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The Exit Measure of a Supermartingale 

HANS FOLLMER 

Let X = (Xt)t>=o be a nonnegative right continuous supermartingale relative 
to an increasing family (~t)t>=o of a-fields on a probability space (f2, ~,  P). It is 
well known that X has a boundary function X~o." = lira Xt, and if X is a uniformly 

integrable martingale then the boundary function actually determines X in the 
sense that X~ is the conditional expectation of X~ with respect to ~ .  In general 
however the boundary function may provide very little information on X. In this 
paper we give a characterization of X by its terminal behaviour which applies to 
the general case. Here the terminal behaviour is specified by a certain measure, 
the exit measure of X. It reduces to the measure X~ dP whenever X is a uniformly 
integrable martingale. 

As an illustration consider classical potential theory on the unit disc where 
the supermartingale X arises by observing a superharmonic function u > 0 along 
Brownian motion paths. Any such u is characterized by a finite measure on the 
closed unit disc (Poisson-Riesz representation), which may be viewed as the 
terminal distribution of a certain Markov process associated to u, the so called 
u-path process introduced by Doob in [31. Analytically, this exit measure is just 
the Choquet measure which represents u as a mixture of extremal rays in the 
cone of superharmonic functions > 0. This example will serve as a guideline for 
our discussion. 

In Section 1 we construct a probability measure pX on the a-field N of 
previsible sets in O.. = f2 x [0, oo] such that 

1 
px[Ax( t ,  oo]]= E[Xo. ] E[Xt;A 1 ( A ~ ,  t>O). 

The second coordinate of ~ serves as a lifetime. The measure pX generalizes the 
notion of a u-path process; a more explicit discussion of this can be found in E8]. 
The construction is based on the Ito-Watanabe factorization of X into a local 
martingale and a decreasing process. This factorization allows to define pX 
consistently on an increasing sequence of a-fields in P, similarly to the construc- 
tion of e-subprocesses of a Hunt  process in [5]. In order to extend pX to ~ we 
introduce the following regularity assumption on the underlying a-fields: (~ )  is 
the right continuous modification of a standard system (fit~ The notion of a 
standard system is essentially due to Parthasarathy in [91. It means that (i) each 
a-field ~t  ~ is standard Borel and that (ii) decreasing sequences of atoms have a 
non void intersection (cf. Appendix). Condition (ii) could be dropped if we were 
ready to replace ~ by an inverse limit space. Path spaces of type D(0, oo) satisfy 
(i) but not (ii). However, and this remark is due to Meyer, if we allow for 'explosion 
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in finite time' (cf. Appendix) then we obtain indeed a standard system, and this 
example is basic in the study of stochastic processes. A construction of the 
measure pX which is directly adapted to this case can be found in [8]. Let us note 
that for a potential of class (D) the measure has been obtained by Doleans in [2] 
with a different method. 

In Section 2 we show how the behaviour of X is reflected in the behaviour 
of the lifetime under pX: X is a potential if and only if the lifetime is almost surely 
finite, and the more 'previsible' the lifetime the less 'regular'  the potential. In 
Section 3 we decompose the measure pX into a 'regular'  part and a series of 
' jump'  parts. Section 4 reduces ratios Y/X of supermartingales on f2 to super- 
martingales on ~ with respect to pX. 

Section 5 may be viewed as a contribution to Doob's program [4] of writing 
probabilistic potential theory purely in terms of supermartingales. We consider 
the cone S of supermartingales X :~ 0 which are adapted to a fixed (not necessarily 

c ~  increasing) family of a-fields gt_~t.  The system (gt) is supposed to be invariant 
under conditioning (cf. (5.1)). Any X s S  is then determined, up to a constant 
factor, by the restriction #x of the measure pX to a certain exit field 2_c N; if X 
is a martingale then we may identify the exit field with the tail field ~o~ ." = (-] V d~ 

u > t  t 

The exit measure #x is 0 - 1  if and only if X lies on an extremal ray in S, and it is 
essentially the Choquet measure of X whenever the latter exists i.e. whenever X 
can be represented as a mixture of extremal rays in S. 

The relation to potential theory is this. Consider a stochastic process (it) 
with nice paths on a state space E, let fCt be the a-field generated by it (the present 
at time t) and define 4 ~  �9 = V  fr If we now take ~ = .oY t then the invariance under 

conditioning (5.1) is just the Markov property, and the above results reduce to 
well known facts in the boundary theory of Markov processes. But there are quite 
different applications e.g. in Statistical Mechanics, and this will be discussed 
elsewhere. 

Notation and vocabulary are essentially the same as in [6]. 'p(P)' means that 
the property p holds for P-almost all sample points. Let us recall the definition 
of a local martingale (Y~)t=>o" there is a sequence of stopping times T,, increasing 
almost surely to ~ such that the stopped process (YT, At)t>=O is a uniformly inte- 
grable martingale for any n = 1. 

1. Construction of the Measure pX 

Let (4~ be a standard system (cf. Appendix) on a probability space 
((2, ~,, P) with V 4 ~ = ~  and define (4)t__>o as its right continuous modification: 

t > 0  
4 : f )  4 ~ 

s > t  

Suppose that X=(X~ is a nonnegative supermartingale adapted to 
(4~ This means that X ~ is 4~ nonnegative and integrable, 
and that we have the supermartingale inequality 

X~176 ~ (P) 

whenever s__< t. We assume that E [X~ is right continuous in t. 
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(1.1) Lemma. There is a right continuous supermartingale (Xt)t>__o adapted to 
(~)t>_o which is a version of X in the sense that 

(1.2) X ~ = e [X,l~, ~ (e). 

Proof Define H~, o, b as the set of all co ~ f2 such that the function X ~ (co) (0 < r < t, 
r rational) is either unbounded or performs infinitely many upcrossings over the 
interval [a, b] (cf. [6] VI 3, but note that we do not assume completeness of the 
a-fields). Let Xdco)." = l!m X ~ (co)(r rational) for cor and = 0 for co ~Ht where 

/-/3 = 0 U 
s > t  a < b  

a, b rational 

The process (X,),=> o has right continuous paths in [0, oe), limits from the left 
at least before hitting 0, and is adapted to (~ )~o .  (1.2) and the supermartingale 
inequality follow now as in [6-] VI T4. 

The measure pX will be defined on the product space Q.-=Q x [0, m]. Let us 
introduce the product fields ~o . .=  ~ 0  x ~t  and ~." = V ~ o  where ~t  denotes 

t > 0  
the a-field on [0, oo-] generated by the intervals [0, s] with s<=t, and let (~)t>=o 
be the right continuous modification of (Yt~ Suppose that T is a stopping 
time on ~, and by that we mean a (G)-stopping time if not specified otherwise, 
i.e. { _ T < t } e ~  (t>O). Then we treat it simultaneously as a (~)-stopping time 
on Q with T(co, t)." = T(co). In particular we define a a-field 

on ~ in the same way as the usual a-field ~ r  on O (obtained by omitting the bars). 
Let us write A x (S, T] instead of {(co, t) lco e A, S (co) < t < T(co)} etc. Furthermore 
let us call ~ (N):= t the lifetime of N = (co, t)e Q. 

(1.3) Lemma. I f  T is a stopping time and -4 e+~r then there is a set A s ~ r such that 

(1.4) / [ ~  {~> T} = A  x (T, oo]. 

Proof If T is constant then (1.4) is easy to check. For a general T define A 
as the union of the sets A , e ~  for rational r such that +,t~{T<r} c~{~>r}= 
A, x (r, oo] and use the fact that Ar = As c~ {T < r} for r < s. 

Following Chung and Doob we introduce for any stopping time T the o--field 
~T-  on ~2 generated by ~o ~ and the sets A ~ {T>t} (t>0, AE~) ,  and in the same 
manner we define ~ r -  on ~. In this way we obtain in particular the a-field o~_ 
which coincides with the class N ofprevisible sets in [7] 203. It is easy to see that 
is generated as well by the sets Ao x {0} and A~ x (t, oo] with A t ~  ~ (t>0). 

(1.5) Theorem. I f  E[Xo-]+0 then there is exactly one probability measure pX 
on ~ such that 

1 
(1.6) pX[A x (t, oo-]] = jE [Xo~E[Xt ;  A] ( A e ~  ~ t>0) .  
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Remark. Note that in (1.6) we could replace X t by X ~ due to (1.2). Thus px 
depends only on X, not on our special version (Xt)teo. 

Proof We are going to combine the Ito-Watanabe factorization of X with 
an extension theorem for standard systems. Let us observe first that the additive 
decomposition of X (Doob-Meyer) can be obtained in the form X t = L t - I  t 
where (L0 and (It) are right continuous and adapted to (Ft), (Lt) is a local martingale 
and (It) is a natural increasing process (cf. [6] T29 where we use (1.1) to choose a 
suitable version of the arising martingale, and [-5] Lemma 2). By right continuity 

S~:=nAinf{t>O[Xt~[1, n] or It>n } 

is a (~)-stopping time. If we now follow the construction in [-5] where we define 
D , = 0  for t > S ~ . ' = s u p  S, then we obtain the l to-Watanabe factorization of X 
in the form X~ = Mt Dt on {Soo > t}, where (Mr) and (D~) are both right continuous 
and adapted to (4) ,  (Dr) is decreasing with Do = 1 and (Ms.^ t)t~= o is a uniformly 
integrable martingale for any n>  1. Moreover we have X t =Mr Dt (P) for any 
t > 0. We can now define the measure pX on 4 o  by 

1 
(1.7) pX [.~].._ E [Xo] E [Ms.(co ) c~(co, d~)] 

where c~(oJ, dr) is the random measure on [0, oe] defined by 

c~(co,(s, t]),=Ds(co)-Dt(co) and A,o.'={t](co, t)~d} 

is the co-section of A e ~ s .  Since (Ms.),>=1 is a martingale due to the stopping 
theorem, (1.7) defines pX consistently on the sequence (~s,) and in particular 
on the sequence ( 4 , - ) .  But (o~s,_) is a standard system by (6.1), and the extension 
theorem (6.2) guarantees that px is actually well defined on V ~ s . - .  It is now 

n > l  

easy to extend px to the a-field ~ generated by V ~ s , -  and the set {(>Soo} in 
such a way that PX{(>S~o}=O. This finishes the construction of pX because P 
is contained in the pX-completion of 24,~: the sets A--Ax(t ,  oe] with A ~  ~ 
satisfy 

n 

where /~,:=~4c~ { S , > t } ~ s , _ .  We have still to verify (1.6) but this is a special 
case of the following lemma. The uniqueness is clear since the sets arising in (1.6) 
generate ~a on {~>0}, and since P X [ ( > 0 ] = l  by (1.6) and the right continuity 
of E [2;,]. 

(1.8) Lemma. If  T is a stopping time and A s ~ r then 

(1.9) pX [ A n  {( > T}] - 
E [Xo] 

E [Xr;  A c~ {T<  oe}] 

where A ~ T  is associated to A via (1.4). 
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Proof We may assume E [Xo] = 1. 
we obtain 

pX [ / i n  {~ > T}] = lim 
tt 

= lira 
n 

= lim 
n 

= lira 
n 

Since ~<l im S,(P x) and Am {S,> T} e~s ._  

p X [ A ~ { S . >  T} ~ { { > T } ]  

ElMs. Dr; Am{S ,>  T}] 

E[Ms,^TDT; Am{S ,>  T}] 

E[XT; Am {T< S,}] 

=E[XT; A m {T< m}] 

applying optional stopping to the uniformly integrable martingale (Ms.^t)t>=o 
in the third step and noting S, t m (P) in the fourth. 

(1.10) Remark. The lemma shows in particular that (Xt) remains strictly positive 
up to its lifetime: if Tx==inf{t>OlX,=O} then we have 

1 
pX [ Tx < ~] - 

E [Xo] 

by right continuity of (Xt). 

E[Xrx; Tx< 007 = 0  

2. Classification of X in Terms of the Lifetime 

We are going to translate the usual classification of supermartingales into a 
classification of the lifetime (. Let us first recall some definitions. X is of class (D) 
if the family {XT[ T stopping time} is uniformly integrable. If X is a potential i.e. 
lira E [Xt] = 0 then X is of class (D) if and only if lira E [XRJ = 0 where 
t $ o o  n 

R.,=inf{t>O[Xt>n} 

(cf. [6] VI T 20). X is called regular if lim E [XT,] = E [Xl i  m TJ for any increasing 
sequence of uniformly bounded stopping times. Any martingale is regular. Note 
also that any regular potential is of class (D): for any c < oo we have lim E [XR,] < 
lim E[XR,^c ] by optional stopping, and since R , i "~(P)  regularity implies 
lira E [XR, ̂  c] = E [Xc] which can be made arbitrarily small. 

Suppose now that T, T1, T2 . . . .  are stopping times and that the sequence (T,) 
increases. Let us say that T is previsible (resp. totally unprevisible) by (T,) if 

pX[T.'[T, T .<Tforany  n ] = l  (resp. =0). 

T is called totally inaccessible if T is totally unprevisible by any sequence (T,). 

In order to simplify the notation we assume from now on E [Xo] = 1. 

(2.1) Proposition. 
(i) X is a martingale <:> (= ~ (pX) 

(ii) X is a potential <=> ~ < oo (px) 
(iii) X is a local martingale r ~ is previsible by (n/x R,,) (pX). 
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I f  X is a potential, then we have: 
(iv) X is a local martingale ~ ~ is previsible by (R,) (pX) 

(v) X belongs to class (D) <=~ ~ is totally unprevisible by (R,) (pX) 
(vi) X is regular <=~ ~ is totally inaccessible (pX). 

Proof Since pX {~ > t} = E [Xt], we have (i) and (ii). Suppose now that X is a 
local martingale. The stopping times S, used in the construction of pX reduce to 

S , = n A i n f { t > O I X ~ [ 1 ,  n]}, 

and since (Xs,) is a martingale, we have S, < ~ (pX) by (1.9) and therefore S, T ( (px)  
because Soo > ~ (pX). We can now replace S, by n A R, if we know that (Xt) is 
bounded away from 0 up to time ( (pX); this will be shown in (4.3). 

Conversely, let us assume that ~ is previsible by (n A R,) (pX). Then we have, 
for t>s and A ~ss ,  

E[X,^R,,^t; A] = p x [ A  • (s, oo3 ~ {~>n A R, A t}] =px[A x (s, oo]]. 

Comparing for t > s and t = s, we see that (X, ̂  R. ,, ~)~ ~ o is a martingale, and since 
n A R, T oo (P), (X,) is a local martingale. 

For  the rest of the proof we assume that X is a potential. As [ < oo (pX), we 
can replace n A R, by R, in (iii) and obtain (iv). To prove (v) and (vi), let us observe 
first that ~ is totally unprevisible by a sequence of stopping times increasing to T 
if and only if 
(2.2) ~ {T,,< ~} _~ {T<~} (gX) 

n 

X is in class (D) if and only if lim E [XR.] = 0, and this is equivalent to 

pX [ (-] (R, < [}] = lira pX {R, < ~} = lim E [X , . ]  = 0. 
n n 

Since lim R , > l i m  S,>[ (pX), (2.2) yields (v). As to (vi), let (T,) be a sequence of 
stopping times increasing to T. For any a > 0  we have 

pX[(-] {T, Aa<~.}]=limE[Xr.A,J, PX[{TAa<~.}]=E[Xr^,], 
t l  

and so (2.2) implies that X is regular as soon as [ is totally inaccessible. But the 
converse is also true since a is arbitrary and ~ < oo (px). 

3. Decomposition of pX 

In this section we decompose the measure pX in a series of terms which may 
be viewed as the different components of the terminal behaviour of X; this inter- 
pretation will be made more precise in Section 5. We continue to assume E [Xo] = 1. 

Let us first consider the rather transparent case where X is a martingale. 
pX is then concentrated on Q x {oo}, and thus it may be identified with its projec- 
tion on (~2, Y) :  

pX[A]'. =px[A • {oo}] =l im pX[A x (t, oo]] 
t t o o  

= lim E [Xt; A] (A E U ~ )  
t t ~ 1 7 6  s > O  
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It is now easy to see that X is uniformly integrable if and only if pX, considered 
as a measure on ~,, is absolutely continuous with respect to P, and that the density 
is given by the boundary function X~o: = lira X t. 

In order to discuss the general case let us first relate px to the measure QX 
induced by the increasing part of X. Recall the additive decomposition X = L - I 
(Doob-Meyer) which we used in the proof of (1.5). l=(It)t~o induces a random 
measure fl(co, ds) on [0, oo] via fl(co,(s, t])i=It(co)-Is(co ) and fl(co, {oo}).-=0, 
and if we take the product of P with the kernel fl then we obtain a a-finite measure 
QX on the product field o~: 

(3.1) Qx Di], =E  Eft(co,/i~)] 

where Ao, is the co-section of A ~ f .  Let QXl~ denote the restriction of QX to N, 
and let us define R~: = sup R, where (R,) is the sequence used in (2.1). The following 
lemma shows in particular that px and QXl~ are essentially equal if X is a poten- 
tial of class (D) because then we have ~<Roo (pX) by (2.1). This establishes the 
connection between our results and the construction of Doleans in [2]. 

(3.2) Lemma. pX and QXl~ coincide on {~<Roo}. 

Proof Let U,:=nAR,  (n>0); then U,<Ro~ by (1.1). For s > 0  and A e ~  we 
have 

QX[A x (s, ~3  c~ {~<R~}] = ~ QX[A x (s, ~]  c~ {U,<~< U,+~}] 
n > 0  

and, since (Lv,+ ~^ t) is a uniformly integrable martingale, 

QX[A x (s, ~ ]  c~ {U. < ~< Un+l} ] = E [ / u . + l - I v . ;  A c~ {U.__s}] 

+ E[Iv.+l-Is; A c~ {U.<s}] 

=E[X~ -Xu.+, ;  A • (U._>_s}] + E [X~- Xu.+,; A n {U.<s}] 

=px[A x (s, ~3 c~ {U.<~< U.+I}]; 

this implies (3.2). 

We are now ready to prove the following decomposition theorem. 

(3.3) Theorem. There is 
(i) a sequence of previsible stopping times T, (n= 1, 2 . . . . .  ~ )  and for each 

n = 1, 2 . . . . .  ova measure N x (n,.) on fiT,- 
(ii) a strictly increasing time change (TOt>=o ([61 VII, D 13) and for each t~(O, vo) 

a measure sX(t, .) on fTt-  
such that 

(3.4) pX[A]= ~ NX(n, Ar,)+ S SX(t, Aw)dt (A6~). 
l~n_<oo 0 

Proof Let us first note that for A ~  and any stopping time T the section AT 
is in f iT- ,  and that A x { T } ~  for A ~ f r _  ([7] Appendice 1). We define now 
T~=R~ and Nx(o%A):=pX[Ax{R~}].  On r the measure pX 
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coincides with QX by (3.2). By [7] 306 we have 

It=IT+ Z c.I[r.,o~) 
n>=l 

where (I~) is the continuous part of I and (T.) is a sequence of previsible stopping 
times. Let (Tt)t> o be the time change associated to fit) (see [6] VII D 13, T 12); the 
continuity of (It) implies that (Tt) is strictly increasing. Then we have 

co 

QX[Ac~{~<Roo}]=~c.E[fi.r.; T~<R~] + ~ ElATe; Tt<R~o] dt, 
0 

and if we define NX(n,A):=c.P[Ac~{T.<Ro~}] on fiT.-  and sx(t ,A):=E[A; 
T t < R~] on ~-T~-, we obtain (3.4). 

4. R e l a t i v e  S u p e r m a r t i n g a l e s  

Let X be a supermartingale as above with E [Xo] = 1. Defining ~t~ = ~t  ~ c~ .~ 
we obtain an increasing family of a-fields on the probability space (~, ~ ,  pX), 
and we can consider the supermartingales relative to this system. These relative 
supermartingales are a useful tool in the boundary theory of Section 5. 

Let us associate to any process Z=(Z~ on f2 a process Z=(Z~ on 
by defining 

(4.1) Zt ~ (c~), = Z ~ (co) Iu, oo1 (s) 

for c~=(co, s ) ~  (I A denotes the characteristic function of the set A). If Z is 
adapted to ( 4  ~ then Z is adapted to (~o). Conversely, for any process Z which 
is adapted to (~o) we can find a process Z adapted to (~,~o) such that (4.1) holds 
at least on {~>t} just as in (1.3). 

We assume now that Y=(Ytt~ is adapted to (~~ o and define the ratio 
process Z = Y/X by ~o _ Yt ~ I ' 

z~t : - - ~ t  0 (Xt~ 

Z = ( Z  ~ is the corresponding process on Q. The following proposition shows 
that ratios of supermartingales on f2 reduce to relative supermartingales on ~: 

(4.2) Proposition. I f  Y is a supermartingale then 2 is a supermartingale relative 
to pX. Conversely, if Z is a supermartingale relative to pX and Z is associated to 
via (4.1) then Y : = Z X  (i.e. Y=(Yt ~ with Yt~ ~ X ~ is a supermartingale with 
respect to P. 

Proof If ~ e ~ o  then A n { { > s } = A •  oo] for a suitable set A ~  ~ and 
for any t > s we have 

U[2~ 41 = U r2~ ~ {~> tyl =exEz~ A ~ {~ > s}3 

= E [ Yfl I~xo. o~; A]. 

If we compare the result for t = s and t > s and note {Xt ~ ~ 0} ~ o _ {X] 4= 0} (n) then 
we obtain the first statement. Conversely, if 2 is a supermartingale relative to pX 
11 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 21 
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then E[Z t Xt; A]=Ex[Zt;  A • (t, ~ ] ]  ( A ~ ,  s<t) 

and this implies the second part. 

As a first application let us show that the paths of X are bounded away from 0 
(pX). This means in particular that the exit values lira Xt are strictly positive (pX), 
and this was needed in the proof of (2.1). tTr 

(4.3) Corollary. inf-~t>0 (px). 

Proof Consider the ratio process Z =  1IX. Z is a supermartingale relative 
to pX. Therefore its paths are bounded (pX), and this translates into (4.3) because 
Tx=~ (pX) by (1.10). 

5. Exit Measures and Extremal Structure 

In this section we fix a system of a-fields g t = ~ t  ~ (t>O) which is invariant 
under conditioning. By this we mean that 

(5.1) E [q~]~ ~ = E [q~lgs] (s<=t) 

whenever t_> 0 and ~ is an integrable function which is ~t-measurable. We denote 
by gt the a-field on s generated by the sets A >< (t, oo] with Ae~t and call 

= n > t} v (t_>_ 0)}  
u > t  

the exit field. ~ n  {~ = t} may be identified with the tail field Et ..= n v ~u, 
s < u < t  

and in particular we can identify g n  {~= 0o} with the boundary field g~. 
We are now going to look at the convex cone S of those supermartingales 

X=(X~ with EEX ~  (defined as above) which are adapted to (g~)t~o: 

X ~ is ~t-measurable (t=>O). 

Let us call x pX the restriction/2 of the measure to the exit field g the exit measure 
of X ~ S. If X is a martingale then we can view/2x as a measure on g~ (cf. Section 3) 
and call it the boundary measure of X. 

(5.2) Theorem. Any X ~ S  is determined by its exit measure (up to a constant 
factor). 

Proof Suppose that X and Y are in S, that E[Xo]=E[Y~]=-I, and that the 
exit measures coincide. We are going to show that pX= pr on ~,  and this implies 
X = Y in the sense that X is a modification of Y. 

We may and do assume that p r  is absolutely continuous with respect to pX 
(if not, replace X by X ' = � 8 9  Y) and note that Y=X'  implies Y=X). Let Zoo 
be a ~-measurable density function on ~. The assumption pX=pr  on 8 implies 
E [ Z ~ [ g ] = I  (pr), and it is enough to show that in fact we have Z~o=l (pr). 

Let S, be the set of dyadic rationals k2-"  (0<k<n2") ,  J,~,=(s,s+2-"] for 
n>s~S,  and J,,,=(n, ~ ] ,  and denote by ~"  the a-field generated by the sets 
A x J,~ ( A e ~  ~ seS,). The sequence (~"),e t increases to .~, and by the martingale 
convergence theorem we obtain 

Z,,=Ex[Zo~lg ~"] ~ Zo~ (pX). 
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We are now going to choose versions Z.  such that li_N_m Z,  is 2-measurable; 
we can then identify Z~ with EX[Zoo[g] = 1 (px), and this proves pX=pr  on ~.  

For any n > 1 we define 

A"sX:={Xx: 2-E[X~176 (s=n)(n>s~S") 

and, in the same way, A=s Y By hypothesis (5.1) we may assume that A,= X and 
A,,= Y are G-measurable. We define now 

A,= Y I 
(P,=:= A,sJ ~ (~~ 

note that 

( 5 . 3 )  PX[{A.sX=O } xJ,,=]=E[X=-X=+2-.; {A,,sX=O}]=O 

for n>seS,, and similarly for s=n, and define 

z .  (~).. -- F, ~o.= (co) b.= (t) 
s~Sn 

for ~ = (co, t)~/) .  Zn is ' ~ -measurab le .  For  s ~ S, and A ~ ~ o  we have 

U [z . ;  A • J.2 = U [Z.; (A n {A.s X 4: 0}) • L 3  

=E[~O~ A.= X; A n { & s X  +0} ]  

=E[A, ,  s Y; Ac~{A,,=X:t=O}]. 

On the other hand, since pr is absolutely continuous with respect to pX, we can 
use (5.3) to write 

pr [Ax  J.sJ = pr  [(A c~ {A.= X ~: 0}) x J,,s] 

=E[A,=Y; Ac~{A,=X=~O}] 

and this shows that Z,  is in fact a version of EX[Z~l~"]. Furthermore we have 

(lira Z=) I(~ > t} = lim 2 (o~= I j== 
n s ~ S n  

s > t  

where the right side is V ~-measurable, and this finishes the proof. 
U > t  

Combining (3.3) and (5.2) we can characterize any X ~ S  by its terminal behav- 
iour in the following sense: 

(5.4) Corollary. Any X ~ S  is determined by 

(i) a sequence (Tn)==I, 2 .... of previsible stopping times and a corresponding 
sequence of measures vX(n, ") on gr . -  (the "exit behaviour at time T,") 

(ii) a strictly increasing time change (Tt)t> o and a corresponding system of 
measures ax (t, ") on grt- (the "exit behaviour at time Tt')  

where we have 6~ = { A ~ S I A  • { r}~g}  for any stopping time T. 
11" 



164 H. FSllmer: 

In order to establish the relation between exit measures and the Choquet 
integral representation in S we need the following 0 - 1  law for the extremal rays 

1 
in S. Let us call X e S  extremal if - -  X is an extremal point of the convex 

E[Xo] 
set SI:={X~S]E[Xo]=I},  and let us denote the set of these extremal points 
by ~$1. 

(5.5) Theorem. X is extremal if and only if the exit measure #x is O-  1. 

Proof 1) Let us assume that #x is 0 - 1  on ~ and that X is a convex combina- 
tion of Y and Z in $1. Then it is easy to check that pX is a convex combination 
of p r  and pZ. But this implies p r  = pZ on d by assumption. Theorem (5.2) now 
shows that Y and Z are both proportional to X, and this means that X is extremal. 

2) We assume now that X is extremal and take a set A ~ g  such that pX [4 ]  4=0. 
The process Zt~ �9 = E x [Ixl ~o]  (t > 0) is a martingale relative to pX which is bounded 
by 1, and we may choose an Z-measurable version as shown in 3) below. By (4.2) 
the process Y= Z X  is a supermartingale. Recalling the construction of Z = (Zt ~ 
it is easy to see that we can choose Z ~ gt-measurable, and this shows YeS. More- 
over Y is majorized by X, and since X is extremal we have Y = c X  for some 
constant c>0 .  Using (1.6) we obtain that pX coincides with the normalized 
restriction of px to .#. But this implies pX [4 ]  = 1. 

3) We have still to verify that 2o. .=  E x [_lxl~ ~ has an ~-measurable version 
whenever A~ & Since A ~ {~ < t} ~ ~o  and A (~ {~ > t} e V gs =" YC we can assume 

A e ~ .  The class ~ of sets A~ ~ which do have the desired property is closed under 
disjoint unions and proper differences, and it contains the generating sets A, x 
(u, oo] with u>t  and A, eg,: 

E x [A, x (u, oo ] l ~  ~ (co, s) = E [X, IA~ I ~  0] (CO) lr col(S) 

by the construction of pX, and this function may be chosen Z-measurable by 
hypothesis (5.1). It follows now by induction that ~f contains all the finite inter- 
sections of such sets, and this implies ~ = 24~ 

We can now identify the exit measure fix as the Choquet measure of X when- 
ever the latter exists. Suppose that X is barycenter of a measure px defined on a 
fixed a-field 8 ~  on 3S 1. To be precise: we assume that qo(Z)." = E  [Zt; AJ is a 
8~-measurable function on 0S1 and that 

(5.6) EEX,; A]=~E[Z,; A] px(dZ) ( A e ~ ,  t>O). 

Let us also assume E [X0] = 1. Then we can conclude: 

(5.7) Corollary. The measure algebras of (#x, 2) and (fix, 8~) are isomorphic. 

Proof (5.6) implies 

px[A• o�9215 o�9 (t>O, A~J~t). 

Hence px is the product of fix with the kernel Z ~ pZ from 8S~i to ~.  For  A ~ g  

we obtain by (5.5) #x [4 ]  = ~ pZ [4 ]  f~x (dZ)--- ffi [A] 

where A." = {ZIP z [A] = 1}, and this establishes the isomorphy. 
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6. Appendix on Standard Systems 

Let T be a partially ordered non-void index set and let ( ~ ~  be an increasing 
family of a-fields on s We call (@~ a standard system if 

(i) each measurable space (t?, ~o )  is a standard Borel space (cf. [9] p. 133) 
i.e. ~ o  is a-isomorphic to the a-field of Borel sets on some complete separable 
metric space 

(ii) for any increasing sequence (ti) in T and for any decreasing sequence 
Aic__ t2 such that A~ is an atom of ~ ,  we have ~ A i 4= f). 

i 
In Section 1 we used the following properties of standard systems. 

(6.1) Remark. Let (~~ be a standard system with T=  [0, oo), and denote by 
(~)t>_o its right continuous modification. 

1) If (T,),__>I is an increasing sequence of (~)-stopping times then (Yr,-),__>1 
(cf. Section 1) is a standard system. 

2) If (~ut~~ o is a standard system on t~' then (~o  x~o)~_>_o is a standard 
system on t2 x s 

Proof 2) is clear. As to 1) note that ~ r , -  is countably generated and contained 
in ~." = V ~o .  ~- is standard Borel by [9] V Th4.1, and then the same is true 

t>0 
for -'~T,- by [9] V Th2.4. If A,s ,~r ,_  (n= 1, 2 . . . .  ) is a decreasing sequence of 
atoms then we have An= A, c~ {T,= t,} s ~ ,  for some increasing sequence (t,), and 
this implies ('] A, 4= ~0 by (ii). 

n 
For the convenience of the reader we quote the extension theorem used in 

Section 1. Let (,,~), => 1 be an increasing sequence of a-fields on t? satisfying (i), and 
suppose we have a consistent sequence of probability measures #, on ~ (n = 1,2,...). 

(6.2) Theorem (cf. [-9] V Th3.2 and 4.1). I f  condition (ii) holds then (1~,),?=1 admits 
an extension to a probability measure on V ~ .  In the general case there is a 

n ~ l  

measure I~ on the inverse limit of the measurable spaces (s ~ )  such that the projection 
of # on ~ coincides with #,. 

(6.3) Examples. 1) Take t2= [-0, 1] with Lebesgue measure P on the a-field Y 
of Borel sets, and let ~ o  be the a-field generated by the dyadic intervals 
[ (k -1 )  2-", k2-") (1 < k < 2  -n, n<t). Then (~~ o is a standard system. In this 
simple case our results are fairly obvious. In particular (taking gt =-~~ positive 
martingales correspond to positive measures on ~,, and extremal martingales 
correspond to point measures. 

2) Let E be a state space (e.g. locally compact with countable base), let A be 
an additional absorbing point, and define f2 as the space of right continuous paths 
co: [0, eo) ~ E w {A } which stay at A once they get there i.e. after the absorption time 
~(co): = inf{t > 0l~ (t)= A }, and which have limits from the left on (0, ~ (co)). Define 
~t (co) = co (t) and let ~ o  be the a-field generated by the functions ~s with s < t, Then 
(,~~ o is a standard system: Meyer has shown (i) (cf. [1] p. 100 and in particular 
line 1), and (ii) is easy to check. A thorough discussion of this crucial example 
together with a direct construction of the measure pX can be found in [8]. 

Finally I would like to thank A. Cornea for a stimulating discussion, and especially P.A. Meyer 
who read the manuscript and set me straight on a number of points. 
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