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Introduction 

Comparison problems of solutions to stochastic differential equations (SDE) 
have been discussed first by Skorohod [13] with the idea of applying them to 
the uniqueness problem of solutions to SDE. 

In the last ten years, several authors have produced comparison theorems 
or applications there of to some control problems, to pathwise uniqueness and 
to the explosion or recurrence problems of solutions of SDE, as well as to the 
study of diffusion process on a Riemannian manifold. These include Anderson 
[1], Yamada [16], Bonami-Karoui-Roynette-Reinhard [2], Debiard-Gaveau- 
Mazet [3], Ikeda-Watanabe [6, 7], Doss [43, Doss-Lenglart [5], Malliavin 
[11], O'Brien [123, Kesten-Ogura [9] and Takeuchi [143. 

A common feature of these comparison theorems, except that of [511 is 
that two solutions of SDE, Xa(t ) and x2(t ) are compared in the form; 
xl(t)~x2(t ) a.s. That is to say comparison in the weak sense. 

The purpose of the present paper is to give some non-contact or strong 
comparison theorems for solutions of SDE. In w 1, we will discuss the non- 
contact property of solutions of the same one-dimensional SDE. In w the 
same problem will be treated in the multi-dimensional case. As an application, 
we will show in w 3 that solutions of one dimensional SDE can be interpreted 
as homeomorphisms on R under local Lipschitz condition for coefficients. 

In w we will discuss a strong comparison theorem for solutions of two 
SDE for which drift coefficients are strongly ordered but with the same 
diffusion coefficient. 

w 1. Non-contact Property of Solution of SDE; One Dimensional Case 

In this section, we will discuss the non-contact or strong comparison problem 
of solutions of one SDE but with different initial conditions in one-dimensional 
case. 

1 Doss-Lengtart [5] gave a strong comparison theorem under the Ca-continuity of diffusion 
coefficient 
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Theorem 1.1. Suppose we are given the following; 
(i) a real continuous function a(t, x) defined on [0, oo) x R such that 

]~( t ,x ) -a( t ,y ) l<p( lx-y[) ,  x, y e e ,  t>=O, (1.1) 

where p(u) is a continuous increasing function defined on [0, oo) such that p(O)=O 
and 

o x p~ dX=o p (y) 

(ii) a real continuous function b(t, x) defined on [0, oo) x R such that 

]b(t,x)-b(t,y)l<=~([x-yl), x ,y~R,  t>O, (1.3) 

where ~c(u) is a continuous increasing function defined on [0, oo) such that ~c(0)=0 
and 

1 

limxso l_x<=y< l [ sup ~c(y) ! du /~ ~, pdU(u) [j1 p ~  / !  j ~VF2..~ dy =0. (1.4) 

Let (s ~j, P; ~Jt) be a probability space with right continuous increasing family 
(q~t),>=o of sub-a-fields of  ~j, each containing all P-null sets and suppose we are 
given the following processes and random variables defined on it; 

(i) two ~Jo measurable random variables 4 and ~1; 
(ii) two ~ adapted continuous processes x(t, 4) and x(t, ~I); 

(iii) a one-dimensional ~jt-Brownian motion B(t) such that B(O)=O. 
We assume that they satisfy the following conditions; 

x(t, 4) = 4 + i ~(s, x(s, 4)) dB(s) 
0 

+ib(s,x(s ,  4))ds, a.s. on 0 < t < (  1, (1.5) 
0 

x( t, tl) = ~1 + i a(s, x( s, ~I) ) dB(s) 
0 

+ib(s , x ( s ,@ds ,  a.s. on 0__<t<~2, (1.5') 
0 

where the stochastic integral is understood in the sense of  Ito integral, 

~i =sup{t; sup Ix(s, 4)1 < + oo} 
s~[O,t] 

and 
(2=sup{t;  sup Ix(s,~)l < + o3}. 

se[O,t] 

Then, the relation 
4(o~) < q(co), a.s. (1.6) 
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implies 
P(x(t ,  ~) < x(t, ~7), o <= t < ~)= 1 (1.7) 

where [= [1  A~2 2" 

Proof. We will divide the proof into two steps. 
(1 ~ In this step, we shall prepare several notations and discuss their 

properties. 

Set f2r= co; L=V/(co)-~(co)__<L for 1 < L <  + or. Then we observe that D r 

belongs to 5o and 

P(f2r)I'l as Ltends to +oo. (1.8) 

Put ~-r=sup{t; sup Ix(s,~)l<L and sup Ix(s,~l)l<g}. Then, by the deft- 
se[O, t] se[O,t] 

nition of~, we have 8LT(, a.s., as L tends to +oo. 

Let o - l = i n f { 0 < t < ( ;  x(t, t l ) -X( t ,~)= 1 }  (infq~=(), and "c= in f{0<t<( ;  

x(t, Vl) - x(t, 4) = 0} (inf 4 = O. 
Since, x(t,~l)-X(t,~) is continuous in t and x(O, t l ) - x (O ,~ )=v l -~>O , we 

have 

~r2Tr as m tends to +o r  a.s. on {r<~}. (1.9) 
m 

(2 ~ ) In this step, we will show (1.7). 
Define a C2-function ~b on (0, or) by 

1 

y ~  Y" 

Letting t =  t/x cr_~/x 8 L for a fixed positive number t, we observe that /" is a 
m 

~t-stopping time and t'< ~ a.s. 
Applying Ito's formula, we have 

+ ~ qb'(x(s, vl)- x(s, 4)) {or(s, x(s, ti)) - or(s, x(s, 4))} dB(s) 
0 

7 

+ ~ ~)'(x(s, tl) - x(s, 4)) {b(s, x(s, 17)) - b(s, x(s, ~))} ds 
0 

7 

+ 1 ~ 4)"(x(s, ~ ) -  x(s, 4)) {~(s, x(s, ~)) - ~(s, x(s, ~))} 2 ds 
0 

=I1 +I2 +I3 +/4,  say. (1.10) 

Since qS(x) decreases on (0, 1] and increases on [1, oo), we get for 11 

E[I1; f2L]<~(1)+d) (L) ,  for a fixed L > I .  (1.11) 

2 a/x b stands for the minimum of a and b 
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Noticing that 12 is a martingale with zero mean, we have 

E [I2; ~2zJ = 0. (1.12) 

By condition (1.3) and the fact that Iq~'(x)l = i f@..~ increases on [1, oe), for 
x p t ~) 

I 3 we get 

= t{(b'(2L) ~c(2L)+ sup ]r ~c(x)l). (1.13) 
1 
mNX_-<l 

1 
By condition (1.1) and the fact that 4 " ( x ) = p ~ ,  we have for 14 

[i p2(x(s' tl)-X(S, ~)) ds] <t. (1.14) 
= E p2(x(s, tl) - x(s, ~)) 

Thus, the above inequalities (1.11), (1.13), (1.14) and the equality (1.12) 
imply that there exists a constant K(L, t) which only depends on L and t such 
that 

E[O(x([,tl)-x([,~));f2LJ<K(L,t)+t sup [r (1.15) 
1 
m-<X<l 

On the other hand, by the fact that ~b(x)>0 on (0, c~), we observe that 

Combining this with (1.15), we have 

P(~_~ < t A gL, OL) 
t~z 

1 <= {K(L,t)+t sup Ir 
(~ m=<x-- -<1 

K(L,t) du } 
-- (]~ ( 1 ) [ -  t f l S U p  kin<x=< 1 N'(X)~P~)/!  i x  m x ~dydlA . (1.16) 

/ | \  
By condition (1.2), we know that 0 | ~ ) T + o o  as m tends to + ~ .  Thus, by 
(1.4), (1.9) and (1.16), we observe that \m! 

P(r  < t/x aL, f2L) = 0. 

Letting Land t tend to + 0% we obtain that P (z<~)=0 .  
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This implies immediately that 

P(x(t, {) < x(t, r/), 0 < t < 0 = l .  Q.E.D, 

Remark 1.1. (a) The functions O(u)=Ku, ~c(u)=Ku satisfy (1.2) and (1.4); that is 
to say, if r and b satisfy the Lipsehitz condition, then (1.7) holds. 

0 7  2 (b) The functions p(u )=Ku  og u , tc(u)=Kulog satisfy the conditions 
(1.2) and (1.4). u 

(c) The condition (1.2) is best possible for our conclusion in the following 
sense. If (1.2) fails, we can find the solutions x(t, 4) and x(t, ~1) which satisfy all 
the conditions in Theorem 1.1 except for (1.2) such that (1.7) fails. Indeed, let 
~( t ,x )=p(x)  and b ( t , x ) - O  where p(u) is a continuous function on R with p(0) 
=0, non increasing on ( -oo ,  0), non decreasing on (0, m), positive and locally 
Lipschitz continuous on R - { 0 }  and satisfies 

1 0 
S p - 2 ( u l d u  = ~ p -2 (u )du -=  q-oO. 
0 -1 

Letalso ~=-0 and ~/=x o for an Xo>0. Then the SDE's (1.5) and (1.5') have 
unique solutions x(t, 0) and x(t, Xo) respectively (c.f. [15]), and all the conditions 
in Theorem 1.1 except for (1.2) are fulfilled. But x(t,O)=O by the uniqueness, 
and x(t, xo) is a realization of the diffusion process corresponding to the 

1 a x  dZ generator ~ p ( )~x5 starting at x 0. Hence (1.2) is equivalent to that the state 0 

is non-exit (inaccessible) in Feller's sense for this diffusion_ (c.f. [-8]) and so it is 
equivalent to (1.7). 

w 2. Non-contact Property of Solutions of Multi-Dimensional SDE 

In this section, we will discuss non-contact property of solutions of multi- 
dimensional SDE of which coefficients are locally Lipschitz continuous. 

Let ~r(t, x) = (a)(t, x)) i = 1 . . . .  , n, j = 1,. . . ,  r, and b(t, x) = (bi(t, x)) i = 1 . . . .  , n be 
defined on [0, oo)x R" continuous in (t,x) such that a(t,x) is an n x r matrix 
and b(t, x) is an n-vector. 

We assume for a and b the following; 

Io~(t,x)--o~(t,y)l--<_KT, L[x--y[, 
l <_i<_n, l <=j<=r, ]xl<L, [yl< t ,  t6[0, T], 

Ibi(t, x) - b ig  y)l < KT, LIx -- Yl, 

1 _< i _< n, ]x[ =< L, lY[ -<-ILl, t6 [0, T], (2.1) 

where the positive constant KT, L only depends on Land  T. 
We consider the following SDE; 

dx(t) = a(t, x(t)) dB(t) + b(t, x(t)) dt, (2.2) 
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or in component wise 

dxi(t) = ~ o.}(t, x(t)) dBJ(t) + hi(t, x(t)) dto i= 1 .. . .  , n. (2.2') 
j = l  

By a solution of the Eq. (2.2), we mean a family of stochastic processes 

{x(t) =(xl(t) . . . .  , x"(t)), B(t)= (B l(t) , . . . ,  Br(t))} 

defined on a usual probability space (s ~ ,P;  ~t) with an increasing family of 
sub-o.-fields such that 

(i) x(t) is continuous in t on t < (, 

(ii) x(t) is adapted to ~t, 

(iii) B(t) is an r-dimensional ~t-Brownian motion such that B(0)= 0, 

(iv) x(t) satisfies 

t t 

xi(t) = xi(O) + ~, j'o.}(s, x(s)) dBJ(s) +(, bi(s, x(s)) ds, 
j = l O  0 

a.s. on 0 < t < ~  i=1  .. . .  ,n, 

where the stochastic integral is understood in the sense of Ito integral and 

( = s u p  {t; sup Ix(s)l < + ~} .  
s~[0,t] 

Let x(t, 4) and x(t, ~l) be solutions of the equation (2.2) such that x(0)-- ~ and 
x(0) = t/respectively. 

Put ( = s u p  {t; sup Ix(s, ~)l < + oo and sup [x(s, t/)[ < + oo}. Then, we have 
se[O,  tl sE[O,t]  

the following theorem. 

Theorem 2.1. Under the condition (2.1), the relation [t/(e))-~(o))1 >0, a.s. implies 

P(Ix(t, rl)-  x(t, ~)l > 0, 0_<_ t < () = 1. (2.3) 

Proof. As in the proof of Theorem 1.1, we begin the proof with introducing 
several notations and their simple properties. {1 } 

Put Y2L= e),~__<[q(co)--~(c~)l=<L , for L > I .  Then, we observe that f2 L be- 

longs to 5o and that P(f2L)]'I as Ltends to + ~ .  

Set 6L=SU p {t; sup IX(S, 4)1 < L  and sup ]x(s, t/)[ <L}. Then, we see that ~L 
se[O,t] se[0, t] 

tends to ( as L tends to + oo. 

Letting o . ~ = i n f { 0 < t <  (; [x(t, t l ) -x ( t ,~ ) ,=  1 } (inf r = (,, and z =  

inf { 0 < t < ( ;  [x(t, t l ) -x( t ,~)]=O } (inf~b =(), we have 

o-• a.s. on {-c<(}. (2.4) 
m 
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Now, we introduce a C2-function ~b(u) on (0, oo) by 

1 f~dv < ~ - u - l o g u + l ,  0 < u < l ,  ~(t,)= 
:Td = t  -log -l, +oo. 

Put [=  t/~ ak/x 8z for a fixed positive number t. 
na  

Then, by Ito's formula, we have 
qS([x(/, '7)- x(?, 4)1) = ~b(l'7(co)- 4(co)[) + a martingale 

+ ~ ~ qS'(Ix(s,'7)- x(s, 4)[) 
o,=~ 

xi(s, '7)- xi(s, 4) {bi(s, x(s, '7)) - bi(s, x(s, 4))} ds 
Ix(s, '7 ) -  x(s, ~)l 

n 

Ix(s, '7) - x(s, ~)l ~ ,5 , j -  ( x %  '7) - x'(s, 4)) (xi(s, '7) - x,*(s, 4)) 
Ix(s, '7 ) -  x(s, 4)13 

• (~(s ,  x(s, '7)) 4))) '7))- ~fls, x(s, 4))) ds - ~ ( s ,  x(s, (~fls, x(~, 
k=l 

1 } ~ (xi(s, '7)_ xi(s, ~)) (x~(~, '7)_ ~(~, ~)) + ~"(lx(~, ~) X(S, 4)1) o J i,J=z-" ~ Ix(s, '7) - x(s, ~)12 

= I 1 + I 2 + I 3 + I 4 + I  s, say. 

In the following, we will estimate E[Ik; f2L], k = 1,..., 5. 
By the definition of ~2 t and the function ~b(u), we have for I1, 

ELI1; Y2L] < (O (1I) + ~(L). 

(2.5) 

Since I a is a martingale with zero mean, we obtain that 

E[_I 2 ; Y2L] -=0. 

Note that I~b'(u)[ < 1 +1 ,  0<u.  Then, by the condition (2.1), we get for 13, 
U 

El-I/3[" ~L] <-E[ynKtL sup ~ (1 + - t u  ds; 
' - L o  ' *--<_u<_2L(\  U /  

m 

<nKt, L 2t(1 + L). 

Also, by the condition (2.1), we have for I4, 

E[]I41; ~2L] < E  nZrK2L1 sup 1+ u u ds; f2 t 
m<<_u<_2L 

<nZrK2c 2t(l + L). 
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1 
Since qS"(u)=~, we get for Is, 

E[[IsI; (2L]<E n2rK2Lds; t-J L _ <--n2rK~.Lt. 

Thus, we obtain from (2.5) and the above estimates that 

EI-qS(lx(t, */)-x(?, 4)1); OL] < K ( t , L ) <  + 0% 

where K(t, L) is a positive constant which depends only on t and L. 

(2.6) 

Note that ~b(u) is a non-negative function. Then, on the other hand, the 
inequality 

> q5 ( 1 )  P(~r~ < t A &L, ~?r) holds. (2.7) 

q~ ( 1 )  tends to + oQ as m goes to + oo, we get from (2.4), (2.6) Since and 

(2.7) that P(~ < t A g-L, Oz) = 0. 
Thus, letting Ltend to + oo, we have from the above that P(~<t /x  ~)=0. 
Since t is an arbitrary positive number, this implies immediately that 

e (~  < ~) = 0. 
Thus, we have proved 

P(Ix(t, r l)-x(t ,{)[>O, 0 < t < 0 = l .  Q.E.D. 

Remark 2.1. In the one-dimensional case, under the local Lipschitz condition 
(2.1), the relation 4(o0)<tRee), a.s. implies 

P(x(t, ~) < x(t, 11) , 0 < t < ~) = 1. 

Remark 2.2. The same proof as in the above gives us a small generalization of 
this Theorem. Instead of (2.1), let 

l a}(t, x ) -  ~5(t, Y)[ =< Pr, L(Ix -Yl), 

1 <_iNn, 1 < j<r ,  Ixl <L,  lyl <L,  t e D ,  T], 

Ibi(t, x ) -  hi(t, y)l < ~Cr, L(lx -- Yl), 

l<=i<=n, txl<g, lYl < g ,  tel0,  T], (2.8) 

where the functions pr, l.(U) and ~cr, L(u ) satisfy the same conditions as those for 
p(u) and it(u) in Theorem 1.l, as well as 

l id  f ~ sup P~ L(V) ~ ds /~ ~ ds , ] 
u,O C,<_~<_* "v - ! p~. L(S~ // J,~ p2r, L(s--~av; =0 (2.9) 
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for all T ,L>  1. Then, Theorem 2.1 is valid when we replace (2.1) by the above 
conditions. 

The function p(u) in Remark 1.1 (b) also satisfies (2.9). 

w Solutions of S D E  as Homeomorphisms on R 

Consider the following one dimensional stochastic differential equation; 

dx(t) = ~(t, x(t)) dB(t) + b(t, x(t)) dr. (3.1) 

We assume that two continuous functions a(t,x) and b(t,x) satisfy the 
following conditions: 

]a(t,x)--a(t,y)] <Kr, LIX--yl, (t,x),(t,y)~[O, T] x [ - L , L ] ,  

Ib(t,x)-b(t,y)l <KT. LIX--yl, (t,x),(t,y)e[O, T] X [ - L , L ] ,  (3.2) 

and 

aa(t,x)+b2(t,x)<Kr(1 +x2), (t,x)E[0, T] x R, (3.3) 

where Kr, r depends only on Tand  L, and K r depends only on T. 
It is well known that under the above conditions, the existence and the 

pathwise uniqueness of solutions for (3.1) are assured and that the explosion 
time of the solutions is equal to + co. 

Let x(t,x) be a family of solutions of (3.1) such that x(O,x)=x. 
It is also well known that there exists a version of x(t,x),(t,x)E[O, co)xR, 

which is continuous in (t,x)e[0, co)x R. 
Hereafter, we assume that x(t, x) is continuous in (t, x). 

Theorem 3.1. Suppose that two real continuous functions a(t, x) and b(t, x) satisfy 
the conditions (3.2) and (3.3). Then the mapping x-~x(t, x) gives a homeomorphisms 
on R for all t > O, a.s. ca. 

Pro@ We will divide the proof into three steps. 

(1 ~ In the first step, we show that the mapping x,~x(t ,x)  is strongly 
increasing and is the continuous function w.r.t, x for all t > 0, a.s. co. 

Let Q be the set of all rational numbers. By Remark 2.1, 

P(x(t,r)<x(t,q), 0__<t< + co, r<q, r,q~Q)=l. 

This implies that the mapping x,~x(t,  x) is a strictly increasing function on 
Q. Then, by the continuity w.r.t, x, the mapping x,~x(t ,x) is strictly increasing 
and continuous w.r.t, xeR for all t>0 ,  a.s. ca. 

Its inverse mapping is also strictly increasing and continuous w.r.t, x for all 
t>0 ,  a.s. ca. 

(2 ~ ) In this step, we show that 

-lim x(t,x)= +co for all t>0 ,  a.s. ca, holds. (3.4) 
X ~  - -  O O  
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We owe much to H. Kunita (by private communication) for the proof of 
this step. 

1 
Let 0 < T < + oo be fixed. Define the function g(x) by g(x) = 1 + x 2" 

By Ito's formula, we have 

2x(s,x) 
g(x(t, x)) =g(x) -- ~ (1 ~ x)) 2 a(s, x(s, x)) dB(s) 

t f - 2x(s, x) b s 

a2(s,x(s,x)) 4a2(s,x(s,x))x2(s,x).~ 
l + x2(s,x ) + (l + x2(s,x))2 j ds. 

By condition (3.3), there exists a positive constant C T depending only on T, 
such that 

g(x(t, x)) =<g(x) 

+ }}2x(s,x)a(s,x(s,x)) dB,s,I , ' Jo t J . c @ ( x ( s , x ) ) a s ,  O<_t<_T. 

Then, we have 

[t 2x(s, x) ~(s, x(s, x)) "B" " ~ 2 
g2(x(t,x))N3gZ(x) +3 kJo ~ + ~ - 5 ~ , - ~  a ts)] 

(! )" + 3 C  2 g ( x ( s , x ) ) d s ,  0_<tNT. (3.5) 

Now, we define the function h(t,x) by. h(t ,x)=E[ sup g2(x(s,x))]. Then, we get 
O < s < t  

from (3.5) 

h( t , x )<3gZ(x)+3E[su  p (~2x(u,x)a(u,x(u,x)) )2] 
~- LO<sN_t \ 0  (1 -~-X2(U, X)) 2 dB(u) 

+3C2E[(!g(x(s ,x) )ds)2] ,  0 < t < T .  

By Doob's inequality and that of Schwarz, we obtain from the above, 

2 . . . . .  r / t  2x(s, x) a(s, x(s, x)) . . . .  ~ 2] 
h( t ,x )<,g  tx)+lzls[kjo - ~ + - - - ~ , ~ f  a~(s)) j 

t 
+ 3 C~TIE[g2(x(s, x))] ds 

0 

t 1 4x2(s, x) a2(s, x) ds] 
-<3gZ(x)+12E[!( l+x~(s,x))2 ( l+x2(s,x)) 2 J 

t 

+3CaT~h(s,x)ds,  0_<t_< T. 
0 
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Then, using the condition (3.3) again, we get 

t t 

h(t,x)< 3g2(x)+ C'r ~ E[g2(x(s,x))] ds + 3 C2 TS h(s,x)ds 
0 0 

t 

<=3g2(x)+C~ ~h(s,x)ds, O<_tNT, 
0 

where C r and C~ are positive constants which depend only on T. 
Then, by Gronwall 's  inequality, we obtain 

1 
h(T, x) < 3 (1 + x2)2 ec:~ r. 

This means 

lim E sup (l+x2(t,x))2 =0.  
x~+__eo k O < t < - T  

Then, by Fatou's  lemma we get 

1 
lim sup (3.6) 

x - + ~  o_<,_<T (1 +x2( t ,x ) )  2 --0 a.s. 

Now, we will show that 

lim inf x(t,x)=+oo. 
x ~ o o  O<--t<-T 

Immediately from (3.6), we have 

lim inf Ix(t,x)l=oo a.s. (3.7) 
x ~ e o  O<_t<-T 

On the other hand, using the increasing property of the mapping x,~x(t, x), 
we observe that 

inf Ix(t,x)l< inf x(t,x) v Ix(t,0)[< inf x(t,x) v sup [x(t,0)l, 
O<_t<_T O<_t<_T O<_t<_T O < t < = T  

for x > 0 ,  a.s. (3.8) 

Combine (3.7) with (3.8), and note that sup Ix(t,O)L < o% a.s. holds. 
Then, we get o __<t __< r 

lira inf x(t,x)= +o% a.s. (3.9) 
x ~ o o  O<=t<-_T 

Noticing that the mapping x , ~  inf x(t,x) is increasing, we can conclude 
O ~ t ~ T  

from (3.9), 

lira inf x(t ,x)=+~, a.s. co. 
x ~ o o  O < t N T  

By analogous arguments, we can also prove that 

liIn sup x(t,x)=-oo, a.s. co. 
x ~ - - o o  O<t<__T 
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Thus, we have proved 

lim x ( t , x )=  +_-oe for all t>0 ,  a.s. co. (3.4) 

(3 ~ The results obtained in (1) and (2) imply the mapping x~,~x(t,x) is a 
continuous, one to one and onto mapping from R to R for all t>0 ,  a.s. co. Its 
inverse mapping is also continuous for all t>0 ,  a.s. co. This shows that the 
mapping x , ,~x( t ,x)  gives a homeomorphism for all t>0 ,  a.s. co. Q.E.D. 

Remark 3.I. In multi-dimensional case, H. Kunita and S.R.S. Varadhan show 
the same result under global Lipschitz condition for coefficients (c.f. [10]). 

w 4. A Strong Comparison Theorem for Solutions of One Dimensional SDE 

In this section, we will show that under certain conditions the usual compari- 
son theorem induces a strong comparison theorem for solutions of SDE. 

We consider the following two stochastic differential equations; 

dxi  (t) = tr(t, x l  (t)) dB(t) + b 1 (t, x l  (t)) dt, (4.1) 

dx2(t ) = a(t, x2(t)) dB(t) + b 2(t , x2(t)) dr. (4.2) 

Theorem 4.1. Suppose we are given the following; 

(i) a real continuous function c~(t, x) defined on [0, oo) x R such that 

I~ ( t , x ) -cr ( t , y ) [<p( lx -y l ) ,  x, yeR ,  t>O, (4.3) 

where p(u) is an increasing function defined on [0, oo) such that p(O) = 0 and 

1 

~e~13(.V)dy= + oo for any e>0, (4.4) 
0 

where 
1 

P2( u ) -  1 p2(U) ' 

(ii) two real continuous functions b i ( t , x  ) and b2(t,x ) defined on [0, oo)xR 
such that 

bl(t  , x) < b2(t, x). (4.5) 

Suppose x i ( t  , 4) and x2(t , tl) be solutions of (4.1) and (4.2) respectively, defined 
on ([2 ,~,P;~t)  with the same ~t-Brownian motion B(t) such that B(0)=0, and 
with initial conditions Xl(0, ~)= ~ x2(0 ,/7)=/7 respectively. 

Then, the property 

P(xz (t, ~) < x2(t, /7), O < t < O = 1, (4.6) 
implies 

P(x l ( t  , ~) <x2(t  ,/7), 0 < t < () = 1, (4.7) 

where (=sup{t ;  sup [Xl(S,~)[<+oo and sup [x2(s,/7)l<+~}. 
se[0,t] se[O, t] 
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Proof. We will divide the p roof  into several steps. 

(1 ~ Define % by G = i n f { 0 < t < { ,  x2(t, rl)-xl(t,{)>a} (inf~b=~), where 
a > 0. In this step, we will show that  

P(l im G = 0) = 1. (4.8) 
ad0 

Notic ing  that  G increases with a, we put  c * = l i m  G. 
aS0 

By the definition of r a, we observe that  0<x2( t ,  rl)-xl(t, 4)<a, 0_-<t< G. 
Then, letting a decrease to 0, we have x2(t, ~/)-Xl(t ,  { )=0 ,  0 < t  <-c*. 
Thus  we get 

P(z* __<%)= 1. (4.9) 

Now,  for a fixed t > 0 ,  we have on { % > t }  

o = xd t ,  q ) -  x~(t, r = ~ -  
t 

+ j {~(s, xds, 17))-,7(s, xds, r clB(s) 
0 

+5 {b2(s, x2(s, rl))-bl(S, Xl(S,~))}ds=Nl +N2+N3. (4.10) 
0 

Since xa(s, t/) = x 1 (s, 4), 0 _< s _< t < c o, we observe that  N 2 = 0. 
By (4.6), we have  N 1 = t / -  ~ =x2(0  , t / ) - x l ( 0  , ~)_>_0. 
Thus,  we get f rom (4.10) that  

E [i {b2(s'x2(s'rl))-bl(s'xl(s' 4))} ds;co>t] <=0. (4.11) 

On the other  hand, we know f rom (4.5) that  b2(s, x2(s, rl))-bl(s, xl(s, ~))>0,  
s < c  o. So, (4.11) implies P ( c 0 > t ) = 0  , for any t > 0 .  Thus  we have P ( % = 0 ) = 1 .  
Combin ing  this with (4.9), we get P ( c * =  0 )=  1. Hence  

z ,  = l i m  va=0,  a.s. 
adO 

(2 ~ ) In this step, we will prove  that  

P(x 1 (t, ~) < X 2 (t, 11), "C a ~ t < ~) = P ( c  a < ~) 

(4.8) 

for any a > 0 .  (4.12) 

First, we will fix I < T < + o o  and l < L < + o o .  Since b2(t,x)-bl(t,x) is 
cont inuous  in (t,x) and strictly positive, there exists a positive number  e > 0  
such that  

b2(t,x)-bl(t,x)>e, ( t ,x)e[0,  T ]  x [ - L , L ] ,  (4.13) 

Not ic ing  that  bi(t,x), i =  1, 2, is uniformly cont inuous on [0, T]  • [-L,L], 
we can choose a posit ive number  3 > 0  such that  

]bi(t,x)-bi(t,y)]<4, te[O,T], x, ye[-L,L], ] x - y ] < b ,  i = 1 , 2 .  
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Combining this with (4.13), we get 

8 
b2( t ,x) -b l ( t ,y )>~,  te[0,  T], x , y ~ [ - L , L ] ,  I x - y l < &  (4.14) 

Now, we define the function 0(x) by 

1 

~(x) = S e~mY)dY, 
x 

where e is the same constant as in (4.14). 
We will note several properties of O(x) in the following; 

(i) since r  e ~Bex~ <0, r is decreasing function on (0, oo), 
- - ~ t ,  , E ~ e B ( x )  (ii) since ~p t x ) - p ~ e  >0, ~b(x) is convex on (0, oe), 

1 
(iii) by (4.4), ~)(O+ )= S e~B~Y)dy= + oe 

o 
(iv) also by (4.4) 

'~ eeB(~ = + 00. r 

Now, put ~s  x2( t ' r l ) - -x l ( t '4)=l}  ( in f r  and z =  

inf{0 < t < (; x2(t, t/) - x 1 (t, 4) = 0} (inf q5 = 0- 

Then, by the same way as in the first step of the proof of Theorem 1.1, we 
have 

0"1~'17 a.s. o n  {Za<Z<( }. (4.15) 
m 

Let T'=r/xcr•  where 8L=SUp{t; sup [X,(S, 4)[<L and 
sup ]x2(t, tl)l<g }. m ~[o,,1 

se[0. s] 
Then, by Ito's formula, we have on {T'>%} 

4)(x2( T', ~) - x~ ( T', 4)) = r 

T' 

+ j ~o'(x2(s, 17)-- xl(s, 4)) {~(s, x2(s, 17)) -- or(s, x 1 (s, ~))} ctB(s) 
*a 

r t. 

+ j qS'(Xz(S, q)-Xl(S, ~)){bz(s, x2(s, 1]))-bl(S, Xl( S, 4))} ds 
Za 

T'  

+ 1  5 ~ ' t (X2(S , / I )_  X I ( S  ' 4)){O'(S, X 2 ( S  , 1 ~ ) ) -  O'(S, XI(S , 4))} 2 MS 
ra 

= 11 + 12 -t- 13 + 14, say .  



Strong Comparison Theorems 17 

Since ELI2; T ' > % ] = 0 ,  we get from the above equality 

E[~)(x2(T' , r])-xI(T'  , ~)); T' >%] 

<= (o(a)+E[I3; T' >%] + E[I4; T' >%].  

Define A 1 =Al(co ) and Az=A2(~o) by 

A l(~)= {'C a<=a <= T~;O <=x2(s, rl)- Xl (S, ~) < b) 
and 

A&~)= {~o__< s__< T';x~(s, ~)-x~(s, ~)_>_ 6}. 

Then, we have for 13 

E [I 3 ; T' > ZaJ 

= E l -  ~ (~'(X2(S , t / ) - -XI(S , {)){b2(s , Xz(S , q))-bl(S , xl(s , {))} ds; T' >%3 
A~(r 

-~ E [  S (~'(x2(s , ~ / ) - -x l ( s  , ~)) {b2(s , x2(s, ~ ) ) - b l ( s  , x i ( s  , ~))} ds; T' > % ]  
A2(r.o) 

=J! q-J2, say.  

By (i) and (4.14), we have for J1 

(4.16) 

JI < 2 E [  ~ (a'(x2(s,~l)-xl(s,~))ds;T'>%l 
Al(m) 

- ~E[ ~ e~B(x2(s")-xl(~'O)ds;T'>zaJ. (4.18) 
Al(m) 

Noticing that ]~b'(x)] = e  ~'(x) is decreasing in x, we have for g2 

Y2<= Te ~B('~) sup {[b2(t,x)]+]bl(t,x)] }. (4.19) 
(t, x)e[0, T] x [ -- L, L] 

By (4.3) and (4.4), we have for 14 

E[-I4; T' >%] 

=E[�89 5 (~ rl)-xl(s,  ~)){a(s, x2(s, rl))- a(s, Xl(S, {))}2ds; T' >z~] 
Al(to) 

-}-El1 I 4)'t(x2(s, ?/)--Xl(S , ~)){o(s, x2(s , 11) ) -- o(s, Xl(S , ~))}2 ds ; Y t >  "Ca] 
A 2((.o) 

_~ l g, E [ Aa~o) eEB(x2(s'tg)-x'(s'r p2(X2(S' t~)-- XI (S' /~)-- X l (S , ~)) ds ; T' > za] 

- [ - � 8 9  'sB(x2(s'rt)-xl(s'{)) f)2('X'2(S' r])--XI(S'  ~ ) )ds ;Wt>"Ca]  
L Az(a~) e D2(X2(S, ~/)--XI(S, {)) 

<�89 ~ e~B(x:(s'n)-x~(~'~ 
At(m) 

+�89 ~B(~) T. (4.20) 



18 T. Yamada and Y. Ogura 

By (4.16), (4.17), (4.18), (4.19) and  (4.20), we get 

E[O(x2(r', rl)- xl(T', ~)); T'> %] 

<O(a)+ Te ~B(a) sup {[b2(t,x)[+[bl(t,x)[ } 
( t , x ) ~ [ O ,  r l  x [ --  L ,  L I  

+ lee~B(a) T = K(a, T, c5, L), say, (4.21) 

where  K(a, T, 6, L) does not  depend on m. 
On the other  hand,  by (i), we have  

~ D(x2(r ' ,  ~) -  xl(r ' ,  4)); T '>  ~o3 

>gP (1) e(%<cr%<Tm AO-L)+qS(2LI" 

Combin ing  this with (4.21) and  letting m tend to + oo, we get 

P(% < z < T A 8c) = 0. (4.22) 

Let  L and T go to + oo. Then  we get f rom (4.22) that  

P( r  a < z < () = 0. (4.23) 

This implies immedia te ly  (4.12). 
(3 ~ ) C o m b i n e  

l im % = 0 (4.8) 
a S 0  

with 
P(x 1 (t, {) < x 2 (t, ~/), % < t < ~). (4.12) 

Then  we can conclude that  

P(x2(t,~l)-Xl(t,~)>O,O<t<(,)=l. Q.E.D. 

Remark 4.1. Suppose  that  p(u) satisfies 

du 
5 - + oo. (4.24) 

o+ p2(u) 

Then, the relat ion {(co)< ~/(oo) a.s. implies 

P(xl(t, {) < x 2(t, ~/), 0 < t < {) = 1. (4.6) 

The  funct ion p(u)=u ~ (�89 1) satisfies (4.24); that  is to say, if o- is H61der 
cont inuous  in x uniformly in t with order  � 8 9  then (4.24) holds. (c.f. 
I-7], 1-162). 
Remark 4.2. (a) The  function p ( u ) = u  ~ (�89 satisfies (4.4). But the funct ion 
p(u)=u -~ does not  satisfy (4.4). 

(b) The  condi t ion (4.4) is best possible for (4.7) in the following sense. 
Let  a(t,x)=p(x) where p(u) satisfies the condit ions in R e m a r k  1.1(c) but  

1 

(4.4) fails, i.e. ~ e~~ for an % > 0 .  
0 
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Let also bt(t,x)=-O , bz(t,x)= 2 ,  4 - 0  and r/=-x0>0. Then they satisfy all 

conditions in Theorem 4.1 except for (4.4) (c.f. [7], [16]). Further, as in 
Remark 1.1(c), Xl ( t ,0 ) -0  and x2(t, Xo) is a realization of the diffusion corre- 

1 / 2 d2 d \  
sponding to the generator ~ ~p (x) d~2 +e  0 dxx) starting at x o. But the state 0 is 

regular for this diffusion, since 

1 1 
S e~~ ~ e-~~ P-2(y)dy dx< c~. 
0 x 

x 

Hence, the natural scale being given by s(x)= ~ e ~~ dy, it follows that 
1 

P(xl(t,O)=x2(t, Xo) for some 0 < t < ~ )  

= lim (!oe~~ dy / i  e~~ dY) 

This means that (4.7) fails. 
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