defined in (2.5). We will 
0 

now use the results of Sect. 1 and the previous results of this section to put 0~- 
+ Y in product form. 

For simplicity we still assume that b is >0.  We have the fundamental 
result. 

Theorem2.11. Take g ~ C ~ ( R x R x R " ) .  For Yo=(ZTo, T, Z o ) ~ R x R x R  ~, if fi is 
the probability measure defined in Definition 2.1, if /5, is the measure defined in 
Definition 2.9, set 

+co  

u(Yo)=E e ~ g ( ~ , T + t ,  xt)dt 
0 

+ 00 (2.44) 
v(Yo)=2E ~' ~ g(Y/)dc. 

0 

Then 
+09 

u(Yo)=E v ~ v(Y~)dc. (2.45) 
0 

Proof. Clearly 

+ 0 o  

g(~, r + t ,  xt)dt= 
0 

T a + z  o 

~, ~ g(~, T+t,'Zt)dt. 
Ta + ~o ~ Ta+ t o T~,+ ~0 

From Theorem 2.6 and its proof, we find that under /5, the excursion 
measure is Z "a" X(e, w) dn + (e) dP(w). 

Since g has compact support, under the assumptions of Definition 2.3 

[i, ] g(g',, T+u,  XL)Idu Z'~dn+(e)dP'(w) 
,,/,F + x ~Q, 

<c ~ [ o A k ] Z "  dn+(e)dP'(w). 
,.W + x s 

(2.46) 

By Proposition 2.4, the r.h.s, of (2.46) is uniformly bounded so that using the 
definition of compensators, the martingale property of Z' u for u>0,  which 
follows from (2.11), and (2.6), we get 

s[i  ] u(Yo)=E e da g(2',, T +  T~+~o+U , x')du 
..W + x .Q, 

7 . . . .  r ~,~ w ) d n + ( e ) d P ' ( w ) ~ .  (2.4'7) " / - ' u  a + t o k ~  

J 

In (2.47), the integral S [...]Z',~'Xro+~odn+(e)dP'(w) is calculated as in 
,.W'+ x ~ ,  

Definition 2.3 with x~=xr~+%, go=a. 
From Theorem 1.2, it is clear that if Y~ =(a+Zo,  T +  Ta+eo, Xra+to) then 
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g(-' r+  T.+~o+U,X.)clu Z u  ' t ~ u ~ t a ' x T  a + 

"/f '+ x ~ '  

�9 dn+(e)dP'(w)=v(y~). 

The Theorem follows. 

Corollary. 
C>Zo, / f  

~o (e, w) 

(2.48) 

Take g ~ C~ (R x R x R"). For Yo = (Z-o, T, Xo) ~ R x R x R", for any 

Tr 

u'(Yo) =Ep ~ g(zt, r + t ,  xt)dt 
0 

+ co (2.49) 
v'(Yo)=2E v' ~ g(Y/)da 

0 

then 

u'(Yo)=E ~ i v'(Y~)da. (2.50) 
o 

Proof. The proof is identical to the proof of Theorem 2.11. 

At least formally, we may write using Theorems 2.6 and 2.10 

(~7+  K ) u =  - v  (2.51) 

t 
We then find that at least formally 

~7+2~2z 102 +b~--~+ Xo+~Xil 2 =21[~z-K+2b'][~--~+K] (2.52) 

As pointed out in Remark 1, since K acts on C;~ x R x Rn), the r.h.s, of 
(2.52) is indeed well-defined so that (2.52) can be given rigorously justified. 

Remark 2. If instead of being >0,  b is assumed to have compact support, the 
previous results are still true. Indeed, for any a > 0 

EeO | v' Zr~o +. = 1. 

In the definition of v the only difficulty could come from the term 

a 

exp - ~ 2 b(xr~, 50 - c) dc. (2.53) 
0 

However for c large enough, b(xr,~, ~-o-c)=0 so that (2.53) is still integrable for 
any probability measure. Of course if b is not >0,  there is no longer any 



8 4  J . - M .  B i s m u t  

killing in the definition of/5,, but Theorem 2.11, its corollary and (2.52) extend 
in the obvious way. 

Remark 3. Assume that b has compact support. In Definitions 2.3 and 2.5, 
replace e by - e ,  and let /s be the associated operator. Let Y, Y' be the 
processes corresponding to Y, Y'. 

Instead of using the local maximums of the Brownian motion ~-, we now 
use its local minimums. 

(2.52) is still formally true for/s so that at least formally 

( ~ + / ( + 2 b ' )  ( ~ - / s  (2.54) 

e) Operator Calculus and Excursion Theory 

To simplify the discussion of what follows, we still assume that b has compact 
support. 

We will now derive several relations between K and /( and give their 
probabilistic interpretations. 

Definition 2.12. Lt(b) denotes the local time at b~R of ~. A~(b) is defined by 

At(b) = inf {A > 0; LA(b) > t}. (2.55) 

Besides (2.45) and the similar expression calculated wi th / s  instead of K, we 
will still give two other expressions of u, which has been defined in Theo- 
rem 2.11. 

First of all, we have, using the notations of Theorem 2.11 

+ o o  + c o  + o ~  

I g(~,T+t ,  xOdt= S da ~ g(a,T+t,x~)dL~(a) (2.56) 
0 - c o  0 

or equivalently 
+ o o  + c o  + c o  

f g(Yt, T+t,x~)dt= ~ da i g(a,r+A,(a),xA~(o~)dt 
0 z o  0 

zO + co 

+ ~ da ~ g(a,T+At(a),xA~(a))dt. (2.57) 
- - c o  0 

Of course in (2.57), we have used the fact that since b has compact support, 
for any a ~ R, L~ (a)= + oe /5 a.s. 

Definition 2.13. For (~o, T, Xo)~R x R x R", set 

+ o o  

h(eo, T, Xo)=E v I g(5o, T+A~(eo), xA~(~o~)dt. (2.58) 
0 

We then have the easy 



Last Exit Decompositions and Regularity at the Boundary 85 

Theorem 2.14. The following equality holds 
+ o9 zO 

u(Yo)=E ~ ~ h(Y~)da+E p ~ h(Ya)da. (2.59) 
~.o - co 

Proof. Integrating (2.57) with respect to /5, the first term in the r.h.s, of (2.57) 
produces the first term in the r.h.s, of (2.59). Y (which is constructed by means 
of the local minimums of z-) appear similarly by integrating the second term in 
the r.h.s, of (2.57). 

Remark 4. Under/5, excursion theory shows that if f e C~(R x R x R") 

f (fo, T+ At(Zo), xa~(ZTo))-i ~ -  f)(Z-o, T+ A~(Zo), XA.,(Z-o))ds 
0 

is a {/VAr(~.0)}/_>_0 local martingale. 
At least formally, we can then write that 

or equivalently 

h=2(K+/~) l(_g). (2.61) 

Now in (2.59), u is given by 

u= ~ z + K  ( - h ) +  - +/~ (-h) .  (2.62) 

Equivalently 

( ~ - + ~ )  ( -g)=a[(0~z + K ) T * + ( - ~ + / ~ )  1](K+/~) lg 

=2 (~zz+K) ( K + / ~ ) ( - ~ + / ~ )  (K+ff,)-lg. (2.63) 

From (2.63), at least formally, we get 

(0@+Y) = � 8 9  -1 ( ~ + K ) .  (2.64) 

Comparing with (2.54), we see that formally 

/ _ \ 
~ K ~ 2b'=(K +/~) [~zz- K)(K + K) -1 (2.65) 0z 

or equivalently that 

0 - 
(~z -  K + 2b') (K + R)=(K + R) (~z -  K) . (2.66) 
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Still (2.66) has a nice probabilistic interpretation. Namely we may write 

+ co As  (~'o) 

l~t<=~og(Yt, T+t,  xt)dt= ~ ~ lz,<eog(Yt, T+t,  xt)dt. (2.67) 
0 As- ( z o ) # A s ( ~ o )  As- (f-o) 

As in the proof of Theorem 2.11, but working instead with the Poisson point 
process of the excursions of 2- out of 2-o, we obtain 

+ c o  + c o  V 

E ~ ~ let<jog(Zt, T+t,  xt)dt=E P ~ ~(Yo, T+As(Yo),xA,(~o))ds. (2.68) 
0 0 

The factor 1/2 on the r.h.s, of (2.53) comes form the fact that excursions below 
2- o are chosen with weight 1/2. 

Now using (2.59), the 1.h.s. of (2.68) is exactly 

_ - - 1  

2 (-~zz + K )  (K+/ s  l g. (2.69) 

The r.h.s, of (2.68) is 

2(K + R)-  ~ ( - ~ z +  K-2b ' ) -  lg. (2.70) 

From (2.69), (2.70), (2.66) follows. 

f )  Williams Decomposition and Last Exit Decomposition 
of the Brownian Motion for a ~-finite Measure 

As a by product of Theorem 1.2 and of what has been previously done, we will 
obtain a useful description of z.. 

Definition 2.15. On R + x Cg(R+; R), d/5o(t, z0 is the C-finite measure 

dfio(t, z) = lt_>o dt dPo(z). (2.71) 

We then have a result which is closely related to Theorem 1.2 and which 
gives a Williams decomposition [31, 32] of z. under dfio. This answers a 
question left open in Sect. la). 

Theorem 2.16. On R + x R + x ~2 x f2, consider the a-finite measure 

dS(M, a, ~, r)= l,>o,a>o2d M dadPo(~)dQo(r). 

Let m, m', ~ be the random variables 

m=inf{s>0 ,  ( s = m }  

m'=sup {s>0; r~=a} 

t = m + m ' .  

(2.72) 

(2.73) 
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Let 2-. be the process defined by 

G = ~  O<_s<m 
(2.74) 

M--rs_ m m<s<=t. 

Then the law of (~, 2-.) is identical to the law of (t, z. ^t) under/5 o. 

Proof.  Let  H,(z) be a bounded  {Fs},~0 predictable process. Assume that for 
s> T, Hs(z)=O. 

The process M.  has been defined in (1.4) and m. has been defined in (1.6). 
For  z e (g(R+; R), we may write as in Ikeda-Watanabe  [14], Bismut [6] - 3  

z = (z Is] 0~z) (2.75) 

where 

(Os z), = z~+, - Zs (2.76) 

i.e. the t rajectory of z is decomposed into the part  before s and the part  after s. 
If for M > 0  

T M = i n f { s > 0 ;  z~>M} (2.77) 

we have 
+ oO T M  

[. HAz)ds= ~, ~. (Hs(zlT~lOT~xZ)ds (2.78) 
0 T M  < T M  TK, r 

so that by using excursion theory 

EP~ o ~ Hs(z)ds=EP~ ! dM~+~ HTM+u(z[T~[-e)du dn+(e). (2.79) 

F r o m  Theorem 1.2, we know that  

I 

where 

dr 

Ero = 2  5 dOo(r) daHrM+A(,)(zlTvl-r)  
,IV+ 

F r o m  (2.79)-(2.81), we find 

+o0 

E ~o j" H,(~)ds= 
0 

The  Theorem follows. 

Corollary. For c > O, set 

A(a)=sup{s~R+ ; G=a}. 

S 1M>=O,a>=o2dMdadPo(z)dQo(r) 
R + x R +  x f2x  -Off+ 

�9 HT~(~)+a(a)(zITv[--r). 

T~=in f{s>0 ;  zs=c}. 

(2.80) 

(2.81) 

(2.82) 

(2.83) 
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Then under the measure 1M<=cdS , the law of (~,-~.) is identical to the law of 
(t,z. At ) under lt<=rodff o. 

Proof. Clearly, using the notat ions of Theorem 2.16 

(t =< T~) = (M <= c). (2.84) 

The corol lary follows. [7 

Remark 5. F r o m  a result which is equivalent to P i tman  [-29] (see Ikeda- 
Watanabe  [14]), we know that  rm,_~ (O<=s<=m') is a Brownian mot ion  stopped 
when it hits a. The description of  (t, z. At) given in Theorem 2.16 is then in a 
sense time reversible. 

Recall that  condit ional ly on (m+m'=t ,  ~-m+,,,=z), ~-, (O<s<t) is a Brownian 
bridge. 

We now give a last exit decomposi t ion  of z under  dfio(t, z) which answers a 
second quest ion raised in Sect. 1 a). 

Theorem 2.17. On R + x R + x ~ x ~2 x { - 1, + 1}, consider the a-finite measure 

dS'(L, a, (, r, e)=lL>=O,~>odLdadPo(~)dQo(r)(61+~_l)(~). (2.85) 

Let )~s be the local time at 0 of (. Set 

l = i n f { s > 0 ;  2 s=L}  

1' = s u p  { s > 0 ;  r,=a} (2.86) 

?=1+I'. 

Let ~-be the process defined by 

~ = ~  O<s<l  
(2.87) 

=ers_t l<s<=t. 

Then the law of (~, f . )  is identical to the law of (t, z. At) under rio. 

Proof. The proof  still uses Theorem 1.2 and excursion theory as in Theo-  
rem 2.16. It  is left to the reader. [3 

Remark 6. Results very much like Theorem 2.16 and 2.17 still hold if certain 
boundary  condit ions ( I t6 -McKean  [15]) are imposed on z, like reflection or 
killing on (z = - 1 ) .  

Also observe that  if m is a C ~ function and if g is a > 0 function such that  

- - -  m g = 0 (2.88) 
2 

then 

~z ~ -  2m= \oz g ] -~Tz- " 

(2.89) is a decomposi t ion  of the opera tor  in the 1.h.s. of (2.89) very much like 
(2.52). Of course the probabilist ic interpretat ion is basically the same. 
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III. Regularity at the Boundary of Transition Densities 

In this section, we use the decompositions of the Brownian motion which have 
been found in Sect. 2 to study the regularity at the boundary of the transition 
probabilities of certain hypoelliptic diffusion with boundary conditions. 

In a), we consider the case of diffusions which live in the half space (z < 1) 
and are killed at (z= 1). In b) we consider diffusions with elastic reflection on 
(z=0). 

The method consists in first using the transversal coordinate z as a new 
time, use the Malliavin calculus on certain components of the new process, and 
the calculus of variations on Brownian excursions (which we have developed in 
[6] - Sect. 4) on the other so as to control the transition densities at the 
boundary. In the manner of Stroock [30], we show how these results, which 
have been proved on a half space, can be localized so as to apply to general 
boundaries. We assume that the boundary is non characteristic for the consid- 
ered diffusion, and also that a slightly less general assumption than 
H~Srmander's [-13] is verified. 

Although the method is entirely probabilistic, it has close connections with 
what the analysts are accustomed to do for boundary problems in the elliptic 
case [34], that is to change the problem into the analysis of certain pseudo- 
differential operators acting on the boundary. 

As pointed out in the Introduction, Derridj [-37] studied the Dirichlet 
problem for hypoelliptic operators verifying H6rmander's assumptions. In [-37]. 
Derridj uses purely analytic techniques. 

a)  Killing on a Boundary 

The notations are the same as in Sect. 2a). 
To simplify, we assume that ~-o = 0. T1 denotes the stopping time 

T1 = i n f { t > 0 ;  ~ = 1 } .  (3.1) 

We consider the following assumption 

H l: At ( x , z )~R ' xR ,  the vector space spanned by Xl(x,z), ...,Xm(x, z) 

and the Lie brackets at (x,z) of (Xo, X1 . . . . .  X , , , ~ )  w h e r e o n e o f t h e v e c t o r  

fields (X1, ..., X,,) appears at least once is equal to R". 

H 1 is slightly more restrictive than [3] and [-21]. It implies that 

0 ~5+~ 

0 
verifies HBrmander's assumptions, but ~zz plays a special role, like in Bismut 

[-6] (for the precise relationship of H1 with H/Srmander's assumptions, see 
Remark 2). C~(R"x ] - o e ,  1]) is the set of C ~ functions f (x ,  z) on R"x  ] - 0 %  1] 
such that f and all its derivatives extend continuously to (z = 1). 
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Theorem 3.1. I f  H I  is verified on R " x ] - o o ,  + o o [ ,  for t > 0 ,  the law of 
(xt,2t) under the measure l t< r l d /5  is given by lz<=lPt(X,z)dxdz, where 
Pt(X, z)~ C ~ (R" x ] - o% 1]) and is 0 on (z = 1). 

Proof. Using the local izat ion p rocedure  of  S t roock  [30] it is easy to see that  
pt(x, z) exists and is C ~ on ]0, + oo[ x R" x ] -  oo, 1[. We now concentra te  on 
the behav io r  of  Pt(., .)  at the b o u n d a r y  (z = 1). 

Take  f ~ C ~ ( R x R " x R )  whose suppor t  is included in ] 0 , + o o [ x R "  
x [0, oo[. 

Clearly 
T1 

E ~ ~ f( t ,  xt, ~)dt=Ee~174 Zt f ( t ,  xt, 2-t)dt. (3.2) 
0 

We will now use T h e o r e m  2.16, its corol lary  and the nota t ions  therein. (3.2) is 
equal  to 

2 5 [  5 Zt f ( t , x>M-a)dMda]dPo(~)dQo(r )dP ' (w) .  (3.3) 
ONM_<I 

a > 0  

Using the var iables  (c, a) = (M - a, a) instead of (M, a), (3.3) is equal  to 

2 5 [  5 Zi f (~ ,x ,c )dcda]dPo(( )dQo(r)dP' (w) .  (3.4) 
O < a + c = < l  

0 < a  

Of course we can assume that  in (3.4), a Brownian  mot ion  B ( independent  of 
(~, w)) has been given such that  if 

then 

N, = sup B~ (3.5) 
v < s  

(3.6) rs=2Ns-Bs 

m' = in f{s  => 0; Bs = a}. 

Ins tead of (3.4), we will write 

25[ S &f(~,x>c)dcda]dPo(r 
O < a + c < l  

O_-<a 

Let H be the measure  

dH(~, B, w) = 2dPo(~) dPo(B ) dP'(w). 

(3.7) 

5[ ~ Ztgff, xT)da] dH. (3.8) 
O < a < l - - c  

We claim that  for any mult i - index m=(m ~ ... mZ), any keN,  then 

T a k e  e > 0 ,  and g e C ~ ( ] 0 ,  + o o [  x R") whose suppor t  is included in a compac t  
subset K of [e, + oo [ x R". 

Fo r  one given c such tha t  0 < c < 1, we consider the integral  
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0~mlg ] 
_ <_1-c - daJdH <C~:suplg(t,x)l (3.9) ~[o<J z '~s(t 'xt)  

[ •kg_ ]dH O<a!l_cZ~ oF(t, xi)da ~C~suplg(t,x)[. 

We first obtain the first line of (3.9). No te  that 

p{ib  z~ 2 = e x  x s ,  s s - -  Xs ,  S 
o 

-exp - 2  ~b(xs+~,c +a+ B - 2 N )  dN 
0 

�9 exp b(xs+m,C+a+B-2N)6B- �89 (3.10) 
o 

Now if s _-< m', N~. < a -< 1 - c __< 1. Moreover  since g has compact  support  if ~ > T, 
g 6, x~) = O. 

Since the first and last exponentials in (3.10) are s tandard Girsanov mar- 
tingales, we see that  l ~ r Z i  is in all the Lv(H ) (1 < p <  + oe) with bounds on the 
Lv-norms only depending on T. 

Moreover  observe that  g(t, xi) is =t=0 only if ~>e. As in Bismut-Michel [9], 
Bismut [6], we can then use the partial  Malliavin calculus on w (which leaves 
~, B unchanged) so that  the first line in (3.9) is easily obtained. 

We now come to the second line of (3.9). Set 

M s : s u p e r .  
v <=s 

Then if t/s, r/'s, are defined by 
~s  = M s  - ffs 

t/;-- N~-  B~ 

t/z, t/'s are two independent  reflecting Brownian mot ions  on [0, + oo[, and t/" 
defined by 

rfs'=rls O<-s<m 

rls ,, m <_ s < m' 
is a reflecting Brownian motion,  whose s tandard local t ime at 0 is M~ for 
O<_s<_m, c-t.-a + Ns_ m for m <_s<_m'. 

On t/", we can then apply the calculus of variations of Bismut [6] Sec- 
t ion 4, which produces separate variations of t/, t/' and so respects the de- 
scription of x on the time intervals [0, m] and [m,m']. 

Fo r  one given a > 0, we find that  

~?kg _ 
~Z, TF(t,x,)dH=~Z~g(t,x~)RkdH (3.11) 

(both sides of (3.11) depend on a). 
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Moreover  from [6] - Sect. 4, we know that the Lp norm of I,<=TR k is 
1 

controlled by the Lp norm of m+m' 

tf' d s 
0 

Now if g(m+m',xt)+O, m+m'>e. Since by Malliavin [23], Ikeda-Watanabe 
[14], we know that 

tt S 

is in all the Lp(H)(l<p<+oo),  we find that the Lp norm of 1,~_<rR k is 
bounded uniformly. The second line in (3.9) immediately obtains by integrating 
in a~[0, 1 - c ] .  

Using the properties of Fourier transform as in Malliavin [22], Bismut [6]. 
Section4, we find from (3.9) that for any c such that 0_<c_<l, there is a 
function q(. , . ,  c) on ]0, + oo[ x R,  which has the following properties: 

�9 It is C ~~ on ]0, + o o [ x R " .  
�9 For  any e, T such that 0 < e < T <  +o% the k th derivatives of q(t,x,c) in 

(t, x) are bounded on [e, T] x R" independently of c~[0, 1]. 
�9 For  any g~C2~ xR") 

~[ ~ Zig(~,xi)da]dH=[. g(t,x)q(t,x,c)dxdt. (3.12) 
O < _ a < _ l - - c  

Moreover  using the properties of the 1.h.s. of (3.12), it is trivial to prove that 
c~[0, 1 ]~q( t , x ,  c)dx d t (considered as a a-finite measure on R + •  R n) is con- 
tinuous (the set of a-finite measures on R + • R n, considered as the dual of the 
set of continuous functions on R § • R" with compact  support, is endowed with 
the corresponding weak topology). 

Inspection of (3.3), (3.7), (3.12) shows that 

pt(x,c)=q(t,x,c) a.e. on R + • 2 1 5  [0,1]. (3.13) 

Since for a given ce[0 ,1] ,  p~(x,c) and q(t,x,c) are C ~~ on R + • we 
deduce from (3.13) that for a.e. Ce]0, 1[ 

pt(x,c)=q(t,x,c) on ]0, + o o [ x R " .  (3.14) 

Since c~q( t ,x ,c )dxdt  is continuous from ]0,1E in the set of a-finite mea- 
sures, and since pt(x,c) is C ~~ on ]0, + o o [ x R n x ] 0 , 1 [ ,  (3.14) holds for every 
c~]O, 1 [. 

Let ~ *  be the formal adjoint of ~ with respect to the Lebesgue measure. 
The function pt(x,c) which is smooth on ]O,+oo[xR"x]O,l[ verifies the 
Fokker-Planck equation 

~P-' (x, c) = 2'* p,(x, c) 
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which also writes 

0t (x ,c )=~ ~c2P,(X,c)-b(x,c) (x,c)+Mxp,(x,c) (3.15) 

where Mx is a differential operator which only acts on the variable x. 
Since as c~]0,1[, q(t,x,c) has bounded derivatives in (t,x) for e_<t_<T, we 

find from (3.15) that 

1 ~2pt 
(x, c) - b (x, c ) ~ -  (x, c) = d( t, x, c) (3.16) 

2 0c 2 oc 

where for e<_t<_T, d(t,x,c) is smooth in (t,x) with uniformly bounded deriva- 
tives. 

Now by taking initial conditions in (3.16) on (c=0), (3.16) can be explicitly 
integrated. We find that for c < 1 

•Pt (x,c)=exp 2b(x,a)da (x,O) 

+ ! e x p  - S2b(x'a)dao 2d(t,x,h)dh (3.17) 

(3.17) shows that ~c(X,C) extends continuously up to c = l  as well as all its 

derivatives in (t, x)E [e, T] x R". Of course the same result holds for &(x, c). 
Because of what has been proved before, d(t,x,c) extends continuously up 

2 Pt (X, C). to c = 1. (3.16) show that the same result holds for 

By differentiating (3.16) as many times as needed, and proceeding by in- 
duction, we see that pt(x,c) extends to a C ~ function on ] 0 , + o o [ x R " x ]  
- o %  1]. (3.12) shows that as c]"~1, q(t, x, c)d t d x converges weakly to 0. pt(x, 1) 
is then necessarily 0. 

Remark I. In this special case, it would have been possible to control (x, C) 

by using (3.8) without using the explicit form of the Fokker-Planck equation. 
Namely by writing 1 = lM, l '= l'a, recall that when b = 0, 1M has the same law 

as  M 2 l l ,  and l'a has the same law as a 211. We could then have renormalized 
the time scale of the equation giving x, so that direct differentiation of (3.8) in 
c would have been possible. 

However recall that 11 is not integrable, and Ii would appear in differentiat- 
ing in c. In this case the support property of g would do the necessary cutoff. 
This is not the case in the theorem which follows. This is why we have 
preferred to directly use the Fokker-Planck equation. 
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b) The Case of a Reflecting Process 

We now consider  the case of a reflecting process as in I k e d a - W a t a n a b e  [14], 
Bismut  [6]. 

Xo, Xa, ... ,  Xm, b are taken as before. 
D(x) is a C a vector  field defined in R" which is bounded  with bounded  

differentials. 
z is now a reflecting Brownian  mo t ion  on [0, + r s tar t ing at zo~R +. PJo 

denotes its law on (g(R+;R).  L is the s tandard  local t ime of z. at 0. The  
Brownian  mar t inga le  B is defined by 

Z t = L t  + B t .  

On (0, P~o @ P'), we consider the stochast ic  differential equa t ion  

dx = Xo(x, z) dt + Xi(x, z). dwi + D(x) dL  (3.18) 

x(0) =Xo. 
Set 

{i } Z t = e x p  b ( x , z ) 6 B -  bZ(x,z)ds . 
0 

A new probabi l i ty  m e a s u r e / 5  is defined on O by 

d/5 P') ~t =z,. 

We now have 

Theorem 3.2. I f  Assumption H I  is verified on R ' x  R, for any t > 0 ,  the law of 
(xt, zt) under/5 is given by lz > o pt(x, z) d x d z, where Pt(X, z) ~ C ~ (R" x [0, + ~ D. 

Proof The  same a rgumen t  as in T h e o r e m  3.1 shows that  p,(x, z) is C ~~ on 
]0, + c~[x  R" x ]0, + ~ [ .  We will concent ra te  on the behav io r  ofpt(x, z) at (Z =0).  
Moreove r  we will assume that  Zo = 0. The  case where Zo > 0 can be easily dealt  
with, by the same technique. 

Take  f ~  C~ (R x R" x R). Obvious ly  

+co +oo 

E p ~ f ( t ,  xt, z O d t = E  e~| ~ Z , f ( t ,  xt, zt)dt. (3.19) 
0 0 

We now will use T h e o r e m  2.17 (which trivially applies to the reflecting Brown- 
Jan mo t ion  z). 

Let  ~t be a reflecting Brownian  mo t ion  on [0, + oo[, 2, its s tandard  local 
t ime at 0. Let  Bt be the Brownian  mot ion  

Bt = (t - 2t. (3.20) 

Let  B't be a Brownian  mo t ion  independent  of (. Set 
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Fo r  L > 0, a > 0, we define 

N~' = sup B; (3.21) 
v_-<s 

r,=2N2-B'~ 
! ! ! ~ , = N / - B , .  

/ = i n f { s > 0 ; 2 , = L }  
(3.22) 

l' = inf{s > 0; B'~=a}. 
We finally define 

Z's=exp b(xu,~u)3B,-�89 if s<l 
0 

=Z~exp{2SiZb(xz+u,r,)dN '} 

-exp - b(x~+,,r,)bB'-�89 ~ b2(x~+,,r~)d if l<_s<l+l'. (3.23) 
0 

T h e o r e m  2.17 shows that  (3.19) is equal to 

2~[ ~ Zi+z,f(l+l',xz+~,,a)dLda]dPo~(~)dPo(B)dP'(w). (3.24) 
0 _ < L < + o e  
0 ~ a  < + c o  

The basic difference with (3.7) is that  L is integrated on the unbounded  
[0, +o,[. 

Let dH' be the measure  

dH'(~,  B', w) = d Pot (0  dPo (B') dP'(w). (3.25) 

Take  e, T such that  0 < e < T < + o o .  Take  g~Co(RxR") whose suppor t  is 
included in a compac t  subset K of [e ,T]  x R". Fo r  a such that  0 < a < l ,  
consider the integral  

~[ ~ Z~+v g(I+ l', x,+z,)dL] dH'. (3.26) 
O < L  

N o w  g(l+l',xz+z,) is 0 if l+l'> T, and so g(l+l',x~+~,) is 0 if L>2r. (3.26) is 
then equal  to 

~[ ~ Z~+,,g(l+I',x~+~,)dL]dH'. (3.27) 
ONL<_2T 

N o w  2T is in all the Lp(H')(I<p<+~). This fact permits  us to proceed 
exactly as in the p roof  of T h e o r e m  3.1 and obtain  the required result. 

Remark 2. The techniques of the p roof  of T h e o r e m  3.2 can be made  to work  on 
a manifold.  
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Namely assume that 2~ is a second order differential operator on a ma- 
nifold M, written in H6rmander  form 

~ = R 0 + � 8 9  (3.28) 
1 

that ~D is a smooth submanifold of M of codimension 1, and that ys~?D is 
such that 0D is non characteristic at y for Z ,  i.e. that at least one of the vector 
fields XI(y) ... Xm(y) is not tangent to ~?D. 

Consider the Hamil ton-Jacobi  equation on a function z 

r 

~( J~ i z )2= l ;  z = 0  on 0D. (3.29) 
1 

Since D is non characteristic for s (3.45) has a single solution on a 
neighborhood of y. The fibration (z=cst) is then intrinsically defined on a 
neighborhood of y. By proceeding as in Ikeda-Watanabe [14], Bismut E6]. 
Section 1, we can rotate the vector fields Js New vector fields X] ... J~'r are 

-!  
then obtained locally, such that X-'I...XI_ ~ are tangent to the fibration 
(z=cst), and J~'r is such that [X'rz]2 = 1. We may then express )(0 in the form 

J(o = Xo + bJf'r (3.30) 

where Xo is tangent for the fibration (z=cst). By setting X ' ~ = ~ ,  f f  writes 

0 ~?z l r - 1  _ 
s  + x ~ X~ 2. (3.31) 

O Z  O Z  Z 1 

It is then a trivial mat ter  to check that H1 expressed on s in the form (3.31) 
is indeed intrinsically defined (the key fact is that the fibration (z=cst) is 
intrinsic). Note  that if the first order part  of 2 is not necessary to fulfill 
H6rmander ' s  theorem, i.e. if J(1 ... J~, and their Lie brackets at y~OD span R", 
if QD is non characteristic for 5F at y, then H 1 is verified at y. 

Assume that c?D is the boundary of an open domain D, that H 1 is verified 
on a neighborhood of yecgD, and that yo6D. 

Let Yt be the Markov  diffusion whose generator in D is Z ,  and which 
either is killed on 8D, or reflects on D. If Yt starts at Y0, for any t > 0, the law of 
Yt is smooth in D ~ 8D in the two cases which we have considered. 

To see this, we may use the technique of localization of Stroock [30], 
which basically amounts to proving uniform estimates in the two situations 
considered in Theorems 3.1 and 3.2. Instead of assuming that ~ is > e > 0 ,  we 
will assume that the starting point and the final point are far enough. The 
estimates are not very different from those which we have given. 

In the case of reflection on the boundary 0D, we can also assume that 
yo~D, with Y+Yo. 

Using the methods of Kusuoka-Stroock [21] and adequate estimates on the 
transition probabilities, we could also prove regularity results at the boundary 
of the solution of Dirichlet or Neumann  problems for the operator ~7 ~. Of 
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c o u r s e  we  w o u l d  h a v e  to  w o r k  u n d e r  a s s u m p t i o n  H 1 ,  w h i c h  is s t r o n g e r  t h a n  

H 6 r m a n d e r ' s  [-13]. A t  l eas t  in  t h e  case  of  D i r i c h l e t  p r o b l e m s ,  t h e  r e su l t s  o f  

D e r r i d j  [ 37 ]  ( w h o  w o r k s  u n d e r  H 6 r m a n d e r ' s  a s s u m p t i o n s  a n d  a l so  a s s u m e s  

t h a t  t h e  b o u n d a r y  is n o n  c h a r a c t e r i s t i c )  a r e  s t r o n g e r  t h a n  ours .  

Remark 3. W e  c o u l d  a lso  a s s u m e  t h a t  y d i f fuses  o n  t h e  b o u n d a r y  as  in  I k e d a -  

W a t a n a b e  [14 ]  as  l o n g  as r e f l e c t i o n  is e las t ic .  In  t h e  case  of  i n e l a s t i c  r e f l ec t ion ,  

t h e r e  a r e  s o m e  t e c h n i c a l  d i f f icu l t ies  w h i c h  we d o  n o t  k n o w  for  t h e  m o m e n t  

h o w  to  solve.  
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