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Summary. Berry-Esseen results and expansions are derived for the distribu- 
tion function of von Mises functionals of order r under moment conditions 
and conditions on the smoothness of the limit distribution. 

The results apply to goodness-of-fit statistics - as well as to the central 
limit theorem in L 2v, p>2 ,  the rate of convergence being O(n -1) for cen- 
tered balls, provided a fourth moment exists. 

I. Introduction 

Let Uj, j~N,  denote a sequence of i.i.d, random variables with uniform distri- 
bution P on the interval [0, 1]. Let pv  denote the empirical distribution 
pertaining to a sample U = ( U  1 . . . . .  U,). Let g(t, x), 0_<x_< 1, 0__< t__< 1, denote a 
Borel measurable real valued function such that 

~ E[g(t, gOlrdt<oe,  r~N .  

The statistics used for testing goodness-of-fit are of the following type when 
r = 2  

1 
(1.1) w, = n r/z ~ [I g(t, .) d(P v -  P)]rdt. 

o 

By an appropriate choice of g, one obtains the following statistics 

i) I(t > x) Cram6r-von Mises test 

(1.2) ii) g ( t ,x )=  I ( t>=x) -x  Watson's test 
k 

iii) y, (2 jP(A)-  1)l/rlA,(t ) IAj(X ) )~2-test, 
j = l  
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600 F. G 6 t z e  

where A j, j = 1 . . . .  , k, denotes a partition of [0, 1], 2~ > 0 are weights and k is 
sufficiently large. 

For  an even integer r > 2  we have wn=llS.II~, where S = n - 1 / 2 ~  (g(', U~) 
j = l  

-Eg(' ,  Uj)) is a sum of independent random functions and rl-l[r denotes the E- 
norm. Thus, P(w, < z), z > O, is the probability that S, is contained in a centered 
ball B(O,z) with radius z in /5([0, 1]). Therefore results on the asymptotic 
distribution of w,, can be interpreted as refinements of the central limit theorem 
for balls in E-space, r even. 

The statistic (1.1) is a special yon Mises functional of order r, see von Mises 
(1947), which can be described as follows. Let (3E,~) denote a measurable 
space, ~3 countably generated, and let X,,, meN,  denote a sequence of inde- 
pendent random elements of ~ with common distribution P. 

Let hi(x1, ..., x j), j =  1, ..., r denote symmetric real valued kernels defined on 
~J, j =  1 .. . .  , r, which are Borel measurable. Let px denote the empirical mea- 
sure of a sample X=(X> ...,X,). Define 

(1.3) w ,=  ~ nJ/2y...Shj(x 1, ...,xj)d(px-p)(xl)...d(px-p)(xj). 
j = l  

If h 1 dominates the influence of hi, j__>2, because hj depends on n and is 
asymptotically negligible, w, is asymptotically normal. See Hoeffding (1948), for 
Berry-Ess6en results see Callaert and Janssen (1978), and for expansions Cal- 
laert, Janssen and Veraverbeke (1980). Further references for this case can be 
found in the book of Serfling (1980, pp. 212). When r = 2  and hi, j__>2 dominate 
w,, the limit distribution is nonnormal. For t '= 2 its limit distribution is that of 
a random variable of z2-type 

(1.4) woo= ~, 2k(t/k2--1)+ ~ #kt/k+const, 
k = l  k = l  

where t/k, keN,  denotes an independent sequence of N(0, 1)-variates and ~(22 
k 

+#2)<oe .  (See G6tze (1979).) In general, woo can be described either by an 1"- 
fold stochastic integral with respect to a Gaussian process (suggested by (1.3), 
see Filippova (1962)) or as in (5.24) by an infinite polynomial sum of order r in 
t/k , keN,  see Rubin and Vitale (1980) and Rotar'  (1979) for a special case. 

In contrast to the second order case even in simple cases nothing seems to 
be known for r > 2  about explicit representations of the limit distribution 
function by means of analytic expressions. 

The following result is the natural extension of the results for r=2 ,  h ~ - 0  
obtained in GOtze (1979) to r__>2 and statistics of type (1.3). Under the moment 
condition (Ms) of order s__>3 and the variance condition (V~), for some 
1/4 > e > 0 (Sect. 2) on the kernel h r, the distribution of w~ admits an expansion 
such that 

s - - 3  

(1.5) suplP(% <z)-  ~ n-p/2Zp(z)l=O(n-r/E+~)+O(n-(S-2)/2). 
z p = O  
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The order of approximation is O(n -(s-2)/2) if a smoothness condition on 
conditional characteristic functions (condition (C~)) is fulfilled. This improves 
the order of approximation in (1.5) if s - 2 > r .  For  the example (1.1) these 
conditions are discussed in detail, yielding expansions of arbitrary order for the 
special cases (1.2(i), (ii)) for r>2 .  In particular the expansion (1.5) yields the 
following rates of convergence, provided the variance condition (V~) holds. 

(1.6) sup [P(w, < z) - Z0(z)[ = O(n- ~), where 
z 

(i) ~c =�89 if M 3 holds 

(ii) ~ = l - e  i f M  4 holds, Zl(z)=-O and r = 2  

(iii) tc = 1 if M 4 holds, Z 1 (z) -= 0 and r > 3. 

We have Zl(Z)=0 by symmetry if hj-O, 1 <j<r, j odd. (The terms Z2k+l(z) are 
based on odd order derivatives of functions of w,; see F. GStze (1982) Theorem 
2.11.) 

The improvements upon known convergence rates for functional limit theo- 
rems using strong approximation techniques yielding (log n)n -~/2, Koml6s, 
Major and Tusn~dy (1975/76) rest on the special type of 'polynomial function- 
al' and the symmetrization Lemma 2.14. These methods reduce the problem of 
estimating the characteristic function of w, to the well known case r = 1. This 
approach has been successfully used in G6tze (1979) to prove a rate O(n -1+~) 
for r - -2  and centered balls under the somewhat restrictive condition of a finite 
eight moment. Combining this method with his results on exponential in- 
equalities Yurinskii (1981) (Summary) proved that a third moment is sufficient 
to get a r a t e  O(n -1/2) for balls in L2v(~) space, for integers p__>l. Under the 
same conditions Yurinskii (1982) proved the rate O(n -~/2) for balls in Hilbert- 
space. Zalesskii (1982) improved the moment conditions for centered balls, 
obtaining a rate O(n-(~+~)/2), provided a moment of order 3+6,  0 < 6 <  1 exist. 

As already mentioned before the result (1.5) applies to the central limit 
theorem in ~ = E ( T ,  3; #), #~-finite, 2 < r <  oo and 3s strongly separable. Let S, 
=n-1/2(XI+.. .+X,)eY.  and let ~3 denote the Borel cr-field of 3~. Let w,(a) 
=~(S,(t)+a(t))~d#(t), ae3~, r integer. The n-i /a- term of the expansion of this 
rth order von Mises functional is given by 

9 3 

)(1 (z) = ~ lim P(w,(a + eX) < z)l~= o, 
n 

where X denotes an independent copy of X 1. By symmetry ){l(z)-0 if a=0 .  
Assume that 

(1.7) EI]XI[]S< oo, s>=3 (which entails condition (Ms)) 

and that the variance condition (2.8) holds (which implies condition (V~)). Then 
the rates of convergence for the von Mises functional wn(a), r__> 2, are given by 
1.6(i)-l.6(iii). Hence the convergence rate for centered balls in L 2p, for an 
integer p>2 ,  is O(n -1) under moment and variance conditions only, which is 
the optimal rate if Z2(Z)~g0. 
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Let t; denote a separable Banach space, X j, j~N,  i.i.d, valued random 
elements and S , = n - 1 / 2 ( X I + . . . + X , ) .  Then the results (1.5) and (1.6) apply to 
multilinear functionals h j ( x~ , . . . , x j )  and the yon Mises statistic w, 

= ~h j (S , , , . . . , S , , ) ,  provided that ElIXllls<oo, some s__>3 and condition (V~) 
j = l  

holds for h~(.). 
The paper is organized as follows. In Sect. 2 we formulate the main results 

and give some examples. Section 3 contains technical notations. In Sect. 4 we 
prove the results using lemmas which have been deferred to Sect. 5. 

2. Results 

The most natural moment condition for (1.5) is probably 
Elh j (X]  1, ...,X~p)[s/~< o% where X ~ J = ( X j  . . . .  ,X j ) ,  c~j-times, e l + . . . + e p =  j and r 
=max(e~ . . . . .  %), j = l  . . . .  , r  and s>3 ,  which allows for a rather singular be- 
havior of the kernels hj. Unfortunately the estimation techniques of this paper 
make it difficult to use this moment condition. 

For  this reason we restrict ourselves to the following moment assumption, 
which simplifies the proofs. 

Moment Condition. Le t  s >= 3. Assume  there is a non negative, measurable func-  
tion T (x )  and a constant  M s such that for  j = t . . . .  , r 

(i) E T ( X  OS < oo 
(M3 

(ii) Ih j (X1, . . . ,  Xj)[ < Ms T ( X O . . .  T ( X j )  a.e. 

Example .  For r =2 ,  let 1211 >]22]>. . .  denote the absolute values of the eigenval- 
ues of h 2 corresponding to an orthonormal system of eigenvectors e k, k E N ,  in 
L2(1;,~3, P), such that ekGlJ(~.,f~,P), k e N .  If h l ( ' ) e E ( 1 ; , ~ , P ) ,  and ~l)~kl<OO 
take k 

T(X) = G(X)l  + (~  GL e~(X)Z) "~. 
k 

When Xj are Banach space valued and h; is a continuous j-linear form take 
T(X)= I]Xll, where ][" ][ denotes the norm of the Banach space. 

In order to formulate the 'variance' condition we need some more no- 
tations. 

Let p X~;~ denote the empirical probability measures of independent samples 
X (;) = ( X  jl, .... Xj,) with the same distribution as (X 1 .. . .  , X,). Define 

V,, = S.. . ~ n'/2 hr(x~ . . . .  , x,.) d (P  x~ '  - P ) ( x l ) . . .  d (P  xC ~ - P) (x,). 

Variance Condition. Let 0 < ~ < �88 and 

A~ = [6rs2(4 + r) 2~/e]. 

Assume that 
(V~') lira P(V.<=x) 

exists and has A t bounded derivatives. 
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Remarks. i) By the arguments of (5.24-5.27), condition M~ and conditional 
normality (V/) can be reformulated in a more technical way which is useful for 
applications. 

Let {ek,k~No} denote an orthonormal basis of L2(~,~B,P)with eo (X 1 ) - I  , 
and let t/~ eJ, j e N ,  p = 1 . . . .  , r, denote i.i.d. N(0, 1)-variates. Define ~(v)= (t/}p),jeN), 
h J1..4,. = Ehr(X1 . . . .  , Xr) ejl (X1). . .  ej,.(Xr) and 

(2.1) ~ o = ~ h .  . n()) n(. ~) 
J t  , . . J r  "1J1 . . . .  t J r  ' 

J 
where the sum extends over all r tuples of integers. Assume 

(V~) P(E(~IrI(P),p=t= I)<=g)2)=O(c~A~), c~---~O. 

This variance condition is similar to that used in G6tze (1983). 

ii) It can be shown (see proof of Lemma 5.48) that the random variable Wk 
obtained by partial summation of ~oo up to k in every index Jl . . . .  ,Jr is 
stochastically smaller than ~oo such that condition (V~) for ~k will imply 
condition (V~) for woo (Lemma 5.48(i)). 

Since k 
~2 (2) , . . . , ,")= X w/, where 

j = l  u r l )  
condition (V~) holds if 

P(lWal<c5 .. . .  ,IWkI<cS)=o(sA~ as 3-~0. 

Furthermore, the following smoothness condition will be used in the case 
s>=r+2. Define Z j= (Xj ,  Xj), j~N,  where Xj denotes an independent copy of 
Xj, j~N.  Let Aj denote the difference operator applied to the j th  argument of 
hjX1, . . . ,X~),  defined by Ajh = h j . . . , X j  .. . .  ) - h j . . . , X j , . . . ) ,  and define 
h,(Z1 . . . . .  Zr ~. 

For any partition I=(I1,. . . , I~) of {1,2 .. . .  ,n} such that 1~I1, [Ill>=cn, and 
IIj[ > log n, j = 2, ..., r for some c > 1/2 define 

(2.2) wl , ,=  ~ "" Z hjZ1,  Zj~, .... Z j ) .  
j 2 ~ I 2  j ~ I r  

Smoothness Condition. Assume that s>r  + 2 and that there exists a sequence of 
partitions I(,) (as above) and constants a > O, c > O, such that c > 8 a 2 2 r ( s -  2) and 

(C~) P( sup IE(exp[itwLr(, ,]lZj,j4=l)l>=l-cn-l+a'logn) 
a<~ltl<T. 

= O(n- 2r(s-- 2)/2 log-- 2~n), 

where T,=n (~-~ 2)/2. 

Let w, denote the yon Mises statistic of order r defined in (1.3) and let Zp(z), 
p = 0  . . . . .  s - 3  denote the functions defined in (3.7) and (3.8). Then 

(2.3) Theorem. Under conditions (m~) and (V~), for some s> 3, 0 < e <  1/4, we 
have 



604 F. G/Stze 

P(w, < z) - ~ -  3 (2.4) A, = sup Z n-P/2)~p(Z) 
p=0 

= O(n-r/2+E) q_ O(n-(S- 2)/2). 

I f  s--2> r this bound may be improved assuming condition ( C~) which yields 

(2.5) A, = O(n -(s- 2)/2). 

Since condition (C~) is not easy to verify, the following sufficient condition may 
be helpful. 

(2.6) Remark. Assume that Xy, j e N ,  are uniformly distributed in [0, 1] and 
condition (V~) holds for e sufficiently small. Assume that for every choice of 
x2 ... .  ,G  the function x 1 - + h r ( X l ,  x 2 . . . . .  Xr) , X l ~ [ - 0  , 1] is absolutely continuous 
and twice piecewise differentiable on at most c(r) pieces with uniformly 
bounded 2nd derivative. Then condition (C~) holds. (For a proof see Sect. 4.) 

In the following the conditions (M,), (V,) and (C~) are discussed in special 
cases. 

As for statistics (1.1) let Xj, j e N ,  denote an i.i.d, sequence of random 
elements in ~=E(T ,  SL#), r>2, / ,a - f in i te ,  such that �9 is separable in the E- 

l 1 
norm I1"11~. Choose ~3, the ~r-field of ~, to be the Borel a-field of ~. Let - + - =  1 
and assume q r 

(2.7) EIIXxl[~< ~ ,  s > 3  

Assume that there exist k =  [As] + 1 
g~ .... , gk~Lq(T, ~ #) such that 

(2.8) f~ = E ( X 1  1 gjX1 d/*), 

an d  EX1 =0. 

(see condition (V~)) functions 

j = l  . . . .  ,k 

are nonzero functions in E(T, 3;, #) having disjoint support, such that Sfjgkd# 
=CSjk and 5ffd/*=t=0. Then 

(2.9) Corollary. Assume (2.7) and (2.8) hold. Then the error in the expansion 
(2.4) is of order O(n-(S- 2)/2) + O(n-r/2 + ~). 

Let Y denote the Gaussian process having the same covariance structure as 
X 1. (Y exists since /2, r>2 ,  is of type 2; see Hoffmann-Jorgensen and Pisier 
(1976).) 

Here, relations (3.7)-(3.8) yield with w~(a)=~(Y+a)rd# 

Furthermore, 
z 0 ( z )  = P(wo~(a) <= z). 

~3 
Zl(z) = ~  P(wo~(a + e, X1) < z)l~l= o 

/ ~ ~2 ~2 1 8 8 

"P(woo(a+g~X, -1- E2X2) ~ z)[ . . . .  2 = 0 

where X 1, X 2 a r e  independent of Y. 
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Condition (2.7) and (2.8) hold for X j = g ( ' ,  U~)-Eg(. ,  Uj)~E([0, 1],2), 2 
Lebesgue measure on [0, 1], where g is one of the functions (1.2(i)-(iii)). 

As for condition (2.8) in case 1.2(i) and 1.2(ii) let fj denote a C~ 
with support Bj=(( j -1) /k , j /k) ,  j =  1, ..., k such that f j ~ 0 ,  ~ f jd# = 0 and define 

~2 Bj 
gj= ~ v f j ,  j = l , . . . , k .  

In the case 1.2(iii) assume that the Z2-type statistic is based on k>2[A~] 
sets Aj. Let 

~cj = 2~ P(Aj) 2~ -~- ~), 

gJ = IAaj -1 -- IAaj/s 1/~2--j 1 , j = 1 .... , k/2. 
Then 

fj=~2j_l(IA2j_ --IA2j), j ~ k ,  

evidently fulfill the requirements of condition (2.8). 
Moreover, the conditions of Remark 2.6 apply to the kernels induced by 

(1.2(i), (ii)) which are given by 

(i) -rt'(i)~Yt-~ 1, .... Xr) = S( 1 - max(x1, .- ., xr)) d(fixl - )0... d(bxr - 2) 

h ( i i ) ( y  . . ,Xr )  = /~ 2 ( X j  1 1 1 (i) ( i i )  hr_ p(Xj. + 1, - 9 . . . ( x ~ , -  ~) .... x jr), 
p = o (j) 

where 6 X denotes the point measure in X and the summation ~ extends over 
all subsets {Jl . . . . .  jp} of size p of { 1, 2,...,1"}. Hence we have o) 

(2.11) Corollary. The expansion (2.4) holds with an error A,=O(n-~-2)/2),  for 
every s > 3 for the generalized Cramer-von Mises and Watson type statistics with 
r>2 ,  r integer defined by (1.1) and (1.2(i),(ii)). Furthermore, the expansion (2.4) 
holds with an error A = O(n -~/2 + ~) for the generalized Z2-statistic (1.1), (1.2(iii)). 

In the z2-type example (1.2(iii)) the limit distribution function is given by 
/ k \ 

Z0(z)=P t ~  )Ljt/~<z) where (t/j, j =  l, ... , k) has distribution N ( O , Z ) a n d  Zjl 
j = l  

=P(Aj) 6jt-P(Aj)P(Az).  Since the order of approximation is O(n -~/2+~) for r >  3 
and k>2A~ compared with O(n 1+~) for r=2 ,  it would be interesting to have 
analytic expressions for X0(z) and )~1(z). For r = 2  we have 

(2.12) Corollary. Suppose that condition M~ holds with s>=3. Furthermore, as- 
sume that there exists an orthonormal system (as in condition (V~)) such that for 
�88 

(Eh2(X1, X 2 )  ej,(X1) ej2(X2),jl,j2 = 1,..., k) 

has rank at least A~. Then the remainder in Theorem (2.3) satisfies 

A n = 0 (n-(s-2)/2) _[_ O ( n -  1 + e). 

Here 

(2.13) ) ~ o ( z ) = P  (Eh2(X1,X1)+ ~ 2 j ( q } - l ) +  ~ #j t / j<z) ,  
j = l  j = O  
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where 2j, j~N,  denote the eigenvalues of the kernel 

/~2(x, y)= hE(X , Y ) -  Eh2(x, X2) - Ehz(X1, Y)+Eh2(X~, X 2), 

and /~j, j = 0 ,  1,2 .... denote the coordinates of h~-Ehl (X1)  with respect to an 
orthonormal system of eigenfunctions e~, j =0, 1, 2 .... of/~2, where e~ denotes an 
eigenfunction for the eigenvalue 0. 

o o  

Furthermore let formally D , =  2 k=20 )~kek(X1)U k" Then 

. -  1 0 z  3 

where ]~1 (Xl) = h~ (X 0 - E h ~ (X 0 and/~2(X1) =/~2 (X1, X1). 
The term X2(z) can be computed similarly in terms of derivatives of )~0(z) with 
respect to #j. Compare the expression for the c.f. of Z2(z) in G~Stze (1982). 

The proof of Theorem (2.3) is based on the following symmetrization 
inequality. 

Let g(Sa . . . . .  St) denote a complex valued bounded function of independent 
random elements S~ .. . . .  St, and let :~j, j = l  . . . . .  r, denote as before an inde- 
pendent copy of Sj. 

Let gO(.) denote the complex conjugate of g('). 

(2.14) Proposition 

(2.15) IEg(Sa, ..., S,)[ <=E*/2g(S, . . . . .  &) gC(g~, ..., St) 

=< E 2 -r [ I  g~(&% . . . ,  -~'v(~'~,, 

where ~ extends over the 2 ~ r-tuples (~, . . . .  , c~,), ~j=0, l, j =  1, ..., r, 
CI 

, ,  fg(.)  if ~ is even and (=j)=(Sj ~ j = l  
g~t'~=lgC(. ) otherwise S~ ,57j ej=0" 

In particular, when 

I ] E ,s  j)  , g(S 1 .. . . .  S~) = exp Litj~=l ~ ""Jr= 

(h symmetric) we have (with the notations of condition (V~)) 

(2.16) lEg(S1 .. . . .  S~)l<E2-rexp[itr!A~..,A~h(Sa,S~ . . . . .  St, S~)]. 

For r = 2  (2.16) Generalizes Lemma 3.37 in G6tze (1979). For r > 2  compare 
Lemma 1 in Yurinskii (1981). 

Proof Inequality (2.15) follows by conditioning on S=($2 ... . .  S~) and by apply- 
ing HSlder's inequality which yields the upper bound E~/E[E(g(S~ . . . . .  S~)]S)[ z 
which equals the right hand side of (2.15). Induction and rewriting immediately 
yields the other assertions. 
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3. Notations 

The expansion of the characterist ic  function of w, is based on the expansion 
scheme in t roduced in G6 tze  (1982). For  the sake of completeness  we briefly 
give the necessary nota t ions  to formulate  the expansion result of  that  paper.  

Fo r  given 'weights '  g = (el, -.., e,,) e l (  m, m > 1 and a sample  X = (X a . . . .  , Xm), 
define the general ized empirical  process by 

(3.1) Pff(A) = ~ ej((ixj(A ) -  P(A)), 
j = l  

where (fx(A) is 1 if X~A and zero otherwise. Let  

(3.2) w,,(,) = ~ S hi(x1,..., x j) dpx(xl) dpi(x2)...dpX(xj) 
j = l  

denote  the 'weighted yon Mises statistic of order r'. 
It  is convenient  to include t runcat ion  into this scheme, using an auxi lary 

C~-funct ion,  say go such that  go(x)= 1 if Ixl < 1, go(x)=0 if Ixl > 2  and such that  
go is m o n o t o n e  between 1 and 2. Let  gom(~) denote  the r a n d o m  variable  

f i  go(T(X~) ej) N(ej), where N(e) = [Ego(T(XI) e)] -  1 

j = l  

Define the t runcated expecta t ion of a r a n d o m  variable  W by 

(3.3) E'~ W =  Ego,,(n) W. 

Fo r  nota t iona l  convenience we shall suppress the subscript  ~ if no confusion 
can arise. 

The  expansions are based on the system of functions 

(3.4) )((m)(t; e l , . . .  , era) = E', exp [it Wm(~)]. 

Let  e - - ( e l , . . . , e m )  denote  a vector  of nonnegat ive  integral  numbers ,  let [el 
= e 1 + . . .  + em. Fur thermore ,  denote  by D ~ the part ial  derivative with respect to 
e = ( e l ,  "",~m)' Since we consider symmetric functions of  ~ only, write D p for the 
pth derivative with respect  to a variable ~j at e~=0. Let  ~:v, p__>l, denote  the 
cumulan t  differential opera tors  defined by means  of the formal  power  series in u 

(3.5) ~ ~pp,-luP=log (l + ~ DPp,-lu p) 
p = 2  p = 2  

using the following convention: Dm...D p~ denotes a part ial  derivat ive with 
respect  to k different variables at zero. We have ~Co=tq =0 ,  I cz=D 2, /r 3, /r 
=D 4 -  3D2D 2 etc. Final ly  define differential opera tors  P~ by 

(3.6) r= oP~(~c') u r = exp _ 3~cvp.V- 1 u p- 2 . 

In  Part icular ,  P0(~c. ) = 1, Pl(~c. ) = K3/6 and P2(~c. ) = ~c4/24 + ~c2/72. 
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Let w~(e~ . . . . .  ev) denote the random variable to which 
W m + p ( m - 1 / z , . . . , m - 1 / 2 ,  g 1 . . . .  ,ev) , m ~ o o  converges in probability (compare 
(5.25)-(5.27)). Furthermore, let 

(3.7) 2 j ( t ) = P j ( ~ c . ) E e x p [ i t w ~ ( e  1 . . . . .  ev)]]~= o, 2 p >  3r  

and 

(3.8) zj(z) = Pj(~. ) P(w ~(el  . . . .  , ~v) ~ z)l ,:  o. 

s - 3  s - 3  
Define ;~ . . . .  3(0= ~ ~j(t)n -j/2 and Z . . . .  3(z)= ~ ;~j(z) n -~/2. Throughout this 

j = o  j = o  
paper, c denotes a generic positive constant depending on s, r and M S only. 
Furthermore we write E v W for (EW)P.  

4. Proof of the Results 

P r o o f  o f  Theorem (2.3). Let P ' ( A ) = E ' I  A. Using the truncation method of (3.3) 
we have uniformly in z (with ~1=...  = g , = n  -1/2) 

(4.1) P ' ( w , < z ) = E " c p ( T ( X ) n - 1 / Z ) P ( w  < z ) + O ( n P ( T ( X O > n l / 2 ) )  

= P(W n <= z) + O(rt-(s-  2)/2) 

using the relation 1 - E ~ o ( T ( X )  n -1 / 2 )=O( n - S /2 )  which follows from 
Cebygev's inequality and condition (M). 

By Ess6en's Lemma, see e.g. Petrov (1975, Theorem 1, p. 104) we have (here 
;~ . . . .  3(z) denotes the expansion of (3.6)-(3.8)) 

(4.2) A, = sup [P(w , < z) - Z . . . .  3(z)[ 
z 

= sup IP'(w, <= z) - Z . . . .  3 (z)l + O ( n - ( s -  2)/2) 
z 

< = 1 1 + I 2 + I 3 + I 6 + I 7 ,  say,  

where 

and 

Try, 1 

I 1 = c  ~ E'  " ^ I exp[~tw,]-X,,s  3(t)l/ltldt, 
--Tin 1 

I j = c  ~ IE' e xp[ i tw , ] [ / [ t l d t ,  
Tn, j •  1 <  It[ <--Tn, j 

I 6 =  ~ IZ . . . .  3(t)l/ltl dt  
Itl > Tn, 1 

j = 2 , 3  

I v =cT.7-31 sup ~z Z . . . .  3(z). 
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Here,  T,, 1 = n~, ~c = r/4 - el2, T,, 2 = nr/2 - ~  and T,, 3 = n(s- 2)/2 
By L e m m a  (5.50) (i) 

16 = O(n- ~:A,) = O(gl-- ( s -  2)/2), 

similarly, Lem ma  (5.50 (ii) entails 

17 = O (n- (s- 2)/2). 

By L e m m a  (5.50) (i) and (iii) and Lemma  (5.1), and the choice of A, we have 

Tn, 1 
I i = O ( n - ( s - Z ) / a  ) ~ (Itl+lt[3(s-2)+'S)E(l +ltl)-C +n-D]lt1-1dr 

0 

= 00~- ( ' -  2)/2), 

where 
C=3rZs(4+r)/e and D=2rs(4+r).  

The terms 12 and 13 are of course the most  critical ones. By L e m m a  (5.50) 
(iv) we have 

Tn, 2 
I2<=C S n-'S(4+')lt[- l dt=~ 2)/2)" 

Tn,  1 

Let U,(t)=]E(exp[itr!wl,i]lZj,j#l)]. By Proposi t ion (2.14) applied for Sj 
=(X,,l~Ij), where I~, j= l , . . . , r ,  denote the parts of the decomposi t ion I of 
{1,2, . . . ,n}, we have 

where 

and 

]E' exp [ i t  w,] ] < ]E' exp l i t  r ! will 2 - ~, 

w,= Z ... Z h,(ZJl, .... z j ) , - '~2  
j l E I ,  j r ~ l r  

Zj = (X~, X )  as in (2.2). 

L e m m y  (5.30) (i) applied successively to 

sm= Y~ E(w, lZj, z v, p~I,) 
j E l z  

with m=ml= [II], l= 1, ...,r, yields 

[E' exp [i tS,,][ = (1 + o (1))[E exp [itSm] [ + o(n-~) 
< cEU,(tn- r/z)ml + o(n-B) 

provided that  m~ > log n, 1 = 1, ..., r. Hence 

Tn, 3 n - r /2 

I3<c i E2-'U.(t) ~ t - l d t + c  ~ Ez-~U.( t )~t - ld t+O(n-")  
n - e  a 

= 1 4 + I  5 +O(n-B). 
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By condi t ion (C~) and (1-cn- l+2~logn)m~=O(n -2~+~(~-2)) it follows that  15 
= O ( n -  (s- 2)/2). (Note that  ml > c n.) 

Using a uniform version of Theorem 1, p. 10 in Petrov (1975) we have for 
0 < a < T/2 

(4.3) U,(t) < 1 - [1 - s u p  U,(t)  2] t2/(Sa2), w.p.1 
a<ltl<T 

for every t, such that  It[ <a .  Hence,  (4.3) and m~ >cn  entails 

U,(t) ~ < c exp( - c t 2 n 2~ log n/a 2) 

with probabi l i ty  1--o(n-2r(s-2)/Z(logn) -2~) by condit ion (C),  where c > 0  is an 
absolute constant.  Hence,  14 = O(n -(s-2)/2) which completes the proof  of Theo-  
rem (2.3). 

Proof of  Remark (2.6). Note  that  wl, I depends on X 1 and )(1. Define 

~? 2 + 1 )  

Recall Z j =  (X j, J~). Let  6 = ( 1 -  2e)/(20r). We shall use the following fact which 
is proved later. 

(4.4) O' ,>n -~ entails the existence of an interval A',, ]t(A'n)~cn-3~r+2~ -2 
such that  z ~ P ( w l , 1 < z l Z j ,  j # l  , Xa~A ' ,  - ' X I~A , )  has a density bounded  by C, 
= 4B 2 n30(r- 1/2). 

Using relat ion (4.2), p. 587 of Statulyavichus (1965) to estimate the characteris- 
tic function of a symmetr ized variable having density bounded  by C. we have 
for every t 

IE(exp [it wl, i] IZj, j  # 1, ZlCA'  2)1 

< exp( - t2(2a Itl + rc 2) - 2 C2 2/96) = r,, 

where 

(r 2 = Var(w l,~lZj,j:t: 1, Z ~ ~A', 2) <= c ( 1 1 2 1 . . . I L I B )  2 �9 

Hence,  ' -0 0 ,  > n together  with [I~1 ~ nO, J > 2 implies 

U,(t) = IE(exp [it w 1,,] IZj, j  # 1)] 

<--1-- r  _ , ~ ( A . )  + , 2  2(A,) r, 

1 - c n - 6 ~  - 2  Cn2y1-2(r- l l~  

for every It[ >a .  This yields by the choice of 6 >0,  n large, 

(4.5) P( sup U,(t) > 1 - c n - l + Z ~ l o g n ) ~ P ( O ' , N n - ~ ) .  
a<ltl<Tn, 3n r/2 
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Furthermore, by Cauchy's inequality 

= Wl ,  I d2 .  

Hence 
~, = E(w 2, , lZj , j  4:1)/2 < ~', 

and by Cebygev's inequality 

P(O', < n -a) < eE exp [ - naO,] 

= eE exp [i c n '~/2 wi(tl (1), Z) rt (r - t),y2], 

where Wz(rl(1),Z) is defined as in (5.41)-(5.43). We apply Lemma (5.31) with 
decomposition m l = l l l l ~ n  , mj=lljl=[nO], j = 2  . . . . .  r, and R = T = n  ~ Then 
(5.32) holds and as in the proof of Lemma (5.31) we have 

(4.6) P(~', __< n-  a) = O(n-(ra/z)a~). 

By the choice of A~ and 6 relations (4.5) and (4.6) together imply condition (C~). 
It remains to prove (4.4): By the assumptions on h~, the interval [0, 1] may 

be divided into at most  1121. ]I31... Ilrl ~n  '~(r- 2) intervals, say Cp, where x~h~(x, .  ) 
is C 2 and both derivatives are uniformly bounded by B. 

Let w'(x)= ~/Ox 1 wl. > Then Iw'(x)[ <cn a('- 1)B a.s. for x~[0, lJ. Hence, 

(4.7) n-a ~E(w'(x)2 2 ID~(X)IZJ,J :# 1) + �88 n -a, 
P 

where Dp= CpC~{x:lw'(x)l>n-a/2/2}. This implies that there exists an interval 
Cp such that 

�88 n -a < na( ~- 1)(na(~- 1)B)2,~(Cp) 

and that there exists an x~ Cp with Iw'(x)[ > n-~/2/2. Since 

~ w'(x) every x~Cp ~Bn,~(~-x) for 

we conclude that there exists an interval A ' c  Cp such that for every x~A', 

]w'(x)[>n-'Y2/4 and 2(A',)>min(2(Cp), cn-Z'/2/(Bn a(r- 2))) 

as well as 2(A',)<2(Cp). Hence 2(A',)>cn-3a(~-l)-~B-2. Let 

wl,I(X1)=E(wl,IIZj, j:#I,  X1), ~2 = a(Zj , j  4:1, )~1) 

and let wl,r(X1)=E(wl,1lT~z). Then wl,r=Wl,r(X1)-Wl,x(X1) and the density 
of the distribution function (4.4) is bounded by 

g ~zzP(W~,~(X~)<=z+w~,l()s Zj , j , I ,  ZI~A'n 2 

< sup [w'(x)]- *P(A')- n 
xeA;~ 

uniformly in z, which proves (4.4) and completes the proof of Remark (2.6). 
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Proof  of  Corollary (2.9). Condit ion (Ms) holds, since 

hj(X 1 . . . . .  X )  = cj ~, a ' -  J(t) X 1 (t)... Xj(t)  d#(t), j = 0 . . . .  , r. 

(Use H61der's inequality with T(X)=IIXIIr and Ms=l+llal[~. ) Note that 
hr(X 1 . . . . .  Xr) = J XI  (t)... Xr(t) d #(t). By assumption the integrals 

f a = E  JgjX1 d#X1 

are Lr-functions with disjoint support. 
Condit ion (V~) can be checked using e f l X i ) = j g j X l d # ,  j =  1 . . . .  , k, which are 

or thonormal  in L2(K, ~3, P). We have 

hj,..& = Eej~(X 1)... e;~(Xr) h~(X, . . . .  , X~) 

= ~ y f f d #  if j = j l = . . . = j ~  
(0  otherwise. 

This shows that  the quantities Wj defined in the remarks following condit ion 
(V~) can be written 

�9 " ' l j  ' 

Since 
P(l%l<a)=o(,Vlln61~-2), r > l  

(use t runcat ion Iln bl >[qSP)]>aa/~, p > 3 ,  and repeated integration over this in- 
terval), condit ion (V~) holds. 

Proof  of  Corollary (2.12). Let (Mj~y2 , j l , j 2=l ,2  . . . . .  k) denote the covariance 
matrix of Corollary (2.12). Since 

k 
Mj~J/j- =0 ,  j 1 = 1 , 2  . . . . .  k 

J 2  = 1 

defines a subspace of codimension at least A~, the probability of 

J2 
satisfies condition (V 0. 

The formula (2.13) is well known. 

5. Lemmas 

The following Lemma (5.1) describes the expansion of the characteristic func- 
t ion of w,. 

(5.1) 

(5.2) 

where 

Lemma.  Suppose that condition (Ms) holds. Then 

I~,)(t; 17 -1/2, n -1/2" ^ . . . .  ) - Z  . . . .  3(t)[<=c(s)n-~S-z)/Z(g,(t)+g(t)), 

gn(t) = sup {[D=~<,0(t ; e 1 . . . .  , gm)[ : ]0~1 ~ S, (e 1 . . . . .  em)eE . . . .  m => n} 
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and 

g(t) =sup  {IDLE ' exp[itwoo(r o, a =(cq .. . .  , C~p), 

O<__2p< 3 ( s -  3),aj> 2, ~ ( e j -  2 ) < s - 3 } .  
J 

Here Es, m denotes the set of all weight vectors (el,--.,~,,) such that all but at 
most s weights e~ are equal to m - 1 / 2  while the others are bounded in absolute 
value by n-1/2, the latter being those variables where c~j > 0, c~ = (~ ,  ..., am)" 

Proof The sequence of symmetric functions )~(r,)(t;el . . . .  ,era), r e > l ,  satisfies 
conditions (1.2)-(1.4) of Theorem (2.11) in GStze (1982). Note that 

~ 1  ~(tn)(t ; e l '  " ' ' '  em)[~l=0 = 0  

0 
because of the definition of w,,(e) and ~cpm(e)]~=0=0,  the other conditions 

J .  
being obvious. The result of Lemma5.1 follows from Theorem2.11 of that 
paper. 

The next step is to prove that a bound for g,(t) in (5.2) exists in the range 
[t] <n  ~, where 0<c3< 1/2 is to be determined later. 

We already introduced the truncation T(X~)< ef 1, j = 1,..., m in (3.4). In the 
following we shall frequently use the fact that arbitrary moments of the 
truncated statistic w,,(~) exist. 

Let N denote a subset of N and let C~=(il, . . . ,  ij) denote a j-tuple such that 
a e N  j. Let X~ denote the corresponding j-tuple of random elements. Suppose 
that e j, j e N ,  satisfy 

(5.3) ~ ~2__< 1 and sup[ejl<�89 -1. 
jEN jEN 

Let 3 denote a a-field independent of a(Xj , jeN) .  Let H ( X  1, . . . ,X  j) denote a 
symmetric kernel and w(c 0 weights which may depend on ej, j e N  and 3. 

Suppose that there exist a 3-measurable function c(H)>O and constants 
d 1 . . . . .  d y N  (independent of ej and 3) such that 

J 
(5.4) ]w(a) H(X~)l < c(H) [ I  le,, T(X~)] a*. 

l : l  

When d 1 = 1 and l occurs only once in e we assume that 

(5.5) E(H (X ~)IX p, peN, p ~= l, 3) = 0 

Define 

(5.6) W= ~ w(i 1 .... , i j )H(Xi l , . . . ,X i j  ). 
il,...,id~N 

(5.7) Lemma. Suppose that conditions (5.3)-(5.5) hold. Then 

(5.8) E'(W2PI3)<=c(H)2p(ET(Xj)Z+E2pJT(X1) 2) a.s., peN,  

where c denotes a constant depending on p and j only. 
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Proof. Let ~ denote the 2pj-tuple ~=~(1)...~(2p) where e(0=(i]0 . . . .  ,i~0) and 
2 p  

i~)eN. Define # ( ~ ) = l ~ w ( a  a)) and define accordingly ISI(X1 .... ,X2pj) as 
/ = 1  

the product of 2p kernels H. By (5.4) we have 

2pj 

1~(~)/l(Xa)[ < c(H) 2p 17[ lei~ T(Xi,)I ~', 
/ = 1  

where dz=dt, , l * =  1 modj ,  l < l * < j .  An equality similar to (5.5) holds true for 
~0. 

Let ITV=Z*fv(~)I71(X~), where Z* denotes summation extending over all 
2jp-tuples ~ N  2pj. 

Hence, 1~ is a generalized yon Mises functional of order 2pj and 13/= W 2v. 
This observation will be frequently used in the following lemmas. It is 

sufficient to prove that Z*lE(~(~)/t(Sa)[~)[ is bounded by the r.h.s, of (5.8). 
Given a 2pj-tuple ~ let J~ denote the set of indices occurring in ~. If every 

index in J~ occurs at least twice in ~, we have 

(5.9) [E' (w (~) ~/(X~) I ~)l <= c (H)2,, l-I e~ E' T(Xd) 2, 
j~d~. 

since ]e~ T(Xj)] < 2 E'-a.s. 
Suppose that there is a subset of J~, say I~, of r > l  indices which occur 

only once in ~. Let H a : =  ' ~ ~ E (w(a)H(X~)]~,X~, jdfla) and Tj=go(ejT(X~)). By 
equality (5.6) applied t o / 4  we have 

E'(H~I~)=E( I ~ (T~- 1)(ET~)- ~ HaI~). 
j e l z  

We have ITj-11 < lejT(gj)l. By Ceby~ev's inequality and (5.4) it follows that 

(5.10) IETj--II<~2ET(Xj) z and (ETj)-a__<2. 

Thus, similar as in (5.9) we have 

IE'(H~I 5)1 ~ IE'( ~ IejT(Xj)IH~I~)[ 
j~I~ 

<(2c(H)) 2p 1-[ e~ET(Xj) 2" 
jEJa 

Here, we used [ejT(Xj)I<2 E'-a.s. and E'T(Xj)Z<2ET(Xj) 2. This inequality 
together with (5.9) and (5.4) immediately proves 

2pj 

E'lTV<=c(p) 2 c(H)2V(2e2)IJ~I(ET(Xjl2IIJ~I 
]J~l  = 1 jeN 

which completes the proof of Lemma (5.7). 
The following lemma provides a bound for the derivatives gn(t) in (5.2). 
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For any partition I of {p+ 1, ...,m}, p=c(s ,  r) such that the size of each 
part is larger than log n, define (using the notations of (2.2)) 

(5.11) w i =  ~ ... ~ hr(Zj~ . . . . .  Z j . )m -r/2 
jlell jr~Ir 

w h e r e  Zj  ~-(Xj, X j), (Xj independent c o p y  of  Xj). 

(5.12) Lemma. Assume that I h l + . . . + l v ~ l + l / ~ l = s ,  q<s, where vj denote p- 
tuples of nonnegative integral numbers and D ~, D ~ denote derivatives with respect 
to el, ..., ep. Assume that condition (Ms) of  Sect. 2 holds. Let  6=  1 if  Jill=s, c5=0 
otherwise. Then 

IED~l wm(~) ... D~qwm(g) exp [ itwm(~)] D~ ~o,,(~)l 

__< c(It]o + itl(r_ 1)S)E,(exp [itr!wx])2 ~r+ ~, 

for every m-tuple ~ = (e 1 . . . .  , ep, m -  1/2, ..., m -  1/2), such that I~jl < n - 1/2 j = 1, ..., p 

and fl = ( i l l , ' " ,  tip). 
q 

Proof. Notice that 1-I D*Jw,,(~) given X, . . . .  , Xp is again a sum of weighted yon 
j=l 

Mises statistics of order smaller or equal to ~,(r-Ivjl) (compare the first part of 
J 

the proof of Lemma (5.7)). Using the notations of (3.4) we have 

(5.14) D/~(pm(g) = ~ c, [ ~  (p(")(e jT(Xj))N(&-")(ej )T(Xj)  ',1 
7__</~ j= 

~I (p(gjT(Xj))N(ej), 
j = p + l  

where the summation extends over all p-tuples to nonnegative integral num- 
bers 7, such that 0 < 7j <=flj, J = 1, ..., p. 

Here, NU)(e)=O(eS-J), for s > j > l  by condition (Ms) and Cebygev's in- 
equality. Compare (5.10). By the choice of q~, we have I(pU)(x)[<cq~(x/2). For 
notational convenience write again ej for @2, j = l ,  ...,p. Hence, the 1.h.s. of 
(5.13) can be estimated by a finite sum of terms of the following type 

(5.15) cE E ' (M(X~ , . . . ,  Xp) exp [itwm(g)] IX>.. . ,  Xv) j= l  I~I (T(Xj)I~J Jr I~jl~0, 

where M ( X  1 . . . . .  Xv) denotes a v o n  Mises functional of order L, for some 
0 < L < ~ ( r -  [v j I) in the observations Xj, m > j  >p  + 1. We have 

J 

M ( X 1 , ' " , X p ) : =  2 H(gl, X1;"";gp,  XpIXja, .... XjL)gjl ' ' 'gjL' 
Jl ..... JL> P 

where the kernel H is a product of q kenerls h~, . . . .  , hz~ satisfying 

(5.16) [H(e,, X~; ...;sp, XplVD ..., YL)I<-_c,(H)T(YO ... T(YL), 

c,(H) < c M  s [(e 1T(X,))M*... (ep r (xp ) )  M.] T(X, )L '  ... T(Xp) L,, 

p 
for some O<=Mj <=rq, ~ (La+ fij)=s, j =  1 . . . .  , p. 

1 
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Let Tj=q~(ejXj)N(ej). When t ~ 0  and vj=0, j = l  . . . . .  p, the 1.h.s. of (5.13) 
yields by expansion in t 

EDa[I1 Tj+O(t)EE' ( DP[I1 Tjwm(e) lX1 ..... Xp)=O+O(t) 

uniformly in m by Lemma (5.7) and the arguments following (5.16), thus 
proving (5.13) for Itl < 1 and [ill =s. 

Replacing expectations in Proposition (2.14) by conditional expectation, 
given X a , . . . , X  v, choose S~=(X 1, lslj), j = l  ..... r, g=M(X 1 ..... Xp) 
exp [itWm(n)]. Furthermore, let 

Wm(~)= ~ ... ~ hj(Sh,...,Sij), 
i1=  0 ij=O 

where 

hj(Sil,...,Sij)= ~, ... ~ ~... ~hj(Xl,... ,xj)emd(bxpl-P)...epjd(bxpj-P). 
P1~Ii 1 pj~Iij 

Recalling that dj~b=~9(So, . . . ,S j, . . . ,S r ) -~ (S  o . . . . .  Sj . . . .  ,St), where Sj denotes 
an independent copy of Sj, j =  1 . . . .  ,r, we have A 1 ... drw,,(g)=wt as defined in 
(5.11). Notice that ~j=m -1/2, j>p  and that d 1 ... A~wm(g ) does not depend on 
ht, l<r and on X 1 ... . .  Xp, since those terms of wm(~ ) depending on X1, 1 <l<=p 
are of degree at most r - 1  in the remaining variables Xj, j>p. 

Let W(X 1 .... ,Xp) denote the product of 2 ~ factors M(.) according to 
Proposition (2.14). Again W(XI, ..., Xv) is a v o n  Mises functional of order M 
=2"L. Hence, Proposition (2.14) yields the following upper bound for the 
conditional expectation, given X 1 . . . . .  Xp in (5.15): 

(5.17) c [E'(W(X1,..., Xp) exp [it r! wi] ]X 1 .... , Xp)]2- ~. 

The kernel of W, say ffI(yl, ..., YM) satisfies 

(5.18) I/~(Yt, ..., YM)[ < c c(U) 2r T(yl)... T(yM). 

Conditioned on ~=~(Zj,  jr Xj, j = l , 2 ,  ...,p), (where Zj=(Xj,  J(j)), w~ is a 
sum of m 1 i.i.d, random variables, say g(Zj), wi= ~ g(Zj)m-1/2. Notice that 

jeI1 
E'(g(Zj)I~)=O. Furthermore, W(X1, ...,Xp) is, conditioned on ~, a sum of yon 
Mises statistics, say W,=W~(Zj, j~I1, Xj, j = l ,  .. . ,p) of order v<=M in the 
variables with indices in 11, such that W(X1, ...,Xp)= Wo+... + W M. Notice 
that by assumption ej=m-1/2, for every j>p. Hence we may write 

W~ = ~ * / ~ ( m -  1/2, ~IZj,, .... Zj~)m-,/2, 
(J) 

where the summation extends over all ordered v-tuples of indices in 11. Let 
J 

denote the summation over all indices in J =  {Jl, ---,J,} c i 1  and let ~ '  denote 
the summation over the remaining indices of 11. By conditional independence 
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it follows 

(5.19) E'(W, exp [itr! wi] I~) 

= ~ ,  m-,/2 E,(fft~(m- 1/2 ~IZj,, ..., Zj~) exp [itm- 1/2 ~ g(Zj)] I~) 
J �9 E'(exp [itm- 1/2 ~,  g(Zj)] IN) 

=y* m-'/2 E([I r / t , ( .  IZj, ..... Zj)l N)E(L IN) ~'-K 
J 

where 

K=IJI ,  T/=cmcp(m-1/2T(Xj))q~(m-1/2T(Xj))exp[itm-1/2g(Zj)], 

and 
Cm = E -  2q)(m- 1/2 T(X1))" 

By H61der's inequality we have 

(5.20) E' (E' (W~ exp [i t r ! wi] [ ~)l ~) 

~[}'~*m-~/2 E'l/2(E2(I ~ Tjfflvl~)]f~)]E'a/2(E(Tllq~)2(m1-K)[~) 
J 

where ~ = o-(X1, ..., Xp). 
Notice that 

e'(e2~x-~K(T~ I ~)1 ~)~ E'E~(T~ I~) 
= E exp [itr! wi] a.s., 

since 0 < E(T 11~) < 1 a.s. by symmetrization. 
Hence, it suffices to estimate the first term in square brackets on the r.h.s. 

of (5.20). 
Condition (5.5) holds f o r / ~  by construction. Hence, 

E(1-I ~&(')I~)=E(1-I r?/L(.)I~), 
J J 

where T~*= Tj, j(~J', Tj*= Tj-cm, j~J', and where J '  consists of those indices of 
J which occur only once in (]1 . . . .  ,j~), i.e. as arguments o f / ~ .  Rewriting and 
interchanging expectations yields 

(5.21) g'(g2(I-[ Tff t~ l~) l~)=g(g ' (~  I Tp/l~(-, Z~)~*/1~(-, ZfllZj, Zj ,  ~)l~), 
d J 

where Z j =  {Zj, j~J},  Z j  denotes independent copies of Z j  and ~* is defined 
with Zj  being replaced by Z j-*-- (X j,* Jr*). 

Since j~J' implies 

I Tj*I < m- 1/2 [T(Xj) + T(J(j) + I tg(Z~)l] % 

and [Tj*l<c, j~J, we can bound the r.h.s, of (5.21) by a finite sum of terms of 
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the type 

(5.22) cm-IJ'IE(//* VjltfE'(IUI**g(wj)ftv(. , Zj)IrL(., Zj)]I IZj, Z j, ~)l~) 

where Vj= T(Xj)+ T(Xj) or Vj=(T(X*)+ T(Jf*)), where W~=Zj, or Wj=Zj  and 
//** denotes a product over fl elements of J '  a n d / / *  denotes the product over 
the remaining indices of J'. The random variable in square brackets in this 
expression is a v o n  Mises functional of order at most f l ( r - 1 ) + 2 ( 2 r - v ) ,  which 
fulfills conditions (5.5) and (5.4) with a constant c(H) smaller or equal to 
c,(H)2"+tI-I*VjM**(c(g)Vj)Irlj\j, Vj 2+~ for some 8j>0.  Hence, Lemma (5.7) 
leads to the following estimate of (5.22): 

m-lS'l(ET(X1)Z)ZlSl]tf c~(H) 2r+~ a.s., 

which together with (5.21) yields the following estimate for the r.h.s, of (5.20) by 
counting multiplicities (there are O(m B) terms such that I J[ = B  and v > 2 [J\J'[ 
+lJ'J) 

c(1 + Jtlv)(1 +EAT(Xl)2)c,(H)2"E'l/2(exp [itr[wx] ) a.s. 

for some A > 0. 
This upper bound together with (5.15), (5.16), (5.17), (5.19), and (5.20) yields 

an estimate for a typical term of the expansion made and proves that the 1.h.s. 
of (5.13) can be bounded by 

cJtl(1 "q-ltl2M) 2 '~+~'(1 +EA'T(XO2)E'Ice(H)[ 
p 

�9 I-[ (1 + r(xj))~JEZ-~'+'(exp [i tr !wl] ), 
1 

for some A'>O, which completes the proof of 5.13. 
Let I(m) denote the decomposition of {p, p + 1, ..., m} into r parts such that 

Iljl/m--'r -~, as m ~oe .  Then W1(m) converges in distribution to 

(5.24) #~o(r/(1),...,t/('))= ~ ... ~ hj~...j/(jl~)...t/}'~ ,, 
j ~=  1 j r = l  

where ~/~P), p = l  .... ,r, j6]N denote independent N(O, l)-variates. Define ~/(P) 
= (t/} p), j 6N), 

(5.25) h j, ...Jr = c(r)Ehr(X1 .....  Xr) ej~ (Xi) ... ej,(X,) 

and e j('), j e N ,  denotes an orthonormal system in U(3[, ~3, P), which induces an 
orthonormal system e j . . .  ej, in L 2( t  ~, ~B ~, W) and an U-expansion of h,. Com- 
pare Rubin and Vitale (1980) for the proof that wo~ is of the form (5.24). 

Notice that W~(t](1) ,  . . . ,  t/(r)) is an r-linear form in qr . . . .  , q(~) and 

(5.26) Eh,(X1 ' X,)2 = ~  z . . . ,  h j ~ . . . j  . 

(J) 

Similarly one can prove using condition (M~), s=>3 (compare Serfling (1980), 
pp. 226-238) 
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(5.28) 

(5.29) 

(5.27) w p +  m(/~l, . . ,  ep, IT/- 1/2, m -  1/2) . . . .  ' m~oo  ) W ~ 1 7 6  " " '  8p) 

l= 0 (j) 

where (j=tl~a)+elej(Xa)+...+eve~(X;), tl} ') independent of X i . . . .  ,Xp, and 
where /~t;j,...j, denote appropriate constants. Again the infinite sum ~ over 
j ~ N ,  l=  1 . . . .  , r, converges in probability. (J) 

Lemma.  
(i) g(t)<c([tl + Itl3(~- 3)+~S)E2-(~+~)exp[itr!#j 

(ii) P~(~c.)E' exp [i tw~(el , . . . ,  ev)]l,= o =2~(t), 
p 

where E' = E [ I  (p(ejXj)N(ej). 
1 

r < s - 3  

Proof Inequality (i) follows by inspection of Lemma (5.12): By (5.24) wi(,, ) 
converges to #~ in distribution as m ~oe.  Similarly it follows by (5.24)-(5.27) 
that the random variable 

_ v l  . . .  L~(~)-D D~,Wm(~)Daq),,(e) 

converges in distribution to some random variable L~o(e ) as m ~ o c .  Further- 
more, the arguments of the proof of Lemma (5.12) show that it is uniformly 
integrable with respect to E. Hence, 

lim ELm(S ) exp [itw,,(e)] = EL~o (~) exp [itwo~ (e)], 
r t l  

, = % ,  . . . ,  ~p). 

By the theorem of dominated convergence we may interchange differentiation 
at n=0  and expectation on the r.h.s, of this relation. Hence (i) follows from 
Lemma (5.12) as m--+ oo. 

As for (ii) note that by condition (Ms) all derivatives 

D~Eexp[itw~(~)]l,=o such that ~ ( c ~ j - 2 ) < s - 3 ,  
J 

ctj > 2 exist. Furthermore, 

DPcpm(g)[,=o=0 for every f l+0  with IN<s, 

which proves (5.29) (ii). 

(5.30) Lemma.  Let Z be independent of X1, . . . ,X m and let w(x,z) denote a 
measurable function. Define Sm=m-I/2(w(X1,Z)+. . .  + w(Xm, 7)) and E' 

= E f i  q)( T(Xj)m-1/Z)N (rn-1/z). Then we have for every t 
j = l  

(i) ]E(exp [itSmqlZ ) =(1 § [itS,n]lZ)[ 
+ O(m -(s- 2)m/z) a.e. 
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and for every t such that It[ ~ c ml/2(R 2 T)-  1 where R, T> 1 are independent of m. 

(ii) IE(exp [itSm]lZ)l <exp [--ct2E(#(X1,  Z)2[Z)] 

§ I(E(w(X 1 , Z))4l Z) > T 4/3) 

+ exp (1 - R 2 E ( w ( X t ,  Z)z[z)), a.e. 

where ~(X~, Z) = w(Xa, Z ) -  E(w(X~ , Z) IZ). 

Proof The 1.h.s. of (5.30(i), (ii)) equals 

[E(exp Eitm- 1/2w(X1, Z)] [Z)l m. 

(i) Since for any bounded random variable H 

E H = E H ~o ( T(X1)m- 1/2)c + E H (1 - q))( T (X l )m-  t/2) 

= E' H + E T(XO s 0 (m-S~2) 

~(l +O(rn- '))E'H when E ' H > m  -~ 

= Ira-  (s- 2)/2 otherwise. 

Hence, 
IEHI m ~ c IE'H I m + 0 (rn-(s- 2)/2) 

for appropriate constants c thus proving (i). 
(ii) By the well known estimations for sums of i.i.d.r.v, see e.g. Bhattacharya 

and Rao (1976) Theorem 8.9, p. 67, we have for every [t[ <=c Var(Sm[Z)/ 
E([ff~(XI,Z)[aIZ)m 1/2 that the first term on the right hand side of (5.30(ii)) is 
larger than the 1.h.s. of (5.30(ii)). The additional terms in (5.30(ii)) are due to 
the cases where the centered fourth conditional moment is larger than T 4/3 
or the conditional variance of w(X1, Z) is smaller than R -2. 

(5.31) Lemma. Let mj=[Ij[, j = l ,  . . . ,r,  denote a partition of {1 . . . .  ,m}. Let 69 

=msm -1 and 6 = f i  6j. For every teN,  6j, R, T > 0  such that 
1 

(5.32) [t[ __<rain 6j6-1milE(RE T)- ~ = Tma x 
J 

mj>=clogm+cR2T, j = l  . . . . .  r, 
we have 

(5.33) ]E' exp [itwi][ < c [E exp [it6c~v~ 01 (1) . . . .  , ~/(r))][ 

+ ]E exp [iRc~voo(rl(1),..., t/(r))]] 

+ O(m-~) + o ( r  -B) 

=Ore, T(t) 

where B > 0  is arbitrarily large and wi, ~voo are defined in (5.11) and (5.24). When 
t does not fulfill (5.32), but still 

(5.34) It[ _-< 616-1 mX/2(R2 r ) -  1 
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holds, then 

(5.34) IE' exp [itw,]] < Ore, r (Tmax)" 

Proof Let ~vi=wt6 -1 denote the normalization of wi. The first step is to 
1/2 by means of successive applications of Lemma truncate Xp, Xp, p s i  s at mj 

(5.30 (i)). Let 

E"=CmE' ('I l-I ~o(T(Xp)m71/z)(P(T(Xv)m71/2), 
j=  i p~l d 

where c m is a normalizing constant. Then 

" (5.35) [E' exp [ i twi][-c lE exp [ i t6#i ]  [ +O(m-B), 

for arbitrarily large B > 0, provided that 

(5.36) mj>=c(r,s)logm, j = l ,  ...,r. 

Applying Lemma (5.30(ii)) with Z=(Zj , j~I1)  we have for every t fulfilling 

(5.37) Itl _-< cml/Z(516-1 (e 2 r ) -  1, 

(5.38) IE" exp [itb~v~]l <E" exp [-ct262E"(~v 2 IZ) 

+ eE" exp [ - R 262 E" (#21Z)] 

+ cE"IE(w~(Z 1, Z)~ I Z) > c T 4/a) 

where ~vx(Z1, Z)=E(~vIIZ1, Z) and the operation ^ means centering given Z. 
By Lemrna (5.7) applied t o  W=E(Wl(Z1,Z)41Z) with appropriate weights 

w(il, ..., i4(r-1)) and a kernel 

H=E"(h, (Z 1, Z 2 . . . . .  Zr) ... h~(Z1, Z3(r_ a)+ 2, .--, Z4(~_ ~))[Zs,J=t= 1) 

of degree 4( r -1) ,  by Cebygev's inequality the third term on the r.h.s, of (5.38) is 
of order O(T -B) for arbitrarily large B>0 .  

We have by Cebygev's inequality 

E" (~,(Z1, Z) ~ I Z) = E(fv,(Zl, Z) ~ I Z) + O(m~ 1)E~(l~x(Zl, Z)l r ( X  d I Z) 
+ O(m{ 1)E(~v,(Z,, Z): T(X02 IZ). 

Hence, conditionally on REE(~vI(Z1, Z) 2 IZ) > 1 and E(~vI(Z1, Z) 2 T(X1) 2 ]Z) < T 
we have for every ml, R and T fulfilling 

(5.39) m 1 > cR 2 T the inequality 

E t' (wI(Z1, Z)2 I Z) > c E ( ~ . v I ( Z l ,  Z)2 [Z). 

Application of Lemma (5.7) and Cebygev's inequality to the yon Mises statistic 
W: = E(;vI(Z1, Z): T(X1)2 IZ) proves 

(4.50) IE" exp [itcSfvi] I <E" exp [ -  ctZ6ZE(fv~(Za, Z) 2 IZ)] 

+cE" exp [-Rc52E(fvI(Z1, Z) 2 ]Z) 

+O(T-B).  
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The most important  observation is that the r.h.s, of (5.40) is monotone decreas- 
ing in t. 

Using the or thonormal  system e j, j e N ,  as in (5.24)-(5.27) we have the 
LE(3~ ~, ~3 ~, P') expansion 

(5.41) 

Then 

hr(Xl ,  ... , x r ) =  2 hj~...j e j l (X l )  ... ej~(Xr). 
(J) 

(5.42) f v , = Z  hjl ,,,jr gj(11) , . .  gift ) 
(J) 

in the L2-sense, where 

Vl(,) = ~, (ez(Xj) _ el(j~s))m2112. 
jeI v 

Let 

(5.43) 

in L z. Then 

~i(t](1), Z )  = ~ ,  (1) (2) Vj~) hj~...Jlj~ Vj~ ... 
(J) 

E(~,(~ (~), Z)~ IZ) = E(%(Z~, Z)~ I Z) 

and therefore 

(5.44) exp [ - t2E(fv(Z1, Z) 2 [Z)/2] = E(exp [it  #r(t/(1), Z)] IN). 

The expectation of (5.44) as a function of Z yields for the r.h.s, of (5.44) 

(5.45) E" exp l i t  ~i(t/(1), Z)] =E"E"(exp  [it  ~(t/(1), Z)] It/(1), Zj,  j=t=I2). 

We now apply exactly the same estimations as before to (5.45) using Lemma 
(5.30(ii)) in the region [t[<cm~/:(R2T) -~/2. Note that  L e m m a  (5.7) applies to 
#i(r/(1),Z) as well. (Let ml--,oe. ) Sucessive applications of (5.40), (5.44) and 
(5.45) finally yield the estimate 

(5.46) IE" exp [ i t f#x]]  __< clE exp [it6Cf%o(@),.. . ,  t/(r))][ 

+ c [E exp [ iR c # o0 (t/(1) . . . .  , t/(r))] ] 

+ O ( T  -B) 

for every t fulfilling 

(5.47) It] __< c min cSj ~5 - 1 m 1/2 (R 2 T) - 1, 

thus proving Lemma (5.31) because of (5.35) and the fact that  the r.h.s, of (5.40) 
is decreasing in ]tl. 

(5.48) Lemma.  Let tl Cp)=~(p)+~(p), p =  1 . . . . .  r denote a decomposition into two 
independent sequences of i.i.d, normal variates N(O, a j), j = 1, 2. 
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T h e n  

(i) E exp [it~o(t/(1), . . . ,  q(r))] -<_E exp [-itWoo(~/(1), . . . ,  ~(r))-] 
(5.49) 

(ii) condition (V~) implies <c(1  + Itl) -A~ for every t. 

Proof. (i) Since 

E ( %  (,r ..., ,r I,r ~, p ,  1) >__ E(#oo (~/(~), r/(2), ..., r/('))2 ] r/(P), p ~ 1), 

successive cond i t ion ing  a n d  (5.44) together  immedia te ly  prove (i). 
(ii) Since 

E exp [it#oo (t/(1) . . . . .  r/('))] _<E exp [-tZ/2E(fV~o (t/(1) . . . . .  q('))2 [ t/(~), p =k 1)] 

= E exp [ -  t 2 0"2(t](2), . . . ,  r/(r))/2 "1 
oO 

< ~ exp [ -  t 2 62/2] t 26P(a2(t l  (2) . . . . .  t/(')) < 62)d6 
0 

= ~ e x p ( -  a2/2] 6P(G2 (r/(2), . . . ,  17 (')) < 52/t2)da 
0 

<__c(1 + l t l ) - %  

condi t ion  (V~) implies (5.49 (ii)). 
Similarly,  par t  (i) wi th  ~/(P) - (t/] p ) , -  -.., ,~k"(v), 0, 0, .. .) and  ~(v) = t/(P)- ~(v) implies 

Eexp[it,7%o(tl (~), ...,17('))]< ~ exp[- tzcSz/2]t26p Wjz<=62 d5 
0 

<(1 +lt[)  -A~ , 

thus proving  the remarks  fol lowing condi t ion  (V~). 
The  results ob ta ined  so far on  the c.f. of  w, can be summar i zed  as follows. 

(5.50) L e m m a .  Assume that conditions (M~) and (V~) or (5.49) hold. Then 

i) g(t) + 12 . . . .  3(t)l < C(S, M~)([tl + Itl 3(~- 3)+,~)(1 + Itl) -A~2 ( '+"  holds for every t. 

3(z) <c.  (ii) sup ~zzZ . . . .  
Z 

(iii) For every t fulfilling It] < Z., ~ we have (c.f Lemma (5.1)) 

g,(t) < c(Itl + Itl "*) [(1 + I t l ) -~ + n - o ] ,  

where B~ = A~(r 2' + 1) - 1 and D = 2rs(4 + r). 

(iv) For every t such that T,, 1 < It[ <_- T,, 2 

IE' exp[itw,]l = O ( n - e A ~ 2 - ' / ( 6 r ) ) .  

Proof Asser t ion  (i) follows by L e m m a  (5.28), (3.7) and  L e m m a  (5.48). N o t e  tha t  
(5.29(ii)) implies tha t  the expansions  up to order  ( s - 3 )  based on the t runca ted  
c.f. :~(~)(t; e l , . . . ,  8m) are the same as for the u n t r u n c a t e d  c.f. defined in (3.6). 
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(ii) By inequali ty (5.50(i)) and the choice of  A~, ~zzZ . . . .  3(z) exists by Fourier  
inversion. Moreover ,  

s u p  {IP~(x. ) E '  exp  [i t Woo (e 1 . . . .  , ep)] - a~ol It l-  1 : leal =< n -  1/2, j = 1 . . . .  , r} 

is integrable in t (because of the t runcat ion E'). Hence the theorem of domi-  
nated convergence allows to interchange Four ier  inversion and differentiation 
g ( ~ . ) .  

(iii) In L e m m a  (5.31) we choose a part i t ion of  m depending on t. Let  m r 
= [ 6 ~ m ] ,  j = l  . . . .  ,r, with 6 j = ) ~ ( r - 1 )  -1/2, j > 2 ,  0 1 = ( 1 - 2 2 )  1/2 and 2=lt1-1/~, 
l <lt l<rn ~/2, m>n.  Furthermore ,  choose R = m  ~/(a') and T = m  ~/~3~). Hence, the 
inequality (5.33) in L e m m a  (5.31) together with L e m m a  (5.48 (ii)) yields 

(5.51) [E' exp [itwi] I < c(1 + Itll/r)-A= + O(m -~aJ(3r)) 

+O(m-n) ,  for every m > n  

1 r--1 

a n d  e v e r y  B > 0  a n d  e v e r y  Itl_-__cltl ~lt[ r ml/2m-ek. H e n c e  I t l<Tm,1 a n d  
ItlO~ltl 1/'. 

By L e m m a  (5.12) and the definition of  g(t) in L e m m a  (5.1) and Proposi t ion  
(2.14) the inequality in (5.50(iii)) holds. 

(iv) By Proposi t ion  (2.14) and (5.34) of  L e m m a  (5.31) we have similar as in 
(iii) with re=n, 2 = n -  ll2+Eir, R =  T = n  e/6r 

IE' exp  [itw.]l <= 0., r (Tin.x) 2 -~ 

=(1  + ~Tmax) -A~2-r + ( 1  --}-R) -A`2  - r  

+ o(n -B') + O(T -~') 

where B ' > 0  is arbitrari ly large and Tmax=n (r-1)/4-e(r-a)/(zr). This inequality 
holds for every 

Itl ~c.~-(r-1)nl/Zn-e/r=c Tn, 2. 
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