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Creep and Yield in Martensi t ie  Transformat ions  ~ 

M. Achenbach  and  I. Miiller, Berl in  

Summary: A model is formulated which simulates the evolution of strain and temperature under dynamic 
loading in a martensitic transformation. The model describes yielding as a result of a chain reaction between 
the martensitic transformation and the rise of temperature. 

Krieehen und Flieflen bei martensitischen Umwandlungen 

[Jbersicht: Es wird ein Modell vorgestellt, welches die Entwicklung der Dehnung und der Temperatur 
infolge martensitischer Umwandlungen bestimmt. I)as Modell beschreibt das FlieBen als das Ergebnis einer 
Kettenreaktion zwischen der martensitischen Umwandlung und der Temperaturzunahme. 

1 Introduction 

Martens i t ie  t ransformat ions ,  such as they  occur in bodies wi th  shape memory ,  can be effected 
e i ther  b y  stress or b y  t empera tu re .  Therefore  such bodies offer the  occasion to s t u d y  the inter-  
ac t ion  of mechanica l  and  t h e r m o d y n a m i c  effects dur ing  large deformat ions .  

A model  is p resen ted  here which s imula tes  the  observed  s t ress-s t ra in  curves of a b o d y  with  
shape m e m o r y  as  a func t ion  of t e m p e r a t u r e  in a quas is ta t ic  exper iment .  I n  pa r t i cu la r  the  model  
shows the recovery  of a res idual  de fo rmat ion  a t  high tempera tures .  

S imple  phys ica l  considera t ions  suggest  ra te  laws for t h e  model  which pred ic t  s t ra in  and  
t e m p e r a t u r e  as funct ions  of tittle for dynamic  loading.  W i t h  these ra te  laws the sudden  y ie ld ing  
of a body  under  a cri t ical  stress emerges as a consequence of a chain reaction,  in which a mar ten-  
sitie t r ans fo rma t ion  creates  an  increase of t empe ra tu r e  and  this increase in turn  fac i l i ta tes  
fu r the r  t ransformat ions .  Thus creep and  y ie ld  occur " a u t o m a t i c a l l y " ,  i.e. wi thout  the fo rmula t ion  
of a specific y ie ld  cri terion.  

The theory  p resen ted  here is an extens ion  of the  calculat ions in [1], where the  same model  
was t rea ted ,  b u t  where the  impl ica t ions  of the  the rmomeehan iea l  coupling of phenomena  no t  
ful ly  recognized. 

2 Phenomenology and Model 

2.1 Phenomenology o~ Martensitic Trans/ormation 

A body with shape memory at low temperatures has a stress-strain diagram of the form shown 
in Figure I a. This is much like the stress-strain diagram of a plastic body except that at large 
positive and negative values of strain there is an elastic branch along which the body may be 
loaded far beyond the yield stress (%. As the temperature increases the yield stress decreases. At 

* This paper w~s presented at  the "Second Symposium on Inelastic Solids ~nd Structures", Bad Honnef, 
September 1981 
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high temperatures the body behaves elastically and a typical stress-strain curve is shown in 
Fig. lb .  

The stress-strain curves of Fig. 1 are valid for static or quasistatic loading a t  fixed tem- 
peratures. They do not reveal how fast  the creep proceeds along the yield line or how the strain 
changes under a prescribed dynamic loading. 

The purpose of this paper  is the formulation of a model which is capable of simulating the 
observed behaviour under static loads and in particular the model shall predict a well-defined 
yield limit. The properties of the model under various dynamic loads will be investigated. 
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Fig. l a  and b. Stress-strain curves at a low and b high temperatures 

2.2 The Model 

The basic element of the model is a lattice particle shown in Fig. 2 in its two equilibrium con- 
figurations which are denoted by  M+ and M thus indicating martensitic twins. The configura- 
tion 21/+ may be considered as a sheared version of M_ where the shear displacement is J .  Values 
of A other than 0 and J are energetically less favourable; indeed we postulate the potential 
energy r  of the lattice particles to have the form shown in Fig. 2. There is an energy 
barrier between the two potential wells that  correspond to M+ and M_. For convenience in 
calculation we simplify this potential and approximate it by  two parabolae which meet in a tip 

J 
at  A = - -  as shown by the solid curve in Fig. 3. 

2 
Under a prescribed shear force H the potential energy of the lattice particle is r  

- -  ~b(A ; 0) --  HA since HA is the work done by  the force. Thus the curves r ; H)  in Fig. 3 
result from adding a straight line - -  HA to the solid curve ~5(A ; 0). Inspection shows that  the load 
makes the left minimum shallower, while the right minimum becomes deeper. For a critical 
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Fig. 2. L~ttiee particles and their potential energy 
Fig. 8. Lattice particles and their potential under different loads 
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load//c~ the left min imum vanishes altogether.  The formula for the potential  reads 

_ _  J 

i j  
~ b ( A ; H )  = I for 

[ g~---2~ (A - -  J)~ - -  HA A > J ( j  --2" 

(1) 

The height  of the barrier when approached from the left or right is denoted by  B ~ and B R re- 
spectively and it is easy to confirm tha t  we have 

Bz_H~J 1 - -  and B R -  1 ~- . (2) 
4 4 

The model for the body  as a whole is constructed from layers of lattice particles and the layers 
are stacked as shown in Fig. 4 a so tha t  originally M+ and M_ exist in equal proportions. The 
construct ion of this layered model from lattice particles was first proposed in [2]. I t  is mot ivate  
by  microscopic observat ion of the metallic lattice of memory  alloys (e.g. see [3]). 
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Fig. 4. Model at low temperature under loading 

For  a simple explanat ion of how the model simulates yield and residual deformation after 
unloading we consider first the ease of zero temperature.  I n  this case all lattice particles lie in the 
minima of the potential  energy as indicated by  the dots in Fig. 5. When  a small tensile load P 
is applied, each lattice particle is sheared by  the load 

1 P 
- x '  (3) 

where N is the number  of particles in a layer. The potential  energy deforms as shown in Fig. 5b ;  
i.e. M+ particles are made a little f lat ter  and M_ particles become a little steeper as in Fig. 4b. 
The vertical component  of the shear displacement Ai of the i TM layer (i ---- 1, 2 . . . . .  n) contributes 
to the deformation D so tha t  we have 

D - - ~  i=l 

Unloading leads back to the si tuation of Figs. 4a  and 5a which means tha t  small deformations 
are elastic. When  the load P is so big tha t  H equals He,, the 2]/_ particles fall into the M+ position, 
because the left min imum is eliminated (see Fig. 5 c) and this process is accompanied by  a large 
deformation as shown in Fig. 4 c. Unloading now leaves us with a residual deformation, because 
all layers s tay  in the M+ position. 

1 The constant contribution - - - -  J in D is chosen so that D = 0 holds in the unloaded state when half 

of the layers are M+ and the other half M_ 

6* 
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We shall call the fraction of lattice particles in the body the phase factor and denote ]t by  x. 
Thus x = 1/2 in the two configurations of Figs. 4a  and 4b, while x = 1 in the remaining con- 
figurations of Fig. 4. A change of the phase factor x will be called a martensitie transformation. 

A A 

a b e d 

Fig. 5. Potential energy and position of particles at different loads in the case of zero ~em- 
perature 

3 Equations for the Evolution of Deformation, Temperature and Phase Factor for Given Load 

Functions 

3.1 The E//ect o/Temperature, Transition Probability, and Rate Law/or  a Transition 

At any non-zero temperature the lattice particles do not lie still in their potential wells; rather 
they fluctuate about  the minima and their mean kinetic energy is 1/2 kT. The probabili ty p 
for finding a lattice particle M:L with the displacement A is given by the Eq. 

J 
+ 

~b(A ;//) 
O~ = C=~ e kT for j (5) 

- -  A < - - .  
- -  2 

The constants C e follow from the requirement that  

J/2 
p j = x  and ~ 7 = l - - x .  

A=J/2 d=--c~ 

Hence follows 

pJ = x 

and 

r 
e kT 

oo @(A ;/7) 
f e kT dA 

J/2 

O j  = (1 - x) 

~(A;~) 
e kT 

J/2 qS(A ;//) 

f e kT d A  

-oo 

Using these forms for p~ and lp~ we may rewrite (4) in the form 

V2 D(IL T. x) = 
n J  

; @  @ld;H) 
e kT dA 

J/2 
x co ~(A;H) 

f e kT dA 
J/2 

J/2 

f A r 7 e ~r d ~  

~- (1 --  x) J/e v(a;m 

f e kT dd 

(6.1) 

(6.2) 

(7) 
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Thus the deformation is a function of T, x and of the external load P = ]/-2NH. Note that for 
the potential (1) the integrals in the denominator of (7) lead to simple error functions. 

As a consequence of the thermal motion the lattice particles may occasionally jump over the 
barrier between the two potential wells and they will be able to do so more easily the higher the 
temperature is. Thus a martensitie transformation may occur before the external load has 
eliminated the barrier. 

The rate at  which the barrier is overcome is determined by the transition probability of which 
we have two: one for the jump from left to right and the other one in the opposite direction. 
We denote these by ~ and ~ respectively. We assume that ~ is proportional to the probability of 
lattice particles to lie on the barrier and move to the right. According to (6.2) and since the mean 

velocity of the lattice particles is given by , we thus set 

~(J/2iH) 

f e kv dd 
oo 

By an identical argument we obtain 

q)(J/2 ;/7) 

~ =  2~,~ co +<~;m (8)~ 

f e k~ dd 
J/2 

For the rate law that governs the evolution of the martensitic transformation is assumed to have 
the simple and self-explanatory form 

= ( 1 - -  x) ~ --  x~ (9) 

which implies that the number of particles that leave a potential well is proportional to the 
number of particles present in that well. 

Insertion of the expressions (8) for ~ and ~ into the evolution law (9) makes this Eq. specific, 
1 

We assume that the mean kinetic energy ~- kT is much smaller than either B R or B ~ in all cases 

of interest; therefore we are justified to replace the integrals in (8)by integrals o v e r - - c o  < A 
< co provided of course that  r in (8h is taken from (1 h while r in (8)2 is taken from (1)2. The 
evolution law assmnes the form 

BL BR / 

2 - -  V~-  ~- -- - - x e  . 

Note that 2 depends on x, T and H because B ~ and B R depend on H as shown in (2). 

(10) 

3.2 Rate Law/or Temperature; Chain Reaction 

Not only does a high temperature promote martensitic transformations, but in turn a martensitie 
transformation leads to an increase of temperature, because the lattice particles convert potential 
energy into kinetic energy when they jump across the barrier into the deep potential well. This 
is a situation that will lead to a chain reaction unless the kinetic energy thus created is led off 
by conduction. The reason is simple: The increase of temperature by the martensitic trans- 
formation will make further transformations easier which again raise the temperature so that 
martensitic transformations become still easier, etc., etc. 

The formula that governs the growth of temperature reads 

C T  = ( B ~  - -  B~) ~ - -  a ( T  - -  ~'~), 0 1 )  
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where ~ : N n  is the number of lattice particles in the body, C is the heat capacity, so that  C~ 
is the rate of change of internal energy. This has two contributions: First there is an increase 
due to the martensitic transformation, when lattice particles a t  the rate v2 jump over the barrier 
and gain the energy B R --  B ~. Secondly there is a decrease due to heat-exchange with the environ- 
ment. This contribution is proportional to the temperature difference between the body and 
the environment and the factor of proportionality is the heat transfer number a. 

3.3 Summary  o] Equations 

The development of the phase factor x and the temperature T for a given external load H and a 
given environmental temperature T~ can be calculated from (10) and (11). Once x and T are 
known as functions of time, the deformation D can be calcu]ated from (7)�9 

For the numerical evaluation of these Eqs. it is useful to introduce dimensionless quantities. 
We introduce the initial temperature T1 and define: 

T TE H 1/2 D T/~J 4/cv 
v ~  , v ~  , p ~  d------ , ~ - - ~ - - ,  7---- 

Tr Tr Ilcr' n(J /2)  4kT~ C ' 
(12) 

1 ~/Hc~ a 
K ~  

V 2 m J  ' or ~- C 

With these definitions the differential Eqs. (10) and (11) assume the forms: 

--~ ( 1 - p ) ~  - -s  ( l + P ) 2  

~ - K ( 1 - - x )  e ~ - -  K x e  ~ (13.1) 

: y e p ~  - -  ~ ( a  - -  v ~ ) .  ( 1 3 . 2 )  

The Eq. (7) for the deformation reads in dimensionless variables 

We proceed to solve (13) for several choices of parameters and to discuss the resulting qualitative 
behaviour. 

3 4 Discussion o/Parameters  

While the values of the parameters e, y and K reflect properties of the model, like number of 
layers n, critical load//or and jump width J ,  the parameter  cr is purely phenomenological. Indeed, 

is the ratio of the heat transfer number a and the heat capacity C and from looking at data  
for metals with a liquid or gaseous environment we may conclude that  ~ is of the order of magnl- 

1 
rude of - -  

s e e  

Furthermore K in (13.1) has the dimension of a frequency and it must obviously be inter- 
preted as the frequency with which the lattice particles fluctuate in their potential wel]s and 

1 
this will be a big number indeed. We take it to be of the order of magnitude of 106 - - ,  

sec 
The parameter  ~ is the ratio of the height of the barrier in the unloaded body and of the mean 

thermal energy/cTi associated with the initial temperature. This ratio must  definitely be greater 
than 1 and we experiment with values between 20 and 100. Finally, according to the law of 
Dulong-Petit  C = 3/cz, where z is the number of atoms in the body. Therefore, ~ is of the order 

of magnitude of v__, the ratio of the number of lattice particles and of the number of molecules, 
z 

or, equivalently, y determines the number of atoms in one lattice particle. 
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4 Solutions x(t) ,  •(t) for Given Functions p(t) ,  ~E(t) for Different Choices of Parameters 

4.1 Existence o/ a Well-De/ined Yield Limit 

We choose 
4 1 1 1 

e =  100, Y- -  3 10' ~ = 0,5 , K =  1 0 6 -  (15) 
see see 

and prescribe a constant temperature 0~ = 1 as well as a load that grows linearly in time to 
seven different values, namely 

0.5000, 0.5250, 0.5500, 0.5560, 0.5563, 0.5570, 0.5600 

and is then held constant. In  Fig. 6, top diagram, the resulting deformation is represented as a 
function of time and we call the attention to the fact, that upon the tiny increase of the load 
from 0.5560 to 0.5563 the deformation curves change qualitatively from a slow continuous 
increase to a sudden, "explosive" jump. 
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Fig. 6. Deformation d and temperature # as functions of time t; e ~ 100; well defined yield 
limit 

We see that at loads below p = 0.5000 there is no non-elastic deformation. This range is 
followed by a narrow range of creep for 0.5000 < p < 0.5560. Upon a tiny increase of load there 
follows a range where a sudden yield occurs after an initial creep; the higher the load is the 
sooner the yield occurs. The yield is the result of the chain reaction whose nature was described 
in Section 3.2, and it is accompanied, or caused, by a sharp increase of temperature. 

The lower diagram of Fig. 6 shows the temperature changes that go along with the evolution 
of the deformation. There are only small increases of temperature associated with the creep for 
loads up to p = 0.55600, because whatever heat is created by the creep, is led off into the en- 
vironment. But for larger loads where tile sudden yield occurs, we also observe a sharp increase 
of temperature which is followed by an exponential decay after the maximum deformation is 
reached, because heat is then led off into the environment. 

The remarkable result to be read off from Fig. 6 is that there exists a well-defined yield limit 
at  p = 0.5560 without the introduction of a yield criterion. 

The parameter s = 100 has been chosen so big in order to emphasize the possible effects 
predicted by the Eqs. (13). The effects have thus come out in a rather exaggerated manner. 
Indeed, the temperature increases more than fourfold when the yield occurs which is certainly 
quite unrealistic. 
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The sensitivity of the model to a change of parameter  is illustrated by  Fig. 7 whose curves 
refer to e = 25 with all other parameters  as before in (15). Here again we consider a linear increase 
of the load in time to certain values which are then held constant.  Of course, for this smaller 
value of e the interesting range of loads lies at  smaller values. We observe tha t  the creep region 
is considerably enlarged, and tha t  the distinction between creep and sudden yield is less clearly 
identifiable. 
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Fig, 7. Deformation d and temperature v ~ as functions of time t; e = 25; no clear distinction 
between creep and yield 

Indeed there is already creep a t  p = 0.050 and the creep accelerates as p goes up to 0.225. 
After that ,  a t  p = 0.250 the yield has occurred, bu t  for the curve deformation vs. t ime it makes 
little difference whether there is rapid creep or sudden yield. 

The smaller value of s in Fig. 7 as compared to Fig. 6 entails smaller thermal effects. I n  the 
lower par t  of Fig. 7 the temperatures are drawn as function of t for p = 0.200, p = 0.225 and 
p = 0.250. We see that,  even for p = 0.250 the rise of temperature  amounts  to less than 50~ 

of the initial temperature.  

4,2 Sawtooth Load with an Increase of Environmental Temperature 

We choose 
4 1 1 1 

e = 2 5 ,  7 - -  - - ,  ~ x = 0 . 5  , K . =  l0 G _  (16) 
3 10 s e e  s e c  

and prescribe sawtooth loads p(t) with the ampli tude 0.3 and the three frequencies 

1 1 1 1 1 1 
, / -  , / - -  

/ - -  80 see 20 see 5 see 

as shown in Fig. 8a  through 8c. In  each case the environmental  temperature v~s is raised by  50% 
when the load reaches its max imum the second time. 

The Figs. exhibit  the calculated behaviour of the phase factor  x, the deformation d and the 
temperature  # as functions of t ime.  We observe a sharp increase of x and d as the yield load is 
surpassed and an accompanying peak in  temperature  which is more pronounced for higher 
frequencies than for low ones, because the heat  created by  the yielding is given less time to flow 

off. 
F rom the curves p(t) and d(t) we have constructed a load-deformation diagram which is 

reproduced at the tops of the Figs. 8. We see from this and from the curve d(t) tha t  the model 
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Fig. 8a--e. Sawtooth load with increase of environmental temperature, a small frequency of load, 
b intermediate frequency of load, e high frequency of load 

reaches the right elastic branch corresponding to x : 1 on the first loading and remains on that 
branch during the subsequent process of unloading and reloading. Thus at the low environmental 
temperature there is a residual deformation, where all lattice particles are of type M+. After the 
environmental temperature OL, is increased, the M~-particles find it possible to jump across the 
barrier and become M -particles thus reducing x and d. In this manner the model runs through 
the loops in the (p,d)-diagrams of the Figs. 8 when the load oscillates. There is partial recovery 
of the yield at small loads as is appropriate for a model of a memory material. The recovery is 
more pronounced for small frequencies because it is then given more time~ 

It  must be mentioned that the possibility for the model to recover its yield is strongly de- 
pendent on the choice of the parameter e. Indeed, for the set (15) of parameters including e = 100 
we cannot produce any recovery at all. 

4.3 Alternating Load with an Increase of Environmental Temperature 

We choose the parameter values (16) and prescribe alternating loads p(t) with the amplitude 
0,3 and the two frequencies 

1 ] 1 1 
- -  , / - -  o 

I 40 see 10 see 

In each case the environmental temperature O~ is again raised by 50~o when the load reaches 
its second maximum. 

The Figs. 9 show the (p,d)-diagrams calculated from (13). The initial increase from the 
origin and the outer hysteresis loop result at the low temperature OE while the inner hysteresis 
results at  the high environmental temperature. Comparison of the Figs. 9a and 9b shows that  
both hysteresis loops are narrower for lower frequency. Indeed, we expect that  in a quasistatic 
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F i g .  9a and b. Alternating load with an increase of environmental temperature, a small fie- 
queney of load, b high frequency of load 

process at a high temperature the inner hysteresis loop traced out by the model contracts to a 
single line through the origin as it is observed in materials with shape memory according to 
Fig. lb .  

4.4 Thermal E//eets o/ Yield and Recovery 

When the parameter  e is made smaller, this means tha t  the potential wells of the lattice particles 
are shallower and therefore yield and recovery are made easier, especially at  an elevated en- 
vironmental temperature. Thus also the thermal effects accompanying yield and recovery are 
enhanced. 

For an illustration of these thermal effects we therefore choose e ---- 20 retaining the values 
(15), or (16) for the other parameters. We apply the sawtooth load of Fig. 8e and increase the 
temperature v~ by 50% at the time of the second maximum of that  load. Figure 10 shows the 
resulting temperature and we proceed to discuss that  curve. 

At first, while 08 is still small there is the expected increase of # when the first yield occurs. 
This is followed by an exponential decay of temperature while the yield-heating flows off. After 
the increase of OE the temperature # alternates around this increased value, because the body 
heats up during the yield and it cools during the recovery of the yield. This cooling is the conse- 
quence of a conversion of kinetic energy of the lattice particles into potential energy, because the 
recovery of yield is effected by the particles' jumping from a deeper potential well to a higher 
one. 
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Fig. 10. Thermal effects of yield and recovery 
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