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Finite Elastic Deformations of an Infinite Plate Perforated 
by Two Circular Holes under Biaxial Tension* 

By H. Miyata 

Summary: Based on the theory of finite deformations and by the use of a given reference frame in nndeform- 
ed body, stresses of an incompressible isotropic infinite plate with two circular holes subjected to biaxial 
tension at infinity are investigated. The material is assumed to be in the state of finite plane strain. The method 
of successive approximation is used in connection with the complex variable method of plane elasticity. ~ume- 
rical results due to the second-order approximation theory are given for stresses, and compared with those 
predicted by classical theory of elasticity. 

Ubersieht: Es werden die Spannungen in einer unendlich ausgedehnten Platte mit zwei kreisf5rmigen 
LSchern nach der Theorie endlicher Verformungen und unter Verwendung eines im unverformten KSrper fest- 
gelegten Bezugsgeriistes untersncht. Die Platte besteht aus iirkompressiblem isotropen Material und wird einer 
im Unendlichen zweiachsialen Verzerrnng ausgesetzt. Der Verzerrungszustand wird als eben angenommen. 
Bei den Untersuchungen werden die komplexen Methoden der ebenen Elastizit/itstheorie in Verbindung mit 
schrittweisen N/iherungen angewendet. Aufgrund einer Ann/iherung zweiter Ordnung werden die Spannungen 
numerisch ansgerechnet und mit den Werten verglichen, die yon der klassischen Elastizit/itstheorie vorausge- 
sagt werden. 

1. Introduction. In  the theoretical problem of large elastic deformations of incompressible 
isotropic hyperelastic bodies, basic equations become nonlinear and the problem is rather difficult 
to be solved. A general theory of finite deformations has been previously treated by Cauchy, 
BriUouin and Murnaghan and greatly developed by  Green and Zerna [1]. Moreover, a number 
of problems has been solved completely by  Rivlin [2] and by Green and Shield [3], whereas there 
are many practical problems in which the magnitude of deformation is much larger than that  
considered in classical elasticity but  remains reasonably small. For such problems the successive 
approximation approach based on the general theory of large elastic deformation is quite useful, 
al though it may  be more desirable to obtain the closed solution without any restriction, imposed 
either upon the magnitude of the deformation or on the form of the strain energy function [2, 3]. 
Recently Adkins, Green and Shield [4] have developed a general method of successive approximation 
for the problem of plane strain for incompressible isotropic materials. In  evolving this method it is 
assumed that  the stresses and displacements are expressed as power series of a perturbation para- 
meter ~, the choice of which depends on the problem under consideration. The first order term of 
this expansion corresponds to the classical elasticity and a solution can be obtained by means 
of Muskhelishvili's complex variable technique [5]. The second order term can also be expressed 
in terms of similar complex potential functions. 

This theory has been applied to treat the finite deformation problems and a few problems have 
been solved by  this approach [4, 6]. These studies are worked by the use of coordinates in the 
deformed body. The solution in terms of a given reference frame in undeformed body may also 
be interesting for comparing the second approximation solution with tha t  given by classical elasti- 
city. 

In  the present paper the application of tile method of successive approximation are performed 
to obtain the solution of the plane strain problem in terms of a system of coordinates in the unde- 
formed body. Stresses in an infinite plate with two circular holes are discussed. I t  is assumed that  
the plate is subjected to biaxial tension and holes take given shapes before deformation. The basic 
formulas and notations developed by Adkins, Green and Shield in their theory of finite elasticity [4] 
will be used throughout  this paper. 

2. Basic Equations. The cartesian coordinates of points in the undeformed and deformed states 
are denoted by ~e, xa (~ _~ 1, 2), ~e a : x 8 respectively and the complex coordinate system in the 

* The author wishes to express his hearty thanks to Osamu Tamate, Professor of Tohoku University, for 
directing the work. 
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undeformed body is defined by tensor transformations as follows (Greek indices take, henceforth, 
the values 1, 2): 

~ ~ = ~ + ~ ~ = ~ - i ~ = ~ .  (1) ~ = ~ , + ~  = ~ + i ~ = ~ ,  

Moreover, we choose the moving system of coordinates 0~ to coincide with the system of coordi- 
nates ~ so that  

01 = ~1 : ~ ,  02 = ~2 --  ~.  (2) 

NOW, let u, V denote the components of displacement along the ~-axes of the undeformed body 

respectively and define the displacement function D(~, () as follows: 

x~ + i x ~ = ~  + D ,  x l - - i x_~=~u+ D ,  ] (3) 
D = u + i v ,  D = - - i v .  

From the conditions of incompressibility of the material and state of plane strain, invariants of 
strains can be written as 

and therefore 
/ 3 = 1 ,  I~= I~= I ,  

~D ~/) 0D 9/) ~D ~D 0 (4) 
~-~+~-~ ~c ~ o~ ~ -  . 

Denote a ~  and A ~  respectively the covariant metric tensors associated with curvilinear 
coordinates 0~ in a plane ~a = 0 of the undeformed body and in a plane x a = 0 of the deformed body : 

a ~ =  , & ~ =  ~-( . (5) 

By the use of (5), first and second strain invariants are given as follows: 

OD 8D 
I i = I z = I = 3  A - 4 ~ # - ~ -  (6) 

The equations of equilibrium for plane strain in the absence of body forces are identically 
satisfied if the stress tensor z:~ is expressed in terms of Airy's Stress function ~b(01, 02) by 

T ~ = ( 1 / ~ )  e ~  e~e ~bll w , (7) 
where  

e~v ~'A = e~V 3 (e~3: Eddington's epsilon) . 

Here A is the determinant of the covariant metric tensor A ~  of the deformed body and the symbol ]1 
denotes covariant differentiation with respect to the deformed body. Then we obtain the governing 

equation for stress function q)(~, ~) as follows: 

2 A , ~ - ~ r - - 2  a ~ - - ~  R ~ 0~ R + A n H = 0 '  (8) 

where 
t f  = 2 (dW(I)/dl) . (9) 

Now we take strain energy function W(I) proposed by Mooney [7] 

W(Ia, I2) = C~ (I~ -- 3) q- C2 (I~ --  3) = (C a -1- C~) ( I  --  3) ( =  W(I) ) ,  (10) 

where Ci, C~ are material constants. 
From (7) the complex stress components T ~  referred to coordinates in the undeformed body 

are given as follows: 
T ii = ~ = --  4 q~ll~, T l~ = 4 q~[[i~ �9 (11) 

If the resultant force P across any arc of a curve in the deformed body has components (X, Y) 
along the ~i- and ~-axes respectively, we obtain the ec~uation in the appropriate form 

{_~ ~D ~q~ 0D ~ }  (12) P = X + i Y = 2 i  



39. Band 1970 iLL Miyata: Finite Elastic Deformations of an Infinite Plate Perforated 211 

The basic equations of classical elasticity are derived from these equations by simply ignoring 
the squares and products of displacements and their spatial derivatives. In the second approxi- 
mation theory, we expand D(r ~) in the power series of a small quant i ty  r as follows [8] : 

D =- e(~ + 82(1D) -~- . . . .  (13) 
Then from (6) and (9) 

I - = 3 - } - 4 s 2 ~ ~  ~~ } [ ~ ~ -{- . . .  , H - - - - - ~  2(2H)~OD ~0~ ~ ~; + . . . ,  ( 1 4 )  

where 

For Mooney materials we take 

~ = 2 (C~ -}- C2) = E l 3 ,  2H ---- O, 

where E is the Young's modulus. 
Plow, we expand q)(~, ~} also in the power series of e as 

@ = ~ e {0q) +e(lq~) + . . . )  . (15) 

By  substituting (13), (14) and (15) in the incompressibility conditions (4) and in (8) respectively, 
and equating to zero all the coefficients of e, we obtain 

~1 D ~1~ ~o D 8o~ ~o D ~o~- 8o D ~OD- 0 - -  + + --  0 (16a), (16b) ~ + ~ = , ~ - ~  ~ ~ ~ ~ , 

8zo@ 8o D 
a;' + - ~ -  = 0 ,  (17a) 

~z,q~ ~D ---- 2 ~o~ O~q~ ~20~ ~0r ~z0~ ~0q) ~o D ~0/~ (17b) 

The solutions of (16a), (17a) can be expressed in complex potential functions ~(r W(r given by 
Muskhelishvili as follows: 

o@(r ~) = r ~ ( 0  + ~V(O + / ~ (0  de + f  9 ( 0  d~',/ (18) 

OD(r ~ = ~o(~) - -  ~ ~"(~j - -  v~(~. �9 

By taking account of (18) the solutions of (16b), (17b) can also be expressed in similar complex 
potential  functions zJ(~), 2(r as follows: 

- -  5 7 
~(~' ~) - ~ (0  + r ~'(0 + ~g) - ~- r <~'(~)}' + ~ ~(0 ~'(~) - ~- ~(~, ~) 

1 
1D(r ~) ---- A(~) - -  r zJ'(r - -  2(r - -  ~ ~'(r ~($) - -  5~0(~)  ~'(~)  + (19) 

5 

where 

v(r ~ = 6 <r ~"(~) + V(f)} <~'(r + w(r + ~(~)} + 

(20) 
d(r = 2 {~ ,}"(~) + ~'(~)) {~r +w(O + ~(~)) - 

--  {2 q~'(r -- 3 ~'(~)} {r ~'(~) + Cf(~) -}- ~v(r 

Furthermore,  it is assumed that  the resultant force P can also be expanded in the power series 
of ~ as follows : 

p __= o/-/s {op + eQp) +. . .} .  (21) 
15" 
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Then from (12) and (21) we have 
~0 D 0o~ ~0 D ~oq~ (22) 

~  ' ( ~  ~ ~ ~ j "  

On the basis of this mathematical preparation, we proceed to investigate the finite plane strain 
problem of infinite plate with two circular holes. 

3. Infinite Plate with Two Circular Holes. The theory developed in the previous section are 
applied to the problem of an infinite plate having two circular holes subjected to biaxial tension. 
Attention will be confined to terms of the first and second orders only. 

"~1 ,," LZ 

Fig. 1. Coordinates in nndeformed body. 

c o n d i t i o n s .  We take the coordinates system in the undeformed body as 

(23) 

(24) 

ditions at infinity yield ~0~ ~0~ (~) / 
O~ 2 - -  ~x~ - -  h + O  1 , 

~ 2 o ~  
( ~ [ )  ~ for large ,x[ 

/ 

Ox~Y, = m @ O  ~ , [ �9 

I OY/ = Ox 2 - -  Ox ~ = 0  

(27) 

From (22) the boundary condition which should hold on the free boundary of a hole for first and 
second order terms respectively we find 

0%b 00q5 
- -  = const. , (284) 

~ ~x 
~1r 6o D aoq~ ~0 D 00q) 
~g, q- ~x 0~ ~ ~x --  const . ,  (28b) 

where constants in the right hand side of (28) should be determined from some freedom in the choice 
of complex stress functions corresponding to the same state of stress. 

b) E v a l u a t i o n  of c o m p l e x  p o t e n t i a l  f u n c t i o n s .  I t  is easily shown tha t  the first two 
equations of (27) will be satisfied if 

//$ 
~0(x) • ~- x A- q)0(x), ~v(x) = - -  h x q- ~Vo(X ) (29) 

a) B o u n d a r y  
shown in Fig. 1 and introduce the following nondimensional quantities 

x = ( l d ,  ~ = a i d ,  v = b i d .  

Let T1, T 2 denote the principal stresses at infinity, we have 

T11=~2= TI__ T~, T ~-~ T I +  T 2 

at infinity. We take here as the perturbation parameter  

T 1 -- T 2 3T (25) 
e --  4 0 ~ - - 4 m  E ,  

w h e r e  

-~ T 2 , m -  --T~I- + ~T2~ (26) 
f ~ 

T =  

and also put  h = ( T  1 - -  T2) / (T  1 - -  T2) = 1. Therefore, f rom (11), (15), (24), (25) and (26), the con- 
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The functions %(x) and %(x) are holomorphic in the region S + including the point at infinity and 
can be determined by the boundary condition. Then, %(x) and %(x) can be expanded in series and 
therefore the required functions ~0(~) and ~v(x) can be written in following forms 

rrt k=~0(:s k=~X ek ~ f k ~ g k  (30)  (p(x) = T x + ~ q- (x - -  1)t' go(x) = --  h x + -~  + ( x -  1)t" 
= = k=O k=l 

where co, fo, % %,f~, gh (k = 1, 2 . . . .  ) are unknown real coefficients of expansion. 
From (18) and (28a) the boundary conditions on the peripheries of holes become 

~0(x) q- x ~'(~) q- v-fl(~) ----- const. = C/ (j ---- 1, 2 ) ,  (31) 

j = ~ on L~ (~ = ;~ ~ ) :  Cl = O, 

j = 2  o~G ( x = l + v ~ ) :  c~#0 ,  

where ay = e ~~ (vqj = polar angle;j  = 1, 2) and C~ is unknown constant. With the aid of (30), these 
equations are transformed to 

co Ck ~ ek co Ck o~ ek 
~o(Z~)~ + (z~-  1)~ 2(h Z t~ - - ; , ~  Z k ~=1 ~=1 ( ~ f l ) ~ + ~  O . ~ f ~ -  1)~+~ + ~= k = l  

. . . . .  ( ) , a i~L"  + m, ta :  -- tt2eri-* = 0 on  La , (32a) (.,', ~f~)~ iF' ' s lz=l 

and 
oo Ck co ek co 

k=~0= ( l  + V O'2)k @ k~l-. 0 ) 2 )  ~ - -  (1 -{- v ~2) k = i  ~ ~ 

oo ek 
( d- a - ' J  . l _ _ v  1.~+1 k = l  ~" 2 " 

oo A co gk + m ( l + ~ r  C' 

(32b) 

Equating the cQefficient of each power of ~h on both sides of (32 a) and taking account of the single- 
valuedness of displacement, we obtain 

oo oo 
q. = hZ2 - -  Z ( - -  1)kgk ~Yk2 ~ --  Z ( - -  1) k el~ Zs,:+t, t4 , ] 

k=l k = l  
oo oo 

f l  : - -  m 2 2  - -  s ( - -  1) h ek1~Yk22 - -  s ( - -  1) 1~ ek~ 2 , 
s  k=l 

G = -- ~Y7 (--  1)kg~"y~,V ~ -  ( - -  1)ke~=+lS~+l)3 n+z , n > 2 ,  (33a) 
s k=l 

f ~ =  - -  ~ ( - -1 )aek")ea) , z~  q- (n - -  2) c,_22~ 2,  n > 2 ,  
k = l  

2'[ 1 Co = . / ;  = - Z ( -  l.)~ % %  - ( -  17  ~, ~S~+l,V - ( -  11~ g,~% , 
k = l  k = l  ~ k = l  

where n~dla are binominal coefficients, i.e. n)J k .~ - (k  @ n n - -  1 )  a n d  nSk+l  ~ -  kn)yk+l. 

By applying a similar process for (32 b), we have 
oo oo oo 

e I = h j)2 __ ~ ck lSk+l~)2 _~_ ~ Ck2Sk_j_lj)4 _~ Z f k  l~J/a v2 ' 
k = l  k = l  k = l  

oo oo 
g~ = - -  m v 2 + Z cl, XYk v2 47 ~ %~ ~'~, 

k = l  k = l  
oo 

en = ~ (- :  1)"ck%l:+lV 2n - -  ~ ( - -  l)"ckn+Isl~+l V 2n+2 -- ~ ( - -  1)=fk"ykV 2" , n > 2 ,  (33b) 
k = t  k = l  k = l  

g , , - - = ( n - - 1 )  e , ~ _ ~ + ( , t - - 2 ) e , , _ 2 v = - - S ( - - l l ' ~ c ~ ' ~ y k v  = ' ,  n > 2 ,  
k = l  

oo oo oo oo 
C~ m h + 0 = - -  2 %  Y l ~ - - X c a ~ 1 7 6  �9 

k = l  k = l  k~-i k = l  
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The set of equations (33) is the simultaneous linear equations for determining the unknown coeffi- 
cients of expansion of (30), when the values of m, h, ~L and v are given. To solve this set of equations, 
it is rather convenient to use the iteration method in which the set is reduced to a finite one by 
taking only the first I equations involving the first I unknowns of each set of expansion coefficients: 
Thus we shall seek a solution in the form 

c~ =- lira c~) etc..  (34) 
p~oo 

Zeroth iterations (p = 0) of c~ andf~ only are to be substituted into (33). I t  may be noted that the 
solution is valid only in the case where each of limiting values in (34) is convergent. The convergence 
seems rather difficult of proof, although it seems unlikely from the physical consideration that there 
will be divergence when ~, = a/d < el, v = bid < e2, and el § e~ < 1. 

1Next, we shall determine the complex potential functions A (x) and A(x) of the second order term. 
For this purpose we see that  the equations in the last line of (27) will be satisfied if 

7 1 / ' ( x , ~ ) : 0  ( 1 )  (35) ~ = ~ ( x )  + ~ J ' ( ~  + ~(~)  - ~ <~'(~)>~ + ~(~} ~'(~) - - ~  

for large Ix]. Functions Zl(x) and 2(x) can now be expressed as follows: 

A(x) = B~ x + zl0(x), ~(x) = B 2 x § A0(x), (36) 

where Ao(X ) and ~0(x) are holomorphic in the region S +, so that these functions can be expressed in 
series. The quantities B 1 and B 2 are constants determined from the singularity of Z] (x) and ),(x) at 
infinity ~espectively. Further, for large [xl: (1) / 

/ ' ( x , ~ ) = - - - - h m ~ §  ~ z + 0  ~ , (37) 

~-,~ {~'(~)}'. - ~ (x )  ~ ' ( ~ )  = - - ~  + o i ~ - "  

Substituting (36), (37) into (35) we find the constants B~, B~ and finally 

/ l ( x )  3(m2-~" 2h2) x co CI~ EI~ ] 

= ~ = '  ! (38)  

8 x §  - )~' 
k=0 k = l  

where Co, F0, C}, E}, F~, G~ (k = 1, 2 . . . .  ) are real coefficients not yet determined. These constants 
will be given by the boundary conditions at the edges of holes for second order term, that is 

6q~ ~o D 6qo~ ~OD 8o~ 
~ - ~  ~x ~ ~$ ~x =cons t .  (39) 

Substituting (18), (19) and (38) into (39) and with the aid of the first order solutions, we obtain 

4 x §  ~ k  x 
}=0 x'~-§ x/,=l ~ -  ~=1 (~-1)~+1 

19hm_ =~0 ~ co G 1 5 {m ~v' Z ~176 c~ 
~ §  -~k~l(~ )k 4 X - 2 - - ~ - ~ _ _ l k ~ / ~  - - ~ 

ek 

k=l "~ 

-- 2x k(k+l)~k+2+k~=lk(k-}- l) ($ -~i)k+2 2h §  

2~-~kz:, gk 2•/,2, ck __ ek o~ c -- k x ~ i -  2 ~ k  ( x -  1)/*+1 5 ~k~kC---~l 
/*=1 ( ~ -  1 )k+ l  k = l  k = t  

cc ek 1 " -- 5 • k (5 -  I)/*+I ]---- C~ (j -~ I, 2), (40) 
k=1 

j = l  
j=2 

onL1 (x----~(rl) : Ci'----0, 

onL~ (x=l+~a2): C ~ ' # 0 ,  
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where C~' is unknown constant. Comparing the coefficients of various powers of a i on both sides 
of (40), and taking account of the single-valuedness of displacement, we get the set of equations as 
follows: From the boundary condition holding on L~ 

(3O OO 

8 k = l  k = l  

oo 
F1 . . . . . . . . . .  3 (m2-}- 2h2)"~2 - - 4  ~ ( ] 1)kEklyl~)'2 -- ~ ( - - l )kEa~ 

k ~  1 k ~ l  

oa 

C,~ = ~ Z (--1)~Gk"Y~)3~ -- ~ (--1)~E~ "+'s~+,l , ,z"+a+ O1~), n > 2 ,  (41a) 
k=l, k = l  

F ,  = ~ Z (-- 1)~E~"7~ a=" + (n --  2) C,_2)2 § O~), n > 2 ,  
k = l  

Fo  k = l  k = l  s  [O(03)J 

Also the boundary condition given on L~ yields 

t 9 h m  
. . . . .  }22 __  E I ~  8 I C k l s k + l ~ 2  § I Ck2Sk+l 'p4  § f k l ~ ] l e ~ 2 §  (0(~)  , 

k = l  k = i  k = l  

G1 3 ( m 2 + 2  h e) v2 + ~ 1 2 ~ Ck 0Sk+l ~2 (~(4, = - -  Ck 7kv + § 4 k = l  k = l  

r ix) 
E .  ~- ~ (--  1) '~ C,'~st+,v z" - -  ~ (--  1) '~ Ckn~-lSk+l~2n+2-- 

k=~. k = l  

-- ~ (-- 1)" FI, "7~ v2" + O ~ ) ,  n > 2 ,  
k = l  

oo 
Gi n = (n --  ]) E~_l § (n --  2) E~_.~ # - -  X (--  1) '~ Ck~7k v2n § 0 ~ ) ,  

k = l  

(41b) 

n > 2 ,  

where 6)(~), Ol~), 0!~) (i : 1, 2, 3, 4; n = 1, 2 . . . .  ) are the known constants given by  the constants 
found in the futtctioas qT(x) and y~(x) only. The unknown coefficients inchtded in (38) are determined 
from (41) by the method of iteration. We shall, however, omit detailed discussions about this 
method of solution of these infinite systems of equations, as these are quite similar to those applied 
to the first order solution. 

4. Stresses. If  we take only the first and second order terms of the series expansion of Airy's  
stress function, i.e. 

~,~ T a_ 3 T  

then from (11) we find the complex stress components T ~ and the corresponding stress components 
t ~ referred to ~-axes  as follows: 

T 11 = T ~a = t ix - -  t 22 + 2 i t 1~ 

Thus the stress tensor is easily obtained by the use of (18), (19) and the complex potential functions, 
found in the previous section. 
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We are interested in finding the stresses at the edge of the hole and ar ( =  t l~) at the points 
(d/2, ~)  etc.. To this end, the following expressions will be utilized. 

- -  2 Re {~0'(x)}, 
~x ~ 

~ - ~ ~"(~ )  + ~'(~1, 
~21~j 

~x 0~ - -  2 Re {A'(x)} - -  3 Re  [ 9 r  {~(x) A- x ( ~ ' ( ~ )  + ~p(~)}] - -  

3 [Re~ {x ~"(~) -~ ~'('~)} -~ Im  z {x ~"(~) -~ ~'(~)} q- 2 Re {~'2(x)}] 
2 

~ --~3-"(x) + i ' ( x ) -  5 7 ~-~ ~'(~1 ~"(~) + 2-~(~)~"(~) - 

3 
2 [{~ ~" '~) + ~"(~)} {'~'(~) +~(~) + ~(~1} + 

+ {~ ~"(~) + ~'(~1} {~'(x) + ~'(~)}] - ~- [~"(~) {~ ~'(~) + ~7(~) + ~o(x)} + 

+ {6 ~'(x) q- ~'(~)} {x ~"(Y.) -4- ~ ' (~)}] ,  

where Re denotes real part,  while Im denotes imaginary part. 

5. Numerical Examples. Numerical calculations by  the method mentioned above were worked 
out for the hoop stresses along the rim of hole etc. for a range of parameters:  2, v, m and T I E .  

Most of the numerical calculations were performed on the NEAC 2200 at the Computing Center 
Tohoku University. 

Fig. 2 shows the hoop stresses on the peripheries of holes in the case of simple tension parallel 
to the ~l-axis of magnitude T 1 / E  = 0 .06 ,  m = l,  2 = v = 0.3. The hoop stress given by  the present 
analysis has the maximum value at the same point where the first order solution has the maximum 
one. The largest difference of the magnitude of circumferential stresses between second order 
elasticity and linear one occurs in the vicinity of the point where the stress concentrates and attains 
to about 19% of the maximum one due to the linear elasticity. 

In  Fig. 3 the distribution of hoop stress along the circumference of hole and of stress a~, along 
the ~l-axis between two holes is shown for the case of simple tension parallel to the ~2-axis of magni- 
tude T 2 / E  = 0.06, m = --  1,2 = ~ = 0.3. The maximum hoop stress occurs at the point ~ /d  = 0.3, 

l : 

al 

T7 

Fig. 2. Hoop stresses (ao) along the rim of holes under simple tensionparatlel to the ~-axis : 
m = 1, T1/E ~ 0.06, 2 ~ ~ = 0.3; finite elasticity, -- -- -- linear elasticity. 
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I 

o,#- o/0 ooy z -OOh- 

t ~ t 

i 

Fig.  3. Hoop  s t resses  (a#) a long t he  r im  of holes  u n d e r  s imple  t ens ion  paral le l  to t he  ~2-axis: 
m = - -  1 ,  T 2 / E  = 0.0G 2 -= v = 0.3; - - f in i t e  e last ic i ty ,  - -  - -  - -  l inear  elast ici ty.  

7,/e=o.o~ 
Fig.  4. Hoop  s t resses  ( a # ) a l o n g  t he  circular  hole r ims  u n d e r  s imple  t ens ion  paral le l  to t he  ~z-axis: 

m = 1 ,  T 1 / E  = 0.06, 2 = 0.25, v = 0,35; - -  f ini te  e las t ic i ty ,  - -  - -  - -  l inear  e last ic i ty .  

t ~ t ~ t 

Fig. 5. Hoop  s t resses  (ao) a long t he  eireular  hole r ims  u n d e r  s imple  t en s ion  paral lel  to t he  ~.~-axis: 
m = - -  1 ,  T e / E  ~ 0.06, 2, = 0.25, ~ ~ 0.35; - -  f ini te  e last ie i ty ,  - - - - - -  l inear  e last ie i ty .  
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0.7 on the ~l-axis. I t  can be observed tha t  in this case l inear theory overest imates about  21~/o at  
max imum for the magni tude of hoop stresses on the edges of holes in comparison with tha t  due to 
the  second order theory.  Here i t  might  be noted tha t  the shapes of holes in the deformed state are 

different from each other for each theory,  because we choose the coordinate system (~, ~-) related to 
the undeformed body.  

Fig. 4 shows the interference between two unequal  holes for the  dis t r ibut ion of circumferential  
stresses along the r im of holes in the case of simple tension of magn i tude  T1/E = 0.06, m = 1, 
)~ : 0.25, v : 0.35. 

Fig. 5 shows the hoop stress dis t r ibut ion on the hole peripheries for the  same configuration with  
Fig. 4 bu t  different method of loading, i.e. m : - -  1, T2/E : 0.06, ~ : 0.25, v : 0.35. The maxi- 
mum circumferential  stress due to the  second order theory  occurs at  the point  ~l/d ~ 0.25 on the 
~l-axis. The largest  difference of the circumferential  stress between two cases is given at  the point  
~l/d : - -  0.25 on the ~t-axis and at ta ins  to about  23~/o of the  maximum one due to the first  order 
solution. 
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