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Section 1. Introduction 

Consider probabil i ty measures on the q-field 5 p of Borel subsets of a metric 
space S. I f  Pn and P are such probabil i ty measures, Pn is said to converge weakly 
to P (written Pn ~ P ) i f  f / d P n - *  f / d P  for each bounded, continuous real 
function / on S, or, equivalently, if  Pn(A) --> P(A) for each P-continuity set, 
a P-continuity set being an element A of Sf whose boundary OA satisfies P(aA) = O. 
Also, i t  can be shown that ,  ff Pn ~ P, the convergence f / dPn --~ f / dP holds 
for each bounded, real, measurable function tha t  is continuous almost everywhere 
P (see [7] or [2]). 

Let  ~ (S) denote the class of all bounded, real, measurable functions defined 
on S. I f  • is a subclass of ~ (S), we shall say tha t  ~-  is a P-uni/ormity class ff 

(1) lira sup [ f /dPn -- f / dR[  = 0 
n--~ oo f E  

holds for every sequence {Pn} tha t  converges weakly to P. (Of course, even ff 
is not a P-uniformity class, (1) will hold for special sequences {Pn} such as 
P~ -=- P.) 

We shall say tha t  ~ is a P-continuity class if every function in ~ is con- 
tinuous except on a set of P-measure 0. 

I f  ~ is a subclass of the ~-field S f of Borel sets, we call 9~ a P-uni/ormity class 
[P-continuity class] ff the class of indicator functions of sets in 9~ is a P-uniformity 
class [P-continuity class]. Thus 2 c 5f is a P-uniformity class ff 

(2) lim sup IRmA - -  P A l  = 0 
n--~oo A~I 

holds for every sequence {Pn} tha t  converges weakly to P,  and 9~ is a P-continuity 
class ff P(OA) = 0 for all sets A in 9~. 

We shall find necessary and sufficient conditions for P-uniformity and then 
derive some effective criteria for the case of a subclass 9~ of ~f. 

Throughout what/ollows, S is assumed separable. Let 0 denote the metric on S 
and denote by  S(x, 5) the open sphere with center x and radius ~. For d > 0 
and A c S, define the &neighbourhood of A by  

(3) A ~ = {x: e(x ,A)  < ~}, 
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and define the &boundary of A by 
(4) OoA = {x : q (x, A) < ~, q (x, A c) < ~}, 

where A c denotes the complement of A. Note that  OoA is the union of the two 
disjoint sets AO\A and (Ac)O\(Ac). The ordinary boundary 0A satisfies 

(5) 0A = A - i A o  = ('~ OoA = N (OA)O, 
~ > 0  ~ > 0  

where A-  and A0 denote the closure and interior of A. 
I f  ~- is a subclass of ~ (S) and B a subset of S then we define the oscillation 

of ~ on B by 

(6) coo~ (B) -~ sup {I / (x) -- / (y) I : [ e o~, x, y E B}. 

In the case where ~ consists of a single function ] we use the notation ~of(B) 
or r 

Theorem 1. I / ~ "  is a subclass o / ~  (S) then a necessary and su//icient condition 
that o~" be a P.uni/ormity class is that 

(7) ~o~(S) < co 

and that 

(8) lim sup P { x :  corN(x, ~) > e} = 0 
~--+0 f ~  

/or all positive e. 
Since the P-uniformity is not affected if we subtract constants from the func. 

tions in ~ ,  the condition (7) is essentially equivalent to the condition that  o~ 
be uniformly bounded. Notice that  the set {x : r (x, ~) > e} oeeuring in (8) is 
open, and hence belongs to 50. Theorem 1 clearly extends to complex-valued 
functions and to functions mapping S into euclidean k-space. I t  also follows from 
Theorem 1 that  a P-uniformity class is a P-continuity class. Another important 
consequence is 

Theorem 2. I /9 I  is a subclass o/5O then a necessary and su//icient condition that 
be a P-uni/ormity class is that 

(9) lira sup P(OoA) = O. 
d-~0 Ae~I 

In  Sections 2 and 3 we prove Theorem 2. Then in Section 4 follows the proof 
of Theorem 1. We could have proved the more general Theorem 1 first; however, 
we hope that  what we gain in clarity justifies the slight duplication. 

The remaining sections concentrate on the study of P-uniformity for a sub- 
class 9/ of 5 ~ Note that  although (9) depends on the metric ~, the notion of 
P-uniformity class is purely topological -- in the sense that  if g[ is a P-uuiformity 
class then it remains so if ~ is replaced by an equivalent metric. I t  follows by 
Theorem 2, therefore, that  9/is a P-uniformity class ff and only ff (9) holds for 
some metric equivalent to Q and ff and only if (9) holds for all metrics equivalent 
to ~. 

Since clearly 

(10) 
the condition (9) implies 

(11) 

(OA)O c aoA, 

lira sup P(  (OA) e) -= O. 
~-+0 Ae~I 
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Theorem 3. I / S  is locally connected, then (9) and (11) are equivalent, and each 
is necessary and su//icient that 9i be a P-uni/ormity class. 

We have noted that  (9) implies (11) even without local connectivity; we shall 
show by counterexample in Section 9 tha t  (11) need not imply (9) if S is not 
locally connected. I f  every sphere in S is connected (a condition stronger than 
local connectivity), then, since a connected set that  meets both A and A c must 
meet ~A, we have 

(12) a~A c (aA) ~, 

from which it follows that  (11) implies (9). We defer to Section 5 the proof that  
(l l) implies (9) in the general locally connected space. 

I f  S is a Banach space, then every sphere in S is connected (even arcwise con- 
nected); in particular, S is locally connected. Thus our results are applicable to 
k-dimensional Euclidean space R ~ and to the space C of continuous functions on 
[0,1], with the uniform topology. Another space of interest in the applications is 
the space D of functions with discontinuities only of the first kind; it can be 
shown that,  with Skorohod's topology J1 [10], every sphere in D is (arcwise) 
connected. 

Since aaA = 0A if A is closed, we have the following corollary to Theorem 3. 

Corollary. I1 S is locally connected and i/ 91 consists exclusively o/closed sets, 
then 91 is a P-uni/ormity class i /and  only i/091 = {aA : A E 91} is a P-uni/ormity 
class. 

The further study of P-uniformity is based on a topological device. Let  ~ be 
the class of closed, bounded, nonempty subsets of S; under Itausdorff's metric 

(13) A (M1, M2) = inf{8 : 8 > 0, M1 c M~, M2 c M~},  

is a topological space [1]. I t  will be convenient to include in ~ the empty set, 
regarded as an isolated point in the topology (notice that  (13) is infinite if M1 or 
Me is empty). 

Theorem 4 shows that  the compact subsets of ~)~ play an important role in the 
theory. The space ~ is compact ff S is compact; if ~ 0  consists of subsets of a 
fixed compact set in S, then ~ 0  is compact if and only if it is closed; if S is com- 
plete then ~ is complete (these results can be found in [1]). 

Theorem 4. I / S  is locally connected and i/91 is a P.continuity class, then each 
o I the lollowing three conditions is su//icient/or 9I to be a P-uni/ormity class. 

(i) The class 

(14) a ~  = {aA : A e ~} 
is a compact subset o/ ~;~. 

(ii) There exists a sequence {Bk} o/bounded sets such that lim P (B~) : 1 and 
such that,/or each k, the class k 

(15) O(Bk n 9/) = {O(Be h A )  : A e 91} 

is a compact subset o/ ~ .  
(iii) There exists a sequence {B~} o/closed, bounded sets such that lira P ( B~) = 1 

and such that, /or each ]c, the class 

(16) Bk (~ a~ -~ {B~ n OA : A ~ 9/} 

is a compact subset o] ~ .  

1" 
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In  Section 6 we shall show (without using the hypothesis of local connectivity) 
that  each of these three conditions, together with the assumption that  9/is a P-  
continuity class, implies (111; Theorem 4 will then follow by Theorem 3 and the 
hypothesis of local connectivity. 

The important condition in Theorem 4 is (i). The more general conditions (fi) 
and (iii) do not involve really different ideas; they are introduced because the 
classes (15) and (16) are always subsets of ~ (compact or not), which need not 
be true of (14). Notice that  ff 91 is a P-continuity class, then the elements of (14) 
and (16) all have P-measure 0 and that  the same is true of (151 ff P(OBk) = O. 
Finally, in connection with the compactness requirements, notice tha t  a compact 
subset of ~ remains compact ff the empty subset of S (as an element of ~ )  is 
adjoined to it  or removed from it. 

The conditions (ii) and (iii) of Theorem 4 are often rather restrictive. I t  is easy 
to find sets Bk such that  lira P ( B  ~ = 1 but  usually the sets B~ will then not 

k 
be compact (this is indeed the situation in any infinite dimensional Banaeh space) 
and it becomes difficult, unless 9/is rather small, to ensure that  the classes in (151 
and (16) are compact. Note that  Theorem 4 breakes down ff we replace the con- 
dition lim P (B ~ = 1 by  lim P (Bk) = 1 (it is easy to construct a counterexample 

b b 
with P a unit mass). Section 7 is devoted to the proof of the following theorem, 
which to some extent overcomes the difficulties. 

Theorem 5. Let S be complete and locally connected and let 9I be a P-continuity 
class consisting entirely of closed sets. Then 9i is a P-uni/ormity class i / t o  every 
compact set K there exists another compact set K* such that K c K* and such that 
K* c~ 09I is a compact subset o/9~. 

The compactness of 9/itseff is sometimes more easily checked than that  of 091. 
This suffices ff the elements of 91 are convex: 

Theorem 6. Let S be a (separable) Banach space, real or complex, and let 9i be 
a class of closed, convex P-continuity sets. Then 9I is a P-uni/ormity class if 91 is 
itsel/ a compact subset o/ ~ ,  or i / /or  each closed sphere B, the class 

(17) B n  91 = ( B n A  :A e 91} 

is a compact subset o/ ~ .  

We shall prove this result in Section 8 by reducing it  to Theorem 4. 
I t  follows from Theorem 5 and Mazur's theorem (see V.2.6 of [3]) that  the 

class 9/ in Theorem 6 is a P-uniformity class ff K (~ 091 is a compact subset of 
for all compact and convex sets K. I t  is not known whether it suffices to assume 
that  K n 9.I is a compact subset of ~ for all compact and convex sets K. 

Section 9 contains various illustrations and applications of all these theorems. 
Most of the applications generalise results of R ~ G A  RAo [8]. 

Section 2. Proof of Sufficiency in Theorem 2 

We shall need the following lemma. 

Lemma 1. For each positive ~ there exists a P-uni/ormity class ~1o such that for 
each subset A o /S  there exist in ~1o sets V and W satis/ying WeA c V and V\  Wc OoA. 
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Proo/. Choose about each x in S an open sphere Sx satisfying P(OSx) -~ 0 
and diam Sx ~ ~. Since S is separable, it follows by  LindelSf's theorem [6] tha t  
some sequence {Sxl, Sx~ . . . .  } of the sets Sx covers S. I f  

u,  = s ,nns:,, 
j < i  

then (U1, U2, . . . )  is a finite or countable parti t ion of S into P-continuity sets 
of diameter less than 5. Let  ~0 denote the a-field generated by  the Ui ; ~0 consists 
of the unions of the U~. 

I f  Pn => P, then Pn(Ui) -+ P(Ut) for each i, so that ,  by  Scheff6's theorem [9], 

sup IPn V -  P V I <= ~ IPn(U~) - P(UI)[ -~0 
V~ qdo i 

as n -+ oo. This proves tha t  ~0 is a P-uniformity class. From the fact tha t  each 
U~ has diameter less than  ~, i t  follows tha t  there exists a set V in ~o  such tha t  
A cV  c A  e, which in turn implies V\A c OeA. The existence of a W in q/0 with 
W c A  and A I W  c OoA follows by  applying this argument  to the set A*. I t  fol- 
lows tha t  V\W c OoA which proves the lemma. 

Suppose now tha t  (9) holds. Let  (Pn) be a sequence tha t  converges weakly 
to P. Given a positive ~, first choose a positive 8 such tha t  

(18) sup P(OoA) < ~]. 
Ae~ 

Let  ~o  satisfy the conditions of Lemma 1. Choose N so tha t  

(19) sup ]P. V - -  P V] < 'l 
Veqlo 

holds for all n >-- N. From this and Lemma 1 it follows tha t  

l enA  -- PAl  < V + P(OoA) 

for all n ~ N and all A ~ dr. I t  follows by  (18) tha t  

sup ]PnA -- PAl  < 2~ 
A~2I 

for all n >-- N. Since ~ was arbitrary,  9~ is a P-uniformity class. 

Section 3. Proof of ~eeessity in Theorem 2 

We need two lemmas. 

Lemma 2. For each positive ~ and each set A in S, there exists a/inite or countable, 
pairwise disjoint class (N~) el Borel sets such that OoA c~JN~, such that diam 

i 
N i ~  65 /or each i, and such that each Ni meets both A and A c. 

Proo/. I f  a0A ~ 0, these conditions are formally fulfilled by  an empty  class 
of sets Ni. We assume 0~A ~: 0. 

Since S is separable, i t  follows by  LindelSf's theorem tha t  for some sequence 
(Yl, Y2, -..) of points in OoA, the spheres S(yl, (~) cover a0A. Each S(yj, 5) meets 
both A and Ac. 

Let  xl ----- Yl; let xp, be the first !/J beyond Xl distant at  least 25 from xl; let 
x3 be the first ?/1 beyond x2 distant at  least 25 from xl and from x2. Continue 
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in this way (the process may terminate). The spheres S(xi,  5) are disjoint, and, 
since each Yl is within 2 5 of some x~ : OoA c ~J S (x~, 3 (3). 

Let B = ~.J S (xi , (3) and i 
i 

MI = S(xi, 3(3) (~ Bcc~('~S(xk, 3(3) c . 

I f  Ni = S (xi, (3)kJ Mi, then the collection {Ni} has all the properties required 
of it. 

Lemma 3. Let (ri, si) be (]initely or in/initely many) pairs o[ real numbers. 1] 
(ri § s~) ~ e, then either ~ ri ~ e/4 or ~ sl ~ 

i rt )> 8t 8t > rt 

Pro@ Put  t = ~ (r~ § sd. I f  ~ ri <t/4 and ~, s~ < t/4, then 

t =  y, - ,+  y s , <  + y r, + + 

+ min{yr,, ys,} _<_t, 
i i 

a contradiction. 
Now suppose that  (9) fails. We shall show that  ?l is not a P-uniformity class. 

Since (9) fails, there exists a positive e such that  for all positive (3, 

(20) P(OoAo) >= e 

holds for some A0 in ~. We shall use OoAo to construct a probability measure Po 
very close to P. 

By Lemma 2, there exist pairwise disjoint Borel sets No~ such that  0o-4o c 
c ~ J  Noi, such that  diam Noi < 6(3, and such that  Noi meets A~ in some point 

i 

xoi and meets A~ in some point yo~. Put  ro~ = P (Noi ~ A~) and so~ = P (No~ ~ A~). 
Then 

~ ro, § ~ so, = ~. P(No,) ~ P(OoAo) >--_- s 
i i i 

by (20). By Lemma 3, therefore, either 

(21) " Z r o ~ e / 4  
r6i >_ s~i 

o r  

(22) 
s~ i > r~i 

I f  (21) holds (for a particular (3), define Po to coincide with P outside ~JNol and 
i 

to consist in each No, of point masses at xo~ and Yoi in accordance with the re~ 
quirements 

{0 if rol > soi Irot + soi if ro~ >--_ s~ 
(23) Po (xot) -= = P6 (Yod = 

ro~ if s~i >rot ,  [soi if  s0~ > r0~. 

I f  (22) holds instead of (21), define P~ in the same way, but  with (23) replaced by 

(24) Po(xo l )=l  r~ if ro~>=soi po(y~l)={;o~ if ro~>=sol 
tro~ § so~ if so~ > rot, if sol > r ~  . 
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In  either case, Po agrees with P outside L J N i ,  Po(Nof) = P(IVo~) for each i, 
and 
(25) IP(Ao) --  P0(A0)[ > e/4. 

Since diam N ~  < 68, it follows from this tha t  lira f / d P ~  = f / d P  holds for 
6-->0 

every bounded, uniformly continuous real function ]. Therefore (see Theorem 2.1 
of [2]) P0 ~ P as 8 --> 0. Because of (25), 9/is  not a P-uniformity class. 

Section 4. Proof of Theorem 1 

In  this section we shall find it  convenient to define the 8, s-boundary of a 
function / in ~ ( S )  by 

(26) a~,~(/) = {x: w / S ( x ,  8) > ~}. 

The condition (8) in Theorem 1 can then be written as 

(27) lim sup P ( ~ , ~ ( / )  ) -~ O. 
~-~o fe~- 

First, let us prove the sufficiency in Theorem 1. This is done in a way analogous 
to the sufficiency proof in Section 2. The fact corresponding to Lemma 1 is ob- 
tained as follows. Let  8 be positive and C a finite positive constant. As before let 
{U~} be a finite or countably infinite decomposition of S into P-continuity sets 
of diameter less than 8. Let  ~ , c  denote the class of functions of the form ~ atZv, 
with all the a 's  real numbers bounded in modulus by C; here Z~, denotes the 
characteristic function of Ui. Then it  is easy to see tha t  5~-~, c is a P-uniformity 
class. I f  ] is any function in ~ (S) such tha t  I / (x) I g C for all x in S then there 
exist two functions h and g, both in ~ 0 ,  c such tha t  h ~ / < g and such tha t  
] (g --  h ) d P  g e -4- 2CP(a6 ,~( / ) )  holds for all positive e. 

Assume now tha t  ~-  satisfies (7) and (8). By  subtracting suitable constants 
from the functions in J ,  we see, by  condition (7), tha t  we may  assume tha t  
t / (x) I < C holds for all x in S and all ] in ~-, with C a finite constant. By the 
remarks above, i t  is easy to complete the proof. 

Now let us prove the necessity of the boundedness condition (7). Assume tha t  
(7) does not hold. Then for every positive integer n, there exists a funct ion/n  in 

with w~,(S) > n. Let 

an ---- inf{/n (x) : x e S} and fin = sup {/n (x) : x e S} .  

Then fin - -  an > n. Divide the closed interval [an, fin] in n disjoint intervals of 
equal length. For one of these intervals, say for In ,  P /n l ( In )  > 1/n. Clearly, 
there exists a point xn in S such tha t  

(28) ] / n ( X n )  - -  ~[ >- (n  - -  1)/2 

for all t in I n. Let  Qn be the signed measure tha t  agrees with --  ( n P ( l n l ( I n ) ) )  -1. 
P on the set /nl(In)  and vanishes outside /~l(In) except at  the point Xn, where 
Qn has the mass 1/n. I t  is easy to see tha t  Pn -~ P ~- Qn is a probabili ty measure. 
Also, 

I f  / n d P n  --  f /ndP]  -~ I f  /ndQnl  : l /n l /n(Xn)  - -  t t 

for some t in I n. Hence, by  (28), 

I f / n d P ~  --  f /=d~'[  > 1/2 - -  1 /2n ,  
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and since {Pn) clearly converges weakly to P,  ~-  cannot be a P-uniformity class. 
This proves necessity of condition (7). 

Lastly we want to prove the necessity of (27). This proof is very much analo- 
gous to the proof of necessity in Theorem 2. Instead of Lemma 2, we now use the 
fact that  for each [ in ~(S) ,  and for each pair ~, e of positive numbers there exists 
a finite or countable, pairwise disjoint class (Ni) of Borel sets such that  00, e(f) c 
c .~JN~, such that  diam Nt < 6 ~ for each i, and such that  ~o/(Ni) > e for each i. 

This result is proved in the same way as Lemma 2. 
Now suppose tha~ (27) fails. Then there exists a pair e, ~ of positive numbers 

such that  for all positive ~ there exists a function [0 in ~" with P(Oo, e(]o)) ~ ~. 
Construct the class {N0,1) corresponding to the se~ 0o,~([0). Then 

P (No, ~) o~1o (No, ~) > ~ e 
i 

and we can use Lemma 3 with 

re,, = P(No,,)" sup{Io(x) : x ~ N o . , )  --  .I/odP 
N,Li 

and 

8o,~ = f lo ct_p - p (No , , )  " inf{ Io (x) : z e N o , , ) .  
Nod 

The proof continues along the same fines as the proof in Section 3; the details are 
left to the reader. 

Section 5. Proof of Theorem 3 

Because of (10), we need only show that  ff S is locally connected, then (11) 
implies (9). Given a positive e, choose a positive ~ such that  

(29) sup P(  (OA)~) < e. 
Ae2 

By local conneetedness and separability, there exist finitely or countably many 
connected sets Eg such that  S e ~ J E  ~ and such that  diam E~ < 7. Let  

i 

Die ---- (x  : x ~ E ~ ~ (x, E~) ~ ~). 

For fixed i, Die ~ E ~ as ~ 4 0. 
Choose an integer i0 so large that  P ( S  --  ~ J E  ~ < e, and then choose a 

i~io 
positive ~ so small that  P (E ~ --  Die) < clio for i ~ i0. Then 

(30) P ( S  --  ( . iDle)  < 2e .  

Let  us prove that  

(31) Die n OoA c (OA), 

for every i and every A. I f  x ~ OoA, then ff (x, y) < ~ and ~ (x, z) < 8 for some 
y in A and z in A c. I f  x e Die, then y and z lie in E, ,  so that  E~ meets both A 
and A c. Since Et fs connected, it  meets OA in some point w. Since x and w both 
fie in Ei ,  and since diam Et < ~, we have ~(x, Oil) ~ ~(x, w) ~ ~, or x ~ (OA)n. 
This proves (31). 
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From (30) and (31) we conclude that  P(~oA) <~ 2s + P((OA)v). I f  A e 9i, 
then it follows further by (29) tha t  P(OoA) < 3 s holds for the d chosen, and hence 
holds for all smaller ~. Thus (9) holds, which completes the proof of Theorem 3. 

Section 6. Proof of Theorem 4 

The essential point of Theorem 4 is contMncd in the following lemma, which 
does not require the assumption of locM connectedness. 

Lemma 4. Suppose that ~ko is a compact subset el N .  Then,/or any probability 
measure P, 

(32) lira sup P ( M  ~ = sup P ( M ) .  

In  particular, i / P  (M) = 0/or each M in ~J~o, then 

(33) lim sup P (M ~ --= O. 
~--+0 M~o 

Pro@ Let  ~ be a fixed positive number. For each M in ~ o  choose (~M such 
that  P(M2O~) < P(M)  + U" Since !D20 is compact there exist finitely many 
sets M1 . . . .  , My in N0 such that,  for all M hi N0, A (M, Mi) < ~M, = ~* for 
some i = l, . . . ,  r. Put  d = lnin {~M . . . . . .  ~M~}. Then it  is easy to see that  for 
each M in No, M ~ c M~ ~ for some i = 1 . . . . .  v. I t  follows that  

sup P (Me) <= sup P (M) + 7" 
MegJ20 Me~.% 

Suppose 9~ is a P-continuity class. I t  follows immediately from Lemma 4 that  
condition (i) of Theorem 4 implies (11). 

Consider condition (ii) of Theorem 4. Given ~?, choose k so that  P ( B  ~ > 1 -- ~7. 
Since 
(34) OA c [O(B~ n A)] u [S -- B~]-,  

we have 

(35) (OA)O c [O(Bk n A)] o w IS -- Bk] o, 

so that 

(36) P((aA)o) =< P([O(B~ (~ A)]0) + P ( [ S -  Bg]~ 

Since O(B~ n A) c O(B~) w O(A) c IS - -  B ~ u; O(A) we have 

(37) P (0 (B~ (~ A)) < ~1 

for all A e 2[. Hence, for small enough 6, we have, by Lemma 4, P([O (Bk n A)]0) < 
< 2 U for all A e ~i; and for small enough ~ we have 

P([S - -  B~p) < P( [S  - -  B ~ ] - )  + U = P ( S  - -  B ~ + U < 2 7 . 

Therefore, by (36), (11) holds. 
The same sort of argument shows that  condition (iii) of Theorem 4 implies (11). 

We need only replace (34) by 

(38) OA c [B~ (h OA] u [S -- Bk] 

and continue as before. 
Each of the three sets of hypotheses in Theorem 4 thus implies (11) (and this 

is true even ff S is not locally connected). As remarked after the statement of the 
theorem, this suffices for its proof. 
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Section 7. Proof ol Theorem 5 

By the corollary to Theorem 3, it suffices to show tha t  ~91 is a P-uniformity 
class. Assuming Pn ~ P, we must  show tha t  

(39) lim sup Pn(aA) = O. 
n--~c~ Aeg2 

The proof of (39) does not use the local connectivity of S. Let  ~ be positive. Since 
Pn => P and since S is separable and complete there exists a compact set K such 
tha t  Pn(K)  > 1 - -  ~ for all n ([7], Lemma 1.3). Choose K* according to the 
conditions in Theorem 5. Then 

(40) Pn(~A) <= ~ -I- P n ( g *  ~ ~A) 

for all n. By  an argument familiar to us from the proof of Theorem 4, there 
exists a O > 0 such tha t  

(41) P((K*  n OA) o) < 

for all A ~ 91. 
Now let ~o  be a P-uniformity class as constructed in Lemma 1. Choose N 

so that  

(42) sup I Pn V -- P V l < ~1 
Veq/o 

holds for all n >= N. Let  A be any set in 91. By Lemma 1 we can choose V in @/0 
so tha t  K* c5 OA c V c (K* (30A)  o. Then 

Pn(K*  c~ OA) <= Pn V -< I Pn v - P v I + P( (K*  n OA)O) . 

By (40), (41), and (42) it follows tha t  

sup Pn(OA) < 3r 1 
Ae2 

holds for all n >= 5 r. This proves tha t  091 is a P-uniformity class. 

Section 8. Proof of Theorem 6 

Let  91 be a P-continuity class of closed convex sets in the (separable) Banach 
space S. Suppose at first tha t  91 is a compact subset of g)~. Since S is locMly con- 
nected, Theorem 4 applies. Condition (i) of tha t  theorem is fulfilled ff we can 
show tha t  for each compact subset 91 of g)2 consisting entirely of convex sets, 
091 is also a compact subset of gJL This will easily follow if we can show tha t  for 
each pair of bounded, closed, non-empty convex sets A and B we have A (A, B) >-- 

A (~A, 0B); actually we shah prove tha t  for such sets equality holds: 

(43) A (A, B) = A (OA, OB) . 

The inequality A (A, B) <= A (OA, OB) follows easily from the fact that,  since 
A [B] is bounded, each point of A [B] is a convex combination of two points of 
OA [0B]. 

To prove the reverse inequality we shall show tha t  ff A c B z and if B c A z 
then the relations OA c OB z+o and OB c OA~+O hold for every positive d ; obviously 
we need only prove the first relation. Suppose x E aA. Since A \ B  c OB", we may  
assume tha t  x e B. Consider a point y such tha t  y ~ 24 and y e S (x, 6]2). There 
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exists (see V.2.12 of  [3]) a linear functional  ] of  norm 1 and a real e such tha t  
Re / (y) = e and such t h a t  Re [ (z) ~ ~ for all z e A. Choose 0 so tha t  2 < 0 < 2 ~- 
~- d/2, and consider y ~- 0w, where w is an element of  S of  norm 1 satisfying 
/(w) > ~/0. Since R e / ( y  -~ Ow) > ~ -~ ~, y ~- Ow cannot  lie in A~. Hence y +  Ow 
cannot  lie in B. Since x ~ B, there mus t  be a point  z of  0B on the segment f rom 
x to y ~- Ow. We have z ~ S(x, 2 ~- ~), and the inclusion OA c OB ~+~ follows. 

The equat ion (43), together  with the fact  t ha t  the bounded closed convex 
subsets of  S const i tute a dosed  subset of  it2, implies t ha t  a class 9/ consisting of  
bounded,  closed, convex subsets of  S is a closed subset of  g2 if and only if ag/ 
is a closed subset of  ~l)~; also 9/ is  a compact  subset of  ~ if  and only if  09/ is  a 
compact  subset of  FJ~. Thus condition (i) of  Theorem 4 holds if  91 is compact  in ~J~. 
I f  the class B n 9/ is  compact  in ~J~ for each closed sphere B, then it is easy to 
see t h a t  condition (fi) of  Theorem 4 holds. 

I t  is perhaps worth  while to point  out  that ,  if the class 9 / in  Theorem 6 con- 
sists of  convex sets with non-empty  interior, then we need not  assume tha t  the 
sets in 9 /a re  closed, since then  9/will  be a P-un i fo rmi ty  class ff and only ff the 
class 

(44) 9/- = {A-  : A e 9/} 

is a P -un i fo rmi ty  class. To see this note t ha t  for convex sets A with A0 + 0 
we have O(A) = 0(A-) .  

Section 9. Examples and Applications 

The first two examples illustrate various points of the theory;  the remaining 
ones are applications to concrete cases of  interest. 

E x a m p l e  1. Let  S be the space of  sequences x = (xl, x2 . . . .  ) of  O's and l 's ,  
metr ized by  @ (x, y) = ~ I x~ - -  Yil 2-i (product  topology);  S is completely dis- 

i 
connected. Le t  9I be the class of  sets of  the form 

(45) A : { x : x l  = u l , . . . , x k  : u/c}, 

with (ul . . . . .  uk) varying over all finite sequences of  O's and l 's .  Since aA = 0 
for each A in 9/, (11) holds no mat te r  what  P is. 

I t  is n o t  hard  to show t h a t  the &boundary  of  (45) is given by  

(46) ~oA = Y [y~-- ui[ 2-~ < ~ if  2-~ < ~, 

and tha t  therefore, by  Theorem 2, 9 / i s  a P -un i fo rmi ty  class if and only if  for 
all ~ there exists a d such t h a t  

(47) P Z l y, - < < 
i = l  

holds for all sequences ul  . . . . .  ue of  length k > - -  log28. 
I f  P has a mass of  ~ at  some point  z, then (47) is violated with ul = zt, i ~ / c ,  

so t h a t  9/ is no t  a P -un i fo rmi ty  class. Let Ae(y)  be tha t  set of  the form (45) 
t ha t  contains y. I f  P has no point  masses, then for each y, P(A~(y))  converges 
monotonical ly  to 0 as/c --> oo. Since P (Ak (y)) is continuous in y for each/c,  and 
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since S is compact, the convergence is uniform. I t  follows via the condition (47) 
tha t  OX is a P-uniformity class. (To see this, note tha t  

Iy~-u~12-~<5 cA~,(u) with k ' = [ - - l o g 2 5 ] ,  

the integer part  of --log25). Thus 9.i is a P-uniformity class if and only if P 
has no point masses. 

Since 0~i consists of the empty set alone, we see that  if S is not connected, 
then (11) need not imply (9), the sufficiency condition in Theorem 3 fails, and 
Theorem 4 fails. 

E x a m p l e  2. I f  S is a countable, discrete space, then ~ '  itself is a P-uni- 
formity class for every P :  By the remark following the statement of Theorem 2, 
we may work with any metric that  generates the topology; if we take the distance 
between distinct points to be 1, then 00A = 0 for all A if 5 < 1, so that  (9) 
always holds. 

E x a m p l e  3. Let  X be a (real or complex) separable Banach space and denote 
by ~ (S, X) the class of all bounded measurable functions mapping S into X. 
Since X is separable, ~(S ,  X) is well defined (see III .  6.11 of [3]). We can then 
define P-uniformity etc. for a subclass ~ of 2 (S, X). By A we denote the class 
of all continuous linear funetionals on X with norm at most 1. A ~-  is then the 
class of scalar valued functions on S of the form ~(/)  with q in A and [ in ~-. 
Since 

(48) supliytdP~- ~. /dPll =sup IS~(])dP,~- yW(/)dP l, 
f e ~  q~(f)e A ~  

we find that  ~ is a P-uniformity class if and only if A ~  is a P.uniformity class. 
Therefore by Theorem 1 and the relation COA~(S) --  Co~(S) it follows that  the 
two conditions 

(49) 

and 

(5O) lim sup P(80,~(~(/)) = 0  
~..+0 ~o(f)eAo ~" 

for all e > 0 are necessary and sufficient tha t  ~ be a P-uniformity class. Ob- 
viously (50) is implied by 

(51) lira sup P(Oo,a([)) -= O. 
~ 0  S e ~  

Thus (49) and (51) for all e > 0 are sufficient for ~" to be a P-uniformity class. 
This result is not surprising since the sufficiency proof in Section 4 of Theorem 1 
applies equally well to Banach-space.valued functions. The sufficiency of (49) 
and (51) tells us that  the weak convergence Pn =~ P implies tha t  I /dPn --> ~.[dP 
for each / in ~ (S, X) for which / is continuous except on a set of P measure O. 
We do not know ff it  is still true that  P-uniformity implies P-continuity. 

E x a m p l e  4. I f  P is a unit mass at x0 and ff ~ r  is a P-uniformity 
class, then it is easy to see that  ~ is equicontinuous at x0; tha t  is, for each positive 

there exists a positive 5 such that  ee lS(x0 ,  5) < 6. Thus a necessary condition 
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that  ~-  c ~ ( S )  be a / ) -uni formi ty  class for all P is tha t  ~ be equicontinuous on 
S and w~(S)  ~ ~ .  We shall now show that  these conditions are also sufficient. 
The only thing to show is that  (8) holds for all P.  Let  the probability measure P 
and the pair of positive numbers e, ~? be given. Choose, for each x in S, a positive 
~x such that  co~-S(x, 2~x) ~ e, or, what is the same, such that  co/S(x, 2~x) ~ e 
for all ] in ~ .  I t  follows (in the notation of Section 4) that  S(x, (~x) c (~,8( / ) )  c 
for all ] in ~ .  By Lindelhf's theorem it follows that  S -~ [,..J S (xi, ~z,) for some 

i 

sequence of points {x~}.bIow choosc N so large that  P(i~J=lS(x~,~x,)) > i - - ~  

and put  ~ ----- rain {~xl, . . . ,  ~x~-}. I t  is then easy to see that  .~_ S (x~, ~z~) c (~o,~ (/))c 

for all / in ~ .  Hence P(ao,~(/)) < ~ for all / in ~ .  This argument shows that  (8) 
holds for all P and, since (7) holds by hypothesis, we have proved the desired 
result. The paper [8] by  RANGA RAO also contains this result; in fact RA~GA 
RAO gives a nice direct proof. 

E x a m p l e  5. In this example we shall study mappings preserving weak con- 
vergence. Let  S and S' be metric spaces, h a measurable mapping from S into S', 
and P a probability measure on S. We shall say that  the pair (h, P) preserves 
weak convergence if  the sequence {P~h -1} converges weakly to ph-1  in S' for 
every sequence {Pn} converging weakly to P in S. As usual we shall assume 
that  the space S is separable. 

From the definition of weak convergence we find, by transforming integrals 
over S' into integrals over S, that  Pnh -1 ==> P h  -1 if  and only if fg(h)  dPn --+ 
--> fg (h)dP holds for every bounded, continuous function g mapping S' into the 
reals. I t  therefore follows by our results on P-uniformity (applied to a family 
consisting of a single function) tha t  (h, P) preserves weak convergence if and 
only if the composite function g (h) is a P-continuity function for every bounded, 
continuous g mapping S' into the reals. 

Thus a sufficient condition for (h, P) to preserve weak convergence is that  h 
be a P-continuity function. In  fact, i t  is fairly easy to prove directly that  this 
result holds even without separability of S. 

We shall now prove the necessity, assuming the space S' is separable; that  is, 
we shall prove that  h must be a P-continuity function if (h, P) preserves weak 
convergence and if S' is separable. In case S' is the real line R, this result follows 
from the above remarks. I t  is then easy to prove the result for S' -----/~, a countable 
product of copies of/~, and the final step from R ~~ to the general separable metric 
space S' follows from the fact tha t  any such space is homeomorphie to a subset 
of R ~. 

Lastly we shall prove that  necessity holds without any assumptions on S', 
provided that  no uncountable cardinal ~ satisfies 2 z ~ 2 s~ (a condition strictly 
weaker than the continuum hypothesis, see Theorem 3 of [11]). We shall prove 
this by showing that  the image h (S) of h is separable. I f  this were not so then 
there would exist a positive e and a family {Ya}aeI of points in h (S) such that  the 
cardinaHty ~ of the index set I is greater than ~0 and such that  ~(y~, y~) ~ e 
for g ~ ft. Any union of ya's is closed, and hence a Borel set, and it follows that  
(..J(h-~(ya) : ~z ~ I* )  is a Borel set for every subset I*  of I .  We have thus found 
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2 ~ distinct Borel sets in S. Since there are at  most 2S~ sets in S and since 
> b~0 we arrive at a contradiction. 

E x a m p l e  6. We shall examine the content of Theorem 6 in an Euclidean 
space. In  this example, 92 will denote the class of all measurable, convex subsets 
of R ~. In  Euclidean space the boundary of a convex set coincides with the bound- 
ary of its closure. Thus, by  Theorem 3, a subclass ~I0 of 92 is a P-uniformity class 
if and only if the class 

(52) 92o --  {A-  :A e 920} 

is a P-uniformity class. Combining this with Theorem 6 we obtain: 

A subclass 920 o] 92 is a P-uni/ormity class i/92o is a P-continuity class and i/ 
the class 

(53) B (3 920 = {B (3 A -  : A e 920} 

is a compact subset o] ~i~ /or each closed sphere B. 
Since a closed sphere is compact,  B c~ 92 0 is a compact subset of ~ if and only 

if it is a closed subset of !I2. In  particular, we see tha t  the class 92 itself is a P- 
uniformity class if i t  is a P-continuity class. This result was proved in a different 
way by  RANGA RAO [8]. (The fact tha t  B (3 92- is compact is the familiar selection 
theorem of BLASCHJ~E [4]). Taking 92o to consist of sets of the form {x : xt _--< a~, 
i = 1 . . . . .  k} with a ranging over a closed subset of R ~, we obtain the classical 
fact tha t  ff/c-dimensional distribution functions Fn converge to a/c-dimensional 
distribution function F at  continuity points of F, then the convergence is uniform 
over each closed set of continuity points. Taking 92o to consist of the convex 
polyhedra with at  most m faces, we obtain another result due to Razcoa RAo [8]. 
Or we may  take 92o to consist of spheres--examples may  be multiplied at will. 

E x a m p l e  7. In  the plane R 2, consider the class of rectifiable arcs of length 
at  most l, and let 92 be the class of measurable planar sets with such curves as 
boundaries. 

Let  aA be a rectifiable are of length at  most 1. For each positive 5, there exists 
along the curve a succession of points z0, Zl, . . . ,  zk such tha t  z0 and z~ are the 
endpoints, such tha t  O(zi-1, z~)~  5, 1 ~ i ~ /c ,  and such tha t  / c -  1 ~ l/5. 
Since the/c  + 1 spheres S(zi,  25) cover (aA) ~ the Lebesgue measure of (0A) ~ is 
at  most 4~5  2 ((1/5) + 2). I t  follows tha t  if  P is absolutely continuous with respect 
to Lebesgue measure, then (11) holds, so tha t  92 is a P-uniformity class. (Since 
the convex subsets of a bounded planar set have perimeters of bounded length, 
these ideas afford another approach to Example  6 in case/c is 2 and P is absolutely 
continuous with respect to Lebesgue measure.) 

This result fails if there is no upper bound to the lengths of the arcs OA. Take 
P arbi trary and take B to be a disc with P (B) > 0. For every 5 there exists a 
(long) rectifiable arc OA tha t  comes within 5 of each point of B, so tha t  (0A)0 ~ B. 
I f  a?l contains all rectifiable arcs, therefore, the condition (11) (equivalent to (9), 
since R g is locally connected) cannot hold. 

E x a m p l e  8. Let  S be the space C of continuous functions x = x(t) on [0, 1], 
with the uniform topology. Let  V be a subset of C with the following property:  
For r > 0 and x e C, let Tr(X) be tha t  element of C whose value at  t is x(t) if 
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Ix(t) l ~ r ,  r if  x ( t ) > r ,  and - - r  if  x(t) < - - r .  Let  V r : ( ~ r ( x ) : x e V ) .  We 
demand tha t  Vr be a compact subset of C for each r ~ 0, which we may  express 
by  saying tha t  V is truncation-compact. (Note tha t  if  V is compact, then it is 
truncation-compact.  Also, if V is truncation-compact,  then V (~ B is compact for 
each closed sphere B, although the converse to this is false.) 

Let  ~ consist of all sets of the form 

(54) A = {x : / ( t )  <=x(t) ~g(t), 0 <_t <_ 1}, 

with / and g ranging over a fixed set V. We shall prove the following result. 

The class 9~ is a P-uni/ormity class i/ (i) P is absolutely continuous with respect 
to Wiener measure, (ii) V is truncation-compact, and (fii) /or each / in V, either 
/(0) # 0 or else there exist positive ~ and 8 (depending on/ )  such that 

(55) [/(t) [ =< (1 - ~) (2 t log log t-1)1/~ 

[or 0 < t < 8 .  
I f  Br is the closed sphere of radius r about the origin, then Br n ~ consists 

of the sets (54) with / and g in Vr. Since Vr is compact, it follows easily tha t  
Br ~ 2 is a compact subset of ~ .  Now the elements of 2 are convex, and for 
each closed sphere B we have B c Br for large r. Therefore Theorem 6 applies : 
I f  2 is a P-continuity class, then it  is a P-uniformity class. (We have thus far 
used only the assumption tha t  Vr is truncation-compact.) 

There remains the question of when ~ is a P-continuity class. I f  P is absolutely 
continuous with respect to Wiener measure W, then 9~ is a P-continuity class if  
it is a W-continuity class; we shall deduce from assumption (iii) above tha t  
is a W-continuity class. 

For / in C, let 11/[[t"/] consist of those x in C for which x(t) g / ( t )  [x(t) ~ / ( t ) ]  
holds for all t > 0 and for which x(t) ~ / ( t )  holds for some t > 0; let J/[Jf] consist 
of those x in C for which x (t) < / (t) Ix (t) > / (t)] holds for all t > 0 and for which 
x (0) ~- /(0). The boundary of (54) satisfies 

t 

(56) aA c Hf  W J~ U H a U J a ,  

and hence 2 will be a W-continuity class if 

(57) W (1t/) -~ W (g~) = W (J~) = W (Jr) : 0 

for all / in V. 
Let  us prove W (H/) ---- 0. For 8 > 0, let H/, 6 be the set of x for which x (t) ~ / (t) 

for all t ~ 8  and for which x(t) -~ ](t) for some t ~ 8. Since H / c ~ J H / , ~ ,  it will 
suffice to show tha t  W (H/, ~) -~ 0 for all positive 8. But  ~ 0  

f(6) 
W (H/, ~) ----- (2 ~ 8) -1/e f W(H/, ~ ]] x (8) -~ u) exp (--u2/2 8) du 

- - c o  

= (2 ~ 8)-1 ~, ] w {g<_. ,  ~ ]] x (8) = 0} cxp (--  n, /2  8) d . ,  
- - o o  

and if this integral were positive, then W(H/-u ,  oil xo : O) would be positive 
for uneountably many  values of u, in copious contradiction to the fact tha t  the 
H/-u,~ for distinct u are disjoint. This proves W ( H / ) =  O, and W(H'I )= 0 
follows by  the symmetric argument. 
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Therefore 2 is a W-cont inui ty  class if  

(58) W (Jr) ----- W (J~) = 0 

for all ] in V. I f  ] (0) . 0, t hen  certainly (58) holds. Suppose t h a t  /(0) = 0, and 
consider W (JI). B y  Khinchine ' s  local law of the  i t e ra ted  logar i thm (see p. 33, 
of  [5]), i t  follows tha t ,  for x in a set  of Wiener  measure  1, x (t) exeeds the  r ight  
side of  (55) for values of t a rbi t rar i ly  close to  0, so t h a t  W (Jl) = 0 ff ] e V. The  
symmet r i c  analysis applies to  W (Jr). 

This completes  the  p roof  of  the  italicized s t a t emen t  above,  which generalizes 
Theorem 5.1 of  RA~GA RAo [8]. The result  can be s t rengthened a little b y  using 
Kolmogorov ' s  tes t  (see [5]) in place of  (55). Also, the  local law of the  i te ra ted  
logar i thm can be used in the  opposi te  direction to const ruct  an A of the  fo rm 
(54) wi th  W ( O A )  > 0: t ake  - - [ ( t )  -~ g(t) -~ (3t log logt-1) 1/~. 

B y  the  r emark  in Section 1 f o l l o ~ n g  the  s t a t emen t  of  Theorem 6, i t  seems 
plausible t h a t  the result  even holds if  we re lax the  condit ion (fi) t h a t  V be t run-  
ca t ion-compact  to the  condit ion t h a t  V be truncation-closed.  

I n  closing, we m a y  note  those results  in the  pape r  t h a t  do not  require the  
overall  hypothesis  of  separabil i ty.  Separabi l i ty  is not  required to  prove  t h a t  (9) 
implies (11), to prove  (via (12)) t h a t  (1 l) implies (9) if  all the  spheres are connected,  
or to  prove  L e m m a  4. 

The proof of (43) is due in part to D. G. K~DATx.; C. A. RoG~s  suggested investigating 
atA in place of (OA) ~ at an early stage of the work when Theorem 1 was not available to us; 
and D. H. F~Er~LI~ pointed out to us the cardinality argument involved in Example 5. 

The second author intends to publish another paper on uniformity shortly. 
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