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Summary. An arbitrary finitely additive probability can be decomposed 
uniquely into a convex combination of a countably additive probability and 
a purely finitely additive (PFA) one. The coefficient of the PFA probability 
is an upper bound on the extent to which conglomerability may fail in a 
finitely additive probability with that decomposition. If the probability is 
defined on a a-field, the bound is sharp. Hence, non-conglomerability (or 
equivalently non-disintegrability) characterizes finitely as opposed to count- 
ably additive probability. Nonetheless, there exists a PFA probability 
which is simultaneously conglomerable over an arbitrary finite set of par- 
titions. 

Neither conglomerability nor non-conglomerability in a given partition 
is closed under convex combinations. But the convex combination of PFA 
ultrafilter probabilities, each of which c a n n o t  be made conglomerable in a 
common margin, is singular with respect to any finitely additive probability 
that is conglomerable in that margin. 

1. Introduction 

Kolmogorov's [11] classic treatment of the theory of probability from a 
frequency view-point justifies a finitely additive probability. Nonetheless he 
assumes a countably additive probability "for expedience", and nearly all 
modern writers in probability have followed him. Similarly deFinetti [71 de- 
rives a finitely additive subjective probability from axioms of coherence, al- 
though many Bayesians regard only countably additive probabilities as "prop- 
er" (Lindley [12, 13]). 

Whether countable additivity is a convenient regularity condition whose 
assumption does not change essential results is, then, a reasonable matter to 
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explore. In this paper we examine one aspect of finite additivity, namely non- 
conglomerability, first noted by deFinetti 1-6, p. 99] some fifty years ago. 
Consider a partition rc = {hi:i< e} of pairwise exclusive and mutually exhaus- 
tive sets. If e is an infinite cardinal, it may be that for some event E 

kl<_P(EIh)<k 2 for all here, (1.l) 
and yet, 

P(E)<k 1 or P(E)>k 2. (1.2) 

In this case we say P is not conglomerable with respect to ~. 
An example of non-conglomerability (attributed to P. LOvy, see [6, 5.303) is 

as follows. Consider the denumerable set of points {(i, j} : i, j positive integers}. 
Let P be a finitely (and not countably) additive probability defined for a field 

that includes all finite and complements of finite sets of points, subject to 
these two constraints: 

(i) P((i,j})=O for all singletons, 
(ii) P((i,j}tA)=O if A is infinite. 

Consider the event E =  {(i, j}: i<j}, i.e. E is the region of the first quadrant (in 
i f )  above the line i=j. Now, note that 

P(El i=k <o9o)= l 
but 

P(EIj=k<oo)=O. 

Thus, depending upon the partition (by first or by second coordinate), conglom- 
erability fixes the probability of E as 1 or 0. Hence, conglomerability fails for 
at least one of these partitions. 

In a recent paper Dubins [8] reports that conglomerability (for random 
variables) in a partition 7r is equivalent to "disintegrability" in rr. As a con- 
sequence P is conglomerable in rr for all events E just in case: 

P(E)= S P(EIh) dP(h), (1.3) 
h~rc 

i.e. iff P is the "average" of conditional probabilities P(Elh), for herr. We 
remind the readers of the definition of integral we use with finitely additive 
measures. Following [9] 

f (h,) dP(h,)= sup ~ g(h,) dP(h~), 

where the supremum is taken over simple g__<f. Now g is simple iff it has the 
form g = ~ ajIhj where D is finite. Thence 

j eD 

g(hi) dP(hi)= ~ ajP(hj). 
j s D  

The principal questions addressed in this paper are these: For an arbitrary 
finitely additive probability P (that is not countably additive), is there a 
denumerable partition where conglomerability fails for some event? That is, 
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does there exist an event E and partition 7r= {h~: i=  1, ...} such that, for some 
t/>O, 

P(E) - P(E l h~) > r/? (1.4) 

Second, what is the 1.u.b. of ~/such that (1.4) holds? 
In order to answer these questions, we begin in Sect. 2 with a unique 

decomposition of finitely additive probabilities into a convex combination 
given in [16]: 

P=ctPc+flPD; c~§ cq fl_>_0, (1.5) 

where Pc is countably additive and PD is purely finitely additive (PFA) (c.f. 
[9, p. 163]). We then prove that fi is an upper bound for all failures of 
conglomerability, i.e. the left-hand side of (1.4) is bounded above by fl, in all 
denumerable partitions. 

In Sect. 3 we find that if fl # 0, if the range of P is not limited to finitely 
many distinct values and if P is defined on a a-field of events, then the upper 
bound on the failure of conglomerability, fi, must be approached. That is, we 
show that for ~/<fl there is an event E and partition re= {h~ (/<COo) } such that 
(1.4) holds. Next we consider the case in which P assumes only finitely many 
values. We assume that P is defined on the power set, that all conditional 
probabilities P(.I-) are specified consistently and satisfy a certain "principle of 
conditional coherence". Then again we show in Theorem 3.3 that the upper 
bound on the failure of conglomerability, fl, must be approached. 

In Sect. 4, we show first, that there exist finitely additive (and not countably 
additive) probabilities that, when specified merely unconditionally, can be 
extended to conditional probabilities simultaneously conglomerable in any 
finite set of margins chosen antecedently. Thus, for this class of finitely additive 
distributions, the question of conglomerability in a particular margin is not 
determined by the unconditional distributions. Our investigation (in Sect. 4) 
into what may occur with respect to conglomerability in a particular margin 
shows also that the convex combination of two finitely additive distributions, 
each conglomerable in a common margin, may fail to be conglomerable in that 
margin. Similarly, the convex combination of two distributions that each fail to 
be conglomerable in a common margin may, nonetheless, be conglomerable in 
that margin. Hence, neither conglomerability nor non-conglomerabitity in a 
margin is closed under simple convex combinations. 

Lastly, in Sect. 5, we consider a question of the connection between non- 
conglomerability and strong non-approximability by conglomerable distri- 
butions. It follows quickly that all countably additive probabilities are singular 
with respect to all PFA ones, and that all continuous distributions are singular 
with respect to ultrafilter ones. A distribution cannot be made conglomerable 
in a margin if, when specified merely unconditionally, it cannot be extended to 
include consistent conditional probabilities that are conglomerable in that 
margin. We show that the convex combination of PFA ultrafilter probabili- 
ties, each of which cannot be made conglomerable in a common margin, is 
singular with respect to all finitely additive probabilities that are conglomer- 
able in that margin. 
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Since conditioning arguments are so common and so important in all 
aspects of probability theory, and its statistical applications, our results lead us 
to be curious about the extent to which standard countably-additive probabili- 
ty results carry over to the finitely additive case. To the extent that they do 
not, the assumption of countable additivity as a regularity condition is not 
innocuous. 

2. Upper Bound on Failures of Conglomerability 

In this section we review some important theorems about finitely additive 
probabilities. These theorems, in turn, lead to an upper bound on failures of 
conglomerability. The probabilities discussed in this section need only be 
defined over a field ~- of subsets of some space t2. In later sections, we will 
require that probabilities be defined over a o--field. 

Definition 1.1. A probability P is purely finitely additive (PFA) if the only non- 
negative countably additive set function Q which satisfies P > Q __> 0 is Q--0. 

Yosida and Hewitt [161 prove a theorem from which the following follows 
trivially. 

Theorem 2.1. For every finitely additive probability P defined on a field of 
events .~, there exist Pc, a countably additive probability, PD, a PFA probability, 
c~>O and fi>O such that P=c~Pc+flP D and c~+fl=l.  The numbers c~ and fi are 
unique, and, if c~ ~= O, Pc is unique. Similarly, if fi 4 = O, PD is unique. 

In view of Theorem 2.1, for any finitely additive probability P, we will 
denote by fi(P) the coefficient of the PFA probability Po. A different character- 
ization of PFA probabilities than is given in Definition 1.1 proves to be more 
useful in proving the theorems of this paper. First we need the following 
definition. 

Definition 2.2. A probability P is strongly finitely additive (SFA) if there exists 
a partition ~z= {hi, h 2 . . . .  } such that P(hl)=0 for every i. 

Theorem 2.2. A probability P defined on a field of events Y is PFA if and only 

if for every e>0,  there exists a partition 7r={hl, h2, ...} such that ~ P(hi)<e. 
i = 1  

Proof. "if" Let Q be a countably additive non-negative set function satisfying 
P>=Q>=O with Q(f2)=a. For  every e > 0  there exists a partition as in the 

statement of the theorem such that e>  ~. P(hi)>= ~ Q@)=a. Hence a < e  for 
i = 1  co i = 1  oo 

every e > 0, so a = 0 and Q =-0 implying P is PFA. 
"only if" Let P be PFA. Lemma 1 of [1] shows that there exist countably 

many SFA probabilities 

P / , i=  1,2 . . . .  such that P =  ~ ~iP/, and ~ 0{ i=  1. 
i = 1  i = 1  
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K 

Let e > 0 be given and let K be large enough so that ~ ai > 1 -~.  For  each P~, 
i=1 

i = l, ..., K there exists a partition 7zi as described in Definition 2.2. Let 7r be the 
countable partition consisting of events each of which is the intersection of K 
events, one from each of the partitions n i. Set 7c = {h 1, h 2 . . . .  }. It follows that 
P/(hj)=0 for all j and for i=  1 . . . . .  K. Hence 

P(hj)= ~ ~ o:iPi(hj)=- ~ a i ~  Pi(hj)<= ~ ~i<8, 
j = l  j = l  i = K + l  i = K + l  j = l  i=K+-i  

and the lemma is proven. 
The following corollary to Theorems 2.1 and 2.2 is needed to derive the 

upper bound on failures of conglomerability. The proof is trivial and is omit- 
ted. 

Corollary2.1. If  P is a probability defined on a field of events and 7z 

= {h 1, h2,...} is a countable partition, then ~ P(hi)> = 1 -fi(P). 
i~1  

Theorem2.3. Let P be a probability defined on a field of events and n 
= {hi, ha .... } be a countable partition such that P(" [hi) is defined for every i. I f  
E is an event such that P(E)-P(EIhi)>b for all i [or such that P(Elhi) 
- P ( E ) > b  for all il, then b<~(P). 

Proof. Since E may be replaced by E c, we need only prove that P(E) 
-P(EIhi)>b implies b<fi(P). If P(E)-P(EIhi)>b for all i, then 

P(EIhi)<P(E)-b, for all i. (2.1) 

Multiply both sides of (2.1) by P(hi)>O and sum over i. 

P(Elhi) P(hi) = ~ P(E ~ hi) 
i = l  i = l  

< [P(E)-b3 ~ P(hi)<P(E)-b. 
i = l  

(2.2) 

By Corollary 2.1, p(EC)+ ~ P(Ec~hl)> 1- f i (P )  since {E c, Etch1, Ec~h 2 . . . .  } is 
i ~ I  

a partition. Adding P(U) to the extremes of (2.2) yields 1 - f i ( P ) < l - b ,  hence 
b < fi(P) and the proof is complete. 

Theorem 2.3 states that failures of conglomerability of a finitely additive 
probability P cannot exceed fl(P). It follows trivially that failures of disintegra- 
bility cannot exceed fi(P) either. 

3. The Extent to Which Conglomerability Fails 

The results of this section pertain mostly to probabilities defined on a ~-field of 
events. The first lemma gives a construction which is useful in the sequel. 
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Lemma 3.1. I f  P is a probability, defined on a a-field f f  whose range is an 
infinite set, then for every e>0, there exists a set A such that p(A)__<e and 

A= @ A i with Ai~.~, Aic~Aj=O for i=t=j and P(Ai)>O for all i. 
i = 1  

Proof. Since the range of P is infinite there must exist an event A e ~  such that 
P(A)>0 and p(AC)>0. Either A or A c (or both) has subsets with infinitely 
many distinct values. Let it be A c. Set B 1 =A c and C 1 =A. Partition B 1 into B~ 
= C 2 u B  2 where P(C2)>0, P(B2)>0 and B E contains subsets with infinitely 
many distinct values. Partition B 2 into B2= C3wB3, etc. 

The procedure above produces a sequence of disjoint events {Ci:i 
=1 . . . . .  o0} with P(C, )>0  for all n. Let m>2/e be an integer. Define El(k) 

=C(i_l)m+ k for k=l , . . . ,m ,  i=1, . . . ,oo .  Since P C, P Ei(k , 
n - 2  i 

P{Ei(ko)}<e/2. Let n be there must exist a k 0 such that P ~ Ei(ko) 
i = 1  

large enough so that ~ P{Ei(ko)}<e/2. Set A =  U Ei(ko) and Ai=E~_l+n(ko) 
i ~ n  i = n  

for i=  1 .. . .  , oo, and the lemma is proven. 

Theorem 3.1. Let P be a finitely additive probability satisfying: 
(i) P is defined on a a-field 

(ii) fl (P) > 0 
(iii) P assumes more than finitely many values. 
Then for every e>0, there is an event E and a partition 7r={hi, i=1  . . . .  } such 

that P(E)-P(E[h~)> fl(P)-e for all i. 

Proof Let e>0  be given. Consider the decomposition given by Theorem 2.1, 
P=ePc+flPD. Choose n>2/e large enough so that 6-1/2n<e/(4fl). Now use 

Lemma 3.1 to find an event A =  ~) A~ with P(A)<fl6, A~c~Aj=O for i+j, and 
i = l  

P(A~)>0 Vi. Let 7 = ~ P(A~). Since PD is PFA, we can write AC= ~) C~ with 
i = 1  i = 1  

Po(Ci)<67, by Theorem2.2. Let k be large enough so that ~ Pc(Ci)<67. 
i = 1  i = k + l  

k 

Let A I =  ~ Ci, A]=AI_ 1 for i=2 ,3 , . . . ,  and let {A/2: i=1, . . .}  be the sequence 
i = 1  

of events Ck+~, i=1  . . . .  , arranged in order of decreasing P. It is clear that 

~2--Q) A{, and the A{ are disjoint. Set E =  A 2. Then P(E)>flPv(E ) 
j = l  i = 1  i = 1  

=fl (PD(AC) - ~ PD(Ci)). Now PD(A)<P(A)/fl<6, so Po(AC)> 1-6.  We know 
i = 1  

k 

~, Po(Ci)<(5. So P(E)> f l(1-26)> fl-e/2. Notice that 
i = 1  

i = l  i = 2  
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and 

i = 1  i = 1  i = 1  

so iV  P(A~) z=li P(A2) > ~/((5 7) = 1/(5 = 2 n, i.e. 

P(A~)>=2n ~ p(A2). (3.1) 
i = 1  i = 1  

kl 

Let k 1 be the smallest integer such that ~ P(A})>nP(A2). Clearly k 1 < ~  
i = 1  

by (3.1). Also let m 1 be the smallest integer greater than zero such that 

P(At) 2n (3.2) 
i = k l + l  i = m t + l  

which is finite since the sum on the right hand side of (3.1) converges and 
P(A~)>0 for all i. 

kl ml 

Define F I = ~ A ~ ,  GI=~,)A 2, and hl=FlwG 1. We claim that 
i = 1  i = 1  

kt 

P(F1)>=nP(G1). To see this, reason as follows: If P(F1)= ~ P(A~)<2nP(A21) 
i = 1  

then by subtracting from (3.1) we have i P(A~)>2n i P(A~) which im- 
i = k 1 + 1  i = 2  

plies m 1 = 1, G 1 =A~ and P(F1)>nP(G1). 
If P(F1)>2nP(A~) then P(F1)>2nP(A~) for all i > l  since the A 2 are 

arranged by decreasing P value. Let m be the smallest integer > 1 such that 

P(F1)<2niP(A~).  If m = o G  then P(F1)>2nP(G1)>nP(Gt) trivially. If 
i = 1  

m<ov,  then by subtraction from (3.1) we get i P(A~)>2n i P(A~), 
i = k t  + l i = m + l  

hence m > m 1. So 

m--1 

2 n P(G ~) <= 2 n i P(A~) = 2 n P(A~) + 2 n ~, P(A~) < 2 P(F1), 
i = 1  i = 1  

hence nP(G~)<P(F1) in this case also. It now follows that 

P(El hl) = P(G 1)/[P(F1) + P(G 1)J < P(G1)/P(Fi) < n- 1 < ~/2. 

So P(E)- P(Elhl) > f i -  e/2- e/2 = f i -  e. 
Now use the fact that (3.2) is just like (3.1) but for the sequences {A~: i=k 1 

+1, . . .}  and {A2: i = m l + l , . . .  }. So repeat the above process finding k2>k 1 
k2 m2 

and mz>m 1. Set F2= U A~, G2= U A2i, h2=F2wG2. It follows that (3.2) 
i=k~.+ 1 i = n 1 + 1  

and (3.3) hold with subscripts 1 replaced by 2, etc. This generates the necessary 
partition ~z= {hi: i=1  .... }. 
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Theorem 3.1 states that fi(P) is the least upper bound on failures of conglom- 
erability for a probability P defined on a o--field J and assuming infinitely 
many values. It is trivial to see that fi(P) is also the least upper bound on 
failures of disintegrability under the same conditions. Next we state a result 
(Theorem 3.2, Corollary 3.1) that applies to all finitely additive probabilities. 
Then we state and prove Theorem 3.3, which shows that fi(P) is the least upper 
bound on failures of conglomerability for probabilities taking only finitely 
many values, as well. 

Definition 3.1. An uItrafilter q / i s  a collection of subsets of f2 satisfying 
(i) if A~q /and  A c B ,  then B~q/ 

(ii) if A, B ~  then A ~ B ~  
(iii) for every A, either A~S8 or ACeq/, but not both. 

Definition 3.2. A probability, P, is called an ultrafilter probability with atoms in 
an ultrafilter ~ if VE~q/, P(E)= 1. It is trivial to see that for every ultrafilter q/ 
there is a unique ultrafilter probability with atoms in q/. 

Definition 3.3. A probability P is said to be non-atomic if for every event E and 
every e>0, there exist a finite number of disjoint subsets E 1 . . . .  ,E n of E, such 

that E = @ E/and  P(E/)< e, i= 1,..., n. The following result is proven in [15]. 
/ = 1  

Theorem 3.2. For every finitely additive probability P defined on a field ~ ,  
there exists a non-atomic probability Po and at most countably man), ultrafilter 
probabilities P~(l_<i_<N_<oo), each with atoms in an ultrafilter q/z, such that 

N N 

P = ~ 7 / P /  where ~ 7 i = 1 .  The ultrafilters q/i are distinct, i.e. V i<j ,  
/ = 0  i ~ O  

3 E~qli~E(~:ll j. Suppose the 7's are ordered so that ~,'1 >72 > .... The sequence (7/, 
O<i<__oo) is uniquely determined. I f  7o=k0, Po is uniquely determined. Suppose 
I={ i17 /=7>0} .  I is of course a finite set. Then q// is unique up to possible 
permutation within the set I. 

We call q/~ the constituent ultrafilters of P. The following corollary to 
Theorem 3.2 is trivial and its proof is omitted. 

Corollary 3.1. For every finitely additive probability P defined on a field ~,  there 
exists a continuous probability Po, at most countably many PFA ultrafilter prob- 
abilities P~ (l <i<_N<_ o9) and at most countably many ultrafilter probabilities 
Rj (1 <j <_ M <- oo) each countably additive such that 

N M 

P=7oPo + 2 TiP/+ ~ 3:Ri, 
i = 1  j = l  

N M 

where ~ 7z§ ~ J j = l ,  7/>=O for all i>=O and 31>=O for all j>=l. Uniqueness for 
/ = 1  j = l  

7's, g/s, ~i's and ~j's is similar to that of Theorem 3.2. 

In contrast to the case considered earlier in this section, if P assumes only 
finitely many values, then there will not exist a partition lr= {h/: i=1  . . . . .  oo} 
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with P(hi)>0 for all i. Hence, in order to find a failure of conglomerability, we 
must assume that P ( ' l h )  is defined for events h with P(h)=0.  We will assume 
further, the following. 

Principle of Conditional Coherence. For all pairs of events A, B such that 
A~ B4:~ ,  Q ( ' ) = P ( ' I B )  is a finitely additive probability and Q( ' IA) 
=P('IAc~B).  

The principle of conditional coherence applies trivially to events with 
positive probability. We assume it also applies to events of zero probability. It 
is a simple consequence of this principle that if h 1 and h 2 are disjoint and 
P(hllhi~h:)>__l/2, then P(hl]h lwh2wA)>__P(h21hluhzuA ) for all sets A. Du- 
bins (19"75, sec. 3) proves that for any probability P conditional probabilities 
can be defined in such a way that conditional coherence holds. 

We are now ready to state the final result of this section. 

Theorem 3.3. I f  P is a finitely additive probability, defined on the power set of a 
space Y2, with fi(P)=fi>O which assumes only finitely many values and satisfies 
the principle of conditional coherence, then for every ~ > O, there exists an event E 
and a partition n = {h 1, h 2 . . . .  } with P (E) - P (E ] hi) > fi (P) - ~ fbr all i. 

The proof of Theorem 3.3 rests on the following lemma. 

Lemma 3.2. Let P be a PFA ultrafilter probability which satisfies the conditional 
coherence principle and has atoms in all. Let h _ l ~ # .  For every ~>0, there exists 
a partition n * = { h _ l  , h*,h*,.. .} and an event E, such that P ( E ) = I  and 
P(E]h*)<~ for all i>O and E ~ h  1=r 

An outline of the proof of this lemma follows, but full details are given in 
the appendix. The idea is to start with a partition {h_l, ho, h 1 . . . .  } with P(hz) 
=0  for all i and begin grouping together successive h i (starting with hi). The 
hi's are grouped into finite collections in order that one of two results occurs. 
The first is that an event Eeq,/ can be formed by taking the union of a few of 
the h i from each collection and the partition n* formed by the unions of the 
hz's in each collection satisfies the conclusion of the Lemma. The other result 
that might occur is that one finite collection of hi's may emerge with special 
properties. If this occurs, the special collection is removed from the partition 
and the remaining hz's are grouped as before. This process continues until 
either the first result occurs or an infinite sequence of special collections is 
generated. In this last case an event E and a partition re* can be formed in the 
same manner as above, either from the special collections or from the set of 
his which are not in the special collections. 

Now the proof of Theorem 3.3 can be given. Since P assumes only finitely 
many values, the decomposition of Theorem 3.2 has 7o=0 and N <  oo. That is 

N 

P = ~ 7iP~ with P/ having atoms in ultrafilter q/i and the o~i are all distinct. It 
i = l  

follows from Corollary 3.1 that if f i>0,  then there are some P/, say P1, .--,Pk for 
k 

convenience, with P/ PFA for i=  1, . . . ,k and f i= ~ 7i- Since q/1 and q-t' 2 are 
i=1 

distinct, there exists an event AeOZr with A C ~ 2  . Either A ~ '  3 or AC~ql3 . For 
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convenience suppose As~//3. Find B~U 3 such that BCeU//1. Set A'=Ac~B, A* 
=Ac~B c. Then A*Eqll, AcEa-ff2, A'~I/3 and the three events form a partition. 
This process can be repeated to find a finite partition {A1 . . . . .  Ak} such that 
Aieqli, i=1  . . . .  ,k  and AiCql j for i:t=j. Define, for i=1  .... ,k  hi I = ~ A j .  It 

follows that P~(h~l)=O for i= 1 .... .  k. Define k new probabilities P~* b;*~*(" I h) 
= P ( ' l h )  for all hr i and Pi*( .Ih)=P i for hsq/i. It follows that Pi*=P// for 
i=  1, ..., k but P~* may differ from P~ in the way conditional probabilities are 
assigned. Since P satisfies the conditional coherence principle, so do all of the 
P~*. Apply Lemma 3.2 to the pair (P~*, h ~_ 1) for each i to obtain events El .. . . .  E k 
and partitions {hi_l, h~ .... } i= 1 .... , k with Pi*(E/)= 1, Pi* (Ei [ h~) < e for each i, j 

and Eic~hi_l=r Since Ai= U h} for i=l , . . . , k ,  it follows that ~={h}:i 
j=o  

= 1 . . . .  , k; j = 0 . . . .  , oo } forms a partition. Since E~ c~ h ~_ a = 0, Ei c~ h~ = 0 for all 
s > 0  and j4:i. So 

Pj*(Eilh~)=O , for s>=O, j@i. (3.3) 

k k k N k 

Write E =  U Ei so that P(E)= E P(Ei)= E E 7jPj(Ei) > E ~/i=fl. Write 
~=~ ~=~ ~=1 j=~ ~=~ 

={ha,h 2 . . . .  } where each hi=h ~ for some s and j > 0 .  Then P(EIhi)=P(Elh}) 
k k 

for some s and j. Hence P(EIh,)= Z P(E, Ih~)= Z P~*(Etlh~)=P~*(E~Ih~) by 
t = l  t = l  

(3.3). Since P~*(E~Ih~)<e , P(EIh~)<e for each i. Together with the fact that 
P(E)>=flo it follows that P(E)-P(Elhi)>=fl-~ for all i. D 

4. Conglomerability in Particular Margins When P Assumes Only Finitely 
Many Values 

In Sect. 3, Theorem 3.3 we showed for each e>0  the existence, under mild 
regularity conditions on P (definition on a a-field, satisfying conditional coher- 
ence), of a partition ~ and an event E such that the inequality (1.4) is satisfied 
by nearly as much as is allowed by Corollary 2.1, namely fl(P)-e. In this 
section, we take up a related topic, namely whether conditional probabilities 
can be defined so that, for specified partitions, conglomerability holds. That is, 
when P is given unconditionally and a finite collection of partitions specified, 
can conditional probabilities be defined for P (subject to conditional coher- 
ence) so that conglomerability is satisfied in each partition in the collection? In 
other words, is P simultaneously conglomerable in each partition in the col- 
lection of partitions? Sufficient conditions are given for this in Theorem 4.1, 
and Corollary 4.1 establishes the existence of finitely additive (and not count- 
ably additive) probabilities meeting these conditions. Then examples are given 
to show that the convex combination of two finitely additive probabilities, each 

not conglomerable\ / be ) conglomer- 
conglomerable / in a particular partition ~z, may fail to be 

able in ~z. Hence neither finitely additive probabilities conglomerable in a 
partition re, nor those failing to be conglomerable in re, constitute convex sets. 
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Definition 4.1. A partition zc = {hi: i< 6 < COo} has the minimal order property for 
ultrafilter ~//if there exists an A ~ '  such that 

1{i<5: ]hi~A]> l}[~l .  

Informally, a partition zc has the minimal order property for @' if there is a set 
A in og for which there is at most one member of 7r whose intersection with A 
has more than one element. 

Theorem 4.1. Let H = { g l ,  rC 2 . . . .  , g in}  be a finite set of partitions. Suppose P 
takes only finitely many values. Then P is simultaneously conglomerable in all 
~iEH if each of its constitutent uhrafilters satisfies the minimal order property in 
each reicH. 

Proof. First we state and prove a helpful lemma. 

Lemma 4.1. Suppose P is an ultrafilter probability with atoms in ~ll, and suppose 
each 7rs~H satisfies the minimal order property for ~g. Then P is simultaneously 
conglomerable in all 7rFFI. 

Proof of Lemma 4.1. Choose mArs (1 <=j<~m) such that A F ~ '  and 

]{i<Sj: [Af~h~[>l}[_<l for h]~Trj (l__<j_<m). 

Let h~. be that member of the partition ~rs,. unique if it exists, such that 
[As~hJ,[ > 1. Since P has atoms in ~/, either P(hJ,)--O or P(h~)= 1. Let 

�9 =~Aj-hJ* if P(h~)=0 
Aj (As if not 

Now A* ~g.  

Let A = (~ A*. Clearly A~q/, and, for each rcj~H, 
j=l 

[{i<c~j: IA~hi[> 1}[<1. 

Next, construct conditional probability functions P(.[h]) as follows: Each h~ 
belongs to exactly one of the following sets: 

(i) s h ~ H  s if [Ac~h~[=l. In this case, let P(" [hi) be the discrete, countably 
additive probability with all its mass concentrated on that element (A c~ hi). 

(ii) s 2 higH j if [A~h{]>l ,  and, by construction above, P(h~)=l. In this case 
P(" [h{) is determined by P and the multiplication theorem, 

P(" [ h{) = P ( .  c~h]) 
P (h{) = B(" c~ hl) = P. 

(iii) J 3 h ~ f l j  if Anhi=O. Then choose one finitely additive probability de- 
fined on the power set ~ ( t 2 - A ) ,  with associated conditional probability func- 
tions P(. [ Y) for Y ~ ( O - A ) .  Then P(.  I h]) is given by this conditional proba- 
bility. 

j 2 Finally, for every E~W and every ~s~fir if there is an h,EIIs, then 

P (E)=P(EIA)=P(EIhJ , )  = S P(EIhl) dP(h~) 
h]Er~j 
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if not, then 

P(E)=P(EIA)= ~ P(E[h{)dP(h{)= ~ P(EIh{)dP(h{). [3 

Resuming the proof of Theorem 4.1, we remind the reader that by Theorem 
3.2, since P takes only finitely many values, P can be written uniquely as 

P =  ~ T e P  t 
g = l  

where each P~ is an ultrafilter probability with atoms in ultrafilter ~'e, which by 
hypothesis of the theorem satisfies the minimal order property. Applying the 
lemma, we can take Pt to be conglomerable in all ~ f H ,  and seek to define 
e(" I h~), h~rcj (1 <j<m) so that P is conglomerable in all ~fi/7. 

Note that for each j, there are at most finitely many h{~llj such that 
P(h]) >0. For these, P(. I h]) is determined by P and the multiplication theorem. 
We assume P({hi: P(h{)=0})>0, since otherwise P is already conglomerable in 
that nj. 

Since, by hypothesis, each g//~ (1 _<~ =< r) satisfies the minimal order property 

in each n f iH,  we may choose A~ (~ A* = tj, as in Lemma 4.1 where A t e ~  ~ and 

for each ~cj ( l < j < m )  

1{i<6: ]Aec~hil> 1}l < 1, h i ~ .  

Since we are considering only those h~j~P(h)=O, without loss of generality 
we may assume that [Atc~h[<l. For each such h, identify which of the (at 
most r) A t satisfy IAec~h[=l. Let these be Atl . . . . .  Aeq (q<r), with associated 
~ t l ,  ..., ~eq, and coefficients 7tl, ..., 7eq. Let 

p(. h)=Y~Pt~('[h)+'"+7~q~q ('lh) 
q 

2 )'tk 
k = l  

where P~k(" I h) is that discrete, countably additive conditional probability func- 
tion, provided by Lemma 4.1, for P~k" 

Note. For all h such that P (h )=0  and (Ar ( l<Y<r ) ,  then P( ' [h)  is 
given by any one finitely additive probability function defined on 

Finally, by straightforward arithmetic, P (E)=  S P(EIh)dP(h) V~jeF1, 
he~j 

~ / E e ~  That is, for any Ee~ ~, E belongs to q<r of the ~h' t and for each P~., 
(1 <•<r),  ~j~/7, 

P~(E) = Pt (E [ A~) = ~ Pe (E ] h) dP (h), 
herc3 

where Pt('lh) is defined by Lemma 4.1. [3 Theorem 4.1. 
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Corollary 4.1. Let F / ~ - - - { G  1 . . . .  , 7zm} be a finite set of partitions. There exists a 
finitely additive (but not countably additive) probability which is simultaneously 
conglomerable over each partition in 17. 

Proof of Corollary. Let Inl = ~ o  and let a?/be an ultrafilter of subsets of f2. By 
Theorem 9.6 of [5], every ~ satisfies the minimal order property for ultrafilter 
q/ if q/ is a Ramsey ultrafilter. By Theorem 9.13, ibid., there are 22~ distinct 
Ramsey ultrafilters on a cardinal ~. D 

We remind the reader that Theorem 3.3 and Corollary 4.1 do not conflict�9 
The latter establishes the existence of a probability P which is simultaneously 
conglomerable in an arbitrary finite collection of denumerable partitions. The 
former result shows that, subject to conditional coherence, the collection can- 
not be extended to include all denumerable partitions unless P is countably 
additive. 

Example 4�9149 The following example (to be found in [6, p. 205] and reported in 
[8, p. 92]) illustrates the failure of conglomerability in partition rc of the convex 
combination of two finitely additive probabilities, each of which is (separately) 
conglomerable in 7r. Let the field be the set of (all) subsets of X =  {a~j: i=  1, 2; 

j = l , 2 ,  ..}. Let Pc(alj)= ~7 if i=1 . 
�9 0 otherwise' hence Pc is countably additive and lives 

on the set X 1 = {aij: i= 1}. 
Let PD(a~j)=0 gi, j and let PD(XI)=0. Finally, let P=~Pc+flPo (~,/~>0; 

c~+/~= 1). Fix ~r= {hj: hj={alj , azj}}. 
Then P is not conglomerable in rc as P ( X t ) = ~  whereas P(X 1 I h j )=l ,  gj. 

Clearly Pc is conglomerable in 7z, as in Pp. (Just set PD(a2j[ hj)= 1, Vj.) A similar 
example is reported in [2, Example 3.1]. 

Example 4.2. This example shows that non-conglomerability in a margin is not 
closed under simple convex combinations. 

/ 1 

Let/~ be P as above. That is, Pcl(aij)= ~7 i f / =  1 0 i f i = 2 '  so that Pcl(X1)=I. Let 

PDl(aij)=O Vij and let Pvl(X1)=0. Choose c~,fl>0; c~+fl=l  and fix Pl=c~Pcl 
+flPv~. Hence (as shown above), P~ is not conglomerable in 7z={hj: hj 
= {alj, a2~}}. 

Next, let P2 be the mirror image of P~ in X 1 and X ; ( = X ] ) .  That is, define 

alj= and define =laij:aiFX}. Let P2(X)=PI(X'). Specifically 
~.alj if i=2 

pc~(ai~)=l ~ if i=  1}, Pp,(X0 =0, and P2=c~Pc~+~PD. Hence, P2 likewise is not 

[ 27 i f i = 2  / 

conglomerable in 7r. Finally, set P* =1/'1 +�89 Then P* is conglomerable in ~. 
For example 

~�89 i f i = l } = ~ . 2  j+~ ' l  
P*(aij)=~�89 if i=2  
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so that, for each jP*(aulhj)=�89 (i = 1, 2). Moreover, P* (X 1)= P* (X2)=�89 Thus 

P*(X1)= S P*(X 11h)dP*(h)=�89 
h ~  

Last, we note that the collection of nearly disintegrable measures is convex 
E23. 

5. Approximation by Probabilities Conglomerable in a Margin 

A question left open by the previous work is whether, even though finitely 
additive probabilities non-congomerable in a particular margin 7r exist, they 
can be approximated well by distributions that are conglomerable in that 
margin. The result of this section is that in one sense, at least, they cannot. 

Definition 5.1. Two finitely additive probabilities P1 and P2 are singular P1LP2 if 
for every e > 0, 3 E e ~ such that I P1 (E) - P2 (E)[ > 1 - e. 

Thus P1 and P2 are singular if there are sets E on which they differ by 
nearly as much as possible. 

Definition 5.2. A finitely additive probability P defined only unconditionally, 
cannot be made conglomerable in rc={h 1 . . . .  } if, for every set of conditional 
probabilities consistent with P, {P('lh), h~z} there is an E s ~  such that, for 
some e > 0, 

IN(E)- S P(g[h) dP(h)l > ~. 
h ~  

By saying that P(.]h) is consistent with P, we mean that P satisfies the 
principle of conditional coherence (see Sect. 3) when extended to include 
P(" Ih). 

Section 4 shows that if P takes only finitely many values and cannot be 
made conglomerable in re, then at least one of its constituents lacks the 
minimal order property. 

Examples of distributions P that cannot be made conglomerable in particu- 
lar partitions rc are given in [-8, Sect. 2] and [14]. Now we can state 

Theorem$.l. Let P be a (finite or countable) corvex combination of PFA 
ultrafilter probabilities and suppose that each cannot be made conglomerable in 
some partition 7c. Then P is singular with respect to any probability P' that is 
conglomerable in 7r. 

We begin the proof by reminding the reader of several elementary facts 
about singularity and absolute continuity, which we state for completeness. 

Lemma 5.1. [16] Every PFA probability PD is singular with respect to every 
countably additive probability Pc. 

Lemma 5.2. [4-1 Every continuous probability Ps is singular with reapect to every 
probability PA that can be written as a (finite or infinite) convex combination of 
ultrafilter probabilities. 
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Lemma 5.3. Let P = E ?i Pi, E ?i = 1, and Q l Pi for all i. Then Q_L P. 
i = i  i = i  

The proof is simple and is omitted. 

Lemma 5.4. Suppose that P is an ultrafilter probability with atoms in ~ .  Suppose 
that P* is conglomerable in n, is not singular with respect to P, and satisfies 

P*= ~ P*('lh)dP(h). 
h~z 

Then P is conglomerable in n. 

Proof. Decompose P* as follows: 

P * = ~ * P c * + ( 1 - ~ * )  ~ ~'*P* td  d , 
d = 0  

where Pc* is countably additive, P0* is PFA and nonatomic, and for d__> 1, P~* is 
PFA and an ultrafilter probability with atoms in ~/)L ( ~  =~)~, if d=~d'). Also 

Y~= 1. Since, by assumption, P and P* are not singular, there is an e > 0  
~=0 
such that sup IF(E)-  P* (E)I _-< 1 - e .  (5.1) 

E 

Using Lemmas 5.1, 5.2, and 5.3, we have P ~  ~ ?~ P~*. Again, using Lemma 5.3 
d = l  

and the fact that ultrafilter probabilities are singular or identical, we have P 
=P~* for some d__> 1, where (l-a*)?~__>e. Without loss of generality we take 
this d = l .  Next we use the decomposition Theorems 2.1 and 3.2 on each 
conditional probability in the set {P*( ' ih) :  hi~n}. Thus, for each h~n, we 
write 

- -  * * . P*('lh)-~i P,~( Ih)+0-~  7) ~ vSP?('lh), 
d = O  

where P*(.Ihi) is countably additive, Pi~(- I hi) is PFA and nonatomic, P~(- ih)  
(d__> 1) is a PFA ultrafilter probability with atoms in ~*ir and where ~ ?i*~= 1, 

d = O  

Y * >  ?g,* t+ ~ (d>__ 1), for all i. 

Claim. For each hgen one may choose one conditional probability, say P~(" I hg) 
such that 

P * =  ~ P*~('lh~) dP(h). 
hi.re 

We show the claim indirectly. First, choose 2 so that e > 2  >0. Then partition n 

mostt dis o  t 0 1 )  - " " ' e - 2  where Rj={h~:P*( ' lh l )  

has exactly j PFA ultrafilter probabilities with coefficients greater than e -2} .  
Observe that PI*(Rj)=0 for all but one value of j, say PI*(Rj = 1. 

Suppose, first, j # 0 .  Consider the j '  selections {P~(.Ihi): hieRj, } d= 1 . . . . .  j'. 
Assume the claim is false. Then PI*(')=t= y Pi~('lhi)dP(hi) for d = l  . . . . .  j'. But 

hiERj, 
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since each of these j' distributions, y Pi*('lhi)dP(hi) ( :=1 ,  ...,j '), is a PFA 
h~eRj, 

ultrafilter probability with atoms in one ultrafilter, there exist j '  sets E~ . . . .  , E j,, 
each with P~ (E:)= 1 ({ = 1, ..., j') and where 

[. Pi](E:lhi) dP(hi)=O 
hi~Ry, j' 

Let E '=  (-] E:. Then P* (E')= 1 yet 
6 ' = 1  

for : = 1  . . . .  ,j'. 

P~(E'lhi)dP(hi)=O for d = l ,  . . . , j ' .  
hiaRy, 

Moreover, for each (unrestricted) selection of conditional, ultrafilter probabili- 
ties {P/y,(. I hi): hi~R j, and 1 <=4<=j'} (of which there are 2 ~~ selections i f j ' >  1), 

y eiiY,(E'lh,)dP(hi)=O. 
hi~Rj, 

[This follows since, if there is a selection where 

Pd,(E'lhi)dP(hi) =1 (1 ~ 4 ~ j ' ) ,  
h~GRj, 

this selection is one of the j '  distributions on a subset R),c_Ry, where P*(R),) 
= 1. That is, for one of the j '  distributions (for one value of :) 

Y P~*i('lhi)dP(hi) = j" P~(.lhi)dP(hi) , 
hi~R'j, hiER), 

where R),~_Rj, and P*(R),)= 1. But, for each of the j '  distributions and for each 
R),c_Rj, with P*(R),)=I,  ~ p~(Elhi)dP(hi)=O. ] 

hz~R'j, 

Let ~o={hi: hi~R j, and P~(g' lhi)=O for : = 1  . . . .  ,j'.} Then P~*ffCo)=l. I f j '  
=0, let ~o=R0 . 

Thus, there exists an E, P*(E)= 1, yet for every h i ~  o Pi'~(Elhi)=O for all : 
such that ( 1 - ~ ) 7 i : > e - 2 .  

hi,re 0 partition h i into the biggest integer Y < e - ~  disjoint sets hik For each 

( k = l  . . . . .  J), such that P*(Ec~h~klhi)<__e-2. Consider the J disjoint sets E~ 
= U (Ec~hik) ( k = l  . . . . .  J). P*(E;,)=0 for all but one value of k. Without loss 

hi~O 
of generality, let P*(E'O = 1. 

However, 

P*(E])= ~ P*(E'~lh,)dP(hl) 
hiEg 

= I P*(E'~lhi)dP(hi)= I P*(Ec~hi l lh l )dP(hi )<e-2 .  
h~ffr~ o hi~Tgo 

Thus, (P('(E'~)-P*(E'I))>I-e in contradiction with the initial assumptions. 
This established the claim. 
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Now, since PI* =P,  P is conglomerable in n using the set of conditional 
probabilities {P~,('lhi): hi~c} provided by the claim. [1 

Lemma 5.5. Suppose P' is conglomerabIe in ~, i.e. 

P ' =  ~ P'(" t h) dP'(h), 
hE~r 

and let 
P+ = ~ P ' ( ' lh)  dP(h). 

hE~z 

Suppose sup ]P(E)-P'(E)[ =< 1 - e  for some ~ >0. 
E 

Then sup IP ( E) - P  + (E)I < 1 -e .  
E 

Proof If not, there is an E'~P(E')= 1 and a set 

S'={hi~Tr:P'(E'lhi)<e-c~} (c~ >0), 

where P(S')= 1. But then 

P'(E' ~S' )= ~ P'(E' c~S'th)dP'(h)+ ~ P'(E' ~S']h)dP'(h) 
h ~ S '  h E S  ' c 

= ~ P ' (E '~S ' Ih)dP' (h)+O<e-6 .  
h ~ S '  

But P(E'~S' )= 1, so P(E'~S')-P'(E'c~S')> l - e ,  a contradiction. D 

Lemma 5.6. Let P be a PFA ultrafilter probability with atoms in u?Z, and suppose 
P cannot be made conglomerable in ~z. Then P is singular with respect to every 
P' that is conglomerable in ~. 

Proof Suppose the contrary, that is, that P' is conglomerable in ~z and not 
singular with respect to P. Then Lemma 5.5 applies, and shows that P§ is not 
singular with respect to P. Let h'e~. Then P'(h'lh)=O if h#h '  and 1 if h=h'. 

Hence 
P+(h')=P(h') for all h'~z. 

Thus taking P+( ' lh)=P'( .  I h), P+ is conglomerable in re, and satisfies 

P + =  S P+ (" l h) dP(h). 
h ~ z  

Consequently P+ satisfies the requirements for P* in Lemma 5.4, so P is 
conglomerable in 7c, which contradicts the assumption. 

The proof of Theorem 5.1 is now immediate from Lemmas 5.6 and 5.3. [~ 

Last we note that Lemma 5.6 may fail for P which are PFA but nonatomic. 
For instance, let Po of Exampte 4.1 be nonatomic in addition to the stated 
conditions. Then P retains its non-conglomerability in ~z. However, as shown in 
[8, Sect. 2, p. 95], since ~z is simple the finitely additive probabilities which are 
conglomerable in ~z are norm-dense. That is, P is approximable by a sequence 
of finitely additive probabilities, each conglomerable in ~z. 
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In response to a question we posed, bo th  a refere and W. Sudderth point 
out  that  a consequence of (1.2) in [14] is the existence of a PFA,  cont inuous 
probabil i ty P '  and a part i t ion ~ in which P '  cannot  be made conglomerable,  
but  where P '  is not singular with respect to a P* which is conglomerable  in 7c 
yet where 

sup I P ' ( X ) -  P* (X)l >0.5.  
x 

7. Conclusion 

The combina t ion  of  Theorem 2.3, Theorem 3.1, Theorem 3.3 and the regularity 
condit ion that  P is defined on a a-field, shows that  for every e > 0 ,  there exist 
parti t ions 7c and events E such that  P fails to be conglomerable  in E with 
respect to ~ by as much as possible, that  is, by as much as P fails to be 
countably  additive, minus e. Should we be concerned about  the regularity 
condi t ion? A simple application of  the Hahn-Banach  Theorem (see [-3]) shows 
that every finitely additive probabil i ty defined on a field can be extended 
(perhaps in many  ways) to a a-field, and in fact, to the power set. Consequent ly  
our  result says that  for a finitely additive probabil i ty defined on a field, every 
extension to a a-field must  fail conglomerabil i ty by no more  than our bound.  
The only way to escape our  conclusion, then, is to refuse to extend the finitely 
additive probabil i ty to a a-field. Fur thermore,  there exist finitely additive 
probabilities defined on fields which are not  a-fields, but  for which the con- 
clusion to Theorem 3.1 is true. For  such probabilities, maximal  failure of  
conglomerabil i ty is inescapable. 

Failure of conglomerabil i ty,  then, rather than being an aberrat ion is typical 
of  finitely additive probabilities that  are not  countably  additive. We believe 
that  this has impor tant  statistical consequences which we discuss in [-10]. 
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Appendix. Proof of Lemma 3.2. 
The proof of Lemma 3.2, as outlined in Sect. 3, requires two other lemmas 
which are stated and proven first. All of the results of this appendix apply to a 
PFA ultrafilter P (satisfying the principle of conditional coherence), and whose 
atoms are in an ultrafilter ~ of subsets of a space f2. 

Lemma A.1. Let n =  {h 1, ho, h 1 . . . .  } be a partition such that P(hi)=0 for all i. 
ilk 

k with each a~=h i for Let G k be the union of finitely many hi, say G k= U aj 
j ~ l  

some i, for k = l  . . . .  ,os. Suppose the G k are disjoint, and define G o 

= G k \ h _  1. Assume G 0 ~ .  Suppose that P(a~lGk) is maximized o v e r j  at 
1 

exactly q values o f j  for each k > l .  Then s J = { h  1, Go, G1 . . . .  } is a partition, 
and there exists an event E such that P(E)= 1, Etch_ 1 =0, and P(E[ G~)< 1/q 
for all i. 

Pro@ It is clear that s~ is a partition. Let X equal j times the indicator of 
whether a~ occurs. Conditional on G k, X is a random variable taking one of 
the values 1, . . . ,n k for k>  1. Let mk(i ) be the conditional i/q quantile of X given 
G k for k = l , 2  . . . . .  i=1  .. . .  ,q. Define mk(0)=l and mk(q+l)=n k. Set 

ac mk(i+l)--i 0 
Ci= [._) ~) aj,k i = 0  . . . . .  q and D~= a k,~k~i), i=O, . . . , q+l .  

k=l j=mk(i)+l k = l  

Each event C i is defined so that P(Ci[Gk)< 1/q. Each D i is the union of one a~ 
for each k. So for each k, P(DIIG~)=P(a~IGk) for some j. Since P(a~lGg) is 
maximized at exactly q values of j, P(D~[ Gk)< 1/q for all i, k. It is easy to see 

that f 2 = h - l U G ~  u(i=Q)~,~=u,,~ Ci)., Since h lq~'  and G o ~ ,  it must be 

that either one of the Ci or one of the D i is in ~'. Set one such event equal to 
E and note that E c~ h 1 =0  to finish the proof. 
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L e m m a  A.2. Let r c = { h  1, h o, h 1, ..,} be a partition with P(h i )=0  for all i. Let 
nk 

Gk =3~= 1 k with each a~ = h i for some i, G k be the union of finitely many h i, say aj 

for k= 1 .... , oo. Suppose the G k are disjoint, and define G o =  \ h  1. 

Assume Gor Suppose that P(a~l Gk) is maximized at S k distinct values of j for 
each k >_ 1, with 1 < S k < n. Suppose in addition that k k t _ P(ai la i voaj )< �89  whenever t > k  
and j maximizes P[a~[Gt] ( o r > � 8 9  whenever t > k  and i maximizes P[a~lGk] ). 

h o ,hl , . . . }  and an event E Then for every e > 0 ,  there exist a partition r t *={h_  1, * * 
such that P ( E ) =  1, Ec~h l={b, and P ( E l h * ) < e  for all i. 

Proof.  It  is clear that  s~C={h_a, Go, G ~ . . . .  } is a part i t ion.  Let  q > l / e  and 
construct  events C o .... ,Cq and Do,...,Dq+ 1 exactly as in the p roof  of 
L e m m a  A.1. Each C i has P(CilGk)< 1/q for all k. If one of the Ci~~ the p roof  

co 

is complete.  Assume then that  D ~ q /  for some x. Write  D~=k~bk,= where 

bk=a~(x)c_G k in the no ta t ion  of L e m m a  A.1. Define H i =  ~) b(q+l)j+i for 
i=o 

i =  1 . . . . .  q + 1. The  H i are disjoint and their union is D~, so exactly one of them 
is in 0g, say Hsea//. 

Consider  first the case in which P(a~la~wa~)<l/2 whenever  t > k  and j 

maximizes  P(a~[ Gt). Define h * + l =  ~) Gcq + 1)j+~+i for j=O, 1 . . . . .  Set g = Hs and 
i = 0  

notice that  E c~h*+ 1= bc~ + ~)j+~. Fo r  each pair  (i, j), let Cj,~=a(d + ~);+~+i for any 
m which maximizes  (q+l)j+s+i P(% I G(q+ 1~;+~+i)" I t  follows that  

P(b{q+l)j+~[b(q+~)j+~voCj, i )<l /2  for i = 1  . . . .  , q and a l l j .  

Since the Cj,~ are disjoint and each C.j,~ch*+~,_ j it follows f rom condi t ional  
S - - 1  

coherence that  P(Elh*+l )< l /q<e  for j = 0 , 1  . . . . .  Let  h * =  ~ a i and notice 
i = 0  

Etch_ 1 =4) to finish the proof.  
Next  let P(a~laf vo a~) > 1/2 whenever  t > k and i maximizes  P(a~lGk). Define 

q �9 

h] ~-i~=o G(q+ 1)j+s+i for j =  1, 2, . . . .  Set E=H~\b~ so that  P ( E ) =  1 also. Not ice  

that  Ec~h*=b. +1~ "+~ For  each pair  (i,j), let Cj ,~=a  <~+~)j+~-i for any m which 
.1 t q  j �9 - - m  

maximizes  P(a  r a)J+~-~l G(q+ 1)j+s-i)" It  follows that  

P(b(~+l)j+~[b(q+t)j+svOCj, i )<l /2  for i = 1  . . . .  , q and a l l j .  

Since Cji. are disjoint and each C.j, ich*+t,_ j it follows f rom condi t ional  

coherence that  P ( E I h * ) < l / q < e  for j = l , 2  . . . . .  Let  h * =  Q)G i and notice 
i = O  

E ~ h_ t = 4 to finish the proof.  

Proof of Lemma 3.2. Since P is a P F A  ultrafilter probabil i ty ,  there exists a 
par t i t ion n = { h l ,  h o, hx . . . .  } such that  P(h~)=0 for all i, with h_ 1 any event as 
specified in the s ta tement  of the lemma,  i.e., h_tCq/.  Let  q>l/e .  Const ruc t  a 
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sequence of partitions 1 {re,},= 1 as follows. First set k=0,  k * = q + l ,  and n = l .  
q 

These will be indices to make the notation simpler. Define H i ( l )=  ~) h/, Go(1 ) 
i = 1  

=h  0, and ~,-1-{ h 1, G0(1) . . . . .  Gk(1 ), H,(1), hk,, hk,+a,...}. To form partition 
~,+1 1, consider two cases. 

Case 1) maxP[hjIH,(1)] occurs for at most q - 1  values of i. In this case 
i 

set H,+i(1)=H,(1)Whk*, ~,+' 1 = {h_,, Go(1),...,Gk(1 ), H,+ 1(1 ), hk.+l, ...}, n=n 
+ 1, and k* = k* + 1. 

Case2) maxP[hilH,(1)] occurs for exactly q values of i. In this case set 
i 

k* + q  - 1 

Gk+l(1)=Hn(1), Hn+I(1)= Q) hi, 1 7~,+~ = {Go(l) . . . . .  Gk+ ~(1), H,+ 1(1), 
i =  k* 

hk~+q .... }, n=n+ 1, k*=k*+q ,  and k = k +  1. It follows from conditional coher- 
ence that at each step, either case 1 or case 2 will apply. 

Continue the above process, generating the desired sequence {n,},= 1 1  ~ with 
the properties that if G/(1)~rc, ~ then G~(1)en~ for all re>n, that @(1) is the 
union of finitely many h~, and that P[hjlG~(1)-I is maximized at exactly q 
values of j for all i>  1. The sequence also has the property that if there are 
only finitely many Gi(1), then there exists n* such that for all m>__n*, 
P[hi]Hm(1)] is maximized for at most q - 1  values of i, say 

Jm = {ira(1) . . . .  , ira(tin)} 

with tin< q. If im(1)<j<im(s)&ji~Jm, then P[hjlhjuhim(s) im(s)]<l/2 for all s. 
There are now three cases to consider. 

Case I) There are infinitely many G/(1). Set G/=G/(1), i=0,  1, ..., and apply 
Lemma A.1 to complete the proof. 

Case II) There are only finitely many Gi(1 ) and there are infinitely many 
distinct sets Jm. For each re>n* Hm+l(1)=Hm(1)Whk,; hence, by conditional 
coherence either Jm~-J~+l or JmC~J~+a=O and J, ,+l ={k*}. Note also that if 
Jmc~J,= 0 with n>m, then for all i6Jm, j6J,, i<j. It follows, then, that there 
are infinitely many disjoint Jm with m> n*. Rename them L1, L 2 . . . .  with L~ 
={ji(1) . . . .  ,ji(si)}, ji(s)<j/(t) for s<t, s/<q for all i, and ji(s)<jk(t ) for all s, t if 
i<k. Then P[h/[h~hj~(J<l/2 for all s and jl(1)<i<jk(1). Define G k 

J k +  1 ( 1 ) -  1 j a ( ' ) - -  1 

= ~) h/ for k = 1 , 2  . . . . .  With G 0= ~) hir we can apply Lemma A.2 
/= jk(1) i=0 

to finish the proof. 
Case Ill) There are finitely many Gi(1), say nl, and there are only finitely 

many distinct sets Jm. It follows that the last such Jm, call it j1 has the 
nl 

property that for all h/ such that ir I, i>=l, and hi~ ~) G j(1); 
j = l  

P[h/[hlwhi]< i/2 for all jeJ I. Let PI(') be P(-) restricted to S\i~h i and let 

1 = 7 c \ { h i :  ieJ1} = {h_ 1, ho, h i~ hi~, ...}. Perform the construction (as above) of 
partitions 2 o~ {~,},=1 beginning with P1 and zca. That is Go(2)=ho, k=0,  k*=q  

q 

+1, n = l ,  Hl(2)=j~=h~j,.= rc2={h_a, Go(2),..., Gk(2 ), H,(2), hi~ . . . . .  } etc. Stop 
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this procedure  if ever case I or case II  prevails for some sequence k {n,},= 1- Set 
k = l  

h~=hou (,.) ~ hi, and apply  L e m m a A . 1  for case I or A.2 for case II. If  
i = l J  

neither case I nor  case I I  prevails, then a sequence of sets J~, j2  . . . .  has been 
generated,  with the p roper ty  that  P[hilhiwhj]<l/2 if i~J ~, j~jt for t<s. 
Because the procedure  which generates  {nk~+l}~=l is identical to that  which 
produces  ~n k ~  up to the step at which the lat ter  encounters  the first i~J k, at I nJn= i 

which t ime all G~(k) have already been formed, it follows that  Gi(k)=Gi(k+l ) 
for i = 0 , . . . ,  n k and there may  be addi t ional ly G~+ ~(k + 1) . . . .  , G~§ ( k +  1). If  

~) ~) Gi(k)=A~ql, 
k = l  i = 0  

order  the Gi(k ) and apply L e m m a  A.1. 

to finish the proof. If A e ~  ', then note  that  A c consists of h_ 1, all h i with 

i~ U JJ=B, and all other  hiCGj(k ) for any j or  k at all. These  last h i have the 
j = l  

proper ty  that  P(hi[hi~hj)< 1/2 for all jeB. N u m b e r  all such hi as hv~ . . . . .  hvN 
with N =  oe possible. Define Gk=(iUhi)uhv~~, for k =  1, 2, .. . .  L e m m a  A.2 now 

applies and the p roof  is complete.  


