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Note on Continuous Additive Funetionals
of the 1-Dimensional Brownian Path
By

HirosH: TANAKA

1. Introduction

A functional a(f) = a(f, w) of £ = 0 and a Brownian path w:¢— 2(f) is cal-
led additive if

1.1a a(t, w) depends on t and z(s): 0 = s <t only,
1.1b a(t,w) =a(s,w) +alt—s,wf), 0<Ls=t,

where w; is the shifted path w :t — z(t + s).

Additive functionals play an important role in transforming a Markov process,
such as the substitution of time by the inverse functional of a non-negative ad-
ditive functional (K. I16 and H. P. MCKEAN [7], V. A. VoLKONSKIT [10]) and the
transformation of a Brownian motion to a diffusion with a drift (E. B. Dy~ngin [2],
M. Motoo [8]). As for the structure of additive functionals of the several dimen-
sional Brownian motion, A. D. VENTSEL [9] proved that such a functional a can
be written in the form:

|4
1.2 a(t,W)Zf(x(t))—f(w(o))+0f9(x(8))'dw(8),

under the assumption that a(f, w) has a finite expectation for each ¢ < co. Here,
¢
fand g are Borel functions on the state space, g satisfies f g(x(s))2ds <C oo (f <C o0)
0

with probability one and the integral in 1.2 is a stochastic integral of K. 116 [4].

In this note, it will be proved that, for every continuous additive functional a
of the 1-dimensional Brownian path, a(7, w): v = min (¢, m) has finite moments
of all orders = 0, where m is the first time x(-) hits the complement of a bounded
interval. This result combined with a slight modification of A, D. VENTSEL’s proof
implies that any continuous additive functional of the 1-dimensional Brownian path
has the representation 1.2 with continuous f.

I wish to thank Professor H. P. McCKeAN for helpful suggestions.

2, Existence of moments

Given the space W of continuous sample paths w: ¢ € [0, o0) — w; € R, write
wy = (¢, w) (or = x(f) = =y for short), and introducing the corresponding co-
ordinate fields B; = B[x(s):s =] and B = B[xz(s): s < oo], let Py(-) be the
Wiener measure on B with initial position @ € RB*. [z, B, P.] is the so-called
(standard) 1-dimensional Brownian motion. We use the notation E,(f, B) for the
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integral over B € B of a B-measurable function f with respect to P, and write
Eo(f, B) = Eq(f) when B = W. The first passage time inf {t: x(t) = r} through »
and the first exit time inf {t: 2(t) ¢ I} for an interval I are denoted respectively
by m, and my. The following strong Markov property* will be used often: if m
is a Markov time**, then for a € R and Be B

2.1 Pa[(Pa(w{; IS B[ B, = Px(m) (B), m << oo] = Py (m < o0),

where w is the shiffed path wf:t —2(t + m) and By is the field generated
by the events B € B such that BN (w: m < ¢) € B;, { = 0. By definition, a con-
tinuwous additive functional is a functional a(f, w) of ¢ and w which satisfies the
following conditions 2.2a—2.2¢:

2.2a a(t, w) is By-measurable for each t =0,
2.2b |at, w)| < oo and a(t, w) is continuous in ¢ (a.e.),
2.2¢ aft,w) =a(s,w) - alt—s,wl), 0<s=<t (a.e),

where (a.e.) means (for every w outside a certain set which has P,-measure zero
for all a e R1). :
Now, consider a continuous additive functional a of the 1-dimensional Brow-
nian path, and put
a(t,w) =max |a(s, w)]|.
0=s=t
Then, we have the following

Theorem 1. For any bounded interval I = [r1, rs] we have
2.3 Plam) >tl<ece ™, acl,

where m = my, and c1, ca are some positive constants depending on ry and re but
not on a € I. In particular, a(t A m)*** has finite moments of all orders = 0.

Proof. First we note that
24 —a,w)tasw) St +sw) Saltw) +als,wp), st=0 (ae),

which follows from the additivity 2.2¢ of a. Let I be a bounded open interval
containing I, and, for each a & I, choose a constant £ << 0o such that Pg[a(f)
> t5] < 1/2, where 1 = mt;. Then, using 2.4 and the strong Markov property 2.1,
we have

1/2 = Pala(ih) > fa]
= Pola(tit) > tg, mp < m], bel
= Pala(iit(wy,), wih,) — a(mp, w) > tq, mp < 1]
= Pyla(tit(wi,), wih,) > 244, mp << 101, 0 (Mp) < fg)
= Pg[mp < 1it, a (mp) < ta] Pola(tit) > 214].
* See G. A. Hux~t [4] or R. BLUMENTHAL [1].

** 11 is called a Markov time if m = 0 and (w: m < t) € B; for each ¢ = 0.
**xk g A b(a V b) is the smaller (larger) of ¢ and b.
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Now, choosing a neighborhood U, of @ such that for all be U,

Pymp < 1, a(me) < tq] > 3[4,
it follows that
2.5 Pyla(h) > 24,] < 2/3, beU,.

Because a(m) < a(m), 2.5 is true for a e I and be U, N I when m is replaced
by m. Therefore, using Heine-Borel’s covering theorem, it is clear that
2.6 Pyla(m)>T1<2/3, acl,

for some constant 7' << oo independent of a.
Next, put o, =inf{t: a(t) = nT} if 0(f) = nT for some { < o0, and = oo

if there is no such ¢ (n = 1). Because oy (n g 1) is a Markov time and

On = 0n-1 + 01(wtg,_,), (a.e.), n = 2,
by 2.4, it follows from 2.6 and by induction that
Pyola(m) > nT] = Pylo, < m]
= Pylog-1 4 o1(wtg,_;) < m]
= Bo[Pg (5,) (01 < M), op1 <]
= (2/3) Po(on-1 < m) = (2/3)"
and this implies 2.3.
3. Representation

Let g be a Borel function on B! such that
¢
3.1 Po[[g2(s)ds < o0, 0 <i<oo]=1, ackRL.
0

¢
Then, the stochastic integral fg(xs)dxs is defined (K. Ito [5]).
0

We first remark that a version of this stochastic integral can be chosen so that
it gives a continuous additive functional. When g is bounded, such a version exists,
as was discussed by E. B. Dy~kix [3]. When ¢ is unbounded, we use the following
simple lemma, which corresponds to lemma 1 in [3] and can be proved similarly.

¢

Lemma. Suppose the stochastic integral j'gn (ws)dxs has a version of contmuous
additive functional (n =1,2,...). Under the notation e(a, h) = By J' h2 (xg)ds],

suppose, for each compact interval I, that e(a, 9) and e(a, g,) are finite for acl and
that e, g — gn) converges to zero uniformly in @ € I as n —>oco. Then, the stochastic
¢

1ntegral f g(xs)dxs has a version of continuous additive functional.
)

Given g satisfying 3.1, putting ¢, (b) = g(b) for |g(b)| <n and =0 for
[g(8)] = n, we show that the assumptions of the lemma are satisfied. Theorem 1

applied to the additive functional f(¢) = of g2 (xs)ds implies that e(a, g) is finite,
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and using the additivity of f = 0 and the strong Markov property, we see that
e is concave and hence continuous on I. By the same reason ¢(a,¢n) is continuous
on I, and since e(a, g,) increasesto e(a, g)as n oo on I, e(a, g — ¢n) = e(a, g) —
— e(a, gy) tends to zero uniformly on I as n —>co Thus the lemma is applicable.

From now on, we take a version of continuous additive functional for a stoch-
astic integral.

Theorem 2, A continuous additive functional o of the 1-dimensional Brownian
path can be written in the following form:

|1
3.2 alt, w) = f(@) — f(wo) + [g(ws)dws, 0=<t<oo  (ael),

where f is a continuous function on ;El and ¢ satisfies 3.1.

Because of theorem 1, the method of A. D. VENTSEL is applicable, but here
we will give a proof which is different from A. D. VENTSEL's except as regards 3.12.
Our method of obtaining the function g in 3.2 seems to be simpler.

Proof. Take I = [ry, rg] as before, let m = my, and put

3.3a 8(t, w) = a(t, w) — [f(x) — f(0)], t=m,
3.3b f=fr=—E.[a(m)].
Denote by G(a, b) the Green function:

Ga,b) =2(a AN b—nr)(rs —a\ b)/lrs —r1),

and by Lg(a) (r1 < a << rg) the space of those functions on I which are square
integrable with respect to the measure G(a, b)db. La(a) is a Hilbert space with

inner product (D1, Da)q j' G’ (a, b)D1(b) D2 (b)db for each a; it is independent of
a € (r1, ra) as a set. For each D e La(a) let 34 (¢ A m) be the stochastic integral

tAm
f@(xs)dxs and note that (see K. I1d [5])
0

34a Eql3(t N m)] = Balée(t A m)] =0
3.4b Ea[g(pl {m) 84, (m)] = By [}n@l (xs5) D2 (x5) ds] = (D1, P2 -
0

Now, consider the functions p,(a, @) = E4[|3(m) + 85(m)|2] and p(a, D)
= H,[8(m)8e(m)] = (1/4) (p+ — p-). Because 3 and 34 satisfy 2.2 for { < m, it
follows, using 3.4a and the strong Markov property, that for any compact sub-
interval J = [p1, g2] in (r1, 72)

35  p.(a, D)= Hal|8(n) & 86 (1)[2] + Halp+(x(n), D)]

ZE:: 41&(@1, )—i—T_TZ%(Qz,@), ac€(o1,02), n=my,

and hence p, is concave in (r1, r2) and p. (2, @)1 0 as a ! ry or atry. Therefore,
there exists a non-negative measure ug finite on compact subsets in (r1, r2) such
that

3.6 P (@, B) = [ G(a,b) s (@b), ac(ri,r2);
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this pg is uniquely determined by p. ; in fact dug = d(—D*p.)*. Hence we have**
Ts
3.7 p(a, D) = [ G(a,b) o (db), ac(r1,r2)
71

dug = (1/4) (dup — dpg) = d(—D*p);

Us s the unique signed measure finite on compact subsets in (r1, r2) and satisfying
3.7.

Next, we prove that there exists a unique function ¢ () independent of ¢ and
belonging to La(a) such that

3.8 p(a, D)= (D,q)s, DPecLo(a), ac(ry,rs).

This results from the following three steps ((1)—(3)).

(1) If @ vanishes identically in J = (p1, g2) ¢ 1, then e has no mass inside J.
In fact, in this case 34 = O up to the exist time my and hence from 3.5

P@,®) = 2= " po1, ®) + = -plo2, D),

92 g2 — 01

i.e., p is linear inside J, proving d,uq; = d(—D*p) = 0 there.
(2) If yg is the indicator function of a Borel set E c I, then

3.9 P(a, xz) = [z G(a,b) py (db),

where 1 is the function identically equal to one on I. First, from 3.4b we note that

p+(@ P) + p-(a, D) = 2p1 (2, 0) + 2 [ G(a, b) D2 (b)db

and hence from 3.6 that
3.10 dug + dug = 2d uy + 2P2db.

Now, if # is an open interval with ug (0F) = 0 and if @ = yg, then from (1) and
3.10 dus =0 on I — E and duj—g = 0 on E and hence dug = @dyy follows
from the identity due + duy-p = duy. Thus we have 3.9 for such an . But,
because |p(a, xg)| =< VEa[3(m)2] - | xz|a*** by Schwarz’s inequality and 3.4b,
pla, xz) is a signed measure in E. Hence 3.9 must hold for any Borel set & in [
because it holds for open intervals E with u} (@) = 0 and these intervals generate
all Borel sets in I.

(3) From (2) we have
3.11 p(@, D)= [G(a,b)Pd) uy(db), ac(r1,r2),

if @ is a linear combination of finite numbers of indicator functions. On the other
hand, for each a, p(a, @) is a linear functional on Ls(a) because of the bound
|p(a, )| < VEq[3(m)2]- | D4, and hence by Riesz’s theorem there is a unique

*' D+ means the right derivative, and d(— D+tp.) is the measure induced by the function
— Dtp. of bounded variation.

** T owe this reasoning to H. P. McKEax.
*xx 0, = |(D, D)
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ga € Lo (a) such that p(a, D) = (D, g4)a for D € Ly(a). Comparing this with 3.11,
it follows that duy = g,db and that g, must be independent of a, which we denote
by g. Thus we have 3.8 with a unique g € La(a).

Next, we sketch the proof that (1) = 8,(¢) for { < m (a.e.), following A. D.
VeNTSEL [9]. Putting 8 = 8§ — 3y, it is sufficient to show that

Eg[Fi(x(ts A m) - Fa(@(ta A m))3(¢E A m)] =0,
0t <o <lp<<oo, 0=t < oo,

for any bounded Borel functions F1, ..., Fy, and by the additive property of 3
and the Markovian property of Brownian motion, it is also enough to prove that

3.12 Eo[F(x(t A m)3(E A M]=0

for any continuous fanction F on I. From 3.4b and 3.8 wenote that Eq[84 (m) 4 (m)]
= 0 and hence by the additive property and 3.4a that

3.13 Eolto(t Am)3(EAM] =0, Dclsa).

Now, if F is continuous on I, writing F = Fg 4 h where Fo(r1) = Fo(ra) =0
and % is a linear function, we have Eg[h(x(t A m))s{t A m)] =0 by 3.13 and
3.4a. On the other hand, if ¢ is an eigenfunction for the problem (1/2)g"” = lg
with g¢(r1) = q(r2) = 0, then applying the formula of stochastic integrals (K.
It [6]) to ¢ (x;) and using 3.13, we have

Eqlg(@( A m))s( A m)] =%f x(3 A m)3(3 A m)lds
0

f x(s A m))§(3 A m)lds,
0

and hence Eg[g(x(t A m)3( A m)] = 0. Now, Eu[Fo(x(t A m))s(f Am)]=0
follows by approximating F uniformly by a linear combination of ¢’s. Thus 3.12
holds.

Finally, to obtain 3.2, take an increasing sequence of bounded intervals
I, = [rn1, T42], » = 1, with union R!. We have obtained already

3.14a a(t, w) = fa(xs) — fu(xe) + ftgn (s)dzs, §= 11y (a.e.),
0

3.14:b fn = _E . [a(r[n)], Ny = m]n-
Put l1(a) = 0 and for n = 2

n—1

Iy (a) =kz (ree — 151) "L [(k2 — @) fra1(r1) + (@ — 751) fror1 (Px2)] -

=1
¢
Then, because Iy (x;) — Iy (o) can be written as the stochastic integral fl' (xs)dzs,

0
3.14 a remains valid when f, and g,, are replaced respectively by Fu = fn — ln and
gn = gn + I,.. On the other hand, from 3.14b, it follows that Fn = fn+1 inside Iy
and hence g, = gn+1 inside I,. Thus, defining f = fn and g = g, inside I, we
obtain 3.2. 3.1 is clear from the construction of ¢g. Because a and the stochastic
integral term are continuous in ¢ (a.e.), f must be continuous on R, Thus the
theorem is completely proved.
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Note added in proof. As for the multidimensional case, the author found, in the course of
proof reading, A. B. Skoromop’s paper (Teor. Verojatn. Primen 6, 430-439 (1961)) and A.
D. VentsEL’s paper {Doklady Akad. Nauk SSSR n. Ser. 142, 1223-1226 (1962)). These papers
treats the same representation as 3.2 for continuous additive functionals, and especially the
latter paper treats the most general continuous addive functionals of a Brownian motion, but
the proof given here is different from theirs. The multidimensional version of Theorem 1 was
obtained also by H. P. McKEraN (private communication) where [ (in the theorem) must be
replaced by a suitable fine open set.
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