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Finite Elastic Deformations of an Infinite Plate Perforated
by Two Circular Holes under Biaxial Tension*

By H. Miyata

Summary: Based on the theory of finite deformations and by the use of a given reference frame in undeform-
ed body, stresses of an incompressible isotropic infinite plate with two circular holes subjected to biaxial
tension at infinity are investigated. The material is assumed to be in the state of finite plane strain. The method
of successive approximation is used in connection with the complex variable method of plane elasticity. Nume-
rical results due to the second-order approximation theery are given for stresses, and compared with those
predicted by classical theory of elasticity.

Ubersicht: Es werden die Spannungen in einer unendlich ausgedehnten Platte mit zwei kreisformigen
Léchern nach der Theorie endlicher Verformungen und unter Verwendung eines im unverformten Korper fest-
gelegten Bezugsgeriistes untersucht. Die Platte besteht aus inkompressiblem isotropen Material und wird einer
im Unendlichen zweiachsialen Verzerrung ausgesetzt. Der Verzerrungszustand wird als eben angenommen.
Bei den Untersuchungen werden die komplexen Methoden der ebenen Elastizitdtstheorie in Verbindung mit
schrittweisen Naherungen angewendet. Aufgrund einer Anndherung zweiter Ordnung werden die Spannungen
numerisch ausgerechnet und mit den Werten verglichen, die von der klassischen Elastizitidtstheorie vorausge-
sagt werden,

L. Introduction. In the theoretical problem of large elastic deformations of incompressible
isotropic hyperelastic bodies, basic equations become nonlinear and the problem is rather difficult
to be solved. A general theory of finite deformations has been previously ireated by Cauchy,
Brillouin and Murnaghan and greatly developed by Green and Zerna [1]. Moreover, a number
of problems has been solved completely by Riviin [2] and by Green and Shield [3], whercas there
are many practical problems in which the magnitude of deformation is much larger than that
considered in classical elasticity but remains reasonably small. For such problems the successive
approximation approach based on the general theory of large elastic deformation is quite useful,
although it may be more desirable to obtain the closed solution without any restriction, imposed
either upon the magnitude of the deformation or on the form of the strain energy function [2, 3].
Recently Adkins, Green and Shield [4] have developed a general method of successive approximation
for the problem of plane strain for incompressible isotropic materials. In evolving this method it is
assumed that the stresses and displacements are expressed as power series of a perturbation para-
meter &, the choice of which depends on the problem under consideration. The first order term of
this expansion corresponds to the classical elasticity and a solution can be obtained by means
of Muskhelishvili’s complex variable technique [5]. The second order term can also be expressed
in terms of similar complex potential functions.

This theory has been applied to treat the finite deformation problems and a few problems have
been solved by this approach [4, 6]. These studies are worked by the use of coordinates in the
deformed body. The solution in terms of a given reference frame in undeformed body may also
be interesting for comparing the second approximation solution with that given by classical elasti-
city.

In the present paper the application of the method of successive approximation are performed
to obtain the solution of the plane strain problem in terms of a system of coordinates in the unde-
formed body. Stresses in an infinite plate with two circular holes are discussed. It is assumed that
the plate is subjected to biaxial tension and holes take given shapes before deformation. The basic
formulas and notations developed by Adkins, Green and Shield in their theory of finite elasticity [4]
will be used throughout this paper.

2. Basic Equations. The cartesian coordinates of points in the undeformed and deformed states
are denoted by &,, x, (x = 1,2), & = x; respectively and the complex coordinate system in the

* The author wishes to express his hearty thanks to Osamu Tamate, Professor of Tohoku University, for
directing the work.
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undeformed body is defined by tensor transformations as follows (Greek indices take, henceforth,
the values 1, 2):

C1=8%—§1+~:%52=§1+i5225= Cz:;f—é‘fl‘*“%fz:‘fl—ifz:é:' (1)

Moreover, we choose the moving system of coordinates §, to coincide with the system of coordi-
nates {* so that

01=C1=C, 02:C2:C, (2)
Now, let u, v denote the components of displacement along the £,-axes of the undeformed body

respectively and define the displacement function D({, ) as follows:
xn+ix=(+D, xl—iiz:5+ﬁ,} 3)
D=u+tiv, D=u—1iv.

From the conditions of incompressibility of the material and state of plane strain, invariants of
strains can be written as

and therefore
eD @D  oeDeD oD éD '
argtEg wa @

Denote a,; and 4, respectively the covariant metric tensors associated with curvilinear
coordinates 0, in a plane &; = 0 of the undeformed body and in a plane x; = 0 of the deformed body:

0 1 oD (oD 1, éD
2 ec\et 2 at %
“ A= 1  eDoD oD [¢D ) @)
2 2 Vel o (ac - )
By the use of (5), first and second strain invariants are given as follows:
oD 8D

L=lL=T=3+4"5. (6)

The equations of equilibrium for plane strain in the absence of body forces are identically

satisfied if the stress tensor 7*f is expressed in terms of Airy’s stress function @(0,, 6,) by
= (I/VT:;) evefe Pll,, , ()
where
ey ‘/:4_ = ¢*¥3 (e%¥3: Eddingten’s epsilon) .

Here A4 is the determinant of the covariant metric tensor A,z of the deformed body and the symbol ||
denotes covariant differentiation with respect to the deformed body. Then we obtain the governing
equation for stress function D({,{) as follows:

PO, EO A o0 pdy g
2 A12 ore 2 All 6@'35 3E ac or aE + All H=0 ’ (8)
where
H=2dW()/dI). 9)
Now we take strain energy function W{I) proposed by Mooney [7]
WL, L) = Cy (I — 3) + Gy (I, — 3) = (G, + G) (I — 3) (= W(1)) 10)

where C, C, are material constants.
From (7) the complex stress components T*f referred to coordinates in the undeformed body
are given as follows:

T — 1—:22 = — 4 @sz > 2 =4 @H12 . (11)

If the resultant force P across any arc of a curve in the deformed body has compenents (X, Y)
along the &;- and £,-axes respectively, we obtain the equation in the appropriate form

P:X+iY:2i{@+@@—iﬂ@}.

ac ' 9 & e & (12)
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The basic equations of classical elasticity are derived from these equations by simply i 1gn0r1ng
the squares and products of dlsplacements and their spatial derivatives. In the second approxi-

mation theory, we expand D{! {) in the power series of a small quantity ¢ as follows [8]:

D =¢(°D) 4+ (D) 4 «-- . (13)
Then from (6) and (9)

D 9D D 8D
I:3—]—4182{%§- P2 —i—}, H="°"H1{4 Z(EH) = o 4+ - (14)

where

011_2(“) ZH_.Z(ZIT) .
I= 3 =3

For Mooney materials we take

H=2(C,+C)=E3, H=0,

where E is the Young’s modulus.
Now, we expand @((, ) also in the power series of ¢ as

D = He (D +e(1P) + - +-} . (15)

By substituting (13), (14) and (15) in the incompressibility conditions (4) and in (8) respectively,
and equating to zero all the coefficients of &, we obtain

#D | D ap oD  #D D @D *D

v “‘_‘:“IO, o = ———‘:‘_—:‘——202 16 2 l6b
A T E T E & (16a), (16b)

oog D

y o + = 0, (17a)

#6 oD _ #D o0  #Dod oD o oD D (17b)

T TP T i wa @ w

The solutions of (16a), (17a) can be expressed in complex potential functions ¢(Z), ({) given by
Muskhelishvili as follows:

- _ ¢ [
D0 =L 9C) + L) + [yp@) dl+[ () dL, (18)
"D, 0) = pt) — L ¥ Q) — 9O -
By taking account of (18) the solutions of (16b), (17b) can also be expressed in similar complex

potential functions 4(Z), A({) as follows:

qué?o = AQ) +L A @) + A¢&) ——c @OY -+ L o070 — F(c,Z),

D0 = AQ) =L AE) — M) — 7O 0 — TP(C) 70 + (19)

4
+ACH — g [WOra+ [FOI0E+ 1 @O,
where
IGH=6 {0 +70) €o'© +v© + 70 +
F g0 +70) €FO + 50 + 90, 20)
ACH =270 + v} Lo @) +v© + 0} —
—2¢Q)-370) €T +90 + 90} -

Furthermore, it is assumed that the resultant force P can also be expanded in the power series
of ¢ as follows:

P=C"He{'P 4 &(tP)4--.}. 21)
15*
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Then from (12) and (21) we have
. [°D P D P D 9
OP:2 —— ¢ 1P:2—‘_“ TR T/ T TT=T TR e 22
l{a}' L{a¢+9é o & 65} 22)
On the basis of this mathematical preparation, we proceed to investigate the finite plane strain
problem of infinite plate with two circular holes.

3. Infinite Plate with Two Circular Holes. The theory developed in the previous section are
applied to the problem of an infinite plate having two circular holes subjected to biaxial tension.
Attention will be confined to terms of the first and second orders only.

Fig. 1. Coordinates in undeformed body.

a) Boundary conditions. We take the coordinates system in the undeformed body as
shown in Fig. 1 and introduce the following nondimensional quantities

x={/d, A=uald, vy =b/d. (23)
Let T, T, denote the principal stresses at infinity, we have
T =T2=T —T,, T =T, + T, (24)
at infinity. We take here as the perturbation parameter
T~ T, 3T
T T imE’ (25)
where
. T, 4+ T
ronen, e R e
and also put b = (T} — T,)/(T; — T;) = L. Therefore, from (11}, (15), (24), (25) and (26), the con-
ditions at infinity yield
P gNd : 1
= (it
00D 1
— . |
e =M +0 (]xlz) , for large || . 27
Pd D (]
@R ox? oxam (W)

From (22) the boundary condition which should hold on the free houndary of a hole for first and
second order terms respectively we find

D D
—a? == ’g;—* = const. 9 (283)
1 oD 0 oD oo
oo a—-f?—gj——9———~g=(zonst ) (28b)

0% ox 0% ox  ox
where constants in the right hand side of (28) should be determined from some freedom in the choice
of complex stress functions corresponding to the same state of stress.
b) Evaluation of complex potential functions. Itis easily shown that the first two
equations of (27) will be satisfied if

P =2 o), p) = — hx Fyg) . (29)
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The functions @,(x) and 1,(x) are holomorphic in the region S* including the point at 1nf1n1ty and
can be determined by the boundary condition. Then, gpy(x) and y,(x) can be expanded in series and
therefore the required functions ¢(x) and p(x) can be wrirten in fo]lowmg forms

m X e x e
@(x)z’gx+kz§0@ TG px)=—hx + Z %+ Z(x . (30)
wheze ¢g, fo, €1, €5, fio & (B =1, 2, .. .) are unknown real coefficients of expansion,
From (18) and (28a) the boundary conditions on the peripheries of holes become
9) + 27 @) + P@) — const. = ¢ (j=1,2), (31)
j=1 onlL, (x=~2Xoy: =0,
j=2 onl, (x:l‘—f—vag): Cy #0,

where 0; = e (9; = polar angle; j = 1, 2) and C; is unknown constant. With the aid of (30), these
equations are transformed to

x Ck x er o0 Ck oo en
B T VS L ) ’“T‘—’r‘ +
o Ji g
& a2 Z Gomi =i Tmio—hklo > onky, (32a)
and
o ¢ o o o
k§0m+ 21 (/VO-)L — (1 +1/<72)k2£ [(ET=y==i (1 +voy) 2 (va—l)k+1 +

- 20 I} 4£ka*1)k + 2 Loy 1)k+m(1 +roy) —h(l +vozl)y=C;, onlL,.

(321)

Equating the coefficient of each power of g; on bath sides of (32a) and taking accouat of the single-
valuedness of displacement, we obtain

e, = h]? ‘—k%; (— 1) grty, 22 —k§1(~ DF e 2,144,

J‘i = — m)»z - 2 (— l)k Bk lykllz‘—"z ("— l)k (48 05k_+1;b2 Py

en=—z< 1 gyt — 2<—l)h krrlg 2P, n>2, (332)

fn:—Z(—l)kekn’}”klzn"F(n_2)(:"—2/127 nzza
k=1

1 oo [ee] [s¢]
% :.fo =75 [ ——ké‘l (— ]»)k e OVIa - kgl (“ l)k ¢, 1Sk+122 —ké’l (— l)k g,COVk},

where "y, are binominal coefficients, i.e. "y, = kA Z‘ 1) and s 1 =k "1

By applying a similar process for (32b), we have
fe ) [e) oo
e =hy* — 3 i1+ X a1t 4+ X fi by,
k=1 k=1 =1
[ae] [s.0)
g = — mr? + 2o Yy v? T2 Oshy1v?,
=1 L1
[ee) o0 e o]
:kz;(&“} 1)”Ck u3k1‘~17’2n wkz (_ l)nckn+lsk+1 1}2n+2 _ Z (ﬂ l)nfkn')/k'ygna n> 2 , (33}))
= =1 k=1

x?
gn=n—Ne 1 +(n—2e 31— F(— 1)y 02", n>=>2,
K=1

[o) [e ) [o.0] x
Cr=m—h +kZ’1%°Vk*§1%°Sk+1 + Zlcklskﬂvz +k2f}c°?/k +eo+ 1o
= = . k= =1
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The set of equations (33) is the simultaneous linear equations for determining the unknown coeffi-
cients of expansion of (30), when the values of m, h, 4 and » are given. To solve this set of equations,
it is rather convenient to use the iteration method in which the set is reduced to a finite one by
taking only the first [ equations involving the first / unknowns of each set of expansion coefficients.
Thus we shall seek a solution in the form
¢, = lim ¢(P) etc. . (34)
prx

Zeroth iterations (p = 0) of ¢, and f, only are to be substituted inte (33). It may be noted that the
solution is valid only in the case where each of limiting values in (34) is convergent. The convergence
seems rather difficult of proof, although it seems unlikely from the physical consideration that there
will be divergence when A = a/d < ¢, v = bjd <&y, and g; -+ &, < 1.

Next, we shall determine the complex potential functions A(x) and A(x) of the second order term,
For this purpose we see that the equations in the last line of (27) will be satisfied if

a0 - s 5 = 7 1
52— ) + 20 + 10 — 42 FEP + L0 P @~ 3 TED =0 () 69)

for large |x|. Functions A(x) and A(x) can now be expressed as follows:
A(x) = By x + Ay(x) , Mx) = By x + (%) , (36)
where A(x) and 4(x) are holomorphic in the region S*, so that these functions can be expressed in

series. The quantities B, and B, are constants determined from the singunlarity of A(x) and A(x) at
infinity respectively. Further, for large [x|:

T(x,:i):—%hmi—i— mx—{—O(lxI) l

s . (37)
THEER o0 TE =T+ () ]
Substituting (36), (37) into (35) we find the constants B, B2 and finally
3 m? 2h2 o Cr B
(38)
h Gy

where Cy, Fy, Cp, Ej, F), G, (5 =1, 2, . . .) are real coefficients not yet determined. These constants
will be given by the boundary conditions at the edges of holes for second order term, that is
ad D ¢ D &P
—55——}—%—%*—'—8‘;—5—:001’151: (39)
Substituting (18), (19) and (38) into (39) and with the aid of the first order solutions, we obtain
3(m? + 2 1% x Cr o Cr.
M e DG B e B b~ E b

19h — °°F 5 00 oo 2

k=0

T |m e & % m ha K x ek
+3igx T Zox;_‘i kzl—‘(x_ 1)k}{?“k§1kgk+1‘k§lk (5_1)k+1}“’
Slowl s h k(k -1 bt tm—g y T
—3 |25 2+ )~k+2+2 (k + )(——”l—)k‘ﬁ + RIS
b &k oy ¢k x o %k
—2 2 ke — 2 Sk~ 2 e e 8 2 b
x e ” .
- 5k§1kmm] =G (=12, (40)
j=1 onkl; (x=240y) : Ci =0,

j=2 onL, (x=1+wag): C’=0,
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where C7 is unknown constant. Comparing the coefficients of various powers of g; on both sides
of (40), and taking account of the single-valuedness of displacement, we get the set of equations as
follows: From the boundary condision helding on 1,

oo

C, = 19;”“ 2 (= 1F Gy 2 — 3 (— 1< E 250 14 + 60,
2 1 2 oo o0
Fr= =220 0 (1B~ § (- DFE, % 2 4 69,
k=1 k=1
= — 5 (—1)F G2 — g;( DFE, "ty 220+ 4 O, n>2, (412)
k=1

Fo=— 5 (~ DB 4 (n—2) Cua 2+ 09, n=2,

C oo ico ] (1)
} =i[- BV E 9 — 5 (- B2 5 (- 146, + @(3]
2 k=1 k=1 @ )

k=1

Also the boundary condition given on L, yields

19k o
E, = ?_82 - g Cplseq1v® + Z C.2sep1vt + 2 F. 'y + 09,

2 2 o]
Gl:“ﬂi‘;-ﬂh—)”2+2 7,,,2+Zcoak+1,,z+@(4)
k=1

E,= 3 (—1)*C, sy 192" — Z(Ml Pl 92t (411b)
K=t

— (PRt £ 00, n>2,
k=1

Go=(mn—1E,_;+(n—2)E, 29— Y (= 1)"C, "y s*" + OO, n>2,
k=1

where OF), O%), O (i =1,2,3,4;n=1,2,...) are the known constants given by the constants
found in the functions g(x) and y(x} ondy. The unknown coeificients included in (38) are determined
from (41) by the method of iteration. We shall, however, omit detailed discussions about this
method of solution of these infinite systems of equations, as these are quite similar to those applied
to the first order solution.

4. Stresses, If we take only the first and second order terms of the series expansion of Airy’s
stress function, i.e.

ey (“@ g @)

then from (11) we find the complex stress components T*# and the corresponding stress components
18 referred to £ -axes as follows:

ez o O ' prer ot

T e g g T(P0 3T (B0 PD 0 gD p0
B - = mlge ' 4mE )

ater ota X otor oF

T — g1t 4 22 ~ T (%0 4 3T [D a°D PP aD P
Tm o 4mE ’

Thus the stress tensor is easily obtained by the use of (18), (19) and the complex potential functions,
found in the previous section.
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We are interested in finding the stresses at the edge of the hole and o (= 1'') at the points
(d/2, &) etc.. To this end, the following expressions will be utilized.

P

oxoF 2Re {¢/(x)} >
o™e
=29 @)+ V),
1P

w7m = 2 Re {A'(x)} — 3 Re[¢"(x) {p(x) + » ¢'(@) +P@)}] —

— 2 [Re (2 §'@) + F@)} + Im? {73 + F(@} +2 Re (™)},

O =o' @) 41 E) — —2 7@ 7@ + o) 7 @) —

— 2@ T @) EP@ ) + 5E) +

+ {x¢"@) + ¥ @)} {¢'@) + ¢ @)}] — % [¢7(x) {x @'(x) + P@@) + ¢@)} +
+{6¢'(x) + ¥@)} {x¢"(@) + @)},

where Re denotes real part, while Im denotes imaginary part.

5. Numerical Examples. Numerical calculations by the method mentioned above were worked
out for the hoop stresses along the rim of hole etc. for a range of parameters: A, », m and T/E.
Most of the numerical calculations were performed on the NEAC 2200 at the Computing Center
Tohoku University.

Fig. 2 shows the hoop stresses on the peripheries of holes in the case of simple tension parallel
to the &;-axis of magnitude T}/E = 0.06, m = 1,1 =» = 0.3. The hoop stress given by the present
analysis has the maximum value at the same point where the first order solution has the maximum
one. The largest difference of the magnitude of circumferential stresses between second order
elasticity and linear one occurs in the vicinity of the point where the stréss concentrates and attains
to about 199, of the maximum one due to the linear clasticity.

In Fig. 3 the distribution of hoop stress along the circumference of hole and of stress oy, along
the £,-axis between two holes is shown for the case of simple tension parallel to the &,-axis of magni-

tude T,/E = 0.06,m = — 1,1 = » = 0.3. The maximum hoop stress occurs at the point &,/d = 0.3,
ké} d
IS, 07
o4 /E
At L | ,I,A‘fL>
202 4.06]
B ——
&
A
- —

Fig. 2. Hoop stresses () along the rim of holes under simple tension parallel to the &;-axis:
m =1, T\/E = 0.06, A =» = 0.3; finite elasticity, — — — linear elasticity.
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Fig. 3. Hoop stresses (o) along the rim of holes under simple tension parallel to the &,-axis:

m=—1, T,/E=10006, 1=7»=0.3; finive elasticity, — — — linear elasticity.
A
G 33
lgg /S N B -2 A
L a2 040f
i
~ oot
= T /
N J,005
Al A
A 005~/ X
\ // \
)\ i i
s
- —

Fig. 4. Hoop stresses (o) along the circular hole rims under simple tension parallel to the &-axis:
finite elasticity, — — — linear elasticity.

m =1, T,/E = 0.06, A = 0.25, v = 0.,35;

1Ay

{

il L1
03 [+ | 05 | 0§ —005 |0 205 0w 05
§7‘/05L>‘ A8 ap fE—>

i b ’

Y

Fig. 5. Hoop stresses (6) along the circular hole rims under simple tension parallel to the &,-axis:
finite elasticity, — —— linear elasticity.

m=— 1, T,[E = 0.06, 4 = 0.25, v = 0.35;
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0.7 on the &-axis. It can be observed that in this case linear theory overestimates about 219 at
maximum for the magnitude of hoop stresses on the edges of holes in comparison with that due to
the second order theory. Here it might be noted that the shapes of holes in the deformed state are

different from each other for each theory, because we choose the coordinate system (, {) related to
the undeformed body.

Fig. 4 shows the interference between two unequal holes for the distribution of circumferential
stresses along the rim of holes in the case of simple tension of magnitude T,/E = 0.06, m =1,
A =025,y = 0.35.

Fig. 5 shows the hoop stress distribution on the hole peripheries for the same configuration with
Fig. 4 but different method of loading, i.e. m = — 1, T,/E = 0.06, 1 = 0.25, » = 0.35. The maxi-
mum circumferential stress due to the second order theory occurs at the point &,/d = 0.25 on the
&-axis. The largest difference of the circumferential stress between two cases is given at the point

& Jd = — 0.25 on the & -axis and attains to about 23%, of the maximum one due to the first order
solution.
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