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Note on Continuous Additive Funct iona ls  
of the 1 -Dimens iona l  Brownian  Path  

B y  

] : [ IROSHI T A N A K A  

1. Introduct ion  

A functional  a (t) =- a (t, w) of  t ~ 0 and a Brownian pa th  w : t --> x (t) is cal- 
led additive if 

1.1a a(t, w) depends on t and x(s) :0  ~ s ~ t only, 

l . l b  a (t, w) = a (s, w) + a (t - -  s, w+) , 0 _ < s _ < t ,  

where w + is the shifted pa th  w + : t -+ x (t + s). 

Addit ive functionals play an impor tan t  r61e in t ransforming a Markov process, 
such as the subst i tut ion of  t ime by  the inverse functional of a non-negative ad- 
ditive functional  (K. IT5 and H. P. McKEAI~ [7], V. A. VOLKO~SKII [10]) and the 
t ransformat ion of  a Brownian mot ion to a diffusion with a drift  (E. B. Du [2], 
M. MOTOO [8]). As for the s tructure of  additive functionals of  the several dimen- 
sional Brownian motion,  A. D. V~TS~I~ [9] proved tha t  such a functional a can 
be wri t ten in the form:  

t 

1.2 a(t, w) =/(x(t)) -/(x(O)) + fg(x(s)), dx(s), 
0 

under the assumption tha t  a (t, w) has a finite expectat ion for each t ~ co. Here, 
t 

/ and g are Borel functions on the state space, g satisfies f g (x (s))2 ds ~ co (t ~ co) 
0 

with probabi l i ty  one and the integral  in 1.2 is a stochastic integral of  K. IT5 [5]. 

I n  this note, it will be proved that ,  for every continuous additive functional a 
of  the 1-dimensional Brownian path,  a 0:, w) : ~: ~ rain (t, m) has finite moments  
of  all orders ~ 0, where m is the first t ime x (.) hits the complement  of  a hounded 
interval. This result  combined with a slight modification of  A. D. VENTSEL'S proof  
implies t ha t  any continuous additive junctional o/ the 1-dimensional Brownian path 
has the representation 1.2 with cont inuous/ .  

I wish to thank  Professor I t .  P.  McK]~A~ for helpful suggestions. 

2. Exis tence  of m o m e n t s  

Given the space W of continuous sample paths  w : t e [0, co) -+ wt ~ R 1, write 
wt ~ x(t, w) (or ~ x ( t ) ~  xt for short), and introducing the corresponding co- 
ordinate fields Bt  -~ B[x(s)  : s =< t] and B = B[x(s )  : s ~ co], let Pa( ' )  be the 
Wiener measure on B with initial position a E R1. [x, B,  P.] is the so-called 
(standard) 1-dimensional Brownian motion. We use the notat ion Ea (/, B) for the 
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in tegra l  over  B e B of  a B-measurab le  funct ion / wi th  respect  to  P a  and  wri te  
Ea  (f, B) = Ea  (/) when B = W. The first passage time inf  {t: x (t) = r} th rough  r 
and  the  first exit time inf  {t : x (t) ~ I}  for an  in te rva l  I are deno ted  respec t ive ly  
b y  mr and  my. The following strong Markov property* will be used of ten:  i f  m 
is a Mar~ov time**, t hen  for a E R 1 and  B ~ B 

2.1 Pa[(Pa(w + e B I Bin+ ) -~- Px(m) (B), m < c~] = P a ( m  < c~), 

where w + is the  shifted p a t h  w + : t -+  x (t + m) and Brn+ is the  field genera ted  
b y  the  events  B e B such t h a t  B • (w : m < t) E B~, t => 0. B y  definition, a con- 
tinuous additive ]unctional is a funct ional  a (t, w) of  t and  w which satisfies the  
following condi t ions 2.2 a - -  2.2 c : 

2 .2a  a(t, w) is Bt-measurable /or each t ~= O, 

2.2b l a(t, w) l <  oo and  a(t,  w) is continuous in t ( a .  e .) ,  

2.2c a ( t , w ) = a ( s , w ) q - e ( t - - s , w + ) ,  O ~ s ~ t  (a .e . ) ,  

where (a. e.) means  (for every  w outs ide  a cer ta in  set which has Pa-measure  zero 
for all a e i~1). 

Now, consider  a cont inuous  add i t ive  funct ional  a of  the  1-dimensional  Brow- 
n ian  pa th ,  and  p u t  

(t, w) = max  I a(s, w) I . 
O<=s~_t 

Then,  we have  the  following 

Theorem 1. For any bounded interval I = [rl, r2] we have 

2.3 P a [ a ( m )  > t] < C l e  -c~t , a e I ,  

where m ~ rex, and cl, c2 are some positive constants depending on rl and r2 but 
not on a ~ I .  I n  particular, a (t A m)*** has finite moments o /a l l  orders ~ O. 

Pro@ F i r s t  we note  t h a t  

2.4 ---~(t,w) q - a ( s , w + ) g - a ( t q - s , w ) g ~ ( t , w ) q - - a ( s , w ~ ) ,  s , t ~ O  (a .e . ) ,  

which follows f rom the  a d d i t i v i t y  2.2c of  a. Le t  i be  a bounded  open in te rva l  
conta in ing I ,  and,  for each a e I ,  choose a cons tan t  t a<  oo such t h a t  P a [ a ( l ~ )  
> ta] < 1/2, where N = mi .  Then,  using 2.4 and  the  s t rong Markov  p r o p e r t y  2.1, 
we have  

1/2 ~ Pa[~(~h) > ta] 

~ Pa[-a(m) > ta, mb < f~], b e 1  

P a  [a (lil (w+~), w+b) - -  ~(mb,  W) > ta, m b <  lit] 

> p~  [~ (~ (w~+~), w~+~) > 2 t~, m~ < rh, ~ (m~) < t~] 

=- Pa[mb < rh, a(mb) < ta] P~[~(rh) > 2ta]. 

* See G. A. Hv~T [4] or R, BLV~ENT~AL [1]. 
** m is called a Markov time if m ~ 0 and (w : m < t) e Bt for each t ~ 0. 

*** a A b (a V b) is the smaller (larger) of a and b. 
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Now, choosing a neighborhood Ua of a such t h a t  for all b ~ Ua 

Pa[rttb < lit, -a (rob) < ta] > 3/4,  
i t  follows t h a t  

2.5 Pb[~(th)  > 2ta] < 2/3,  b e  Ua. 

Because ~(m) =< a(Iit), 2.5 is t rue  for a a I and b e Ua (~ I when th is replaced 
b y  m. Therefore,  using Heine-Borel ' s  covering theorem,  it  is clear t h a t  

2.6 P a [ ~ ( m ) > T ] < 2 / 3 ,  a e f ,  

for some constant  T < c~ independent  of  a. 
Next ,  pu t  crn = inf{t  : a(t) ~ n T }  if a(t) => n T  for some t < c~, and = co 

if there is no such t (n ~ 1). Because an (n ~ 1) is a Markov  t ime and 

Gn => O'n--I + ffl(W+(~n--l), (a .e . ) ,  n => 2, 

by  2.4, it follows f rom 2.6 and by  induction t h a t  

P a [ a ( m )  > n T] = Pa[Gn < m] 

Pa[(:rn- 1 @ O'I(W+Gft_I ) < 12t] 

= Ea [Px (~-1) (G1 < m), (~n-1 < m] 

(2/3) Pa (O'n-1 < 112) ~ (2/3) n , 
and this implies 2.3. 

3. Representation 

Let  g be a Borel funct ion on R 1 such t ha t  

t 
3.1 P a [ ~ g 2 ( x s ) d s < c ~ ,  0 =< t < c~] = 1, a e R  1 . 

0 
t 

Then,  the  stochast ic  integral  f g(xs)dxs is defined (K. IT6 [5]). 
0 

We first r emark  t h a t  a version of this stochastic integral  can be chosen so t h a t  
it gives a cont inuous addit ive functional.  When  g is bounded,  such a version exists, 
as was discussed b y  E. B. DYNK1N [3]. When g is unbounded,  we use the following 
simple lemma,  which corresponds to l emma 1 in [3] and can be proved  similarly. 

t 
Lemma.  Suppose the stochastic integral ] gn(xs)dxs has a version o/continuous 

0 m f  

additive /unctional (n =-- 1, 2, .. .). Under the notation e(a, h) = Ea[ f h2(xs)ds], 
0 

suppose, /or each compact interval I ,  that e (a, g) and e (a, gn) are f inite/or a e I and 
that e (a, g - -  gn) converges to zero uni /ormly in a e I as n --> co. Then, the stochastic 

t 

integral ] g (xs) dxs has a version o[ continuous additive/unetional. 
0 

Given g sat isfying 3.1, pu t t ing  g n ( b ) = g ( b )  for ]g(b)[ < n and = 0 for 
] g (b) ] >= n, we show t h a t  the assumpt ions  of  the  l emma are satisfied. Theorem 1 

t 
applied to the  addi t ive functional  ~ (t) = f g2 (xs)ds implies t ha t  e (a, g) is finite, 

0 
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and using the addi t ivi ty  of  ~ > 0 and the strong Markov property,  we see tha t  
e is concave and hence continuous o n / .  By  the same reason e (a, gn) is continuous 
on I ,  and since e (a, gn) increases to e (a, g) as n ~ co on I ,  e (a, g - -  gn) = e (a, g) - -  
- -  e (a, gn) tends to zero uniformly on I as n --> oo Thus the lcmma is applicable. 

F rom now on, we take a version of continuous additive functional for a stoch- 
astic integral. 

Theorem 2. A continuous additive Junctional a o] the l-dimensional Brownian 
path can be written in the Jollowing /orm : 

t 

3.2 a ( t , w ) = / ( x t ) - - J ( x o ) + S g ( x s ) d x s ,  O ~ t < o o  (a.e.), 
0 

where ] is a continuous Junction on R i and g satisfies 3.1. 
Because of  theorem 1, the method of A. D. V~TSEL is applicable, but  here 

we will give a proof  which is different f rom A. D. Vw~s]~L's except as regards 3.12. 
Our method  of  obtaining the funct ion ff in 3.2 seems to be simpler. 

ProoJ. Take I ~ [rl, r2] as before, let m = m/ ,  and pu t  

3.3a ~ ( t , w ) = a ( t , w ) - - [ J ( x t ) - - / ( x o ) ] ,  t g m ,  

3.3b ] = Jz ~-- - - E .  [a(m)] .  

Denote by  G(a, b) the Green funct ion:  

G(a, b) ~-- 2(a A b - -  rl) (r2 - -  a V b)/(r2 --  ri) ,  

and by  L2 (a) (ri < a < r~) the space of those functions on I which are square 
integrable with respect to the measure G(a, b)db. L2(a) is a t t i lbert  space with 

inner product  (~ i ,  q52)a = S G (a, b) ~bi (b) r  (b) db for each a;  it is independent  of  

a ~ (ri, r2) as a set. For  each ~b ~ L~ (a) let 8o (t A m) be the stochastic integral 
t A m  

q5 (Xs)dx.~ and note t ha t  (see K. IT5 [5]) 
0 

3.4a Ea[~(t /~ m)] = E a [ ~  (t A m)] = 0 
nl 

3.4b Ea[~)~ (m) ge= (m)] = Ea [S ~1 (xs)q52(xs)ds] = (~1,  ~2)a .  
0 

Now, consider the functions p• qS) = Ea[] ~(m) =h ~ (m) ]~ ]  and p(a,  qS) 
= Ea[g(m)ge(m)]  == (1/4)(p+ - - p _ ) .  Because ~ and gv satisfy 2.2 for t <= m, it  
follows, using 3.4a and the strong Markov property,  t ha t  for any  compact  sub- 
interval  J ---- [~i, ~2] in (ri, r~.) 

3.5 p• qS) = Ea[[ ~(~) :J: ~v(n)12J -~ Ea[p+(x(~), ~b)] 

> g2 -- a a -- gl 
= e 2 _ e l p • 1 6 2  a e ( e l , e 2 )  , l t = m i ,  

and hence p• is concave in (ri, r2) and p• (a, ~b) $ 0 as a $ ri or a t r2. Therefore, 

there exists a non-negative measure/~$ finite on compact subsets in (ri, r~) such 

that 

3.6 p• (a, q)) = ~ G (a, b) tt$ (db), a e (ri, ru) ; 
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this/~$ is uniquely determined by  p+ ; in fact  d#$ = d(--D+p+~)*. Hence we have** 

f~ 

3.7 p(a, qS)-~ f G(a,b)#+(db), a~(rl ,r2)  
t" 1 

d/~+ : 0 /4)  (d#$ - -  d /~)  = d(--D+p); 

/t+ is the unique signed measure finite on compact  subsets in (rl, r2) and satisfying 
3.7. 

Next ,  we prove t h a t  there exists a unique function g (b) independent  of  a and 
belonging to L2 (a) such tha t  

3.8 p (a, q)) ----- (~b, g)a, qD ~ L2 (a), a + (rl, r2). 

This results f rom the following three steps (0)- - (3)) .  

(1) I f  q5 vanishes identically in J ~ (~1, e2) c I ,  then #+ has no mass inside J .  
I n  fact, in this case ~+ : 0 up to the exist t ime m j  and hence from 3.5 

p (a, ~b) - -  e~ - a a - e~ 
~ s e :  P ( e : ,  ~ )  + o ~ _ ~ p ( e 2 , ~ ) ,  

i.e., p is linear inside J ,  proving d#r -- d(--D+p) : 0 there. 

(2) I f  Z~ is the indicator function of  a Borel set E c I, then 

3.9 p (a, Z') = fE G(a, b)#, (db), 

where 1 is the funct ion identically equal to one on I .  First, f rom 3.4b we note tha t  

p+(a, <15) + p-(a,  r  =- 2p+(a, O) ~ 2 f G(a, b)r 

and hence from 3.6 tha t  

3.10 d / ~  + d / ~  = 2 d # ~  + 2qb2db. 

Now, i r E  is an open interval  with ktg(OE) = 0 and if ~b = ZE, then from (1) and 
3.10 d/t+ = 0 on I - -  E and d # , - r  : 0 on J~ and hence d#+ =- q)d#l follows 
f rom the ident i ty  dkt + + d/q_r  = d/zi. Thus we have 3.9 for such an E. But,  
because I P (a, ZE)} ~ VEa[~ (m)2] " I] ZE I[a*** by  Schwarz 's  inequali ty and 3.4b, 
p (a, ZE) is a signed measure in E.  Hence 3.9 mus t  hold for any  Borel set E in I 
because it holds for open intervals E w i t h / ~  (0E) = 0 and these intervals generate 
all Borel sets in I .  

(3) F rom (2) we have 

3.11 p (a, ~)  = f G (a, b) r (b)/~1 (db), a ~ (rl,  re), 

if ~5 is a linear combinat ion of  finite numbers  of  indicator functions. On the other 
hand, for each a, p (a, ~5) is a linear functional on L2 (a) because of  the bound 
]2) (a, qD) l <= ]lEa [~ (m)2] �9 I] q5 ][ a, and hence by  Riesz's theorem there is a unique 

* D  + means the right derivative, and d (--D+pz) is the measure induced by the function 
-- D+p+ of bounded variation. 

** I owe this reasoning to It. P. MeKEAN. 
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ga ~ L2 (a) such that  p (a, ~b) --~ (r ga)a for ~b e L2 (a). Comparing this with 3.11, 
it follows tha t  dtt , ---- gadb and tha t  ga must  be independent of a, which we denote 
by g. Thus we have 3.8 with a unique g e L2 (a). 

Next, we sketch the proof tha t  ~(t) = ~g(t) for t ~ m (a.e.), following A. D. 
V~NTSnL [9]. Putt ing ~ = ~ - -  ~g, it is sufficient to show tha t  

Ea[Fl(X(h A m ) )  "'" Fn(x(tn A m))~(t A m)] = 0, 

O ~ t l < . . . < t n < o o ,  0 ~ t < z o ,  

for any bounded Borel functions F1 . . . . .  Fn, and by  the additive property of 
and the Markovian property of Brownian motion, it is also enough to prove that  

3.12 Ea[F(x(t A m))~(t A m)] = 0 

for any continuous function F on I .  From 3.4b and 3.8 we note tha t  Ea [ ~  (m)~ (m)] 
= 0 and hence by  the additive property and 3.4a tha t  

3.13 Ea[~v(t A m)~(t A m)]=-O, q~eL2(a). 

Now, if F is continuous on I ,  writing F ---- F0 -~ h where F0 (rl) ~-- F0 (r2) = 0 
and h is a linear function, we have Ea[h(x(t A m))~(t A m)] ~- 0 by 3.13 and 
3.4a. On the other hand, ff q is an eigenfunction for the problem (1/2)q" =- 2q 
with q ( r l ) =  q(r~)~-O, then applying the formula of stochastic integrals (K. 
IT5 [6]) to q(xt) and using 3.13, we have 

t 

Ea[q(x(t A m))~(t A m)] = �89 fEa[q"(x(~ A m))~(~ A m)]ds 
0 

t 

= ~ f E ~ [ q ( x ( s  A m))~(~ A m)]ds, 
0 

and hence Ea[q(x(t A m))~(t A m)] = 0. Now, Ea[Fo(x(t A m))~(t A m)]----0 
follows by  approximating F0 uniformly by a linear combination of q's. Thus 3.12 

holds. 
Finally, to obtain 3.2, take an increasing sequence of bounded intervals 

In : [rnl, rn2], n ~ l, with union RL We have obtained already 

t 

3.14a a(t, w) ~-- ]n(Xt) --/n(XO) ~- ]gn(xs)dxs, t ~ ltn (a.e.), 
0 

3.14b ] n = - - E . [ a ( ~ n ) ] ,  n ~ = m z n .  

Put  11 (a) =- 0 and for n ~ 2 
n - - 1  

In (a) ~- ~ (r~2 -- rkl) -1 [(r/~2 - -  a)/~+1 (r~l) -[- (a - -  r/~l)/k+l (rk2)] �9 
k = l  

t 

Then, because In (xt) -- In (xo) can be written as the stochastic integral f l' (xs) dxs, 
0 

3.14a remains valid when/n and gn are replaced respectively by In  ~ ]n -- In and 
~n =- gn -~ l~. On the other hand, from 3.14b, it follows tha t  ]n = ]n+l inside In 
and hence gn = gn+l inside In. Thus, defining / ~- In and g = gn inside In, we 
obtain 3.2. 3.1 is clear from the construction of g. Because a and the stochastic 
integral term are continuous in t (a.e.), / must  be continuous on R 1. Thus the 
theorem is completely proved. 
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Note added in proo/. As for the multidimensional cast, the author found, in the course of 
proof reading, A. B. SKOgO~OD'S paper (Teor. Verojatn. Primen 6, 430-439 (1961)) and A. 
D. VE~TS~L'S paper (Dokla~ty Akad. Nauk SSSR n. Ser. 142, 1223-1226 (1962)). These papers 
treats the same representation as 3.2 for continuous additive functionals, and especially the 
latter paper treats the most general continuous addive funetionals of a Brownian motion, but  
the proof given here is different from theirs. The multidimensional version of Theorem 1 was 
obtained also by It.  P. McKEA~r (private communication) where I (in the theorem) must be 
replaced by a suitable fine open set. 
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