
PHOTO- AND THERMOCHROMIC SPIRANS 18.* INDOLINOSPIROCHROMENES WITH π-ACCEPTOR SUBSTITUENTS IN THE 8' POSITION

B. S. Luk'yanov, L. E. Nivorozhkin, and V. I. Minkin

New spiropyrans with π -acceptor azomethine and ketovinyl substituents in the 8' position were synthesized using the functional possibilities of the carbonyl group. The structures of the compounds obtained and their photochromic properties in 2-propanol at -70° C were studied.

Methods for the creation of spirocyclic structures from compounds that do not have a C_{spiro} atom have been elucidated in quite some detail in the literature. A promising but rarely used method is the functionalization of spirocyclic structures the halogenation, nitration, and diazo coupling of 1,3,3-trimethylindolinospiropyran in the 6' position [2]. The use of specific reactions of functional groups has been limited thus far to the reduction of a nitro group to an amino group and acylation of the latter [3].

To partially fill this gap we obtained indolinospirochromene I, with a formyl group in the 8' position, from 2,6diformyl-4-cresol and synthesized derivatives involving the formyl group — azomethines II and ketovinyl derivatives III — from it.

IIa-d a) R = 4-MeCOC₆H₄, b) R = 4-NO₂C₆H₄, c) R = 4-MeC₆H₄, d) $R = CH_2Ph$; IIIa-d a) $R^1 = Me, b$) $R^1 = Ph, c$) R = 2-OHC₆H₄

The structures of the compounds obtained were confirmed by IR, PMR, and UV spectroscopic data.

The IR spectra of the spiropyrans obtained contain an intense absorption band at 1650-1690 cm⁻¹ ($\nu_{C=C}$ or $\nu_{C=N}$) and absorption bands of medium intensity at 1628-1665 cm⁻¹ (pyran ring $\nu_{C=C}$), as well as other absorption bands (Table 1) that are characteristic for indolinospirochromenes [4].

In the PMR spectra of spiropyrans II the azomethine proton (in the case of IIc) is characterized by $\delta = 8.52$ ppm and is shifted to stronger field as compared with the signal of formyl proton of starting spiropyran I ($\delta = 9.99$ ppm) (Table 2).

A doublet signal of the 8'-CH=CH proton at 6.1-6.2 ppm with ${}^{3}J_{CH=H} = 5-8$ Hz shows up in the PMR spectra of spiropyrans III; this makes it possible to establish a cis configuration for the vinyl substituent in III.

A comparative study of the photochromic properties of spiropyran I and its azomethine derivatives showed that replacement of the carbonyl group by an imino group leads to disappearance of the photochromic properties that are retained under the experimental conditions (solutions of the spiropyrans in 2-propanol, -70° C, irradiation with UV light with $\lambda_{max} = 365$ nm under steady-state conditions) only for IIb — a p-nitroaniline derivative (Table 3).

^{*}For Communication 17 see [1].

Scientific-Research Institute of Physical and Organic Chemistry, Rostov State University, Rostov-on-Don 344104. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 176-179, February, 1993. Original article submitted July 14, 1992.

Ct* IR spectrum, cm ⁻¹ Yield, % C=0 or C=N Pyran ring arom. c_N c_O 06 1667 1646 16001580 1220 1100, 1020, 969, 920 56 74 1673 1656 16001580 1226 1100, 973, 960 56 96 1667 1647 16551593 1245 1100, 973, 960 52 96 1660 1664 16001589 1224 1127, 967, 924 61 56 1660 1646 1531606 1220 1126, 966 52 56 1680 1665 1531503 1224 1127, 967, 924 67 51 16601589 1220 1126, 966 67 96 56 1680 1665 16001585 1243 1127, 967, 924 67 56 1680 1665 1530.0 1250 1126, 966 67 58 1680 1665 16001585 1243 1120, 990, 972, 940	IR spectrum, cm ⁻¹ C=0 or C=NTingYran ringC=0 or C=NPyran ringarom.c-NC-OYield,(66716661660158012201100, 1020, 969, 92056167316561600158012241100, 973, 96056167216471625159312461100, 973, 96057167216471625158912241127, 967, 9246116801665159012201126, 9665216801665159012201126, 9666716801665159012201120, 990, 972, 94067168016651600156612131142, 1010, 966, 92265168016651600156612131142, 1010, 966, 92265168016651600156612131142, 1010, 966, 92265165016501600156612131142, 1010, 966, 92265165116501600156612131142, 1010, 966, 92265165116501600156612131142, 1010, 966, 92265165116501600156612131142, 1010, 966, 92265165116501600156612131142, 1010, 966, 92265165116501600156612131142, 1010, 966, 92265165116511600156612131142, 1010, 966, 922651651 <t< th=""><th>terisu</th><th></th><th>IABLE 1. Characteristics of the synthesized Compounds</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	terisu		IABLE 1. Characteristics of the synthesized Compounds						
C=0 or C=NPyran ring $C=C$ arom.C-NC-O166716461600158012201100, 1020, 969, 92056167316561604159312461100, 960, 91761167216471655159312461100, 973, 96052168616611607158912241127, 967, 92461168016661666166612201126, 9665216801665159012241127, 967, 924671680166515901220112207667168016651600158912211127, 967, 924671680166515901220112207667168016651600158512311122, 9666716801665160015661230100, 985, 93062165016681600156612131142, 1010, 966, 92265	C=0 or C=NPyran ring. $C=C$ or C=NPyran ring. $C=C$ arom.C-NC-O166716461600158012201100, 1020, 969, 92056167316561604159312461100, 960, 91761167216471655159312451100, 973, 96052168616511607158912241127, 967, 92467168016651607158912241127, 967, 92467168016651607158912201120, 990, 972, 94067168016651610158512431120, 990, 972, 94067168016651610158512131142, 1010, 966, 92265168016651610158512131142, 1010, 966, 92265165016501600156612131142, 1010, 966, 9226516501650113, c from benzene-hexane; IIb from octane.6510016211a, c from benzene-hexane; IIb from octane.						IR spe	ctrum, cm ⁻¹		viold %
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1667 1646 16001580 1220 $1100, 1020, 969, 920$ 1673 1656 16041593 1246 $1100, 960, 917$ 1672 1647 16551593 1246 $1100, 973, 960$ 1672 1647 16551593 1224 $1100, 973, 960$ 1686 1651 16071589 1224 $1127, 967, 924$ 1660 1646 16331606 1220 $1126, 966$ 1680 1665 1590 1220 $1120, 990, 972, 940$ 1680 1665 16001566 1213 $1142, 1010, 966, 922$ 1650 16001566 1213 $1142, 1010, 966, 922$ 1650 16001566 1213 $1142, 1010, 966, 922$ 1650 16001566 1213 $1142, 1010, 966, 922$ 1050 1628 16001566 1213 $1142, 1010, 966, 922$ 1050 1628 16001566 1213 $1142, 1010, 966, 922$ 1050 1628 16001566 1213 $1142, 1010, 966, 922$ 1050 1628 16001566 1213 $1142, 1010, 966, 922$ 1050 1628 16001566 1213 $1142, 1010, 966, 922$ 1050 1628 16001566 1213 $1142, 1010, 966, 922$ 1050 16021600 $110, 066, 922$ 1050 $100, 060, 922$ $100, 966, 922$ 1000 $100, 060, 922$ $100, 060, 922$ 1000 $100, 060, 922$ $100, 060, 922$ 1000 <	formula mp, "C"	Ъ, <mark>с</mark>	1	C=0 or C=N	Pyran ring C=C	arom.	C-N	c-0	e (ntatt
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1673 1656 16041593 1246 $1100, 960, 917$ 1672 1647 16251593 1245 $1100, 973, 960$ 1672 1646 1651 16071589 1224 $1127, 967, 924$ 1660 1646 16331606 1220 $1126, 966$ 1680 1665 1590 1220 $1126, 966$ 1680 1665 16901585 1220 $1100, 985, 930$ 1680 1665 16101585 1220 $1100, 985, 930$ 1650 1665 16101585 1213 $1142, 1010, 966, 922$ 1650 1628 16001566 1213 $1142, 1010, 966, 922$ 1 , IIc, and IIIb, c from ethanol; IIa, c from benzene—hexane; IIb from octane. $1000000000000000000000000000000000000$	C ₂₁ H ₂₁ NO ₂ 105106	0516	96	1667	1646	16001580	1220	1100, 1020, 969, 920	56
1672 1647 16251593 1245 1100, 973, 960 1686 1651 16071589 1224 1127, 967, 924 1660 1646 16331606 1224 1127, 967, 924 1680 1646 16331606 1220 1126, 966 1680 1665 1590 1250 1100, 985, 930 1680 1665 16101585 1243 1120, 990, 972, 940 1650 1628 16001566 1213 1142, 1010, 966, 922	1672 1647 16251593 1245 $1100, 973, 960$ 1686 1651 16071589 1224 $1127, 967, 924$ 1660 1646 16331606 1220 $1126, 966$ 1680 1665 1590 1220 $1126, 966$ 1680 1665 1590 1220 $1120, 985, 930$ 1680 1665 16101585 1230 $1100, 985, 930$ 1680 1665 16101566 1213 $1142, 1010, 966, 922$ $1,$ IIc, and IIIb, c from ethanol; IIa, c from benzene—hexane; IIb from octane. $100, 981, 922$	C ₂₈ H ₂₈ N ₂ O ₂ 173174	731'	74	1673	1656	16041593	1246	1100, 960, 917	61
1686 1651 16071589 1224 1127, 967, 924 1660 1646 16331606 1220 1126, 966 1680 1665 1590 120 1126, 966 1680 1665 1590 1250 1100, 985, 930 1680 1665 16101585 1243 1120, 990, 972, 940 1650 1628 16001566 1213 1142, 1010, 966, 922	1686 1651 16071589 1224 1127, 967, 924 1660 1646 16331606 1220 1126, 966 1680 1665 1590 120 1126, 966 1680 1665 1590 1250 1100, 985, 930 1680 1665 16101585 1243 1120, 990, 972, 940 1650 1652 16001566 1213 1142, 1010, 966, 922 I, IIc, and IIIb, c from ethanol; IIa, c from benzene—hexane; IIb from octane. atography.		281	29	1672	1647	16251593	1245	1100, 973, 960	52
1660 1646 16331606 1220 1126, 966 1680 1665 1590 1250 1100, 985, 930 1680 1665 16101585 1243 1120, 990, 972, 940 1650 1628 16001566 1213 1142, 1010, 966, 922	1660 1646 16331606 1220 1126, 966 1680 1665 1590 1260 1100, 985, 930 1680 1665 16101585 1243 1100, 985, 930 1680 1665 16101585 1243 1120, 990, 972, 940 1650 1628 16001566 1213 1142, 1010, 966, 922 I, IIc, and IIIb, c from ethanol; IIa, c from benzene—hexane; IIb from octane. atography.	Z ₂₈ H ₂₈ NO 195196	951	96	1686	1651	16071589	1224	1127, 967, 924	67
1680 1665 1590 1250 1100, 985, 930 1680 1665 16101585 1243 1120, 990, 972, 940 1650 1628 16001566 1213 1142, 1010, 966, 922	1680 1665 1590 1550 1100, 985, 930 1680 1665 16101585 1243 1120, 990, 972, 940 1650 1658 16001566 1213 1142, 1010, 966, 922 I, IIc, and IIIb, c from ethanol; IIa, c from benzene—hexane; IIb from octane. 100, 056, 922	C ₂₈ H ₂₈ NO 155156	551	56	1660	1646	16331606	1220	1126, 966	36
1680 1665 16101585 1243 1120, 990, 972, 940 1650 1628 16001566 1213 1142, 1010, 966, 922	1680 1665 16101585 1243 1120, 990, 972, 940 1650 1628 16001566 1213 1142, 1010, 966, 922 I, IIc, and IIIb, c from ethanol; IIa, c from benzene—hexane; IIb from octane. atography.		OI		1680	1665	1590	1250	1100, 985, 930	62
1650 1628 16001566 1213 1142, 1010, 966, 922	165016281600156612131142, 1010, 966, 922I, IIc, and IIIb, c from ethanol; IIa, c from benzene—hexane; IIb from octane.atography.	C ₂₉ H ₂₇ NO ₂ 137138	371	38	1680	1665	16101585	1243	1120, 990, 972, 940	76
	at	C ₂₉ H ₂₇ NO ₃ 105106	051	06	1650	1628	16001566	1213	1142, 1010, 966, 922	65
		pectra of Spiropyr	iropyı	ans I	(, IId, and III	3-C				
rans I, IId, and IIIa-c	rans I, IId, and IIIa-c	6'-CH ₃ , 3H, S	z		<u> </u>		om, 4'-H al intensity)	$-CH_{=}CH_{-CO_{-}}$	Other proton	SI
TABLE 2. PMR Spectra of Spiropyrans I, IId, and IIIa-c Com- C(CH3)2, 3H. 6'-CH3, 3H. S (3'2'H. IH. d) Harom, 4'-H 0ther Protons pound S,S ('JCH = CH, HZ) (integral intensity) IH. d ('JCH = CH, HZ) 0ther protons	Harom, 4'-H (integral intensity) $H_{cH=CH-CO}$									

Compound
Synthesized
of the
Characteristics
<u>-</u> :
TABLE

	Other protons	9,99 (1H), s CHO	8,52 (1H), s, -CH=H-; 2,26 (3H), s,	$-CH=N-C$ $_{6}H_{4}-C$ H_{3}	1,59 (3H), s, -CO-CH ₃	7,13 (5H), s, CO-Ph	9,63 (1H), $br.sC_6H_4OH$
	$-CH_{=}CH_{-CH_{-}CO_{-}}$ IH. d $(^{3})_{CH}CH_{-}CH, H\mathbb{Z})$	ļ	-		6,15 (8,0)	6,15 (8,0)	6,09 (5,0)
	$\begin{array}{c c} Harom, 4^{-}H \\ \hline Harom, 4^{-}H \\ \hline Hitegral intensity) \end{array} H. d \left(\frac{3J_{CH-CH-CO}}{3J_{CH-CH}} \right)$	6,347,36 (7H)	9,707,80 (11H)		6,307,38 (8H)	6,487,45 (8H)	6,227,90 (12H)
	^{3'-н,} 1н, d (³ J _{CH = CH} ,Hz)	5,68 (11,0)	6,5 (9,65)		5,58 (11,0)	5,60 (10,5)	5,66 (10,5)
	NCH ₃ , 3H, S	2,65	2,78		2,55	2,64	2,71
•	6'-CH ₃ , 3H, S	2,15	2,20		2,09	2,12	2,19
	C(CH ₃) ₂ , 3H, S,S	1,10; 1,25	IId 1,28; 1, 33		1,09; 1,15	1,06; 1,21	Illc 1,14; 1,27
	Com- pound	I	PII		Ша	qIII	IIIc

Com- pound	λ_{\max} , nm (log ϵ) .	λ_{max} , nm, of the photoin- duced form
I	269 (4,14), 298 sh(3,66), 347 (3,60), 370 (3,62)	490 sh, 590
IIa	232 (4,15), 285 (4,14), 326 (4,04), 340sh (4,01), 381 (4,01)	_
Пр	228 (4,42), 272 sh (3,92), 306 sh (3,97), 379 (4,58)	587
IIC	244 (4,23), 283 (4,42), 340 (3,92)	—
IId	247 (4,28), 282 (4,43), 320 sh (3,54)	
IIIa	248 (4,33), 267 (4,24), 290 (3,69), 369 (3,75)	628
IIIÞ	268 (3,99), 297 (3,87) 323 sh (3,75), 369 (3,33)	615
IIIc	255 (4,26); 269 sh $(3,65)$, 335 sh $(3,55)$	617

TABLE 3. Characteristics of the UV Absorption Spectra of Spiropyrans I-III and Their Photoinduced Forms

In contrast to spiropyrans II with an azomethine group, ketovinyl derivatives III proved to be photoactive compounds. The long-wave absorption bands of their photoinduced forms are shifted bathochromically 25-40 nm as compared with those of starting spiropyran I (Table 3).

EXPERIMENTAL

The IR spectra of suspensions of the compounds in mineral oil were recorded with a Specord IR-75 spectrometer. The PMR spectra of solutions in CDCl₃ were obtained with a Tesla BS-487C spectrometer (80 MHz) with hexamethyldisiloxane (HMDS) as the internal standard. A Specord UV-vis spectrophotometer equipped with a special cryostat for recording the spectra of the photoinduced forms of the spiropyrans at low temperatures was used to record the electronic spectra. Irradiation with UV light was carried out with a DRSh-250 mercury lamp with light filters that isolate light with λ_{max} 365 nm.

The characteristics of the compounds obtained are presented in Tables 1-3.

The results of elementary analysis of the synthesized compounds for C, H, and N were in agreement with the calculated values.

1,3,3,6'-Tetramethyl-8'-formylspiro(indoline-2,2'-[2H]chromene) (I). This compound was obtained by brief refluxing in 2-propanol of a mixture of 2,6-diformyl-4-cresol [5] and 1,2,3,3-tetramethylindolenylium perchlorate in a molar ratio of 1.1:1 in the presence of an equimolar amount of piperidine. The reaction mixture was poured into water, and the precipitated product was removed by filtration and purified with a column packed with Al_2O_3 (elution with benzene). The residual I obtained after removal of the solvent by distillation was recrystallized from alcohol.

Azomethines II. An equimolar amount of the corresponding amine was added to 0.36 g (1 mmole) of spiropyran I in 1 ml of hot alcohol, and the reaction mixture was heated to the boiling point and allowed to stand until product II precipitated. The precipitated II was removed by filtration and recrystallized from a suitable solvent.

Ketovinyl Derivatives III. These compounds were obtained by mixing a solution of spiropyran in warm alcohol with a methyl aryl ketone or excess acetone and an aqueous solution of alkali at $\approx 20-70^{\circ}$ C. The mixtures were allowed to stand for 3-24 h. The products were recrystallized (IIIb, c) or purified by chromatography (IIIa).

REFERENCES

- 1. S. P. Makarov, B. Ya. Simkin, and V. I. Minkin, Khim. Geterotsikl. Soedin., No. 2, 172 (1988).
- 2. N. P. Samoilova and M. A. Gal'bershtam, Khim. Geterotsikl. Soedin., No. 8, 1065 (1977).
- 3. É. R. Zakhs, A. A. Zvenigorodskaya, and N. G. Leshenyuk, Khim. Geterotsikl. Soedin., No. 10, 1320 (1977).
- 4. K. G. Dzhaparidze, Spirochromenes [in Russian], Metsniereba, Tbilisi (1979).
- 5. F. Ullmann and K. Brithner, Ber., 42, 2539 (1909).