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Section 1. Introduetion

Consider probability measures on the o-field % of Borel subsets of a metric
space S. If P, and P are such probability measures, P, is said to converge weakly
to P (written P, = P) if [fdPy— {{dP for each bounded, continuous real
function f on 8, or, equivalently, if P,(4)-> P(4) for each P-continuity set,
a P-continuity set being an element 4 of & whose boundary 04 satisfies P(94)=0.
Also, it can be shown that, if Py = P, the convergence [ fdP, — [{dP holds
for each bounded, real, measurable function that is continuous almost everywhere
P (see [7] or [2]).

Let #(8S) denote the class of all bounded, real, measurable functions defined
on S. If & is a subclass of #(8), we shall say that F is a P-uniformity class if
(1) lim sup|[fdP,— [fdP|=0

n—soo0 fe
holds for every sequence {P,} that converges weakly to P. (Of course, even if #
is not a P-uniformity class, (1) will hold for special sequences {P,} such as
P,=P)

We shall say that & is a P-continuity class if every function in & is con-
tinuous except on a set of P-measure 0.

If % is a subclass of the o-field & of Borel sets, we call U a P-uniformity class
[ P-continusty class] if the class of indicator functions of sets in % is a P-uniformity
class [P-continuity class]. Thus ¥ ¢ & is a P-uniformity class if
(2) lim sup|P,A —PA|=0

n—>co Ae¥l
holds for every sequence { P, } that converges weakly to P, and 2 is a P-continuity
class if P(94) = 0 for all sets 4 in U.

We shall find necessary and sufficient conditions for P-uniformity and then
derive some effective criteria for the case of a subclass U of &.

Throughout what follows, S is assumed separable. Let ¢ denote the metric on 8
and denote by S(z, 6) the open sphere with center x# and radius . For § > 0
and A4 c 8, define the §-neighbourhood of 4 by

(3) A0 = {x:p(x, 4) < b},
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and define the §-boundary of 4 by
(4) 0sd = {x:p(x, 4) <9, g(x, 4°) < 6},

where A¢ denotes the complement of A. Note that 944 is the union of the two
disjoint sets A9\ 4 and (A4¢)%\(A¢). The ordinary boundary 04 satisfies

(5) 04 = A-\A0 =" 2s4 = [)(24)°,
>0 6>0

where A~ and A0 denote the closure and interior of 4.
If & is a subclass of #(S) and B a subset of S then we define the oscillation
of # on B by

(6) wg (B) =sup{|f() — (y)| :fe F, 2,y e B}.
In the case where & consists of a single function f we use the notation ws(B)
or wyB.

Theorem 1. If & is a subclass of % (8) then a necessary and sufficient condition
that F be a P-uniformity class is that

(7) wg(S) < oo

and that

(8) lim sup P{z:w;S(z,d) >¢e} =0
80 feF

for all positive ¢.

Since the P-uniformity is not affected if we subtract constants from the func-
tions in &, the condition (7) is essentially equivalent to the condition that &
be uniformly bounded. Notice that the set {x: w;S(x, ) > ¢} occuring in (8) is
open, and hence belongs to &. Theorem 1 clearly extends to complex-valued
functions and to functions mapping § into euclidean k-space. It also follows from
Theorem 1 that a P-uniformity class is a P-continuity class. Another important
consequence is

Theorem 2. If U is a subclass of & then a necessary and sufficient condition that
U be a P-uniformity class is that
9) lim sup P(9;4) = 0.

60 Aell

In Sections 2 and 3 we prove Theorem 2. Then in Section 4 follows the proof
of Theorem 1. We could have proved the more general Theorem 1 first; however,
we bope that what we gain in clarity justifies the slight duplication.

The remaining sections concentrate on the study of P-uniformity for a sub-
class A of &. Note that although (9) depends on the metric g, the notion of
P-uniformity class is purely topological — in the sense that if % is a P-uniformity
class then it remains so if g is replaced by an equivalent metric. It follows by
Theorem 2, therefore, that U is a P-uniformity class if and only if (9) holds for
some metric equivalent to ¢ and if and only if (9) holds for all metrics equivalent
to .

Since clearly

(10) (04)0cos4,
the condition (9) implies
(11) lim sup P((24)%) = 0.

30 Aec¥U
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Theorem 3. If S is locally connected, then (9) and (11) are equivalent, and each
ts necessary and sufficient that U be a P-uniformity class.

We have noted that (9) implies (11) even without local connectivity; we shall
show by counterexample in Section 9 that (11) need not imply (9) if S is not
locally connected. If every sphere in § is connected (a condition stronger than
Jocal connectivity), then, since a connected set that meets both 4 and A¢ must
meet dA4, we have

(12) 9sd c (2A)0,

from which it follows that (11) implies (9). We defer to Section 5 the proof that
(11) implies (9) in the general locally connected space.

If §is a Banach space, then every sphere in § is connected (even arcwise con-
nected); in particular, § is locally connected. Thus our results are applicable to
k-dimensional Euclidean space R¥ and to the space C of continuous functions on
[0,1], with the uniform topology. Another space of interest in the applications is
the space D of functions with discontinuities only of the first kind; it can be
shown that, with Skorohod’s topology J; [10], every sphere in D is (arcwise)
connected.

Since 004 = 04 if A is closed, we have the following corollary to Theorem 3.

Corollary. If 8 is locally connected and if U consists exclusively of closed sets,
then U is a P-uniformity class if and only if 0 = {04 : A € A} is a P-uniformity
class.

The further study of P-uniformity is based on a topological device. Let IR be
the class of closed, bounded, nonempty subsets of §; under Hausdorff’s metric
(13) A(Ml,Mz)=inf{626>0,M1CMg,M2CMg},_

IR is a topological space [1]. It will be convenient to include in I}t the empty set,
regarded as an isolated point in the topology (notice that (13) is infinite if M, or
My is empty).

Theorem 4 shows that the compact subsets of It play an important role in the
theory. The space I is compact if S is compact; if My consists of subsets of a
fixed compact set in S, then o is compact if and only if it is closed; if § is com-
plete then 9 is complete (these results can be found in [1]).

Theorem 4. If S is locally connected and if % is a P-continuity class, then each
of the following three conditions is sufficient for U to be a P-uniformity class.

(i) The class
(14) oA ={04: AU}

18 a compact subset of IN.

(ii) There exists a sequence { By} of bounded sets such that lim P(Bj) = 1 and
such that, for each k, the class k
(15) (B = {9(BpxNA4): Ac U}

18 @ compact subset of M.

(iii) T'here exists a sequence { By} of closed, bounded sets such that hm P(B)=1
and such that, for each k, the class
(16) BynoW ={Brnod:4eU}
is a compact subset of M.

1
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In Section 6 we shall show (without using the hypothesis of local connectivity)
that each of these three conditions, together with the assumption that % is a P-
continuity class, implies (11); Theorem 4 will then follow by Theorem 3 and the
hypothesis of local connectivity.

The important condition in Theorem 4 is (i). The more general conditions (ii)
and (iii) do not involve really different ideas; they are introduced because the
classes (15) and (16) are always subsets of I (compact or not), which need not
be true of (14). Notice that if % is a P-continuity class, then the elements of (14)
and (16) all have P-measure 0 and that the same is true of (15) if P(0B;) = 0.
Finally, in connection with the compactness requirements, notice that a compact
subset of M remains compact if the empty subset of § (as an element of M) is
adjoined to it or removed from it.

The conditions (ii) and (iii) of Theorem 4 are often rather restrictive. It is easy
to find sets By such that lim P(BY) = 1 but usually the sets By will then not

k

be compact (this is indeed the situation in any infinite dimensional Banach space)

and it becomes difficult, unless ¥ is rather small, to ensure that the classes in (15)

and (16) are compact. Note that Theorem 4 breakes down if we replace the con-

dition lim P(BY) = 1 by lim P (By) = 1 (it is easy to construct a counterexample
P

k
with P a unit mass). Section 7 is devoted to the proof of the following theorem,
which to some extent overcomes the difficulties.

Theorem 5. Let S be complele and locally connected and let U be a P-continuity
class consisting entirely of closed sets. Then U is a P-uniformity class if to every
compact set K there exists another compact set K* such that K c K* and such that
K*n oW is @ compact subset of M.

The compactness of ¥ itself is sometimes more easily checked than that of 9%.
This suffices if the elements of U are convex:

Theorem 6. Let S be a (separable} Banach space, real or complex, and let U be
a class of closed, convex P-continuity sets. Then W is a P-uniformity class ¢f W is
tiself a compact subset of M, or if for each closed sphere B, the class

an BNnA={BNnA4d:4e%}
is a compact subset of M.

We shall prove this result in Section 8 by reducing it to Theorem 4.

It follows from Theorem 5 and Mazur’s theorem (see V.2.6 of [3]) that the
class U in Theorem 6 is a P-uniformity class if KN 9% is a compact subset of M
for all compact and convex sets K. It is not known whether it suffices to assume
that KN is a compact subset of IR for all compact and convex sets K.

Section 9 contains various illustrations and applications of all these theorems.
Most of the applications generalise results of Raxga Rao [§].

Section 2. Proof of Sufficiency in Theorem 2

We shall need the following lemma.

Lemma 1. For each positive & there exists a P-uniformity class Us such that for
each subset A of 8 there exist in U s sets V and W satisfying WcAcV and V\Wcds4.
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Proof. Choose about each x in § an open sphere 8, satisfying P(08;) =0
and diam S; << §. Since 8§ is separable, it follows by Lindel6f’s theorem [6] that
some sequence {S,,,S,,, ...} of the sets 8, covers 8. If

U; = ch M n.ng ,
j<i
then {U1, Ua, ...} is a finite or countable partition of S into P-continuity sets
of diameter less than §. Let %; denote the o-field generated by the U;; %, consists
of the unions of the Uj.

If P, = P, then P,(U;) = P(Uy) for each ¢, so that, by Scheffé’s theorem [9],

sup |PpV — PV| £ |Pa(Us) — P(U)| -0

VelUs [
as n — oo. This proves that % is a P-uniformity class. From the fact that each
U; has diameter less than J, it follows that there exists a set V in %, such that
A cV c A% which in turn implies V\ A4 c ds4. The existence of a W in %, with
W cA and A\W c 354 follows by applying this argument to the set 4e¢. It fol-
lows that V\W c ds4 which proves the lemma.

Suppose now that (9) holds. Let {P,} be a sequence that converges weakly
to P. Given a positive 7, first choose a positive § such that

(18) sup P(0s4) < 7.
Ae¥

Let %5 satisfy the conditions of Lemma 1. Choose N so that

(19) sup |Po V — PV | <7y
Vel s

holds for all # = N. From this and Lemma 1 it follows that
|[PnAd — PA| < n+ P(0s4)
for all » = N and all 4 &. It follows by (18) that
sup |Ppd — PA| <29
Aef

for all » = N. Since % was arbitrary, ¥ is a P-uniformity class.

Section 3. Proof of Necessity in Theorem 2

We need two lemmas.

Lemma 2. For each positive § and each set A in S, there exists a finite or countable,
pairwise disjoint class {N;} of Borel sets such that 9s4 c UN 1, such that diam

7
N ;<< 60 for each i, and such that each N; meets both A and Ac.

Proof. If 944 = 0, these conditions are formally fulfilled by an empty class
of sets N;. We assume 94 = 0.

Since S is separable, it follows by Lindelof’s theorem that for some sequence
(y1, y2, ...) of points in 054, the spheres S(y;, ) cover ds4. Bach S(y;, 6) meets
both 4 and Ae.

Let #1 = y1; let 25 be the first y; beyond z; distant at least 26 from zy; let
xg be the first y; beyond zs distant at least 26 from x; and from zs. Continue
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in this way (the process may terminate). The spheres S(z;, d) are disjoint, and,
since each y; is within 26 of some x;: 0,4 CUS xi, 36).

Let B = US wz,ﬁ) and

= 8(xi,38) N Ben) Sz, 35)°.
E<i

If Ny = S(xi, 6)UM;, then the collection {N;} has all the properties required
of it.

Lemma 3. Let (r;, s;) be (finitely or infinitely many) pairs of real numbers. If
2. (ri -+ 50) Z &, then either X 1y = ¢4 or 3 s = ¢[4.

2 228 $i>71¢
Proof. Put t = (r+ 8)). If > r;<t/4 and > s; < 1[4, then
D T8 Si>1:
t=2ri s+t s<it+2r+Ys<it+
riZ81 81> 8$i>T =28 S1>14 7i228;

+min{z_,ri’ ZS’L} éta

?
a contradiction.,
Now suppose that (9) fails. We shall show that % is not a P-uniformity class.
Since (9) fails, there exists a positive ¢ such that for all positive 8,

(20) P(0sds) = ¢

holds for some 44 in A. We shall use 9544 to construct a probability measure P,
very close to P.

By Lemma 2, there exist pairwise disjoint Borel sets Ng; such that 9¢4,
CU Ns;, such that diam Ng < 64, and such that Ng meets A, in some point

%
xs; and meets A§ in some point ys. Pub rs; = P(NoN Az and sg; = P (NN AF).
Then
Doroi 4, 80= ) P(Net) = P(9sdo) Z
7 5 i

by (20). By Lemma 3, therefore, either

(21) -S> ez efd
LE AN

or

(22) Z sp1 = &f4.
S8;>T60

If (21) holds (for a particular d), define P; to coincide with P outside UN o and

2
to consist in each Ng; of point masses at xs and yg in accordance with the re-
quirements

(23) Po (xm) = {

0 if re=sa ( rei 4 ser if 1 = sa
. Yoi) = .
ro; if se > e, 8gi if s> 7si.

If (22) holds instead of (21), define Py in the same way, but with (23) replaced by

T if 7o = s sgr if rer = s

24 P i) = - P = .
24 o () {Toi-l-soi if sg > s, o(yat) {0 if 81> ra-
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In either case, Ps agrees with P outside UN i, Po(Ng) = P(Ng) for each 7,
and t
(25) |P(As) — Ps(As)| = e/4.

Since diam Ny << 64, it follows from this that limff dPs = f fdP holds for
>0
every bounded, uniformly continuous real function f. Therefore (see Theorem 2.1
of [2]) Ps = P as § — 0. Because of (25), ¥ is not a P-uniformity class.
Section 4. Proof of Theorem 1

In this section we shall find it convenient to define the §, e-boundary of a
function f in % (S) by

(26) 0s,¢(f) = {x: wyS(x, §) > &} .

The condition (8) in Theorem 1 can then be written as

(27) lim sup P(ds,:(f)) =0.
350 feF

First, let us prove the sufficiency in Theorem 1. This is done in a way analogous
to the sufficiency proof in Section 2. The fact corresponding to Lemma 1 is ob-
tained as follows. Let § be positive and C a finite positive constant. As before let
{U;} be a finite or countably infinite decomposition of § into P-continuity sets
of diameter less than 8. Let % 5,¢ denote the class of functions of the form > a; yp,
with all the o’s real numbers bounded in modulus by C; here gy, denotes the
characteristic function of U;. Then it is easy to see that &, ¢ is a P-uniformity
class. If { is any function in %(S) such that |f(z)| =< C for all z in S then there
exist two functions % and ¢, both in F;,¢ such that 4 =< f < ¢ and such that
f(g — h)dP < e+ 2C P(0s,¢(f)) holds for all positive ¢.

Assume now that & satisfies (7) and (8). By subtracting suitable constants
from the functions in %, we see, by condition (7), that we may assume that
|f(x)] = C holds for all z in S and all f in &, with C a finite constant. By the
remarks above, it is easy to complete the proof.

Now let us prove the necessity of the boundedness condition (7). Assume that
(7) does not hold. Then for every positive integer n, there exists a function f, in
& with wy,(8) > n. Let

ap =1inf{f,(x) 128} and [, =sup{fn(z):xecS}.
Then B4 — oy > n. Divide the closed interval [ay, f5] in n disjoint intervals of
equal length. For one of these intervals, say for I,, Pf;l(I,) = 1/n. Clearly,
there exists a point z, in § such that
(28) Ifn(xn)_tl =(n—1)/2
for all ¢ in I. Let @, be the signed measure that agrees with — (n P (f,;} (I)))~L.
P on the set f;}(I,) and vanishes outside f,!(I,) except at the point x,, where
@y has the mass 1/n. It is easy to see that P, = P - @, is a probability measure.
Also,

| indPa— [fadP| = | ] ndQa] = Un|fa(an) —t]
for some ¢ in I,. Hence, by (28),
|[[ndPy — [fadP| =1/2 — 1/2n,
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and since {P,} clearly converges weakly to P, # cannot be a P-uniformity class.
This proves necessity of condition (7).

Lastly we want to prove the necessity of (27). This proof is very much analo-
gous to the proof of necessity in Theorem 2. Instead of Lemma 2, we now use the
fact that for each f in 4 (8), and for each pair §, ¢ of positive numbers there exists
a finite or countable, pairwise disjoint class {N;} of Borel sets such that 85, +(f) c
CUN i, such that diam N; <C 64§ for each 4, and such that wg(N;) > ¢ for each ¢.

This result is proved in the same way as Lemma 2.

Now suppose that (27) fails. Then there exists a pair ¢, # of positive numbers
such that for all positive § there exists a function f; in & with P(9¢,¢(fs)) = 9.
Construct the class {Ns,:} corresponding to the set 05, ¢(fs). Then

ZP(Nd,i)wfa(Na,i) =ne

and we can use Lemma 3 with

76,0 = P(Ns,1) sup{fs(x):x€Ns,;} —Njfddp

and
85,5 = J']'ddP — P(Nd,i) lnf{fo(x) :xeN(m}.

No,i

The proof continues along the same lines as the proof in Section 3; the details are
left to the reader.

Section 5. Proof of Theorem 3

Becaiuse of (10), we need only show that if S is locally connected, then (11)
implies (9). Given a positive &, choose a positive % such that

(29) sup P((04)") < e.
Ae¥

By local connectedness and separability, there exist finitely or countably many
connected sets H; such that S c|_JE? and such that diam B; < 7. Let
7

Diys={z:zcE}, o(z, B} = 8}.

For fixed i, Dis 1 EY as 6 | 0.
Choose an integer 99 so large that P(S — UE?) < g, and then choose a

1<%
positive & so small that P (B} — D;s) < efip for + < 1o. Then
(30) P(S"‘UDM)<28-
Let us prove that
(31) Disn0ed C (aA)”

for every i and every 4. If z € 954, then p(z, y) < 6 and g(x, z) < 6 for some
yin A and z in 4¢. If x € Dys, then y and z lie in By, so that E; meets both 4
and Ae¢. Since E; is connected, it meets 04 in some point w. Since x and w both
lie in E;, and since diam B; <C , we have g(, 84) < p(x, w) << 7, or z € (34)".
This proves (31).
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From (30) and (31) we conclude that P(0;4) < 2¢ 4 P((24)n). If Ae ¥,
then it follows further by (29) that P(054) << 3¢ holds for the § chosen, and hence
holds for all smaller 8. Thus (9) holds, which completes the proof of Theorem 3.

Section 6. Proof of Theorem 4
The essential point of Theorem 4 is contained in the following lemma, which
does not require the assumption of local connectedness.

Lemma 4. Suppose that Mo is a compact subset of M. Then, for any probability
measure P,

(32) lim sup P(M9% =sup P(M).
—>0 Melo Mo
In particular, if P(M) = 0 for each M in My, then
(33) lim sup P(M%) =0.
6—0 MeMy

Proof. Let 5 be a fixed positive number. For each M in MMy choose dxr such
that P (M2%x) < P(M) + #. Since My is compact there exist finitely many
sets M1, ..., M, in My such that, for all M in WMo, A(M, M;) < 6y, = §; for
some ¢ =1,...,7. Put 6 = min{dum,, ..., dns,}. Then it is easy to see that for
each M in Mo, M9 c M?* for some ¢ = 1, ..., ». It follows that

sup P (M%) < sup P(M) + 4.
MeMo Medlio

Suppose U is a P-continuity class. It follows immediately from Lemma 4 that
condition (i) of Theorem 4 implies (11).

Consider condition (ii) of Theorem 4. Given 7, choose k so that P(Bj) > 1 — 1.
Since

(34) 04 c[0(Bry N A)JV[S — Bg],

we have

(35) (04)0clo(Bxy N A)]° U [S — Bi]°,

so that

(36) P((04)%) < P([9(Br N 4)]°) + P([S — Bil%).
Since 9(By N A)cd(By) U a(d)c[S — B U d(A) we have
(37) P@(Brn )<y

for all A € UA. Hence, for small enough 9, we have, by Lemma 4, P ([0 (Br N 4)]%) <
< 27 for all A € ¥; and for small enough J we have
P([S— Byl < P([S— By]")+ =P — B) +n<27.

Therefore, by (36), (11) holds.

The same sort of argument shows that condition (iii) of Theorem 4 implies (11).
We need only replace (34) by
(38) 04 c[By N 0A] VS — Byl
and continue as before.

Each of the three sets of hypotheses in Theorem 4 thus implies (11) (and this
is true even if S is not locally connected). As remarked after the statement of the
theorem, this suffices for its proof.
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Section 7. Proof of Theorem 5

By the corollary to Theorem 3, it suffices to show that 0% is a P-uniformity
class. Assuming P, = P, we must show that
(39) lim sup Pp(04)=0.

n—>o0 AeU

The proof of (39) does not use the local connectivity of S. Let % be positive. Since
P, = P and since § is separable and complete there exists a compact set K such
that Pu(K) > 1 — % for all » ([7], Lemma 1.3). Choose K* according to the
conditions in Theorem 5. Then

(40) Py (24) = 1+ Pa(K* N 04)

for all #n. By an argument familiar to us from the proof of Theorem 4, there
exists a J > 0 such that
(41) P((K*N24)) < g
for all A € U.

Now let % be a P-uniformity class as constructed in Lemma 1. Choose N
so that
(42) sup | P,V —PV| <9y

Vel s

holds for all n = N. Let A be any set in %. By Lemma 1 we can choose V in %,
80 that K* N 04 c V c (K* n 04)%. Then

Pu(E*NoA) S PpV < |PyV—PV|+ P((K*N24)9).
By (40), (41), and (42) it follows that

sup Pp(04) <37
Ae¥

holds for all » = N. This proves that 0% is a P-uniformity class.

Section 8. Proof of Theorem 6

Let U be a P-continuity class of closed convex sets in the (separable) Banach
space S. Suppose at first that 2 is a compact subset of IR. Since § is locally con-
nected, Theorem 4 applies. Condition (i) of that theorem is fulfilled if we can
show that for each compact subset U of I consisting entirely of convex sets,
o is also a compact subset of M. This will easily follow if we can show that for
each pair of bounded, closed, non-empty convex sets 4 and B we have A4(4, B) =
= A (84, dB); actually we shall prove that for such sets equality holds:

(43) A(A, By = A (04, 3B).

The inequality A(4, B) = A(94, ¢B) follows easily from the fact that, since
A[B] is bounded, each point of A[B] is a convex combination of two points of
0A[oB].

To prove the reverse inequality we shall show that if 4 c B% and if Bc 44
then the relations 04 c dB*9 and 0B c 94419 hold for every positive §; obviously
we need only prove the first relation. Suppose = € 94. Since 4\B c dB%, we may
assume that z € B. Consider a point y such that y ¢ 4 and y € S(x, §/2). There
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exists (see V.2.12 of [3]) a linear functional f of norm 1 and a real & such that
Re f(y) = « and such that Re f(z) < aforallze 4. Choose f so that 1 < 0 < 1+
+ 0/2, and consider y + Gw, where w is an element of S of norm 1 satisfying
f(w) > 2/0. Since Re f(y -+ 8w) > a + A, ¥y + OBw cannot lie in 44, Hence y - fw
cannot lie in B. Since « € B, there must be a point z of 6B on the segment from
xztoy + Ow. We have ze S(x, A + §), and the inclusion 4 ¢ dB4+¢ follows.

The equation (43), together with the fact that the bounded closed convex
subsets of 8 constitute a closed subset of I, implies that a class Y consisting of
bounded, closed, convex subsets of § is a closed subset of IR if and only if oA
is a closed subset of IN; also U is a compact subset of P if and only if oA is a
compact subset of . Thus condition (i) of Theorem 4 holds if U is compact in IX.
If the class B N % is compact in N for each closed sphere B, then it is easy to
see that condition (ii) of Theorem 4 holds.

It is perhaps worth while to point out that, if the class U in Theorem 6 con-
sists of convex sets with non-empty interior, then we need not assume that the
sets in U are closed, since then YU will be a P-uniformity class if and only if the
class

(44) U= {A-: AU}

is a P-uniformity class. To see this note that for convex sets 4 with 40 + 0
we have 9(4) = o(47).

Seetion 9. Examples and Applications

The first two examples illustrate various points of the theory; the remaining
ones are applications to concrete cases of interest.

Example 1. Let S be the space of sequences = (%1, z2, ...) of 0’s and 1’s,
metrized by ¢ (x,y) = > |&; — y:| 27 (product topology); § is completely dis-

2
connected. Let U be the class of sets of the form
(45) A:{x:xlzul,...,xk=uk},
with (uq, ..., 4g) varying over all finite sequences of 0’s and 1’s. Since d4 =0

for each 4 in ¥, (11) holds no matter what P is.
It is not hard to show that the é-boundary of (45) is given by

0 if 2—’6267
. k
(46) 8sd = {y:zlyi—uilz—ma} it 2k <o,

t=1
and that therefore, by Theorem 2, ¥ is a P-uniformity class if and only if for
all # there exists a J such that

k
(47) P{y:zlyi—uilz—i<6}<n

i=1
holds for all sequences wuy, ..., uz of length £ > — logsd.

If P has a mass of 9 at some point z, then (47) is violated with u; = 2;, ¢ < &,

so that ¥ is not a P-uniformity class. Let Ay (y) be that set of the form (45)
that contains y. If P has no point masses, then for each y, P(4x(y)) converges
monotonically to 0 as k — oo. Since P(Ax(y)) is continuous in y for each %, and
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since S is compact, the convergence is uniform. It follows via the condition (47)
that % is a P-uniformity class. (To see this, note that

1

. :
{y:Z[yi—ui|2‘i<6}cAk'(u) with & =[— logad],
i=1

the integer part of —logsd). Thus U is a P-uniformity class if and only if P
has no point masses.

Since 0% consists of the empty set alone, we see that if S is not connected,
then (11) need not imply (9), the sufficiency condition in Theorem 3 fails, and
Theorem 4 fails.

Example 2. If § is a countable, discrete space, then & itself is a P-uni-
formity class for every P: By the remark following the statement of Theorem 2,
we may work with any metric that generates the topology; if we take the distance
between distinet points to be 1, then 954 = 0 for all A if § < 1, so that (9)
always holds.

Example 3. Let X be a (real or complex) separable Banach space and denote
by %(8, X) the class of all bounded measurable functions mapping § into X.
Since X is separable, (S, X) is well defined (see ITL. 6.11 of [3]). We can then
define P-uniformity etc. for a subclass & of % (8, X). By A we denote the class
of all continuous linear functionals on X with norm at most 1. A% is then the
class of scalar valued functions on § of the form ¢(f) with ¢ in A4 and f in Z.
Since

(48) sup || [fdPn — [fdP|| =sup |[@(f)dPr— [o(/)dP|,
feF o(fedF

we find that & is a P-uniformity class if and only if A% is a P-uniformity class.
Therefore by Theorem 1 and the relation w % (8) = ws(S) it follows that the
two conditions

(49) wg(8) < oo

and

(50) lim sup P(8s,s(p(f) =0
-0 o(fledF

for all £ > 0 are necessary and sufficient that & be a P-uniformity class. Ob-
viously (50) is implied by
(51) lim sup P(2q,:(f)) =0.

60 feF
Thus (49) and (51) for all ¢ > O are sufficient for &# to be a P-uniformity class.
This result is not surprising since the sufficiency proof in Section 4 of Theorem 1
applies equally well to Banach-space-valued functions. The sufficiency of (49)
and (51) tells us that the weak convergence P, = P implies that j'fdPn — J'f dP
for each f in (S, X) for which f is continuous except on a set of P measure 0.
We do not know if it is still true that P-uniformity implies P-continuity.

Example 4. If P is a unit mass at x¢ and if & c Z(8) is a P-uniformity
class, then it is easy to see that # is equicontinuous at x; that is, for each positive
¢ there exists a positive § such that wg S (2o, §) < &. Thus a necessary condition
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that & c Z(S) be a P-uniformity class for all P is that & be equicontinuous on
S and wg (S) << 0. We shall now show that these conditions are also sufficient.
The only thing to show is that (8) holds for all P. Let the probability measure P
and the pair of positive numbers ¢,  be given. Choose, for each x in S, a positive
dg such that wg8(x, 20,) < e, or, what is the same, such that w;S(x,28,) < ¢
for all f in 4. It follows (in the notation of Section 4) that S(x, 82) c (9s,,(f))¢
for all { in #. By Lindelof’s theorem it follows that § =|_J S(xi, d5,) for some
N
sequence of points {;}. Now choose NV so large that P (U Sz, 6%)) >1—7

i=1
N
and put ¢ = min {Jy,, ..., dz,}. It is then easy to see that |_J S (;, 6z) C (s,:(f))°
D]

for all f in #. Hence P (05,:(f)) < % for all f in & . This argument shows that (8)
holds for all P and, since (7) holds by hypothesis, we have proved the desired
result. The paper [§] by Ranaa Rao also contains this result; in fact Ranga
Rao gives a nice direct proof.

Example 5. In this example we shall study mappings preserving weak con-
vergence. Let 8 and 8 be metric spaces, % a measurable mapping from § into §’,
and P a probability measure on 8. We shall say that the pair (4, P) preserves
weak convergence if the sequence {P,Ah~1} converges weakly to PA-! in §’ for
every sequence {P,} converging weakly to P in S. As usual we shall assume
that the space § is separable.

From the definition of weak convergence we find, by transforming integrals
over S’ into integrals over 8, that Pph-1 = PA-1 if and only if f g(h) dPy —
—->fg (A)d P holds for every bounded, continuous function g mapping 8’ into the
reals. It therefore follows by our results on P-uniformity (applied to a family &
consisting of a single function) that (&, P) preserves weak convergence if and
only if the composite function g (%) is a P-continuity function for every bounded,
continuous ¢ mapping S’ into the reals.

Thus a sufficient condition for (%, P) to preserve weak convergence is that 2
be a P-continuity function. In fact, it is fairly easy to prove directly that this
result holds even without separability of S.

‘We shall now prove the necessity, assuming the space §’ is separable; that is,
we shall prove that 2 must be a P-continuity function if (A, P) preserves weak
convergence and if §' is separable. In case 8’ is the real line R, this result follows
from the above remarks. It is then easy to prove the result for §'= B>, a countable
product of copies of B, and the final step from R to the general separable metric
space S’ follows from the fact that any such space is horneomorphic to a subset
of Ree.

Lastly we shall prove that necessity holds without any assumptions on §’,
provided that no uncountable cardinal » satisfies 2% = 2% (a condition strictly
weaker than the continuum hypothesis, see Theorem 3 of [11]). We shall prove
this by showing that the image 4 (S) of % is separable. If this were not so then
there would exist a positive & and a family {yu},e; of points in 4 (S) such that the
cardinality x of the index set I is greater than ¥y and such that o(yx, ys) > ¢
for « + f. Any union of y4’s is closed, and hence a Borel set, and it follows that
U {# 1 (ya) : « € I*} is a Borel set for every subset I* of 1. We have thus found
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2% distinct Borel sets in 8. Since there are at most 2%-Borel sets in S and since
» > Np we arrive at a contradiction.

Example 6. We shall examine the content of Theorem 6 in an Euclidean
space. In this example, U will denote the class of all measurable, convex subsets
of R%. In Euclidean space the boundary of a convex set coincides with the bound-
ary of its closure. Thus, by Theorem 3, a subclass %y of U is a P-uniformity class
if and only if the class

(562) Ay = {4~ : AW}
is a P-uniformity class. Combining this with Theorem 6 we obtain:

A subclass o of W is a P-uniformity class if Vo 15 a P-continusty class and if
the class

(53) BN Ug={BNA~:AeU}

is a compact subset of M for each closed sphere B.

Since a closed sphere is compact, B N 2 is a compact subset of I if and only
if it is a closed subset of 9. In particular, we see that the class U itself is a P-
uniformity class if it is a P-continuity class. This result was proved in a different
way by Ranca Rao [§]. (The fact that B N U~ is compact is the familiar selection
theorem of BrascEKE [£]). Taking ¥y to consist of sets of the form {x:z; < ay,
i =1, ..., k} with a ranging over a closed subset of R¥, we obtain the classical
fact that if k-dimensional distribution functions ¥, converge to a k-dimensional
distribution function F at continuity points of F', then the convergence is uniform
over each closed set of continuity points. Taking %p to consist of the convex
polyhedra with at most m faces, we obtain another result due to Raxca Rao [8].
Or we may take o to consist of spheres—examples may be multiplied at will.

Example 7. In the plane R2, consider the class of rectifiable arcs of length
at most [, and let U be the class of measurable planar sets with such curves as
boundaries.

Let 94 be a rectifiable arc of length at most I. For each positive d, there exists
along the curve a succession of points zg, 21, ..., 2; such that z¢ and 2z; are the
endpoints, such that p(z;-1,2) =<6, 1 =4 =<k, and such that ¥ — 1 < /d.
Since the &k + 1 spheres S(z;, 28) cover (04)?, the Lebesgue measure of (04)¢ is
at most 47262 ((1/0) + 2). It follows that if P is absolutely continuous with respect
to Lebesgue measure, then (11) holds, so that U is a P-uniformity class. (Since
the convex subsets of a bounded planar set have perimeters of bounded length,
these ideas afford another approach to Example 6 in case k is 2 and P is absolutely
continuous with respect to Lebesgue measure.)

This result fails if there is no upper bound to the lengths of the arcs 04. Take
P arbitrary and take B to be a dise with P(B) > 0. For every § there exists a
(long) rectifiable arc 84 that comes within ¢ of each point of B, so that (94)%> B.
If 2% contains all rectifiable arcs, therefore, the condition (11) (equivalent to (9),
since Rk is locally connected) cannot hold.

Example 8. Let S be the space C of continuous functions x = z(f) on [0, 1],
with the uniform topology. Let V be a subset of C with the following property:
For r > 0 and z € C, let 7,(z) be that element of ¢ whose value at ¢ is x(f) if
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le@)| <r, rif @) >r, and —r if 2(t) < —r. Let V, = {7,(x):2€ V}. We
demand that V, be a compact subset of C for each 7 > 0, which we may express
by saying that V is truncation-compact. (Note that if ¥ is compact, then it is
truncation-compact. Also, if V is truncation-compact, then ¥ N B is compact for
each closed sphere B, although the converse to this is false.)

Let U consist of all sets of the form

(54) A={z:f)<z@)<g@), 0=<t<1},

with f and g ranging over a fixed set V. We shall prove the following result.

The class W is a P-uniformity class if (1) P ts absolutely continuous with respect
to Wiener measure, (il) V is truncaiion-compact, and (iii) for each | in V, either
1(0) = O or else there exist positive & and & (depending on f) such that

(55) /0] < (1 — ¢) (2¢loglog-1)12

for 0 <t < 4.

If B, is the closed sphere of radius 7 about the origin, then B, N U consists
of the sets (54) with f and g in V,. Since V, is compact, it follows easily that
By n A is a compact subset of M. Now the elements of U are convex, and for
each closed sphere B we have B c B, for large r. Therefore Theorem 6 applies:
If %A is a P-continuity class, then it is a P-uniformity class. (We have thus far
used only the assumption that V, is truncation-compact.)

There remains the question of when % is a P-continuity class. If P is absolutely
continuous with respect to Wiener measure W, then 9 is a P-continuity class if
it is a W-continuity class; we shall deduce from assumption (iii) above that %
is a W-continuity class.

For fin C, let H;[H }] consist of those x in € for which # () < f(¢) [x(t) = f(t)]
holds for all ¢ > 0 and for which () = f(£) holds for some ¢ > 0; let Jf[J, }] congist
of those x in C for which #(t) < f(t) [x(f) > f(£)] holds for all ¢ >> 0 and for which

2(0) = f(0). The boundary of (54) satisfies

(56) PAcH;UJ;UH, U Jyg,
and hence U will be a W-continuity class if
(57) W (Hy) = W(Hp) = W(J) = W) =0
forall fin V.
Let us prove W (Hy) = 0. For § > 0, let Hy, 4 be the set of « for which x(t) < f(f)

for all ¢ =6 and for which % (t) = f(¢) for some ¢ = 4. Since Hyc|_) Hy, s, it will
suffice to show that W (Hy,s) = 0 for all positive §. But 98>0

5(6)
W (Hy,s) = (27 6)V2 [ W{H}, || x(8) = u} exp (—u2/28) du
_;?5)
== (27 6)-112 f W{Hfu,s H z(d) = 0} exp (— u2/28) du
and if this integral were positive, then W {H; 4, s||xs = 0} would be positive
for uncountably many values of «, in copious contradiction to the fact that the

Hy 4, 5 for distinet w are disjoint. This proves W (Hf) = 0, and W(H}) =0
follows by the symmetric argument.
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Therefore U is a W-continuity class if
(58) W) =W(J)=0

for all f in V. If f(0) # 0, then certainly (58) holds. Suppose that f(0) = 0, and
consider W (J;). By Khinchine’s local law of the iterated logarithm (see p. 33,
of []), it follows that, for x in a set of Wiener measure 1, z(¢) exceds the right
side of (55) for values of ¢ arbitrarily close to 0, so that W (J;) = 0if fe V. The
symmetric analysis applies to W (J5).

This completes the proof of the italicized statement above, which generalizes
Theorem 5.1 of Ranga Rao [8]. The result can be strengthened a little by using
Kolmogorov’s test (see [4]) in place of (55). Also, the local law of the iterated
logarithm can be used in the opposite direction to construct an 4 of the form
(54) with W (04) > 0: take —f(t) = g(f) = (3t log logt—1)1/2.

By the remark in Section 1 following the statement of Theorem 6, it seems
plausible that the result even holds if we relax the condition (ii) that V be trun-
cation-compact to the condition that V be truncation-closed.

In closing, we may note those results in the paper that do not require the
overall hypothesis of separability. Separability is not required to prove that (9)
implies (11), to prove (via (12)) that (11) implies (9) if all the spheres are connected,
or to prove Lemma 4.

The proof of (43) is due in part to D. G. KenparL; C. A. RoGERs suggested investigating
054 in place of (84)% at an early stage of the work when Theorem 1 was not available to us;
and D. H. FrEMLIN pointed out to us the cardinality argument involved in Example 5.

The second author intends to publish another paper on uniformity shortly.
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