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A method  for deriving H F - S C F  wave functions for excited states is presented 
here. All the active orbital t ransformations that are compatible  with the 
or thogonal i ty  requirements are per formed without  unnecessary restrictions 
on the variational space and within a direct minimizat ion approach.  The 
method has been tested with an applicat ion on the first excitedJsinglet state 
of  Be. 
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1. Introduction 

To have an efficient SCF technique for excited states is o f  interest at least for 
two main reasons. First o f  all it is well known that an SCF wave function with 
the minimal number  o f  determinants which give the correct space and spin 
symmetry,  usually assures a good  quality one-electron density f rom which one 
Can well approximate  not  only the mean value o f  the local monoelec t ronic  
operators but also the correlation energy through the integration o f  a density 
functional  [1]. Note that  in the cases in which the H F  density is not  reliable, a 
limited M C - S C F  wave funct ion usually provides an efficient alternative which 
still maintains the advantages of  an independent-part ic le  description. The second 
reason is that a CI  ca lcu la t ion- -a t  least when limited to single and double  
exci ta t ions-- is  more  reliable and accurate if based on SCF orbitals specifically 
opt imized for the parent  configurations [2]. 
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Many variational techniques have been set up for obtaining SCF wave functions 
for the lowest state of each electronic symmetry [3-10], but of course these 
approaches cannot be directly applied to the excited states without having a 
variational collapse. 

Two main approaches have been proposed to overcome this problem. 

The first one [11-13] introduces explicitly into the variational process the 
orthogonality constraints to the lower states, i.e. the requirement that the SCF 
wave function 't~i of the ith excited state be orthogonal to the SCF wave functions 
(~j ,  j = 0 , . . . ,  (i - 1)} of  the lower states having the same symmetry. Note that, 
if the SCF wave function ~ were imposed to be orthogonal to the exact lower 
state wave functions, the approximate energy of the ith state would be an upper  
bound to the true ith eigenvalue. 

The second approach [14-18], instead, is based on the fact that every function 
which corresponds to the nth root of a linear variation method (CI) furnishes 
an energy upper  bound to the true nth eigenvalue of the Hamiltonian (Hylleras- 
Undhe im-McDona ld  theorem [19]). In this scheme, then, the SCF wave function 
for the excited state of  interest results orthogonal to and non-interacting with a 
series of wave functions for the lower states of  the same symmetry, which however 
are not the SCF wave functions effectively used as the best approximations to 
these states. 

For what concerns the upper  bound properties of the first approach,  we observe 
that, since the orthogonality constraints are imposed to approximate lower state 
wave functions, one gets energies {El} for which only the "weaker bound" ,  with 
respect to the exact energies {E~}, is satisfied: El >- Ei--~j-ll e s (E~-  Es), where 

-- 1 -I<% I J>I 2 with qbj the exact wave function for the j th  excited state [13]. 
To have upper  bounds to the exact energies (E~ >_ E~), the additional constraints 
to the ~'~s have to be imposed: j = 0 , . . . ,  ( i - 1 ) .  In the usual 
cases the coupling matrix elements (~F~[ ~ ] ~ j )  are negligible, so that it is sufficient 
to impose only the orthogonality constraints ( ~  ]~j) = 0, j = 0 , . . . ,  (i - 1) in the 
variational process. On the other hand, if these matrix elements cannot be 
neglected, one has to go beyond the single determinant approach,  for example 
by using MC-SCF wave functions both for the ground and for the excited states 
[20]. Using such an approach it is again sufficient to impose only the orthogonality 
constraints among the MC-SCF wave functions. 

In this paper  we present a new method for deriving SCF wave functions for 
excited states in which the orthogonality constraints to the lower states of the 
same symmetry are explicitly introduced. In the existing literature on the subject 
the orthogonality problem has been usually solved by means of restrictions on 
the variational space which are stronger than required by the problem itself 
[11-13]. On the contrary, the method we propose in this article treats the 
orthogonality constraints in a non-restrictive way, thus allowing to get the true 
energy minimum compatible with the scheme adopted. 

We have chosen an approach of this type for the following reasons. First of  all 
we search for an approximate representation of the various electronic states which 
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still maintains the orthogonality property holding among the exact wave functions, 
since we think that such a property is important especially when wave functions 
of different states are simultaneously involved, like in the evaluation of transition 
probabilities. Furthermore, while in the other approach the Hylleras-Undheim- 
MacDonald theorem is satisfied only at convergence and this could introduce 
convergence problems in the iterative process [14, 18], in our approach the 
orthogonality constraints are satisfied at each step of the SCF process and this 
fact should guarantee against convergence difficulties related to the introduction 
of the constraints. It should be stressed, however, that in both the approaches 
further problems could result for example from inadequacies of the chosen basis 
set or of the configurations utilized for constructing the wave function in presence 
of quasi-degeneracies among states. 

In this article we present an iterative method for deriving SCF wave functions 
for excited states, in which all the possible orbital transformations that simul- 
taneously lower the energy and fulfill the orthogonality requirements are perfor- 
med at each step of the process and without any unnecessary space-restriction. 
A direct minimization procedure [5] is proposed which does not involve any 
specific computational difficulty and is free from the convergence problems of 
the coupling operator techniques [7, 9]. 

In this paper we do not introduce the constraints (gri [ Yg] ~j)  = 0 , j  = 0 , . . . ,  (i - 1), 
which assure the upper bound to the exact energies, nor consider wave functions 
of the MC-SCF type, but our approach could be generalized in this sense. In 
Sect. 2 we consider the application of our method to the first two doublet and 
in Sect. 3. to the first two singlet excited states. In Sect. 4. we discuss the results 
of our method, as applied to a specific example (first singlet excited state of Be), 
in comparison with those obtained using different techniques. 

2. Doublet  states 

Let us consider a series of.doublet states described by the following RHF wave 
functions: 

~ /  det [ ~b~")( 1 ) f(~")(2 n) ~ ~+~1(2 n + 1) l, 
1 

�9 (")(1, 2 , . . . ,  2n + 1) = (2n + 1)-------~ "'" 

(1) 

where j = (~, sj) denotes the combined spin (sj) and space coordinates of the 
electron j, ~b~) , . . . ,  ~b(, "), ~b ~+)1 are the occupied orbitals of the/xth state;construc- 
ted in terms of m real basis functions and ordered according to the energy, and 
T (~ represents the ground state. 

The orthogonality constraint on the first excited state wave function ~(1) is 
I I  - -  (~(o) 1~o)} = D~,.  Do, - 0, (2) 

where 

D~I = d e t  I (4, ~~ ~ ' ) )  �9 �9 �9 ( ~ ? )  w. "~ (,)\/.a/\w.+l(o) [ qS(~,) [ = det I S'I (3) 

D~ = detl(~b ~o)[ ~b ~ ) ) . . .  (~b(~~ I ~b (~))l -- det I Sn]. (4) 
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Since the annihilation of one of the two determinants produces a further node 
in one of the orbitals involved, from energy considerations we impose such a 
requirement only on DIa, which involves the occupied orbital highest in energy�9 
Therefore we require that 

D~1 = det ]SI[ = 0�9 (5) 

In what follows we will show that: 

(a) constraint (5) is equivalent to the requirement that the occupied orbitals 
q5 ~ ,6 (~) be orthogonal to a given vector X~a, linear combination of the a , �9 �9 �9 ~ - r n + a  

ground state orbitals qS~ ~ , (o) �9 " " , ~ r / + l "  

(b) In the space orthogonal to X~a the variational process is free from constraints 
and thus reduced to the solution of the RHF equations for a doublet state. 

(c) The full exploitation of  the variational degrees of freedom requires the 
reintroduction of XIa in the iterative process. For achieving this result we propose 
a practicable way which implies the use of multiple rotations, as it will be 
explained later in this Section�9 

For what concerns point (a) we observe that, since D~a = 0, the rows of S a must 
be linearly dependent and therefore at least one of them (only one if S ~ has rank 
n) can be annihilated by means of a unitary transformation among the rows�9 
Such a linear transformation correspondingly defines a normalized vector XIa 

~(a) .4.(a) orthogonal to all the occupied orbitals w~ , - . . ,  wn+a. 

Using the Laplace expansion of DI1 one can define XIa as follows 

n + l  

D~I = E d~l(J; i)(~bJ~ = ci(XIoa 1q511)), (6) 
j ~ l  

where dIoa(j; i) is the complementary cofactor of the (j, i) element of  S ~ and c~ 
is a constant depending on qS~ a). 

It follows that for a given orthonormal set of occupied orbitals qS~),. "(~)- �9 �9 , I ~ t l - b l ~  

which satisfy the condition (5), every linear combination with virtual orbitals 
orthogonal to X~a is compatible with (5). 

Finally, in order to have a procedure independent of the choice of the trial 
orbitals, one must perform also linear combinations of X~o~ and the occupied 
orbitals. To this end, we suggest the following procedure, which starts from a set 
of m orthonormal orbitals qS~ ~/, . . . ,  ~b~ ) with 4~ ~), �9 �9 �9 v',+a'#~ satisfying the condi- 
tion (5): 

(a) Orthogonalization of the virtual orbitals to XIa. This can be performed for 
example in the following way: 

(r (~b(k,), ~b(k~a)( ::  So) 
w t,+l,' = , (7) 

- -  0 CO 

where Co = cos (0), So = sin (0) and 

( <X~a I O(k 1)) '~ 
O=tan -a ~ . (8) 

\<xoa 
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These linear combinations, which are to be done in sequence, guarantee that 
(r k = n + 2 ,  �9 m - 1  and give q52 ) ' -  1 �9 �9 - -  X01" 

(b) Energy optimization in the space of the occupied and virtual orbitals 
orthogonal to X~a, according to one of the standard procedures for the solution 
of the RHF equations. 

�9 , (1) - - (1)  I 1 (c) Energy optimization in the space t~1 , . . . ,  en+l, XOlJ ~. For this step we 
suggest to perform a series of double rotations [5], that are the simplest multiple 
rotations, which allow to minimize the energy and simultaneously to fulfill the 
orthogonality requirement. Note that in this case a two-parameter linear combina- 
tion is equivalent to the use of a general (3 • 3) unitary transformation. 

In our scheme each double rotation is made beteen X~1 and an occupied orbital 
~bl ( I= 1 , . . . ,  ( n + l ) )  with an angle ce and between the resulting X~ol(a) and a 
different occupied orbital ~hr with an angle/3: 

( X I 1 ,  (ill, (~ , ' )~  ~ [ G ;  ( X I 1 ,  (fl11))](~,~)[/3; ( X o I l ( o ' ) ,  ( ~ 1 ) ) ] .  (9) 

The angles a and/3 are obtained by solving the following system of equations: 

d[AE(c~,/3)] = 0 (10) 

i -(1),~ 0 Ool ----- ( C,~(b l 1) + S~XlOl ) e t,. I cljq~l))q - st3 ( co~Xlol - s,~q~! ,) = (11) 

n + l  
6t,, = Y~ Ir176 q; l,/')(r176 (12) 

p , q = l  

where in (12) d(p, q; l, l') is the second-order generalized minor [21] deriving 
from the Laplace expansion of D~I and in (10) AE(ce,/3) represents the variation 
of the energy E given by 

E =~'~ (1)]loA~-}-~p }p)=~. o.)t~.pq- E ([,s ppq~Cpq), ( 1 3 )  
P P Pq 

G = �89 + y ( ,qG - ( 1 4 )  
q 

In (13)-(14) {w}, {/z}, {v} are state parameters and ~pp, J-pq, Y[pq are the matrix 
elements of the well known monoelectronic (~), Coulomb (~q), exchange (Y{q) 
operators�9 The relationship between a and/3, which follows from (11), is 

( x l l  IC,1 ' ](])I1)) I I (1) Dol(Xol~ r ) 
--  (x l - = s o .  ( 1 5 )  ] ~ll' ~Dl , I I (1) Dol(Xol~ ~br ) 

where tz = tan (/3) and D~I(X -> r  represents the determinant of the superposition 
matrix S I in which the orbital r has been substituted by X,. 

The second order approximate solution of the Eqs. (10)-(1l), labeling 
, 

Xol, r ~), , respectively with i, j ,k  and utilizing the formalism of Ref. [5], is 
the following 

El(i, j )  + e '  El(i, k) 
(2~)--~ E2( i , j )+2e"  G( i , j ;  i , k ) + e  2. E2(i ,k) ' (16) 
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where 

E,( i ,  j )  = 4(i1( ~ - fig) [ j )  

E2( i, j )  = 2[(i ] (o~ - o%~) + (Aij -�89 -1Bij3-jJ i ) 

+ ( j [ ( ~ -  ~ ) +  (A~ 1 1 07" 
- -  ~Bq) ~'f, -- ~Bij~l i [j}] 

G(  i, j ;  k, l) = 4a~;~(  ij l kl ) - 2B ~;~,[ ( ik [ j l )  + ( il l j k  ) ] 

A u = tx~ - 21xq + t*~ 

Bq = v~ - 2 v~ + v~ 

B i j ; k  I "~- 1 2 i k -  l . , i l -  P j k -  }- 1.~jl . 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
In  (17)-(18)  the H a r t r e e - F o c k  opera tors  f f ' s  are defined by (14), in (20)-(23) 
the/x,  v 's  are the state pa ramete r s  which define the energy - see (13) - and  (ijl kl) 
is a bielectronic integral  in the charge notat ion.  

I f  a more  accurate  solut ion is required one can use a and /3  f rom (15)-(16)  as 
the initial guess of  an i terative process.  

Let us now consider  the second excited state wave funct ion q,(2), for  which 
the or thogonal i ty  requi rements  are 

(q,(o)[~(2)) = D~2" DroI2 = 0 (24) 

D1-2 - 0, (25) 
/ ~ I , I I  where ,~,i,2, i =  0, 1 are defined as in (3)-(4).  

F rom energy considerat ions we require that  DI2 = 0 and D~12 = 0. 

For  a given set of  trial orbitals {~b~ 2), �9 �9 �9 th(, 2~, v-,+u,a'(2) x which satisfy the condit ions 
(24)-(25),  utilizing the Laplace  expansions  of  D~2 and D~2, we can define two 
v e c t o r s  X I 2 ,  X ~ 2  l inear combina t ions  respect ively of  ~b~ ~ . �9 �9 ,e,+~'h(~ and  of  
05~ ~), �9 �9 �9 v,,+l,a'~ which are or thogonal  t o  (b~ 2), �9 �9 �9 ~,.+1a'(2) but  in general  not  mutual ly  
or thogonal .  

The  first step of  our p rocedure  consists now in a sequence of  two by two 
ro ta t ions - see  (7)-(8)  - in the space t~-,+2,~a'(a) �9 �9 �9 qS~ )} for  getting virtual orbitals 
(b (2)' -- (2)' , + z , - . . ,  ~ , , -1  o r thogona l  to X~o2 and then  in rotat ing these orbitals to obtain 

- -  (2) '  I new virtual orbitals u,,+2,'#2>"..., ~b~)_"2 or thogona l  t o  X12. We observe that  ~ , ,  = X02, 
while ~b~)_"~ is the c o m p o n e n t  of  X~2 or thogona l  to X~2. Every l inear combina t ion  
of  the occupied  orbitals with tp, n+2,"h(2)" . . . , ~(m2~2 is then compat ib le  with the con- 
straints (24)-(25)  and can be used for  the energy opt imizat ion  as in the previous  
step (b). 

For  a comple te  energy minimiza t ion  however  we must  also pe r fo rm those l inear 
combina t ions  in the space {4~ 2), �9 �9 �9 v,,+~,a'(2) ~b(m2)_"~, ~b(m 2)'} which are compat ib le  with 
the constraints  (24)-(25).  To this end one can repeat  the opera t ions  descr ibed in 
step ( c ) - see  before  - respect ively in the space  {~b{2),..., ,~,+~,a, ~2) q~)_"~} and in the 
space { ~/~ ~2)' 3. (2) '  . . . ,  ,p,+~, ~b~)"}, where  now 4 ~  y" is the normal ized  c o m p o n e n t  of  



A n  S C F  t e c h n i q u e  f o r  e x c i t e d  s t a t e s  4 7 3  

~b~ ~' orthogonal to the reference vector XI1'2 defined by the new occupied orbitals 
' �9 ( 2 ) '  ~b~) , . . . ,  0~+~ and by the condit ion DI~2 = 0. 

Extension of  this method to higher doublet excited states is straightforward. A 
completely equivalent procedure can also be applied to all those excited states 
that can be described by a one determinant  wave function. 

3. Singlet states 

Let us consider a closed shell, ground state wave function 

~(~ 2 , . . . ,  2n) = ~ / &  det ] 4~~176 . . .  ~b~~ - 1 ) ~ ( 2 n )  [ 

(26) 

and a series of  excited singlet state wave functions ~(" )  having the same spatial 
symmetry of  ~(o): 

�9 (~)(1, 2 , . . . ,  2 n ) =  ~ f ~  {detl &~)(1) . . .  ~C)1(2n - 2 )4~) (2n  - 1) 

X ~(~)1(2n) I 

+det[  ~b['*)(1) . . -  q~(n~_>l ( 2 n  --  2)&(n~+)l(2n --  1)q~(f)(2n)I}. 

(27) 

The orthogonali ty requirement in the optimization of  ~(1) is 

(~(~ = ~/2D~1 �9 D~11 = 0, (28) 

where 

U~ 1 = det ] (4)~o)[ ~b~l)).../~.(o) \ran-11 ~n-l / \w~ I "~(1) x['~(~ (Pn+l/' (1) x = det [S  I ] (29) 

D~o~l = det[(~b~~ " ' "  \v-,-l~m,-l/x~-,/'~(~ I..A(1) x/a.(o)l~(n\l = d e t [ S . i . j w ~  /r (30) 

As for the doublet  state, from energy considerations we require that DI1 = 0, and 
we suggest a procedure quite similar to that previously proposed: 

(a) optimization of  the lower orbital of the singlet pair, i.e. energy minimization 
in the space {4~(, 1), .~(n ran+2,-. . ,  q~)}. It can be freely performed since it leaves 
D~I = 0. 

(b) Orthogonalization of  .,q(1) A.(1) v-~§ v,m, as in (7)-(8), to the reference vector 
X~I which is defined by the condition Do~l = 0 and energy optimization in the 
space {~b~ n, q5(~1, (1) A~(1) ~.+1, ~2)-1}. �9 . . , t P ' n + 2 ,  . . . , 

(c) Reintroduction of  the excluded virtual orbital (h~ ~ in the variational space, 
i.e. energy minimization in the s p a c e  {~)~1) .4,(1) (1) �9 . . ,  v.,-1, ~b,+l, &(~), ~b~)}. To this 
end one can repeat the sequence of  double rotations described in the previous 
step (c) for the first doublet  state, in the spaces {~b~ n, . . . , (~(nl_)l, tp.n+l,'d~(1) (/)(ml)}, 

{ ( / ) ~ 1 ) , . . .  , (~(1)1, ~(nl) A~(1) / ' 'P 'n+l ] '  {qS~ n, . . . ,  ~b(,121, ,6 (1).~. , 4 ~  ~} and in the space 
( 1 )  ( 1 )  {~o , 4 , 2>} .  ~ n + l ~  
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Let us consider now the orthogonality requirements in the optimization of ~2):  

(xI*(~ I W(2)) = x/2D~2 �9 D~12 = 0 (3 I) 

(~(1) 1%~/(2)) = I /~I12 _~ - It /~lI D u "  D12" 12=0, (32) 

where r~l,ii �9 --i,2, i=  0, 1, are defined as in (29)-(30) and 

D12 = detl(4,~)l 6] 2)) . . . .  \q)n-11 t]2n-l/\th'n+m/'d'(1) t ~.(2) \/.j.(l> V',A'(2)X I, = detl~l[ (33) 

D12-rl = detl(6~l)[ 6~2)) " ' "  kN-'/tA(1)n--1 [I "A(2)'-P" n-- I/\'-P" \/.A (1)n+l 112"(2)"h' n+l/ \ l=det lSn[ .I  (34) 

From energy consideration we satisfy the condition (31) by requiring that D~2 
be equal to zero; this condition defines a vector X~2 orthogonal to 
6~2) 6 (n2) 1, ..,.(2) �9 . - ,  w,+:. Let us assume for simplicity to optimize the energy in a 
space orthogonal to X~2, so that we can ignore (31) and analyze in detail the 
condition (32). The inclusion of X~2 in the variational space can be performed 
afterwards in a way analogous to that described in the previous step (c) for the 
first excited singlet state. 

The orthogonality requirement (32) can be cast in the form 

((~(n2) I ~ ] (~(n2+) 1) = 0 ,  (35) 

where 

= IX) 07 [ + IA')(X [ (36) 

or, equivalently, 

(~)(n2) I {[ X)()( I (~(n2)1)"q- I )(> (X I (~(n2+) 1)} = (1~?)[So) = 0 (37) 

<(~ ~;I I{IX) ()( l (~)) -{- l)() (X l (#(2))} = ((# (n2+)1 lXn+l) = 0. (38) 

In (36)-(38) X and .~ are defined through the Laplace expansions with respect 
to the last column respectively of D~2 ~ (or D12) and/9~12 (or -u  D~2) and are orthogonal 
to the doubly occupied orbitals, while Xn and X,+~ are linear combinations of X 
and )?. 

For a given set of trial orbitals {4~]2),. --(2) ,4,(2) /. , O,-~, qS~ ), which satisfy the �9 " '-P' n + 1J 
condition (32), one can easily prove that linear combinations of the doubly 
occupied orbitals with virtual orbitals orthogonal to X and )? are compatible with 
constraint (32) and can be used for the energy minimization. Analogously from 
(37)-(38) it follows that the energy can be freely optimized by means of linear 
combinations between 4,? ) and virtual orbitals orthogonal to X., and linear 

- - ( 2 )  combinations between ~.+~ and virtual orbitals orthogonal to X~+~- 

The remaining combinations of interest are those in t h e  space 
{ (~ ~2) At.(2) ,(2) �9 (2) �9 - . ,  w.-~, v.. , 4',+,, 4 ~ - , ,  4~)} where ~b~>_,, ~ )  are those virtual orbitals, 
projections of X and )? onto the virtual space, that have been excluded in the 
optimization of  the doubly occupied orbitals. 

The suggested procedure consists of the following steps: 

(a) optimization of the singlet pair with the two excluded virtual orbitals, i.e. 
double rotations in the space {05(, 2), ~41n+bA'(2) 6(m2)1, (~(m2)}. 
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"4"(2)- and r First of all we rotate ~,,._, to get new ~ [ ~  and 6~)' having the largest 
possible superposition respectively with X. and X,+l. Then we perform a double 

, (2). rotation between ~b~ 2) and q S ~  with an angle a and between r and ~b~ )' with 
an angle 13: 

((~(n 2), (Pro--l,--(2)'. W'n+l,'4"(2) (J~(m2)')~ ~ [ a ;  (qS~), qS~)-'l)] ~)[13, \'~.+l,('h(2) qS~)')], (39) 

where a and 13 are obtained by solving the following system of equations: 

dEAE(a, 13)] = 0 (40) 

(CoL~ {n2) __ So~(~ (rn2)' 11 ~ I ~/3~tj n+1"4"(2) __~,~ ~' m ~K(2)'\ --/-- O, (41) 

In (40) kE(a , /3 )  represents the energy variation. 

The relationship between c~ and/3 is given by (41) 

W'rn'&(2)'\--t/ "o~\'4Jm-1/"<~)' 1 ~ 1 4 ~ ) , ) - - c + d t  ~ , (42) 

The second order approximate solution of the equations (40)-(41) is the 
following: 

(2~) = 

((~)'--(2) ,g.(2)' ] _ a ] E ?  (,4,(2) (~(m2)') 
E I . _ ~  , W r n - 1 ]  *~lkWn+l,  

C 

/--(2) ~7 (,4,(2) ~_adr~ t,4,(2) ~ 2 t r  , ~ , )  + ,b~ )') 4,~ )') 

2 a  
- - -  G(qS~ ), q5~)-'1; w,+,,'*(2) q~)') (43) 

s 

where El(i, j )  and E2(i, j )  are defined as in (17)-(18) and G(i, j; k, l) as in (19). 
If a more accurate solution is required one can use c~ and 13 from (42)-(43) as 
the initial guess of an iterative process. 

(b) Optimization of all occupied orbitals with the two excluded virtual orbitals, 
i.e. double rotations of the type: 

( ( ~ 2 )  (])(k2); d)(2) '-P'n+l] cr  ]/3 __= [0~; ((~I 2), (~(2))]@[13.,  ((/)(n 2), ,4. (2) ] l  
";- n ~ tbt n + l l . ]  ~ (44) 

with l - - - 1 , . . . , n - 1  and k = r n - l , m .  

The angles ~ and/3  are obtained from the solution of  the system of  equations 

d[ kE(ee, fl )] =O (45) 

(~ a_(2) ~ 3.(2) ~2 (Z/}(I)-L ~2 c79(I) "}~ ~ (TO(1) " d'(2) -}-E/3~D(n 2)) O. ~t3v~, - ae~,+, t = (46) t .o:O" ll ~ a a C r  k k - - Z . a o t c . o ~ c . "  i k  %Sh~-,n+l 
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9-p(O In (45) A E ( a , / 3 )  represents the energy variation, while in (46) the operators ~ 
are defined as follow: 

~({)  = 1{ (~/[ I t,h(2)~/0~(2)I _~_ I (2) (2) I] 6/  _} - -- (2} (2) (27 (2) O,[I4~, )(b, 1+14 ), )(4', l](9,} (47) 4'~ )(4,, ~ U  "t'i ~\'r 

~,= ~ I~@'))d(p, q; 1, k)(6(1)l (48) 
p , q = l  

r~+l ,+,(~))d ~t : 2 I-v (p, q; l, k)(44'~1, (49) 
p,q= l 
( # n )  

where d(p ,  q; l, k),  d (p ,  q; l, k) are the second order generalized minors [21] 
respectively of D~2 (or u D,~) and/)~2 (or - n  D~2) and k denotes the last column of 
S ~'n and ~,H. Note the X, )? defined in (36) have simple expressions in terms of 
these operators: ~, 14~} 2)) = X, 6,14'~ 2)) = )?- 

The condition (46) can be cast in the form 
.4.(2) 1"~o'~(1) _ �9 d~(/) ( A.(2) \~ 
tl~n ] g - a l k  t ~ k k l ~ k ' n - ~ l l t a  

t2e=-2'/.4.(2) [ [~ / )  ~(,) 2 (,) - 2 t ~ ' ~  + t a ~ k k ] {  ''t'(2)~n+l/\ \ t / \n+1 

= - 2  
(a+bt~) t~  

c + dt~ + gt] " 
(50) 

The second-order approximate solution of (45)-(46) is 

(2a) = 

E1(4~12) ' ~b(z) )__a Elm", (2) ~(2) - - 1 . r n  , W n + l ]  
C 

Ez(~b~2) ' ~b(k2))+ E2(q~), . ( 2 ) ) + { a d  b~ (On+ll (/)n+l~ \ 7 - 7 ] E l ( ( ~ ( n  2), .L(2)"1 

_--2a G(qS~z), &~z); qS~), (P.+1,-(2) a, 
C 

(51) 

where we have used the same definitions as in (17)-(19). 

(c) Optimization of the occupied orbitals among themselves, i.e. double rotations 
of the type: 

(qS~), q~2), ~.,+1,~'r ~ =  [a;  (4~), ~b12))]| (~b~)(a), ~b~+~,)] (52) 

with l=  1 . . . .  , n - 1 .  

The angles a and/3 are obtained from the solution of the system of equations 

d[AE(a,/3)3 =0 (53) 

(~bl 2) ] ~..~(t) I & ~)1) t , . ~ / 1 ,  + t] 

I~n I~b, )]+2t~(qS,+,]~*, I "~(2) \w.+,/ 
~J~nn q ~ n + l / - - \ ~ ' !  J n n l q ' l  / ] t ~  

2, , /1  + tL. t~ (54) 
c + dt~ + gt] " 
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In (53) AE(a,  ~) represents as usual the energy variation and the operators ~I[ ), 
~(t.) ~p(,) 

t.,  ~ . .  are defined by (47)-(49). 

The second-order approximate solution of these equations is 

(2a)  = 

--(2) a E,t q, . ,  4,12)) - -  El(4/d ~, o~ 
C 

a) .~t.(2) ] . 4 a d l ~  , /.,t.(2) ..L(2) 
E2(~b~)' 4~12))+ c E2(~b~2)' ~ ' " + " -  c 2 ~ ' l \W 'n  , ' 4 * r l + 1 ]  

_2(a )  ~ ( ~ , .  ~,2,; ~?), .~(2), 
�9 . [ I n + l t  . (55) 

- - ( 2 )  A similar set of  double rotations can be performed exchanging q~) with 0 ,+ ,  
in (52). The procedure is the same as in step (c). 

We observe that this sequence of double rotations inside the space 
{q~ ~2), (2) - - ( 2 )  . . . ,  ~b,_~, q~(2), ~b~_~, ~b~ )} is not univocally defined. In our scheme 

- - ( 2 )  we use the linear combinations between ~b~ ) and g~,+, essentially as a tool for 
satisfying the orthogonality requirement. 

Extension of this procedure to higher excited states is straightforward. 

4. Applications 

In this section we compare the results obtained by using our method in the case 
of  the first singlet excited state of  Be (2s-->3s), with those obtained by using 
techniques more restrictive in the exploitation of the variational space [11-13]. 
We observe that in this case the general approach proposed by Davidson and 
Stenkamp [14] for RHF wave functions gives an energy which in principle is not 
an upper  bound to the exact one whereas the corresponding wave function can 
be regarded as intermediate between those for the ground and the first excited 
state. 

]=or what concerns our method, we have applied the procedure described in Sect. 
3. without finding any convergence problem. Starting from the orbitals of  the 
ground state or from other orbital sets which satisfied from the beginning the 
orthogonality constraint (28) the number of  iterations required for convergence 
up to 10 6 a.u. never exceeded 12. 

For comparison,  we have also introduced the orthogonality constraint (28) in 
more restrictive ways. The first one (A) consisted in freezing the lower singly 
occupied orbital (~b~ 1)) and corresponded to the annihilation of a row of S I, see 
(29). In the second one (B) the orthogonality constraint was satisfied by a proper 

- o ) .  [12 restriction in the variational space of q),+, L ]. Note that using method B the 
results depend on the choice of  the starting orbitals, that we chose as those of  
the ground state. 

The results of  such calculations, given in Table 1, show that because of the greater 
variational freedom allowed by our method we get an excited state energy lower 
than the other ones by about  0.2-0.6 eV (=3-10% of  the HF excitation energy). 
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Table 1. Comparison of the results obtained using the methods described in Sect. 4. in the case of 
the first singlet excited state of Be. In the second column E represents the energy of the state given 
in atomic units. In the third and fourth columns we give the absolute values of the superposition 

-~1) with the ground state occupied orbitals, In the last column AE represents the HF elements ot ~Pn+~ 
transition energy, given in eV, with respect to the ground state energy (E 0 = -14.572842 a.u.) 

Method E (a.u.) (3s~13 ] ls ~~ (3s ~1) 12s <~ E (eV) 

Our method -14.355127 0 . 0 0 0 5 1 9 2 3  0.00000024 5.92 
Method A -14.347434 0.00059620 0.0 6.13 
Method B -14.333696 0.00000002 0.0 6.51 
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