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Introduction

Comparison problems of solutions to stochastic differential equations (SDE)
have been discussed first by Skorohod [13] with the idea of applying them to
the uniqueness problem of solutions to SDE.

In the last ten years, several authors have produced comparison theorems
or applications there of to some control problems, to pathwise uniqueness and
to the explosion or recurrence problems of solutions of SDE, as well as to the
study of diffusion process on a Riemannian manifold. These include Anderson
[1], Yamada [16], Bonami-Karoui-Roynette-Reinhard [2], Debiard-Gaveau-
Mazet [3], Ikeda-Watanabe [6, 7], Doss [4], Doss-Lenglart [5], Malliavin
[11], O’Brien [12], Kesten-Ogura [9] and Takeuchi [14].

A common feature of these comparison theorems, except that of [5]%, is
that two solutions of SDE, x,(r) and x,(t) are compared in the form;
x,(t)=x,(t) as. That is to say comparison in the weak sense.

The purpose of the present paper is to give some non-contact or strong
comparison theorems for solutions of SDE. In §1, we will discuss the non-
contact property of solutions of the same one-dimensional SDE. In §2, the
same problem will be treated in the multi-dimensional case. As an application,
we will show in §3 that solutions of one dimensional SDE can be interpreted
as homeomorphisms on R under local Lipschitz condition for coefficients.

In §4, we will discuss a strong comparison theorem for solutions of two
SDE for which drift coefficients are strongly ordered but with the same
diffusion coefficient.

§ 1. Non-contact Property of Solution of SDE; One Dimensional Case

In this section, we will discuss the non-contact or strong comparison problem
of solutions of one SDE but with different initial conditions in one-dimensional
case.

! Doss-Lenglart [5] gave a strong comparison theorem under the C2-continuity of diffusion
coefficient
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Theorem 1.1. Suppose we are given the following,
(1) a real continuous function o(t, x) defined on [0, c0) X R such that

]G(t»x)—a(ta.Y)’épux_yl): x:yeRa 32—0, (11)

where p(u) is a continuous increasing function defined on [0, c0) such that p(0)=0
and

dy
Py

1 1
y

dx= dy=+o0; and 1.2

i gpz(y) Y (12

(i) a real continuous function b(t,x) defined on [0, c0) X R such that

Oy

b x)=b(E, ISw(x—yl),  x,yeR, 120, (1.3)

where x(u) is a continuous increasing function defined on [0, c0) such that x(0)=0
and

1 d 11
lim[sup K(y)f Z?M)/ff 6 ] ) (1.4)

x}0 lx=y=<1 xy,O

Let (Q,%,P: &,) be a probability space with right continuous increasing family
(820 of sub-o-fields of §, each containing all P-null sets and suppose we are
given the following processes and random variables defined on it;

(1) two §, measurable random variables & and n;
(ii) two §, adapted continuous processes x(t, &) and x(t,n);
(ii1) a one-dimensional &,-Brownian motion B(t) such that B(0)=0.

We assume that they satisfy the following conditions;
t
x(t, &) =&+ [ als, x(s, &) dB(s)
o]

+j"b(s,x(s,£))ds, as.on 0=Zr<(,, (1.5)
0

x(tn)=n +£ o(s, x(s, ) dB(s)
-I—jt"b(s,x(s,n))ds, as.on 0=t<{,, (1.5
0

where the stochastic integral is understood in the sense of Ito integral,

{,=sup{t; sup [x(s, £)| < + o0}
sel0,

and
{,=sup{t; sgpllJC(s, n) <+ oo}
se[0,t

Then, the relation
{(w)<n(w), as. (1.6)
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implies
P(x(t,§)<x(t,n),0=t<{)=1 (1.7)
where {={, A{,%

Proof. We will divide the proof into two steps.
(1°) In this step, we shall prepare several notations and discuss their
properties.

1
Set QL:{Q); Zgn(w)—é(w)gL}, for 1 <L < + 0. Then we observe that 0
belongs to &, and
P(Q2;)71 as Ltends to + co. (1.8)

Put &, =sup{t; sup |x(s,&)|<L and sup |x(s,n)|<L}. Then, by the defi-
sef0,1] se[0,1]
nition of {, we have oLTC a.s.,, as Ltends to +cc.
1
Let alzinf{0<t<é; x(t,n)—x(t,«f)z—} (inf¢p={), and rt=inf{0<zt<{;
m m

x(t, ) —x(t,{) =0} (inf @ ={).
Since, x(t,n)—x(t,£) is continuous in ¢t and x(0,4)—x(0,&)=n—E>0, we
have

clTrasmtends to + o0 as. on {r<{(}. (1.9)

(2°) In this step, we will show (1.7).
Define a C2-function ¢ on (0, ) by

11 du
= d
iipz(u) Y

Letting i=t Aol A&, for a fixed positive number f, we observe that 7 is a
m

&,-stopping time and i <{ a.s.
Applying Ito’s formula, we have

Px(L, ) —~X(f~: =9¢mn—29)
+j. ¢/(X(S, 7’])—X(S, é)){O'(S, X(S, l’])) - O-(Sa x(S: é))} dB(S)

+) @' (x(s, 1) —x(s, ) {b(s, x(s, M) —b(s, x(s. £))} ds

O'——‘a ~1

f
+3 ] ¢ (x(s,m) = x(s, E) {a (s, x(5, 1) — o(5, x(5, &)} *ds
0
=I,+1,+1,+1,, say. (1.10)
Since ¢(x) decreases on (0, 1] and increases on [1, o), we get for I,
1
E[l;Q;1<¢ (E) +¢(L), fora fixed L>1. (1.11)

* a A b stands for the minimum of @ and b
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Noticing that I, is a martingale with zero mean, we have

E[l,;9,]1=0. (1.12)

I

By condition (1.3) and the fact that |¢'(x)|=

increases on [1, oo), for

I, we get

E[L};2,1<E [w( — x(s, )| x(x(s, 1) — x(s, 5))(15]

=t{¢'QL)xQ2L)+ sup |¢'(x)x(x)[}. (1.13)

—<x<
m:x=1

By condition (1.1) and the fact that ¢"(x)= we have for I,

L
p*(x)’
E[1;Q,]<E [g ¢ (x(s, 1) — x(5, ) p (x5, 1) — X, é))dS]
© p*(x(5,n) = x(s, &)
= <t. 14
B\ e e = (.19

Thus, the above inequalities (1.11), (1.13), (1.14) and the equality (1.12)
imply that there exists a constant K(L,?) which only depends on L and t such
that

E[p(x(t, M) —x(£,£); Q1<K (L, 1)+t sup @) x()] (1.15)

—<x=1
m=x=

On the other hand, by the fact that ¢(x}=0 on (0, c0), we observe that
~ ~ 1
ELO0G ) —x( 000,12 E [6 ()it <25,0, |
Combining this with (1.15), we have

Plol <t A Gy, Q)

—AK(LO+t sup 1¢/09) k()

__KKLaﬂ 1 11
==v +t{lsup K(x fpz(“)/ii

X

} (1.16)

1
By condition (1.2), we know that ¢ (—)T—{—oo as m tends to +oo. Thus, by
(1.4), (1.9) and (1.16), we observe that "

P(r<t A &p,Q;)=0.

Letting Land ¢ tend to + o, we obtain that P(t<{)=
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This implies immediately that
P(x(t,&)<x(t,n), 0=t<)=1 Q.E.D.

Remark 1.1. (a) The functions p(u)=Ku, x(u)=Ku satisfy (1.2) and (1.4); that is
to say, if ¢ and b satisfy the Lipschitz condition, then (1.7) holds.

1

Z

2
(b) The functions p(u)=Ku (log ~) , k(u)=Kulog— satisfy the conditions
(1.2) and (1.4), u u

(c) The condition (1.2) is best possible for our conclusion in the foliowing
sense. If (1.2) fails, we can find the solutions x(t, &) and x(¢,n) which satisfy all
the conditions in Theorem 1.1 except for (1.2) such that (1.7) fails. Indeed, let
o(t,x)=p(x) and b(t,x)=0 where p(u) is a continuous function on R with p(0)
=0, non increasing on (—o0,0), non decreasing on (0, c0), positive and locally
Lipschitz continuous on R— {0} and satisfies

1 0
fp2Wdu= [ p *(w)du= + 0.
0 1

Letalso £=0 and n=x, for an x,>0. Then the SDE’s (1.5) and (1.5") have
unique solutions x(t, 0) and x(t, x,) respectively (c.f. [15]), and all the conditions
in Theorem 1.1 except for (1.2) are fulfilled. But x(¢,0)=0 by the uniqueness,

and x(t,x,) is a realization of the diffusion process corresponding to the
2

1 d . ) .
generator Epz(x)——d 5 starting at x,. Hence (1.2) is equivalent to that the state 0
x

is non-exit (inaccessible) in Feller’s sense for this diffusion (c.f. [8]) and so it is
equivalent to (1.7).

§2. Non-contact Property of Solutions of Multi-Dimensional SDE

In this section, we will discuss non-contact property of solutions of multi-
dimensional SDE of which coefficients are locally Lipschitz continuous.

Let o(t,x)=(c'(t,x)) i=1,...,n, j=1,...,r, and b(1,x)=(b'(t,x)) i=1,...,n be
defined on [0, 0) x R" continuous in (f,x) such that o(f,x) is an nXxr matrix
and b{t,x) is an n-vector.

We assume for ¢ and b the following;

‘O-j'(ta X) - O_;(ta y)[ § KT, le - J’L
1<ign 1Sjsr, XL, Y=L, te[0,T],
Ibi(t9 x) - bi(t7 y)l é KT, L‘x - ,V|7
Isisn, XS L, YI=IL, te[0, T], 2.1

where the positive constant K ; only depends on Land T.
We consider the following SDE;

dx(t)=a(t, x(t)) dB(t)+ b(t, x(1)) dt, 2.2)
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or in component wise

dx'(t)= }r: al(t, x(t) dB/()+b'(t, x(1) dt, i=1,...,n. (2.2)

j=1
By a solution of the Eq. (2.2), we mean a family of stochastic processes
{x(@)=("()....,x"(1)), B)=(B(), ..., B'(1))}
defined on a usual probability space (Q, &, P; &, with an increasing family of
sub-g-fields such that
(i) x(z) is continuous in ¢ on t<(,

(i) x(¢) is adapted to &,

(iii) B(¢) is an r-dimensional §,-Brownian motion such that B(0)=0,

(iv) x(t) satisfies

xi(t)=x'(0)+ .

J
as.on0=t<l i=1,...,n,

r jt'aj-(s, x(s)) dBj(s)+j bi(s, x(s)) ds,
=10 0

1

where the stochastic integral is understood in the sense of Ito integral and
{=sup {t; sup |x(s)| < + co}.
se[0,1]

Let x(t, &) and x(t, ) be solutions of the equation (2.2) such that x(0)=¢ and
x(0)=n respectively.

Put {=sup {¢; sup |x(s5,&)|< + o0 and sup |x(s,#)|< + co}. Then, we have

se[0,1] sef0,1)
the following theorem.
Theorem 2.1. Under the condition (2.1), the relation In(w)— &(w)| >0, a.s. implies
P(x(t,n)—x( &) >0, 0st<{)=1 2.3)

Proof. As in the proof of Theorem 1.1, we begin the proof with introducing
several notations and their simple properties.

Put QL:{w, %g[n(w)—-é(a))|§L}, for L>1. Then, we observe that €, be-
longs to &, and that P(Q;)t1 as Ltends to + co.
Set 6, =sup {t; sup |x(s,&)|<L and sup |x(s,n)|<L}. Then, we see that &,
tends to { as L tenscfs[o”[g + 0. el
Letting a%zinf{0<t<5; |x(t,n)—x(t, f)lzi} (infp={), and ==
inf {0<t<{; |x(t,n)—x(t,£)|=0} (inf ¢ ={), we have
a%Tr as. on {t</(}. 2.4)
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Now, we introduce a C3-function ¢(u) on (0, co) by

dv {—u——logu—H, O<uzl,
ds=

11
qﬁ(u):”u‘z u—logu—1, l<u<+oo.

Put t=t A oL A &, for a fixed positive number ¢.

Then, by Ito’s fgrmula, we have
P(x(z, ) —x(t, O)l) = p(In(w)— &(w)l) + a martingale

+ :{ Z d'(Ix(s, ) — x(s,)))

. xi(s> 17) - xi(sa é)
[x(s, 1) — x{(s, O

4] 3 ¢ ets ) —x6.9)

i j=1

{b'(s, x(5,n)) —b'(s, x(5, )} ds

(s, m) —x(s, ) 8;;— (x'(s, m) — x'(5, £)) (x7(s, 1) —x(s, &)
(s, 1) —x(s, &)

RN (x'(s, 1) = %(5, &) ('G5, 1) = %(s, &)
51 ¢ (xts.m)=x(s ) o) — 6T

% {kz (35, x(5, M) — a5, %(5, &) (0 (s, X(5, 1)) — 75, X(s, f)))} ds
=1, +I,+I;+1,+1I5, say. (2.5)

In the following, we will estimate E[I,; Q,], k=1, ...,5.
By the definition of 2, and the function ¢(u), we have for I,,

1
EL1,; 0026 () + 60
Since I, is a martingale with zero mean, we obtain that
E[1,; Q,1=0.

1 .
Note that |¢'(u)| =1 +ﬁ’ 0 <u. Then, by the condition (2.1), we get for I,

: g
EMlL); 2,1 gE[an,,L1 sup {(1+;) u} ds; QL]
]

—=uz2L
m

<nkK, 201 +L).

Also, by the condition (2.1), we have for I,

ET,l; Q1] gE[gnerZLl sup {(14—1) M} ds; QL]

—<u<2L u
m

<n?rK? 2t(1+L).
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. " 1
Since ¢"(u)=—5, we get for I,
u

t
EfIL); QngE[jner,%Lds; QL]gner,%Lt.
0

Thus, we obtain from (2.5) and the above estimates that
E[$(x(Em—x(t O Q=K L)< + oo, (2.6)

where K(t, L) is a positive constant which depends only on ¢t and L.
Note that ¢(u) is a non-negative function. Then, on the other hand, the
inequality

EL(x(z, ) —x(, E)); 2,]

2 () Plot<t n5,, 1) holds. )

m

1
m
(2.7) that P(t<t A &;,2,)=0.
Thus, letting Ltend to + oo, we have from the above that P(t<t A {)=0.
Since ¢ is an arbitrary positive number, this implies immediately that
P(z<{)=0.
Thus, we have proved

Since qS( ) tends to + o0 as m goes to + oo, we get from (2.4), (2.6) and

P(x(t,n)—x(t, &) >0, 0=<t<{)=1. Q.E.D.

Remark 2.1. In the one-dimensional case, under the local Lipschitz condition
(2.1), the relation &(w) <n(w), a.s. implies

P(x(t, &) <x(t,n), 0=Zt<{)=1.

Remark 2.2. The same proof as in the above gives us a small generalization of
this Theorem. Instead of {2.1), let
Io'j'(ta x)—aj-(t, W=Epr L(x—yl,
1<ign, 1j<r, x| <L, [yl <L, te[0,T],
[bi(¢, )~ b'(t, )| Steq, 1 (x— ),
1<ign, {x|<L, |y|<L, te[0,T], (2.8)

where the functions p; ;(u) and x, ,(u) satisfy the same conditions as those for
p(u) and x(u) in Theorem 1.1, as well as

2 1 1
lim{ sup Pr..(%) ds /f

wio lusost U 5 p7.(8) [

od
s S(S) dv} =0 2.9)
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for all T,L=1. Then, Theorem 2.1 is valid when we replace (2.1) by the above
conditions.
The function p(u) in Remark 1.1 (b) also satisfies (2.9).

§3. Solutions of SDE as Homeomorphisms on R

Consider the following one dimensional stochastic differential equation;
dx(t)=a(t, x(t)) d B(t)+ b(t, x(t)) dt. (3.1)

We assume that two continuous functions o(t,x) and b(f,x) satisfy the
following conditions:

lO'(t, X)——O'(t, y)‘ éKT,LbC_yla (ta X), (ta y)E[O, T] X [—L7 L]a
Ib(tvx)_b(ta y)l éKT,le_yL (t7 x), (t> y)E[O, T:l X [—L7 L:L (32’)

and
a?(t,x)+b%(t,x) S K (1 +x?), (t,x)e[0, T] x R, (3.3)

where K ; depends only on Tand L, and K depends only on T.

It is well known that under the above conditions, the existence and the
pathwise uniqueness of solutions for (3.1) are assured and that the explosion
time of the solutions is equal to +o0. |

Let x(t, x) be a family of solutions of (3.1) such that x(0,x)=x.

It is also well known that there exists a version of x(t, x),(t, x)e[0, o0) x R,
which is continuous in (¢, x)e[0, o) X R.

Hereafter, we assume that x(t, x) is continuous in (, x).

Theorem 3.1. Suppose that two real continuous functions o(t, x) and b(t, x) satisfy
the conditions (3.2) and (3.3). Then the mapping x-»x(t, x) gives a homeomorphisms
on R for all t 20, a.s. w.

Proof. We will divide the proof into three steps.

(1°) In the first step, we show that the mapping x-»x(f,x) is strongly
increasing and is the continuous function w.r.t. x for all t >0, a.s. w.

Let Q be the set of all rational numbers. By Remark 2.1,

P(x(t,n)<x(t,q), O0=t<+ow, r<q,rqeQ)=1.

This implies that the mapping x~» x(¢, x) is a strictly increasing function on
Q. Then, by the continuity w.r.t. x, the mapping x> x(t,x) 1s strictly increasing
and continuous w.r.t. xeR for all t=0, a.s. w.

Its inverse mapping is also strictly increasing and continuous w.r.t. x for all
t=0, a.s. w.

(2°) In this step, we show that

lim x(t,x)=xc0 for all t=0, as. w, holds. (3.4)

x- oo
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We owe much to H. Kunita (by private communication) for the proof of
this step.

Let 0< T < + oo be fixed. Define the function g(x) by g(x)=1+x2.

By Ito’s formula, we have
2x(s x)
(1+x3(s, x))?

+ gg(x(s, X)) {1—_;)%%% b(s, x(s, x))

(s, x(s,x)) 4a>(s, x(s, x)) x*(s, x) p
T 1225, %) (1 +x2(5, %)) 5

gt ) =9 | (s, x(5,x)) dB(s)

By condition (3.3), there exists a positive constant C, depending only on T,
such that

g(x(t, x) =g(x)
}2x(s, x) o(s, x(s, x))
o (L+x3(s, x))?

dB(s)' + CT;[g(x(s, x)ds, O=Zt=T

Then, we have

t2
26, 3) 238700 +3 (| g

dB(s))2
+3C2 (ig(x(s, x))ds)z, 0<t<T (3.5
) ,

Now, we define the function A(z,x) by h(t,x)=E[ sup g2(x(s, x))]. Then, we get
from (3.5) =

T 2x(u, x) 6(u, X(1, x)) dB(u)) 2]

h(t,x)<3g*(x)+3E [Os;pét (0 (1+x*(u,x))*

+3 C%E[(;[g(x(s, x))ds)'z], 0<i<T

By Doob’s inequality and that of Schwarz, we obtain from the above,

h(t, x)<32%(0) + 12E [(gz x((i:)x ‘;((‘Z . g;;x)) dB(s))Z]

+3 C%thE[gz(x(s, x))]ds

1 4x2(s, x) 62(s, x) p ]

<3829+ 12E | A+x2507 (+x2( )

+3c;Tj"h(s,x)ds, 0<t<T
[¢]
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Then, using the condition (3.3) again, we get
t t
h(t, %) <3g*(x)+ C; [ E[g*(x(s, x))] ds +3 CF T [ h(s, x) ds
0 0]
1
<3g%(x)+ Cy [h(s,x)ds, O=t<T,
[¢]

where C, and C; are positive constants which depend only on T.
Then, by Gronwall’s inequality, we obtain

cLT

1
h L —
(LX) s53 37
This means
lim E[ su ! ]—
x— t oo 0§t1§)T(1+x2(tsx))2 B

Then, by Fatou’s lemma we get

1
T e e (34
Now, we will show that
lim inf x(f,x)=+o0.
x—0 02T
Immediately from (3.6), we have
fim inf |x(t,x)|=0 as. (3.7

x—00 0St=T

On the other hand, using the increasing property of the mapping xw» x(t, x),
we observe that

inf |x(t,x)| < inf x(t,x) ¥ |x(0)< inf x(t,x) ¥ sup |x(t0)|,
O=t=T 05T

0Zt=T 0ZtsT
for x=0, as. (3.8)
Combine (3.7) with (3.8), and note that sup |x(t,0)| < o0, a.s. holds.
Then, we get Ost=T
lim inf x(t,x)=+o0, as. 3.9)

x—o00 0Zt=T
Noticing that the mapping x~» inf x(t,x) is increasing, we can conclude

0SIST
from (3.9),

lim inf x(t,x)=-+o0, as. w.
x—o00 0<t=T

By analogous arguments, we can also prove that

lim sup x(f,x)=—c0, as. .
x——00 0Zt=T
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Thus, we have proved

lim x(t,x)=+o00 forall t20, as. . (3.4)

x— too

(3°) The results obtained in (1) and (2) imply the mapping x~»x(t,x) is a
continuous, one to one and onto mapping from R to R for all t=0, ass. w. Its
inverse mapping is also continuous for all t=0, a.s. w. This shows that the
mapping x+»x(t, x) gives a homeomorphism for all =0, as. . Q.E.D.

Remark 3.1. In multi-dimensional case, H. Kunita and S.R.S. Varadhan show
the same result under global Lipschitz condition for coefficients (c.f. [10]).

§ 4. A Strong Comparison Theorem for Solutions of One Dimensional SDE

In this section, we will show that under certain conditions the usual compari-
son theorem induces a strong comparison theorem for solutions of SDE.
We consider the following two stochastic differential equations;

dx (O)=a(t,x, () dB(t)+b,(t,x (1)) dt, 4.1)
dx,(t)=0(t,x, (1) dB(t) + b,(t, x, (1)) dt. 4.2)

Theorem 4.1. Suppose we are given the following;
(i) a real continuous function o(t,x) defined on [0, o) x R such that

lo(t, x)—o(t, I =p(x—yl), x,yeR, 120, (4.3)

where p(u) is an increasing function defined on [0, o0) such that p(0)=0 and

1
[eBNdy=+o0  for any >0, (4.4)
0
where
U du Y du
BO)={ —z05= 1 20

y P21 PPy

(i) two real continuous functions b,(t,x) and b,(t,x) defined on [0, 0) xR
such that
b, (t, x)<b,(t, x). 4.5)

Suppose x(t,&) and x,(t,n) be solutions of (4.1) and (4.2) respectively, defined
on (2, ,P;§,) with the same & -Brownian motion B(t) such that B(0)=0, and
with initial conditions x (0, &)=¢ x,(0,n)=n respectively.

Then, the property
P(x (@, )=x,(tn),0st<)=1, (4.6)
implies ‘

Px, (8, ) <x,(t,m), 0<t<{)=1, 4.7

where [=sup{t;sup |x,(s,é)|<+oco and sup |x,(s, 7)<+ 0}

se€l0,1] se(0,1]
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Proof. We will divide the proof into several steps.
(1°) Define t, by t,=inf{0<r<{, x,(t,y)—x(t,¢E)>a} (inf¢p={), where
a=0. In this step, we will show that
P(limz,=0)=1. 4.8)

al0

Noticing that 7, increases with a, we put t*=lim 1,.

alO
By the definition of 7,, we observe that 0= x,(t,n) —x,(t,{)<a, 0<t<1,.
Then, letting a decrease to 0, we have x,(t,n)—x,(t,£)=0, 0=r<t*
Thus we get

P(r*<1,)=1. 4.9)
Now, for a fixed t =0, we have on {r,>1t}
0=x,(t ) —x,(t,E)=n—-¢
] {006, 06,1 = 015,35 ) B
+5) {b,(s,x5(5, M) — b (s, x (5, &)} ds=N; + N, + Nj. (4.10)
Since x,(5,7)=x,(s, &), 0=s=t<1,, we observe that N,=0.

By (4.6), we have N, =n— & =x,(0,7)—x, (0, £ 0.
Thus, we get from (4.10) that

E [(3; 1B(5, % (5, 1) — b (5,3, 5. &)} ds;ro>r] <0, @.11)

On the other hand, we know from (4.5) that b,(s,x,(s,7) —b (s, x,(s, &)
5<1,. So, (4.11) implies P(z,>t)=0, for any t>0. Thus we have P(r,=0)
Combining this with (4.9), we get P(t*=0)=1. Hence

>0,
=1

7,=limz, =0, as. 4.8)
* a
al0

(2°) In this step, we will prove that
Px,(t, ) <x,(t, )1, St<)=P(r,<{) for any a>0. (4.12)

First, we will fix 1<T<+ o0 and 1<L<+00. Since b,(t,x)—b,(t,x) is
continuous in (t,x) and strictly positive, there exists a positive number ¢>0
such that

b,(t,x)—b,(t,x)=¢e  (tx)e[0,T]x[~L,L]. (4.13)

Noticing that b,(z,x), i=1, 2, is uniformly continuous on {0, T]x[—L,L],
we can choose a positive number ¢ >0 such that

bt =byl<z, te[0.T] xye[-LL], [x—yl<d, i=12.
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Combining this with (4.13), we get

bZ(t:x)_bl(tay)gg, TG[O,T], xaye[_LaL:L |X_J’|<5 (414)
Now, we define the function ¢(x) by

1
P =[ edy,

where ¢ is the same constant as in (4.14).
We will note several properties of ¢(x) in the following;

(i) since ¢'(x)= —e*2™ <0, ¢(x) is decreasing function on (0, 00),
(ii) since ¢”(x)=%e83("’>0, ¢(x) is convex on (0, o),
pA(x
1

(i) by (4.4), ¢(0+)= j B0y =4+ o0
(iv) also by (4.4) °

" __ & eB(O+) _
¢ (0+)—p2(0+)e + o0.
Now, put alzinf{0<t<c; xz(t,n)-xl(t,f)=%} (inf¢p={), and 1=
inf{0 <t <{; x,(t,m)—x,(t,£)=0} (inf ¢ ={).

Then, by the same way as in the first step of the proof of Theorem 1.1, we
have

o1lr as.on {r,<t<(}. (4.15)
Let T'"=TArclAG,<{  where

Gp=sup{t; sup |x,(s, )<L and
S}%}p ]Ixz(t, ml<L} " s€[0,1]

Then, by Ito’s formula, we have on {T'>1,}

D0, (T, 1) —x,(T", €)= ()

+ I ' (ep(s,m) =405, o (s, x,5(5, 1) — 0 (5, %, (5, £)} dB(s)

005 )= x4 (5, ) (B (5, %05 M) — by (5,15, )} ds

+3 [ ¢ Ceals,m)—x4(s, D {o(s, x5(s,m) — (s, %,(s, )} ds

=I,+1,+1;+1,, say.
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Since E [1,; T'>1,]=0, we get from the above equality
E[¢(xy (T, n)—x(T",8); T'>7,]
SPa)+E; T >, ]+E[L; T >1,) (4.16)
Define A4, =4 ,(w) and A,=A4,(w) by
Ay (@) ={r, SsST50=x,(5,17) — x4 (s, £) <0}

and
Az(w) = {Ta és = T/;XZ(S’ 17) _x1(55 f) g 6}

Then, we have for I,
E[l;; T'>1,]
=E[ j &' (x (s, 1) — %1 (5, EN{b, (s, X5 (5, M) — by (5, % (5, &)} ds; T’ >1,]

A1(w)

+E[ f @' (x5(8, 1) —x,(5, O {b (s, x5 (8, m) = by (s, %, (5, E))}y ds; T' >7,]

42(w)
=J,+J,, say.

By (i) and (4.14), we have for J,

LSSED [ ¢/(a(s,m)—x,(5,8)ds; T >1,]
2 Ag(w)

= _EE[ j' gt Bx2als.m) —x1(5.8) ds: T,>‘L'a:|. (418)

Ay(w)

Noticing that |¢'(x)| =e*®* is decreasing in x, we have for J,

J,=Te™  sup  {|by(t,x)|+1b; (5, X[} (4.19)
1

(t.x)el0, T x[~L, L
By (4.3) and (4.4), we have for I,
E[l,;T >1,]
=E[; | ¢"(xals.m)—x4(5, ) {o(s, x5(5,m) —0ls, X, (s, E)}2ds; T'>7,]

4 (w)

+E[% J. X ¢”(x2(sa W)—xl(S, ":)) {O-(S’ xZ(S: ’I))— O-(S: xl(sz é))}zdsa T > Ta]

Azx(w

2 —
é%SE [ j gt Blx2(s,1) —x1(5, 8) PZ(Xz(S, n—x,(5, &) ds; T’>ra]
A1(w) P (x5(8,m)—x (5, &)

2
+%8E [ j ezB(xz(s,rl) —x1(s, &) pz(x2(s9 ’1) —xl (Sﬂ 6)) dS; T/ - Ta:l
Az (w) P (X2(S, ’7) _XI(S, 6))

é%SE[ f etBxals.m) —x1(s, ) dS; T < Ta]
A(w)

+1eeBOT, (4.20)
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By (4.16), (4.17), (4.18), (4.19) and (4.20), we get

ELp(x,(T',n)=x((T",8)); T'>1,]

SP(@)+Te®@ sup  {|b,(t,x)|+1b,(t, x)[}
(t,x)e[0,. TI x[—~L,L]

+1eeBOT=K(a, T,6,L), say, 4.21)

where K(a, T, 3, L) does not depend on m.
On the other hand, by (i), we have

ELop(x, (T, ) —x, (T, ) T">1,]
=¢ (%) Pz, <o =T Ad)+¢(2L).

Combining this with (4.21) and letting m tend to + oo, we get
P(r,<t=T AG;)=0. 4.22)
Let Land T go to + co. Then we get from (4.22) that
P(r,<1<{)=0. (4.23)

This implies immediately (4.12).
(3°) Combine

limz,=0 4.8)
al0
with
P(x,(t, &) <x, ), t,st <) (4.12)

Then we can conclude that
Plx,(t,n)—x,(,5)>0,0<t<{)=1. Q.E.D.
Remark 4.1. Suppose that p(u) satisfies

| %: + 0. (4.24)

Then, the relation &(w)<n(w) a.s. implies
P(x(t, &)= x,(t,n),0=t<{)=1. (4.6)

The function p(u)=u* :=a=<1) satisfies (4.24); that is to say, if ¢ is Holder
continuous in x uniformly in ¢ with order $+<«<1, then (4.24) holds. (cf.

L71, [16]).

Remark 4.2. (a) The function. p(u) =u* (3 <a=1) satisfies (4.4). But the function
p(u)=1% does not satisfy (4.4).
(b) The condition (4.4) is best possible for (4.7) in the following sense.
Let a(t,x)=p(x) where p(u) satisfies the conditions in Remark 1.1(c) but
1
(4.4) fails, ie. | e*B"dy<oco for an g,>0.
0
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Let also b,(t,x)=0, b,(t, x)z%o, £=0 and n=x,>0. Then they satisfy all

conditions in Theorem 4.1 except for (4.4) (cf [7], [16]). Further, as in
Remark 1.1(c), x,(¢,0)=0 and x,(¢,x,) is a realization of the diffusion corre-

2

1 d d . .
sponding to the generator 3 (pz(x)A—kso a—) starting at x,. But the state 0 is
X

dx?

regular for this diffusion, since

1 1
[ €08 | g=2B0 p=2(y)dydx < oo.
0

X

Hence, the natural scale being given by s(x)=| e*®% dy, it follows that
1

P(x,(t,0)=x,(t,x,) for some 0<t<{)

L L
= lim (j g?B0) dy/ e£°B(y)dy> >0.
0

L-ooo \xg

This means that (4.7) fails.
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