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Gradient dependent dilatancy and its implications in shear banding 
and liquefaction* 

I. Vardoulakis, Minneapolis and E. C. Aifantis, Houghton 

Summary: A gradient dependent dilatancy condition is assumed in order to capture the heterogeneous 
character of deformation in granular soils. This assumption is incorporated into the structure of classical 
deformation and flow theories of plasticity and its implications in two interesting examples of patterning 
instability, that is shear banding and liquefaction, are examined. Shear banding is considered within a 
modified gradient dependent deformation theory, while liquefaction is studied within a modified gradient 
dependent flow theory of plasticity. In both cases a deformation induced length Scale is obtained near the 
instability, and this is identified with the thickness of the shear b~nd or the spacing of the liquefying strips. 

Gradientenabhiingige Dflatanzbeziehung und ihre Implikationen auf Scherfugenbildung 
und Verfestigung in Biiden 

Ubersicht: Lokale Inhomogenitgten bei der Verformung granularer Materialien sind hier mit Hilfe einer 
gradientenabhgngigen Dilatanzbeziehung beschrieben. Diese Annahme ist in die Struktur einer klassischen 
Deformations- und FlieBtheorie der Plastizitgt eingebaut, und die hiermit einhergehenden Konsequenzen 
werden anhand zweier interessanten Fglle dcr Musterbildung in BSden, n~mlich Scherfugenbildung und 
Verfliissigung, studiert. Scherfugenbildung ist innerhalb einer modifizierten gradientenabh~ngigen Defor- 
mationstheorie untersucht, wogegen Bodenverfliissigung innerhalb eincr modifizierten FlieBtheorie ana- 
lysiert wird. In bciden FKllen bekommt man in der Umgebung des Instabilit~tszustandes einen deformations- 
induzierten Lgngenmal~stab, der sich als Scherfugendicke oder als Abstand der verflfissigten Bodenstreifen 
manifestiert. 

1 Introduction 

While current work in soil mechanics emphasizes the role of finer constitutive features in pre- 
dicting the critical conditions for the onset of bifurcation and localization of deformation, it 
does not pay  much at tention to t he  problem of capturing the evolving deformation pat terns in 
the postlocalization regime where nonlinearities and nonconvexities (softening) may  lead to 
serious mathematical  difficulties including ill-posedness of the governing equations. This is not 
too surprising since the majori ty of the existing constitutive theories for soils are designed for 
describing nearly homogeneous deformations occurring in the hardening regime, rather than 
heterogeneous ones most pronounced in the softening regime. Naturally,  soil plasticity theories 
have not been equipped with an internal length and, as a result, they cannot capture the hetero- 
geneity of plastic flow in earth materials; for example, the width of thelocalized deformation zone 
in shear banding (e.g, Rudnicki and Rice [1], Vardoulakis [2], Vermeer [3], Molenkamp [4]), 
or the spacing of the periodic deformation patterns in stability of dilatant hardening and lique- 
faction problems (e.g. Rice [5], Vardoulakis [6]). 

Motivated by  the work of higher order diffusion theories (Aifantis [7]) and the concept of 
coexisting normal and excited material states (Aifantis [8]), higher order strain gradients were 
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properly introduced into a few classes of standard constitutive behavior, illustrating the ability 
of the gradient approach to provide characteristic lengths of deformation patterns for both metal 
(Aifantis [8--10]) and soil (Aifantis [11], Zbib and Aifantis [12]) mechanics problems. Emphasis, 
however, was placed in metals (Triantafyllidis and Aifantis [13], Zhib and Aifantis [14]) due to 
the existence of sufficient experimental data or clearly reproducible observations in the micro- 
scope, and only suggestive arguments were provided for corresponding soil and rock mechanics 
problems (Aifantis [11]). 

The purpose of this paper is to further examine the role of higher order gradients in soil plasticity. 
Instead of introducing the gradient effect into the yield condition (Aifantis [10], Zbib and Aifan- 
tis [12]), we incorporate it into the dilatancy constraint. We then consider the resultant modi- 
fications into the deformation theory of plasticity and use such a modified theory in predicting 
the thickness of the shear band in a soil specimen under biaxial compression. The implications 
of the gradient dependent dilatancy condition into the flow theory of plasticity are also considered 
for both upper- and lower-bound comparison solids and their consequences to a proper wave- 
length selection analysis in liquefaction are discussed. 

Even though our results are not complete, in the sense that onlylinear stability arguments are 
utilized and the nonlinear regime is not investigated, it is felt to present them in order to bring 
the problem into the attention of active workers in the field. In this connection, a more elaborate 
paper is being currently prepared by the authors describing the general structure of a soil plasti- 
city theory with a gradient dependent dilatancy condition, providing a mieromechanical justi- 
fication of the origin of the higher order gradients for granular soils, and considering a number of 
applications ranging from shear band thickness and spacing of liquefying strips to wave number 
selection of surface instability and bore hole stability problems. In the same paper, a rather 
detailed comparison of the gradient approach to the Cosserat theory discussed by Miihlhaus [15] 
and Miihlhaus and Vardoulakis [16], which also provides an internal length scale, will be given. 
(More details on the Cosserat continuum approach can be found in the papers of Miihlhaus [22] 
and Vardoulakis [23].) 

2 Motivation for higher order gradients 

Even though bifurcation and spatially periodic phenomena are commonly observed at various 
scales in earth materials and have puzzled applied scientists and engineers for many years, there 
is no satisfactory theory available for their prediction and interpretation. Among these pheno- 
mena we single out faulting and surface instabilities, shear banding and progressive failure, 
splitting failure, and liquefaction. Careful laboratory experiments and field observations suggest 
that spatial periodicity with a characteristic wavelength leading to a consistently reproducible 
pattern formation is indeed the underlying common feature in all these phenomena. Never- 
theless, this central aspect is largely ignored due to lack of proper theoretical tools and related 
experimental work. 

The main difficulty is due to the fact that classical theories of soil plasticity do not possess an 
internal length scale and they break down in the post-bifurcation regime leading to mathematical 
problems which are either ill posed or of changing type (from elliptic to hyperbolic). The loss of 
elliptieity in the equilibrium equations approach, although adequate for predicting the direction 
of shear bands or liquefying strips and the corresponding critical stress levels, leaves the size and 
spacing of the localized zones unspecified. This has manifested itself quite dramatically in the 
numerical analysis of large scale problems where one often encounters a critical dependence of the 
solutions on mesh size, accompanied by stability and convergence problems. This state of affairs 
resulting from the absence of a characteristic length and the loss of ellipticity in the equilibrium 
equations renders, for example, questionable existing finite element codes for earthquake induced 
liquefaction and shear band induced progressive failure. In addition, physically observed features 
such as shear band thickness, periodicity of shear bands, and preferred wavelengths in surface 
instability and liquefaction phenomena cannot be modelled. The missing link in the traditional 
treatment of all these phenomena is the absence of an internal length scale which must be taken 
into account in any physical (centrifuge) or numerical (finite element) modelling. Instead, the 
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main effort in theoretical soil mechanics has been directed towards the mathematical description 
of a plethora of second order constitutive effects such as non-coaxiality, anisotropic hardening, 
and cyclic hardening through phenomenologieal generalizations of constitutive equations 
appropriate to locally homogeneous deformations only. 

As opposed to this trend we now propose to maintain the classical structure of soil plasticity 
for locally homogeneous deformations (e.g. Mohr-Coulomb , non-associate, elasto-plastic model), 
but introduce higher order gradients approximating the heterogeneous character of the evolving 
microstructure in the post-bifurcation regime. Thus, the point of view is advanced here that  an 
important class of soil behavior such as shear banding and liquefaction can only be modelled by 
capturing the heterogeneity of deformation and related internal flow rather than further re- 
fining constitutive equations for homogeneous deformations. In fact, the increasing complexity 
of homogeneous constitutive models has made it impossible to assess with reasonable accuracy 
their shortcomings. In this connection, we point out that  the experimental data used for the cali- 
bration and validation of these models are assumed to correspond to locally or globally homo- 
geneous deformations whereas, in fact, bifurcation and pattern formation may have already 
occurred, thus rendering the corresponding analyses questionable. 

The need for introducing higher order gradients can also be concluded from the fact that  
localization of deformation in granular soils results to extreme rarefaction (dilatancy) which, in 
turn, is manifesting itself to material softening. Material softening (non-convexity) aggravates 
fll-posedness as demonstrated, for example, by Sandier and Wright [17] and Wu and Freund [18] 
who critically discussed the stabilizing effect of viscosity. Rate dependence should be viewed, 
however, as a second order effect in granular materials which are not in the rapid flow regime. This 
brings us naturally to the nonlinear gradient approach utilized by Aifantis and Serrin [19] in 
discussing non-convex equations of state and the existence of corresponding phase transition 
solutions. The stabilizing role of higher order gradients resulted to the obtaining of structured 
or bell-like solutions even for material states in the softening regime. This led Aifantis [8, 91] and 
subsequently Triantafyllidis and Aifantis [13] as well as Zbib and Aifantis [14] to introduce 
second order strain gradients in the flow stress, the strain energy function is hyperelastic materials, 
and the yield condition of rigid plastic materials, respectively. This, among other things, allowed 
for solutions to localization problems with finite shear band thickness inside the softening regime 
without a change of the type of the governing equations (no loss of ellipticity). A recent review of 
the gradient approach and its implications to obtaining the structure, Width, and spacing of shear 
bands in metals was given by Aifantis [10]. 

To apply the gradient approach into the localization and deformation patterning phenomena 
for granular soils, one can motivate himself from metal plasticity and introduce higher order 
strain gradients into the Coulomb yield surface F : v / p  - -  # whose gradient dependent version 
gives ,~ 

~/p : / ~  - -  c V2~p, (1) 

where p and v are the mean pressure and shearing stress intensity, resp.,/~ is the mobilized friction 
coefficient, yP is the plastic shear strain intensity and c a strain-dependent phenomenological co- 
efficient measuring the gradient effect. I t  turns out, however, that  a more direct and convenient 
way to incorporate the gradient effect in soil plasticity is to include it in the dilatancy condition 
eP = D(y~)  which is now being modified to read 

e~' = D ( y p )  - -  d V2rp, (2) 

where eP is the volumetric plastic strain and the strain-dependent phenomenological coefficient 
d measures the influence of the gradient effect on the dilatancy condition. 

A partial motivation for (2) can be found in a microsc0pie calculation of a higher order 
gradient dependent measure for the volumetric strain. Thus i f  u* and ui denote the displacement 
vectors of two adjacent granules in a two-dimensional soil space, a Taylor's expansion yields 

1 2 1 
~u~ : u* u~ : 2 R u i , i n i  + -~ (2R) u~.i~n!n k -]- --~ (2R) 3 u~,j~lninkn l , (3) 

where R denotes the average radius of the grains and nl the unit vector normal to the surface of 
contact. :If/(0) is an angular distribution function for the number of contacts, then the average 
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plastic volumetric strain is given by the expression 

2 g  

i f e~ = ~ R  Auinr dO. (4) 

0 

Combination of (3) and (4) and use of the identities n~ni = (~or:2/2, n~nln~ = O, n~nin~n ~ = ( ~ ( ~  
+ ~ 0 ~  + ~i~5~) ~:~/8 with the bars denoting statistical averages, yields the expression 

1 ~ = u~,~ + ~ - /~2u~ .~ .  (5) 

But u~,~ denotes the usual measure of the volumetric strain and if, in seeking a generalization of 
(5), the factor 1/2 is replaced by an unspecified dimensionless coefficient to be determined by 
experiment, then an approximate Fourier transform type argument can be utilized to render the 
postulated gradient dependent dilatancy condition (2). 

In  what follows we retain (2) and assume, i n  addition, that  the coefficient d is given by 
d = L2D '' where L is an internal characteristic length scale (e.g. grain size) and the prime denotes 
derivative of a function with respect to its argument. Then, the incremental form of (2) reads 

~ = ~(y~) ~ ,  ~ = fl(7 ~) -- L~fl ' V ~ I ~  (6) 

where fl = D' is the usual dilatancy function and the assumption of nearly homogeneous ground 
states (V7~ ~ 0) was used. Equation (6) is the new ingredient that  we will utilize in our analysis, 
the remaining of the  structure being as in classical soil plasticity developments. For the deforma- 
tion theory of plasticity, the resultant modifications can be clearly seen in the next  section where 
shear band bifurcation and thickness can be analyzed. For the flow theory of plasticity, the 
resultant modifications will be seen in the last section where a wavelength analysis for pat tern 
selection in liquefaction will be provided. As the concepts of upper- and lower-bound linear 
comparison solids are important  in this analysis, we summarize here the appropriate constitutive 
equations (see also Vardoulakis [20]). 

The upper-bound linear comparison solid is defined by the following expressions between the 
stress- and the strain-rate tensors (we adopt the usual additivity assumption ~i----~i + ~ 
(i, ] = 1, 2) and the standard notation for the elastic constants G, K and v) 

where 

with 

~ j  = GL~jkl~kt = G ( L ~  - -  L ~ )  ~k~, 

L~eikl = (~ -- 1) ~jb~l + 2~k~t, ~ = K / G  = 1/(1 -- 2v), 

Li~k, = A ~ A f , / H ,  A ~  = s, ilv + ~fld,i, A~. = siilr + ~#(~o, 

H = 1 @ h - -  hT > O, h = h tp /G,  hT = --~/~fl, ht = d#/dyv, 

(7) 

(8) 

(10) 

In general, the functions # and fl depend on both the porosity n and the plastic strain yp but  they 
will be viewed here as functions of 7 ~ only. They both  exhibit a softening regime for advanced 
deformations as suggested by experiment. As already mentioned, the only modification that  we 
introduce into the classical plasticity structure is to replace fl in (t0)3 by fl defined in (6). In 
passing, we point out that  the above relations also hold for a flow theory of plasticity where 

~' = , / p  - / ,  = o ,  O = ~ /p  - ~ = o .  

p = --ok~/2, ~ = (s~sijl2) 112, 8~ i = aij + P(~ij, 
(e) 

= 8kk, = ~-~jv~p , ~ = ~ i  + ~P~i/2, 

and the mobilized coefficient/~ and the dilat&ncy function fl defined as usual by the Coulomb 
yield surface F and the potential surface Q as 
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loading and unloading is allowed (the linear comparison solid does not unload) by introducing 
the switch function (1) in the definition of the plastic modulus so that  

Li~k l  - ~  ( 1 )  A Q A F  , r r  i~ ~ kll .t~ 

( 1 > . = / 1  for F = 0  and Li~kl~kl~F/~(~ii>O, (11) 

[o for F < 0 ,  or F 0 and L~iu~t = 

i.e. (1} = 1 if loading of the yield surface is taking place and (1} = 0 if either the stress state is 
in the elastic domain or if it is on the yield surface and unloading or neutral loading is taking 
place. Due to the switch function (1}, the stiffness tensor L ~  is a non-linear operator. In the case 
of non-associate flow-rule, L~jkl is non-symmetric (Libel # L~,~). 

The lower bound linear comparison solid is also defined by (8) with the exception that  it 
contains an additional parameter r (0 --< r _< 1) which can be varied so as to maximize the lower 
bound estimate of the bifurcation load (Raniecki and Bruhns [21]). I t  turns out that  the appro- 
priate modulus is given by the relation 

1 1 § c~fl 2 
L ~ ,  = L~k, - ~rH (AQ -4- rA~) (A~t § rAf ,) ,  # - -  , (12) 

1 + c~# ~ 

and it should be noticed that  the stiffness matrix for this linear comparison solid is symmetric. 
If  an associate flow-rule is assumed (F ~---Q, # = fl), then the two linear comparison solids 
coineide for r = 1, and the bifurcation load obtained from a linear bifurcation analysis coincides 
with the true bifurcation load. 

In the coordinate system of principal directions of the initial stress, .the rate constitutive 
equations for the two comparison solids can easily be derived from the above general expressions 
(7) and (8) or (12) resulting to the equations 

0'11 ~-~ G(L1111811 § Ll122~22),  0`22 = G(L2211~11 § L2222~22), 

where for the upper-bound linear comparison solid 

Lm~ = [a(1 --  fl) (1 -- #) + (1 § c~) ?i]/H, 

(1 - - / t )  - -  (1 - -  ~ ) h ] / H ,  

(1 § #) -- (1 -- a) h]/H,  

(1 + #) + (1 + ~) h]/H,  

and for the 

Ln~2 = [~(1 + fl) 

L2211 = [r162 - -  ~)  

L=22 = [~(1 + fl) 

d12 = 2G~12, (13) 

(14) 

lower-bound linear 

Ll111 = 0r § 1 - -  

L l 1 2 2  ~ L2211 

- - - - ~ - - 1 +  

L2222 ~ o~ § 1 - -  

comparison solid 

1 

4rH 
[(1 § aft) § r(1 § ~#)]9., 

1 
4 ~  [(1 § aft) + r(1 + ~#)] [(1 -- aft) + r(1 -- ~#)], 

1 

4rH 
[(1 + aft) + r(~ - ~#)]2. 

(15) 

3 Modified d e f o r m a t i o n  theory  -- Shear banding 

Let  us consider a plane strain soil specimen subjected to biaxial compressive loading 12 < 11 < 0 
(~m < ~n) as shown in Fig. 1. For rigid plastic behavior (~ = ~v), the appropriate standard 
stress-strain relations are (Vardoulakis [2]) 

0̀ 11 = (1 -- tt) p § Gt99, 0`22 --~ (1 § re) ~b -- Gt~, 0`12 = 2G#12, (16) 
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Yig. 1. Element with shear band 

while the present ly  adopted  modified (i.e. gradient  dependent)  d i la taney condition reads 

= fl(7) ? ,  fi(7) = #(7) - -  L~#'(?) W?/~,  (17) 

with ~ = # ]p[ and 

~' : 811 - -  ~22,  '~ = '~11 @ ~22,  T : ((71 - -  G2)/~ , ~D : ((71 -4- 0 ' 2 ) / 2 ,  

c t  = Ipl kt, Q - -  [pl hs, h~---- @ / 6 7 ,  hs - -  ~ /7 .  

The corresponding equil ibrium equations are 

011,1 - ~  812,2 -~- (ff l  - -  G2) (~),2 = 0 ,  (18) 

#21,1 @ #22,2 - ~  (G1 - -  G2) ~),1 = 0 ,  

where (b = (v2,1 --  v, ,2)/2 with vi denoting the veloci ty field. 
Upon combinat ion of (16) and (18) we obtain for homogeneous ground states 

--(1 --/~) ~,12/~0 : h tv i , i l  2 @ (ks - -  # )  v1,222 - ~  (ks - -  k t  ~- [~) v2,122 ---- - - A ,  
(19) 

--(1 -~ ~) ~ , 2 1 / P  = (ks - -  k t  - -  #)  V1,121 -~- (ks -~ [~) v 2 , 1 1 1 - 4 -  ktv2,221 ~ - - B ,  

implying,  with 2u ~ (1 -~ #)/(1 - -  #), the  condit ion 

. . . .  + a2~i = ~ .  (20) 
p 1 - - #  1 - t - ~  

This, in turn,  leads to the relation 

alvl,112 -F a2vl,~22 - -  a~v2,12~ - -  a4v2 ,m = 0,  (21) 
where 

a I : (1 ~- ~2) h t , - -  (ks - -  # ) ,  32 = ~2(ks - -  # ) ,  

aa : (1 + ~2) ht - -  ~2(hs @ re), a4 = ks -4- # .  

Similarly, the  gradient  dependent  d i la tancy condit ion (17) yields 

vL1 + v2,2 = fl(Vl,1 - -  v2,2) - -  LZfi'[(Vl,1 - -  v~,~)m + (v1,1 --  v2,2),22], (22) 

which, with ~2 = (1 -~ fi)/(1 - -  fl) and b = f l ' /(1 - -  fl) can be wri t ten  in the  form 

L 2 b ( v l , m  Jr v1,1~ - -  v 2 , m  - -  v2,,,:~) -~ v L i  ~ ~2V2,~ O. (23) 

We now search for a shear band  solut ion with y = ~Y~2/21, q = 7:L/(21), [n~] = [nl, n~] 
= [ - -s in  OB, COS 0B] and ~ / 0 ~  = O, ~/~xi  = n~ ~ / ~  (see Fig. 1). Then, (21) and (23) give, resp. 

Ht ~ t r  

blv  1 - -  b2v 2 = 0 ,  (24) 
2 " ~  ' ~ '  ~ 2 ' q b(nlV, ,-- n~v~ ) -~ n,v, "+ ~ n~v~ = 0 



I. Vardoulakis and E, C. Aifantis: Gradient dependent dilatancy 203 

where the new coefficients bl and b~ are defined by  b 1 ~ (a ln  ~ +4- a2n~) n2 and b2 -~- (a3n~ + a,tn 2) h i .  
On assuming periodic solutions of the form 

v i = c i s i n y ,  (25) 

(24) yields 

[ b, _b2 ][o1]=o, 
nl(1 - -  q~b) n2(62 + q2b) c~ 

which for a non-tr ivial  solution gives for the wave number  q the expression 

b 2 n i + b i n 2 ~  2 1 A q2 : 
(b2nl - -  bln2) b b B 

where 

(26 )  

(27) 

exp.{i 
0 
0.05 

I 
I J 

0.076 

Fig. 2. Evolution of wave number and shear band thickness for ~wo differen~ sand specimens 
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A - -  A(O) = tan  a 0 + ~1 tan2 0 + or 2, B ---- B(O) = tan  4 0 +/~1 tans 0 + f12, (28) 

with ~1, ~2 and ill ,  f12 defined by  the relations 

~1 = ht(1 + ~ )  (1 + ~ ) / ( h ,  + tt) - -  ,~ - -  ~,5 ~, ~'2 : ~ ,~ '~ ,  

f l l  ' $  - -  4 2 ,  fi2 : _ _ ~ 2 ,  ~ = (1 - -  ~]) / (1  -Jr- ~2). 

Even  though  the  result (27) does not  allow for a preferred wavelength selection analysis as 
is the case, for example, in  the work of Aifantis [10] and, Zbib and Aifantis [14], it does provide 
quite sufficient information for both  the direction of the band, as well as a measure of its thickness 
at  the  very  beginning stages of its development.  To see tha t  we note tha t  the classical bifurcation 
analysis gives A = 0 which, in view of (27), implies q = 0 (infinite wavelength) at  the onset of 
localization. (I t  turns  out  t ha t  B < 0 for 0 < 0~ - -  45 ~ + ~ /2 ,  ~ ~ sin -1 #). This, in turn,  leads 
to the familiar result of shear band  inclination predicted within the classical deformation theory  
of soil plast ici ty (Vard0ulakis [2]) wi thout  a gradient  dependent di la tancy condition, namely,  
0 = 0B = 45 ~ + (~ + y))/4, y) = sin -1 ft. This fixes the orientation of the band,  say at  0 : 0B and 
allows for t h e  evaluation of a shear band  thickness dB = 21 as predicted by  (27) at  a given state 
of deformation.  Exper imenta l  graphs for the variat ion of q and l / L  with the advancement  of 
deformation are given in Fig. 2. Al though the val idi ty of these graphs m a y  be questionable as 
t hey  were constructed on the  basis of a linearized theory,  it is interesting to note t ha t  for a 
FS-03 test of Hol land fine sand the shear band  thickness was measured to be d~ ) : 3.7 ram and  
the corresponding failure strain y~) = 0.06. This provides a value of qcr = 0.085 and  then  the 
corresponding value of the internal  length is L = 0.1 ram. Similarly, for a second test  /)-27 
(medium grain Karlsruhe sand) we obtained d~ ) --~ 4.3 ram, q~r = 0.09 and L : 0.12 ram. The 
corresponding grain size in each of the above cases is R = 0.1 m m  and R = 0.16 ram, resp., 
and these values are remarkably  close to the calculated values of the internal  length L as listed 
above. 
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4 Modif ied  f l o w  theory  - -  L ique fac t ion  

Let  us consider an infinite water-saturated solid strip subjected to compressive a2~ ( <  0) and 
shear al, stresses as shown in Fig. 3a. I f  pw denotes the pore water pressure, then the effective 
stress is ai' / = a~j -- pWdij. We assume a uniform initial state of stress 

[:] t T 

and examine its stability versus small exponential fluctuations occuring during the course of 
rectilinear deformations of the form 

�9 [ ;  e~i ---- 2 

where ~ = vl,~ and ~ -~ v2,2 with the initial value of ~ vanishing (stability of undrained shear). 
For dilatant rocks this problem was first studied by Rice [5] who found that  the behavior of 

the system is governed by a diffusion equation and, thus, loss of stability occurs when the diffu- 
sivity becomes negative, a condition enforced in the softening regime. Motivated by a correction 
to the diffusion equation to incorporate inertia (Aifantis [7]), Vardoulakis [6] re-examined Rice's 
problem for contractant sands by  including dynamic effects. He found that  without inertia the 
growth coefficient has a singularity which does not appear when inertia is included. However, no 
wavelength selection analysis was provided in the above works mainly due to the absence of a suit- 
able internal length in their formulation. Such an internal length was included, in the form of higher 
order pore pressure gradients entering Darey's law, in the stability analysis for undrained shear 
given by Aifantis [11]. A similar point of view is adopted here but  instead of modifying Darcy's 
law, we explore the possibility of a patterning instability in the undrained shear problem on the 
basis of the gradient dependent dilatancy condition (6). 

~12 1 ~22 

I ~" " ~ 

t . . . ~  . .  . -  

' 1 2  I 

a I 

b 

Fig. ~. a Simple shear of a saturated 
layer; b periodic eonfigura, tion of con- 
tracting and dilating layers (angle OT 
---- ~/4; q~ denotes the water flow) 
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The relevant balance equations are given by 

1 ~ .~q 
(712o2 : 0 ,  (722,2 : P , 2 ,  ~,t : ~ -  ~ , 2 2 '  (29) 

where the first two relations are the usual equilibrium equations and the third one is Darcy's 
law (b = ~w#w/k, with Ow denoting the water density, ffw its viscosity and k the permeability). 
The corresponding constitutive equations for both the upper- and lower-bound linear comparison 
solids can be obtained from the general constitutive equations of Sect. 2. They read 

[ ( 1 ) ]  1 ~2~/K" =~--1 - -~ ,+ l + h +  H ~ +~flL~).~,, 

for the modified upper-bound solid, and 

(30) 

1 0r ; 2"  
, ~ 1 ~ / ~  = ~- [(~ - ~ ,  - ~,~) ::' - ~ , e , e ~ ]  - ~ ff~ L ~,~, 

�9 , 1 [ _ 0 , ~ 2 ~ _ ~ H ( 1 ~ _ _ _ _  , ~ / _ ~  = - ~ .  

(31) 

for the modified lower-bound solid. The new coefficients ~ ,  ~2, ~3 are given by the relations 

OL3 = (1 -4- r)/(2 ~fr), ~2 = (fl + r#)/(2 ]/~) and the remaining of the symbols have been defined 
earlier in Sect. 2. Certain approximations (e.g. V~v/~v ~ V~y/y) were adopted in obtaining (30) 
and (31) in their final form but they are not essential in the subsequent steps of the analysis. 

By combining (29) and (30) we obtain the following higher order diffusion equation for the 
increment of strain 

(h - h~,) ~',r = clq~i',uu - -  c 2 q 4 ~ ' , ~  - -  c 3 q ~ ' , ~ r ,  (32) 

where the dimensionless coordinates y, T and wave number q are defined by y ~ r:x~/(2l), T = K t /  

b L  ~, q ~ ~L/(2I), while the coefficients Cl to c3 are given by cl ~ [h q-  a(h  - -  hr)]/(1 ~- h -- hr), 
c~ ~ a ~ f f l ' / ( 1  ~- h - -  hr), c3 = ~#f l '  with a = h q-  H / a .  I t  is pointed out that (32) was first 
obtained by Aifantis [7] in the context of non-classical viscosity and surface tension dependent 
diffusion in solids and a version of it was also discussed by Aifantis [11] in the context of stability 
of dilatant hardening. For contractant materials, which is the subject of our discussion here, it 
follows that  hr > 0 and therefore for h -- hT > 0, i.e. before the Tresca point, we have stability. 
On the other hand, for h ~ h r  the problem becomes ill-posed as the growth coefficient o~ switches 
from --c~ to +c~  at h --~ hr. To see these results we first note that  the coefficients cl to Ca remain 
always positive and that  the substitution ~ ---- Yo e~t cos y leads to a dispersion equation whose 
graph is depicted in Fig. 4. We remark that,  as noted by Zbib and Aifantis [14], the singular 
behavior of the graph co = co(q) at q ~ q~ is physically undesirable and this seems to imply a 
difficulty with the structure of the model. 

Such a difficulty is not present if a lower-bound linear comparison solid is assumed. For such a 
solid, combination of the constitutive relations (31) and the balance equations (29) yields again 
the higher order diffusion equation 

7 ,r  ~ c lq~ .~y  - -  c,q42.uvyy - -  c a q 2 ~ , y y r ,  (33) 

where the same dimensionless variables as for the derivation of (32) were used. The new coeffi- 
cients cl to ca are now defined by c a ~ (cllc22 - -  c1~c21)/cH, c2 ~ c*c22/c11, I ca ~- c * / c n  where, in 
turn, the coefficients c~i are given by 

~11 : ( h  - -  h r - -  0 3 ) / H , 2  " Cl 2 = o~O102/H ' c21 = 0 1 e 2 / H  ' 

c22 = 1 + 11~ - -  ~ 1 t t ,  c* = ~laf l ' IH.  
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o n  searching again for the growth  or decay  of exponential  f luctuat ions of the form p = Poe ~t cos y ,  
we obtain the same form of the dispersion equat ion o) =- c0(q) as in the case of (32). I t  reads 

(-9 : --((31 -~- c2q 2) q2/(1 -4- c3q~). (34 )  

The first instabil i ty occurs when Cl = 0 implying det  [cii] = 0, while ill-posedness occurs when 
ca --~ 0 implying r = 0. I n  the first case we obtain h ---- hmax --~ hT d- Q2 ~_ [~9./( 1 -4- ~)] ~2 and 
in the second h =- hmin -~ hr  -4- ~a 2. The preferred wave number  qcr is obtained by  maximizing co 
in (34), t ha t  is by  sett ing ~o)/~q ---- O, leading to an  essential quadrat ic  equat ion c2cjq~ -4- 2c2q~r 
~- c~ = 0 whose roots determine qcr. These results are depicted in Fig. 5, I t  is noted tha t  the 
drawing in Fig. 5b  is somewhat  exaggerated as it clearly corresponds to the nonlinear regime 
hmi n ~ h ~ hmax. Nevertheless, it m a y  be suggestive, perhaps,  of the op t imum wave 
number  selected by  the system when the assertion is being made tha t  states in the regime 
hmi n ~ h ~ hma x can still be approximate ly  described by  the present equation. I t  is emphasized 
tha t  this is the first t ime tha t  a detailed and ra ther  sat isfactory wavelength analysis is presented 
in connection with the liquefaction instabihty,  giving an appropriate  spacing for the liquefying 
strips. The direction of the liquefying strips is predicted as in the classical bifurcation analysis 
and is not  affected by  the higher order terms. This gives 0r = ~/4, a result t ha t  can be derived in a 
manner  similar to t ha t  obtained for the direction of the shear band OB = (7: d- W -4- ~)/4 discussed 
in the previous section (see Fig. 3b). 

The derivation of the higher order diffusion equation:for the plastic strain increment  ~ within 
the gradient  approach,  has mot ivated  the a t t empt  to search for an analogous result within the 
Cosserat approach.  Remarkably ,  i t  turned out  tha t  the same equat ion (33) for the Cosserat spin 
w 8 can formally be obtained. Even  though it m a y  be argued tha t  within the ]inearized regime 
several generalized cont inuum theories m a y  lead to similar dispersion equations, it is planned to 
discuss these results in a separate paper where a detailed comparison between the two approaches 
will be made. 

5 Conclusions 

We have demonstrated that the essential features of pattern formation in granular soils can be captured by 
a suitable modification of the dilatancy condition to include higher-order strain gradients. The discussion 
was based on linear stability analysis. The new feature that distinguishes the present work from previous 
bifurcation studies in the soil literature is the wave selection analysis and emphasis On spatial aspects. I t  
was thus possible to obtain estimates for the width of the shear band and the spacing of liquefying strips at 
the initial stages of the process. In order to be able to capture, however, the evolution of the shear band 
thickness in the softening regime, and the subsequent configuration of the liquefaction pattern, a nonlinear 
analysis along the lines followed by Aifantis and co-workers [10, 13, 14] should be adopted. 
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