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Gradient extremals on N-dimensional energy hypersurfaces V = V(x~ �9 �9 �9 xN) 
are curves defined by the condition that the gradient V V is an eigenvector of 
the hessian matrix VV V. For variations which are restricted to any ( N - 1 )  
dimensional hypersurface V ( x ~  �9 �9 �9 X N )  = Vo = constant, the absolute value of 
the gradient V V is an extremum at those points where a gradient extremal 
intersects this surface. In many, though not all, cases gradient extremals go 
along the bottom of a valley or along the crest of a ridge. The properties of 
gradient extremals are discussed through a detailed differential analysis and 
illustrated by an explicit example. Multidimensional generalizations of 
gradient extremals are defined and discussed. 

Key words: Potential energy s u r f a c e s -  Reaction paths 

1. Introduction 

In the adiabatic approximation, the reactive rearrangement of a chemical system 
leading from a stable reactant configuration through an activated transition 
complex to a stable product configuration is described by a motion of the 
representative system point on the energy hypersurface from one minimum over 
a saddlepoint to another minimum. The valleys leading from the reactants up to 
the transition saddle and down to the products are the reaction channels and, in 
zeroth approximation, the system point is perceived as following a reaction path 
which is imagined to run along the floors of these valleys. 

* Operated for the U.S. Department of Energy by Iowa State University under Contract No. 
W-7405-ENG-82. This work was supported by the Office of Basic Energy Sciences 
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The customary approach to defining such a lowest-energy path consists of taking 
it to be the union of the two lines of  steepest descent leading from the saddlepoint, 
to the two minima. The definition is unambiguous since exactly one steepest 
descent line originates in either downhill direction at the saddlepoint. It starts 
out in the direction of  that eigenvector of the hessian (the matrix of  second 
derivatives) which corresponds to the one negative eigenvalue, and it ends at a 
minimum. 

This choice has the shortcoming that one must start at the saddlepoint and 
proceed to the minimum. It is not possible to find the floor of the valley, if defined 
in this manner, without prior knowledge of  the saddlepoint. This is so because, 
away from this point, there exist no local properties which distinguish this steepest 
descent line from other steepest descent lines. For example, at a minimum there 
are infinitely many steepest descent lines entering parallel to that eigenvector of  
the hessian which corresponds to its smallest eigenvalue, while only one steepest 
descent line comes into the minimum parallel to every other eigenvector of the 
hessian. Under "normal"  conditions one might expect the steepest descent line 
originating from the saddlepoint to be among the manifold mentioned first, but 
that does not have to be the case. 

Intuitively one would expect that it should also be possible to find one's way 
from a minimum through a valley up to a saddlepoint by using only local criteria 
for staying on the "floor" of  a valley. Any such procedure must be based on the 
differential behavior of  the surface, because differential properties can be ascer- 
tained for any point on such a path independent of any other point so that one 
can follow the path in any direction, from the saddlepoint to the minimum or 
vice versa. In 1974, when faced with the problem of finding saddlepoints on ab 
initio energy surfaces, the authors formulated such a procedure in an unpublished 
manuscript and discussed it with a number of colleagues. This material is con- 
tained in Sect. 2.1 below. Subsequently the authors were disappointed when in 
numerical tests the shapes of the resulting curves, which they called gradient 
extremals, sometimes differed markedly from what they intuitively expected [1]. 

Pancir [2] and Basilevsky and Shamov [3] have priority in writing about this 
subject. Their publications came to the authors' attention in 1982. The approach 
of Basilevsky and Shamov is similar to ours: it is based on an extremum principle, 
which they call the "mountaineer 's  algorithm" and, from this extremum principle, 
it is deduced that the gradient is an eigenvector of the hessian on the resulting 
curves. This eigenvalue equation had been considered earlier by Pancir, although 
not in connection with an extremum principle but while searching for a definition 
of a reaction path. In this context gradient extremals suffer from the same 
shortcomings as general steepest descent curves: they are not invariant under 
coordinate transformations and they are defined without reference to the kinetic 
energy. Nonetheless, the lack of a true physical meaning and the metric ambiguity 
do not detract from the fact that gradient extremals represent unique curves 
between stationary points which can be followed in any direction, e.g. from a 
minimum to a saddle. 
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Sections 2.3 and 2.4 furnish an analysis of some of the unusual properties of 
gradient extremals which, to our knowledge, have not been previously discussed. 

An instructive example is examined in Sect. 3. Multidimensional generalizations 
of gradient extremals are developed in Sect. 4. 

2. Gradient extremals 

2.1. Definition and differential equation 

We begin by asking: "Which place would a person walking in a valley tend to 
consider as the valley floor?" If  we define a "floor line" in terms of its intersections 
with the contour lines running around the valley, then the following answer seems 
reasonable: 

A floor line intersects every contour line in that point where the gradient is 
smallest in absolute value compared to other gradient values on the same contour. 

(All gradients are, of course, perpendicular to the contour line). This is to say 
that the floor line intersects any contour in that point where moving perpendicular 
to the contour produces a minimal change in height, i.e. where equidistant 
contours are spaced farthest apart, i.e. where the valley is "least steep". Basilevsky 
and Shamov call this the mountaineer's algorithm. 

Let us apply this idea to a surface V = f ( x )  = f ( x l  �9 �9 �9 xra). For convenience, we 
introduce the term contour subspace to denote the nonlinear ( M  - 1) dimensional 
subspace (hypersurface) defined by the condi t ionf(x)  = V = constant (there exists 
thus a contour subspace for every contour). In generalization of the considerations 
in the preceding paragraph, let us then look for those points in a contour subspace 
where the absolute value of the gradient, lye, is extremal. Lines which connect 
such points on different contour subspaces we shall call gradient extremals. They 
intersect the contour subspaces in points where (V f )  2 is an extremum. 

Clearly at any such point the condition 

(c. V)(Vf)2 = • ci(O/Oxi)~, (Of/Oxj) 2= 0 (2.1) 
i j 

must be satisfied for  any vector e lying in the ( M - 1) dimensional linear space that 
is tangent to the contour subspace at that point. Hence the projection of  V(Vf) 2 
onto this tangent space must vanish and we must have 

(P .  V)(Vf. V f ) =  Y: Po(O/Oxj)(Vf)2= O, (2.2) 
J 

where P is the projecting matrix onto the tangent subspace. Since this contour 
tangent space is perpendicular to the gradient V f, we can write 

Po = 6~ - pO, (2.3) 

with pO being the projector onto the direction of the gradient. The projectors P 
and p0 are explicitly defined in the Appendix Eqs. (A.2) and (A.3). The condition 
given in Eq. (2.2) can now be rewritten by using differential identities, as shown 
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in the Appendix eqs. (A.5) to (A.9), and this leads to the equation 

E no(x)gj(x) = A(x)g,(x), (2.4) 
J 

which must hold for every point on a gradient extremal. Here g(x) and H(x)  
are the gradient and the hessian o f f ( x )  at point x: 

gi(x) = (of/oxi), Hij(x) = (of:/oxi Oxj), (2.5) 

and h (x) is defined in Eq. (A.7) of  the Appendix, which can be written as 

h (x) = • Hog,gj/Y. g~. (2.6) 
/j i 

Thus, a gradient extremal is a locus of points where the gradient o f f ( x )  is an 
eigenveetor of  the hessian of f (x) .  This result can also be obtained by finding the 
extremum of  (V f )  2 under the constraint that f ( x ) =  V = constant, i.e. V{(Vf) : -  
2h f} = 0 with h being a Lagrangian multiplier. 

Several properties of  gradient extremals are immediate. First: that Eq. (2.4) indeed 
determines a curve can be seen as follows. Suppose that U(x) is the orthogonal 
matrix which diagonalizes the hessian matrix H(x)  at the point x, so that 

U*(x)H(x) U(x) = n (x ) ,  (2.7) 

where h(x) is diagonal, then the a th  row of U namely {Ui~} is the eigenvector 
of H with eigenvalue ha. Thus for the gradient g to be parallel to this eigenvector, 
it is necessary and sufficient that g be orthogonal to all other eigenvectors of  the 
hessian, which implies 

~,, gjUjk =E gj(x)Ujk(X) = 0 ,  for all k r  a. (2.8) 
J J 

These (M - 1) equations are linearly independent since U is orthogonal and they 
define a one-dimensional curve in the total M-dimensional space. It is also 
apparent that there are M essentially different curves of  this kind, corresponding 
to the M different eigenvectors of H. Any one of these curves can, moreover, 
come in several pieces. 

Secondly, it is apparent that all stationary points on the surface V = f ( x )  (minima, 
maxima, saddlepoints) lie on gradient extremals. This must be so because, at 
these points (V f )  2 is an absolute minimum, namely (V f)  2= 0. 

Thirdly, it can be seen that only at stationary points can two or more gradient 
extremals cross each other with a non-zero angle of  intersection. This follows, 
because, in general, each of the gradient extremals, intersecting at a given point, 
requires the gradient to be parallel to a different eigenvector of  the hessian. Since 
the latter are however orthogonal, this is clearly impossible unless (~Tf) 2= 0, 
implying a stationary point. This reasoning does not prove that the gradient 
extremals themselves intersect at right angles. However we shall see below that, 
in fact, they do. It follows that, at a stationary point in an M dimensional 
parameter space, M gradient extremals intersect at right angles, each being 
tangent to one of  the M orthogonal eigenvectors of the Hessian. 
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2.2. Classification of gradient extremals 

Gradient extremals can be classified according to two considerations which we 
shall first illustrate for the case of  a function of two variables V = f ( x ,  y). 

The first question is how f (x ,  y) changes when one moves away from a point on 
the gradient extremal in a direction perpendicular to the gradient. If  the ground 
rises, i.e. f (x ,  y) increases, then we are in a valley; if the ground falls, i.e. f (x ,  y) 
decreases, then we are on a ridge. Since, perpendicular to V f, the directional first 
derivatives o f f  vanish, this change is characterized by the sign of the eigenvalue 
A ' of the hessian which belongs to the eigenvector which is orthogonal to the gradient. 

The second consideration pertains to the variation of (V f )  2 in the contour subspace. 
So far we have tacitly assumed that Eq. (2.4) implies a minimum of (V f)  2, 
indicating points of gentlest slope. This equation encompasses, however, also the 
cases that (~Tf) 2 is a maximum or a saddlepoint in the contour subspace. A 
maximum yields a point of steepest slope which corresponds to geographic 
formations known as cliffs and cirques, depending on the sign of A'. 

Thus, when the second order terms determine the behavior of f on a gradient 
extremal, we have the four cases listed in the following table 

Variation of  (Vf) 2 in Variation o f f ( x )  perpendicular to V f  
contour subspace Uphill (A' >0)  Downhill (A'< 0) 

Minimum Valley Ridge 
Maximum Cirque Cliff 

Fig. 1. Contours  (solid lines) and gradient extremals (dotted 
lines) for a valley, a ridge, a cirque and a cliff 

Contour lines illustrating the four cases are shown in Fig. 1. 

In more than two dimensions there exists a greater variety of  cases, but the 
analysis is still based on the same two types of considerations. The increment of 
f ( x )  perpendicular to the gradient is now determined by the eigenvalues belonging 
to all eigenvectors perpendicular to the gradient (which corresponds to the first 
eigenvector with the eigenvalue A). These can be obtained as the eigenvalues of 
the reduced hessian 

/-t# = H~ - AP ~ (2.9) 

where pO is the projector on the eigenvector Vf/IVJ~ , as defined in Eq. (A.2). 
Using the projector P (see Eq. A.3), and the gradient extremal condition (A.9), 

VALLEY RIDGE 

CIRQUE CLIFF 

ARROWS POINT UPHILL 
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one can write the matrix (2.9) also in the form 

/~ ~ P .  (VVf) �9 P = P .  (VVf) = (VVf) �9 P. (2.9a) 

The type of  extremum within the contour space, on the other hand, is now 
determined by the eigenvalues of the matrix of  second derivatives within that 
subspace, namely 

H c = (P .  V)(P .  V)(Vf)2/2. (2.10) 

This can be simplified by the manipulations derived in the Appendix. The result, 
Eq. (A.18), can be expressed as follows 

H c =  P �9 ( T .  g) . P +  H .  ( H - A / )  (2.11) 

H~s = 2 Tr~tgrP~iPq + Z H~,H o - A H  o (2.11a) 
r s t  r 

where T,,, is the matrix of  third derivatives: 

Tr,,(x) = 03f/oxr Ox, Ox,. (2.12) 

From the spectral decomposition of H it is apparent that, in Eq. (2.11), one can 
make the substitution: 

H .  ( H - A I ) = / t .  ( / - I -  AI), (2.13) 

because A is the eigenvalue which is omitted in/-I. The eigenvalues of the matrix 
(2.13) are h , ( h , - A ) ,  if h, are the eigenvalues of H different from hi = A. 

An "absolute valley" would be characterized by the matrices H and H ~ both 
being positive definite. A "normal"  reaction channel would be expected to have 
this character. 

2.3. Tangential direction o f  gradient extremals 

Intuitively it is extremely tempting to expect that one would move in the direction 
of the gradient (V f )  if one advances along the gradient extremal, i.e. that the 
gradient (V f ) ,  in addition to being an eigenvector of the hessian, is also tangent 
to the gradient extremal itself. If this were so, then the gradient extremals would 
be a special class of steepest descent lines. 

Such is not the case however. In general the tangent to a gradient extremal forms  
a finite angle with the gradient 7 f  

This can be seen as follows. If t (x )  is the unit vector tangent to the gradient 
extremal at a point (x), then ( t .  V) is the derivative in the direction of  this tangent. 
Since Eq. (2.2) is valid on the entire gradient extremal, we have therefore 

(t- V)(P .  V)(Vf)Z/2 = 0. (2.14) 

If  we decompose t and V into their components parallel and perpendicular to 
the gradient Vf  viz. 

t = tll + t• (2.15a) 

v = ( e  ~ v ) + ( e - v ) ,  (2.15b) 
then we have 

(t .  X7)= tll. pO. V + tz �9 P" V. (2.15c) 
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Inserting this decomposition into Eq. (2.14), we obtain 

tLi . A + t •  . B = 0 ,  (2.16) 

where the matrices A, B are given by 

A = (pO. V)(P .  V)(Vf)2/2, (2.17) 

B = (P .  V)(P .  V)(Vf)2/2. (2.18) 

These are calculated in the Appendix and, according to Eqs. (A.17), (A.18), can 
be written as 

A =  P ~ . [(VVVf) �9 (Vf)] �9 p =  pO. (T .  g) . P (2.19) 

B = P .  [(VVVf)- (Vf) ] .  P - ( V V f ) .  ( V V f - h i )  

= P .  ( T .  g) . P - H .  ( H - A I ) = H  c. (2.20) 

Equation (2.16) shows that t has a component t i  = tll �9 A B  1 perpendicular to 
the gradient Vf  This component vanishes only if the matrix A vanishes. This is, 
in fact, the case at the stationary points where g = V f =  0. It follows, therefore, 
that, at a stationary point, gradient extremals are parallel to steepest descent lines 
and intersect each other at right angles. Another case where t• vanishes is at points 
where T = (VVVf) vanishes. 

On the other hand, it is possible that a gradient extremal is perpendicular to the 
gradient and thus tangent to the contour subspace! According to Eq. (2.16) this 
somewhat surprising situation occurs whenever an eigenvalue of B vanishes. 
According to the discussion in Sect. 2.2, such a change in sign occurs when the 
character of  the gradient extremal changes, say from valley to cirque or from a 
ridge to a cliff. 

3. Two-dimensional case 

3.1. Differential relations 

The derived equations assume a simple form for a two-dimensional space of 
variables. Here the condition (2.2) can be replaced by 

(e- V)(Vf)2/2 = e- (VVf) �9 (Vf) = 0, (3.1) 

where e denotes the unit vector perpendicular to the gradient and tangent to the 
contour line. In the present case we have an explicit form for e, namely 

e = {(of/Oy),  - ( o f / Ox ) } / [ (o f / Ox )2+  (of/Oy)2] ~/2. (3.2) 

Insertion of e and Vf  into (3.1) yields the equation 

fxy( f2  _ f2y) + (fyy - f , x ) f ,  fy = 0, (3.3) 

where standard partial derivative notation has been used. Eq. (3.3) is the differen- 
tial equation for the gradient extremals. It is also readily derived from the general 
Eq. (2.8). 
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For any point on these curves the eigenvalues of the hessian are given by the 
expressions 

A = (Vf. VVf. V f ) / ( V f )  2 

= ( f x ~ f  2 + 2 f x y f ,  f y  +fyyf2)/(f2 +f2), (3.4) 

and 

A'= (e. Vf" e) 

= ( f x~ f~  - 2 fxy fx fy  + fyyf2)/(f2 +f2), (3.5) 

the former corresponding to the direction of Vf  and the latter to the direction 
of e. According to the discussion in Section 2, the sign of h' determines whether 
one has a valley (cirque) or a ridge (cliff). 

The distinction between a valley (ridge) and a cirque (cliff), i.e. whether (V f )  2 
is a minimum or maximum in the contour subspace depends on the sign of the 
second derivative of (V f )  2 in that subspace, viz., 

A"= (e. V)(e. V)(Vf)2/2. (3.6) 

From this equation one obtains 

A 1 -~-A 2 (3.7) 

with 

A~' = [V(Vf)2/2] �9 [(e. V)e], 

A~ = e. [VV(Vf)2/2] �9 e, 

where the differentiations do not act beyond the square brackets. Further differen- 
tial manipulations yield 

A~ = - ( e .  VVf. e)(Vf. VVf. V f ) / ( V f )  2, 

A~=e-  (VVVf. Vf) .  e + ( e .  VVf).  (VVf- e), 

whence, by virtue of Eqs. (3.4) and (3.5), 
t /  A1 -- --AA', (3.8a) 

A 2 - e "  - (VVVf. Vf) �9 e + (A') 2. (3.8b) 

Inserting these results in Eq. (3.7), one finally has 

A" = A '(A' - A ) + e. (VVVf. V f ) .  e, (3.9) 

where 

e. (VVVf. V f ) .  e = (fxx,f fy + fyyyfx)f~fy +fxxyfy (f2y - 2f~) + f x y y f x ( f ~  - 2f2)- 
(3.10) 

These equations are in agreement with the more general equations (2.11), (2.12), 
(2.13). 

The signs of A' and A" characterize the gradient extremal as follows: 

A'> 0, A"> 0 is a valley, A'> 0, A"< 0 is a cirque, 

A' < 0, A" > 0 is a ridge, A' < 0, A" < 0 is a cliff. 
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3.2. I l lus t ra t i ve  exam pl e  

In order to illustrate the discussed relationships we consider the surface 

f ( x ,  y )  = ( x y  2 - y x  2 + x 2 + 2 y  - 3)/2. (3.11) 

Its contour lines are displayed in Fig. 2 as the curves which are not marked by 
symbols. Some orthogonal trajectories are also drawn. They are characterized by 
arrows. Four of these orthogonal trajectories pass through the two saddlepoints, 
$1 at (x = -0 .872,  y = 0.7105) and $2 at (x = 3.135, y = 1.249), and these are drawn 
as fat lines. On all trajectories the arrows point in the uphill direction. This 
implies that the values of  the dashed contours lie below f ( S l )  and that the values 
of the dotted contours lie above f(S2).  Also one has f(S2) > f (S l ) .  There are three 
contours with values between f(S1) and f(S2) and they are drawn as solid lines. 
Of these, the one in the middle corresponds to f (x ,  y) = 0. The increment between 
adjacent contours is A f =  0.5. The dashed contours outline three valleys. The 
dotted contours outline three ridges. The area between $1 and $2 is a relatively 
fiat transition region. 

There are three gradient extremals, which are drawn as lines with open circles 
on them. Two of them, one going through $1, the other through $2, both in a 
SW to NE direction, are quite similar to two corresponding orthogonal trajectories. 
The third gradient extremal is the curved line starting in the upper left and ending 
in the lower right. Its behavior differs greatly from that of any orthogonal 
trajectory. 

The properties of these gradient extremals are elucidated by an examination of 
the eigenvalues defined in the preceding Section. Fig. 3 exhibits the eigenvalue 
plots for the two gradient extremals which are similar to orthogonal trajectories. 
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Fig. 3. Eigenvalues (Eqs. (3.4), (3.5), (3.9)) for the 
gradient extremals which pass through one saddle- 
point only 



Gradient extremals 

Fig. 4. Eigenvalues (Eqs. (3.4), (3.5), (3.9)) for the 
gradient extremal passing through both saddlepoints. 
The latter are indicated by heavy dots 
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Figure 3A corresponds to the gradient extremal passing through the saddlepoint 
$1. It is seen that A'< 0 and )t"> 0 for the entire curve, indicating that it follows 
a ridge. Figure 3B corresponds to the gradient extremal passing through the 
saddlepoint $2. Here we have A'> 0, ,V'> 0, indicating that it follows a valley. 
Both inferences agree with the contourplot of Fig. 2. 

Figure 4 exhibits the eigenvalues for the doubly curved third gradient extremal 
which is dissimilar to any orthogonal trajectory. At the upper left of Fig. 2 the 
curve clearly starts out as a valley, which is confirmed by the eigenvalues A'> 0, 
A">0. At the point (x =0,  y = 0 )  the curves becomes tangent to the contour 
f =  -3 /2 .  It is here that A" vanishes, in agreement with the general theory, and 
changes sign. From here on A" is negative and the curve follows a cirque ()t' is 
still positive). As the curve traverses the flat middle plateau, the cirque flattens 
out and turns into a cliff at the point (x=0.685,  y=0.920) ,  where )t' vanishes 
and becomes negative. A little further on, at the point (x = 2, y = 2) the curve 
becomes tangent to the contour f =  5/2 and here )t" vanishes again and turns 
back to being positive. From here on out this gradient extremal follows a ridge. 

4. Multidimensional generalization of gradient extremals 

It is possible to define the gradient extremals in a slightly different manner which 
lends itself to a natural, multidimensional generalization of these curves. 

Consider the expansion of the surface V = f ( x )  around an arbitrary point x ~  
(Xl ~ �9 �9 x ~  to second order in the cartesian displacements ~:i(xi- o xi), viz. 

V =  V~ + Y, g ~162 + E H ~  ~,6/2. (4.1) 
i ij 
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We introduce new displacement coordinates ql, q2 . . . .  qN at the same point x ~ 
which are related to the ~ by an orthogonal transformation 

N N 
~ ,=X o Ui.q. ,  q. = • ~Ui ~  (4.2) 

n i 

so that 

V = V ~  g.q. + ~. h.mq.q,,,/2. (4.3) 
rl rlrtl 

We now define the orthogonal matrix Ui ~ by the following two sets of  conditions: 

(i) The gradieni V f  lies in the direction of  q~ so that 

g2 = g3 . . . . .  gN = 0; (4.4) 

(ii) The second order terms are diagonal in the displacements q2, q3 . - -  qu, so 
that h,m = 0  when n, m > 2  and n # m; i.e. 

h =  

hll h12 hi3 h14 

h21 h22 0 0 

h31 0 h33 0 

h41 0 0 h44 

hint  

0 

0 

0 

hN1 0 0 0 hNN 

(4.5) 

Since these are N ( N -  1)/2 conditions in total, there exists a unique set of  such 
displacements q, at any point (x ~ - x ~  in configuration space and the coefficients 
g~, hi ,  and h~, are thus defined as functions everywhere in that space. 

The gradient extremals can now be obtained by requiring that the functions 
hl . (n->2) all vanish, viz. 

h12 --  h i3  = hi4 . . . . .  hlN = O. (4.6) 

These are ( N - 1 )  equations whose relations determine curves in configuration 
space which manifestly have the property that the gradient is an eigenvector of  
the hessian. 

From this point of  view we can generalize the concept of  the gradient extremal 
by requiring that only ( N  - n) of  the coefficient functions hi,, vanish, for example 

h1,~+1 = ha,n+2 = h1,~+3 . . . .  hN = 0 (4.7) 
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where n > 3, 

/hH 

h21 

h31 

hal 

h =  0 

0 

0 

so that e.g. for n = 4: 

h12 hi3 hi4 0 0 

h22 0 0 0 0 

0 h33 0 0 0 

0 0 h44 0 0 

0 0 0 h55 0 

0 0 0 0 h66 

0 0 0 0 0 hNN 

0 

0 

0 

0 

0 

(4,8) 

These conditions define a n-dimensional surface in configurational space which 
has the property that, at each of its points, the gradient of V lies in the linear 
subspace spanned by n eigenvectors of the hessian of V. It is apparent that this 
surface is also defined by the equations (2.8) when the equations for k = 1, 2 , . . .  n 
are omitted from that set. 

It also is clear that any m-dimensional surface, with m -< n, formed by a subset 
of m of the n eigenvectors, lies totally imbedded in the n-dimensional surface. 
In particular, the gradient extremals lie totally within higher dimensional surfaces 
or they intersect such surfaces only at extremal points. In general, the intersection 
of two surfaces is itself a surface of lower dimension. 

5. Appendix 

5.1. Differential relations pertaining to gradient extremals 

1. The projection of  an arbitrary vector a in the direction of the gradient Vf  is written as 

~ } pO. a = a. po = Pijaj , (A.1) 

where the projection matrix is 

pO = (of/Ox,)(of/Oxj)/~ (of/Oxk) 2 (A.2) 
k 

pO = [(V f )  x (Vf)] / [(Vf)  �9 (V f) ] .  (A.2a) 

Consequently the matrix 

Pij = 6ij - p o (A.3) 

generates the projection in the linear space that is tangent to the contour subspace. Clearly: 

p o .  Vf  = V f, P .  Vf  = 0. (A.4) 

2. For the derivatives of the central quantity (V f )  �9 (V f ) / 2  = (Vf)2/2 we obtain 

V(Vf)2/2 = (VVf).  (Vj0 = {j~ (02f/Ox, Oxj)(of/oxj)}. (A.5) 

The expression (A.5) can be decomposed in a projection parallel and perpendicular to Vf  These are 

(pO. V)(Vf)2/2= po .  (VVf) .  (V f ) =  A(Vf), (A.6) 
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where A has been defined as 

3. = (V f ) .  (VVf) �9 (Vf) / (Vf)  2 (A.7a) 

A = pO: (VVf) = (VVf) : po. (A.7b) 

Consequently 

(P-  V)(Vf)2/2 = (VVf) �9 (V f )  - A (V f ) .  (A.8) 

Gradient extremals are defined by the condition that the expression (A.8) vanishes: 

(VVf) �9 (V f )  = A (V f ) .  (A.9) 

3. In order to analyze higher derivatives, we begin by calculating VA(x). Because of  the gradient 
extremal condition (A.9) some cancellation occurs in the calculation of Va, and one obtains 

V f =  V{(Vf).  (VVf) .  (Vf)/(Vf)2}, 

= [(Vf) �9 (VVVf) �9 (Vf)]/(Vf) 2, (A.10a) 

= (VVVf) : po = po;  (VVVf), (A.10b) 

from which follows also 

(VA)k(Vf)t = {(VVVf) �9 (V f ) .  P~ ,. (A.11) 

4. Now for the second derivatives of (V f)2/2. From Eq. (A.6) we find 

Vk(P ~  V)t(Vf)2/2 = VkA (Vf)l = (Va)k(Vf)t + a (VVf)kl, 

whence by virtue of  Eq. (A.11) 

Vk(P ~ V),(Vf)2/2={(VVVf) �9 (Vf) .  P~ + )t(VVf)kt. (A.12) 

From Eq. (A.8) we find 

Vk(P '  V)l(Vf)2/2 = Vk{(VVf)" W - - a  (W)}I 

= {(VVVf) �9 (V f )  - (VA)(V f )  + (VVf) �9 ( V V f -  al)}kt, 

whence by virtue of (A.11) and (A.3) 

Vk(P" V)t(Vf)2/2 = {(VVVf) �9 (V f ) '  P +  (VVf) " ( V V f -  al)}kt. (A.13) 

Equations (A.12) and (A.13) are in accord with 

VV(Vf)2/2 = (VVVf) �9 (V f )  + (VVf) - (VVf). (A.14) 

From (A.12) follows furthermore 

( / ~ .  V)(P  ~  V)(Vf)2/2---P~ V f -  pO+ ApO. (VVf), 

whence by virtue of (A.5) 

(po .  V)(pO. V)(Vf)z/2 = p o .  (VVVf).  (V f ) -  p o +  a2pO. (A.15) 

Applying po to Eq. (A.14) we find 

(po .  V)V(Vf)2/2 = po .  (VVVjO. ( V f ) + P  ~  (VV)0. (VVf), 

whence by virtue of  Eqs. (A.6) and (A.9) 

(pO. V)V(Vf)2/2 = p o .  (VVVf) - (V f )  + AzP ~ (A.16) 

We thus have the four relations 

VV(Vf)2/2 = (VVVf) �9 (V f )  + (VVf) - (VVf), (A.14) 

V(P ~ V)(Vf)2/2 = (VVVf) �9 (V f ) .  po + a (VVf), (A.12) 

(po, V)V(Vf)2/2 = p o .  (VVVf).  (V f ) +  A2P ~ (A.16) 

(po .  V)(po .  V)(Vf)2/2 = p o .  (VVVf) �9 (V f ) -  P o +  h2P~ (A.15) 

By combining Eqs. (A.15) and (A.16) and taking into account Eq. (A.3), we find furthermore 

(pO. V)(P.  V)(Vf)2/2 = pO. [(VVVJ0 - (Vf)] �9 P (A.17) 
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By combining Eqs. (A.12), (A.14), (A.15), (A.16) and taking into account Eq. (A.3), we find also 

(P. V)(P- v)cvf)2/2 = P.  (VVVf) �9 (Vf). P+  (VVf), (VVf-  al). CA.18) 

Subtracting Eq. (A.17) from Eq. (A.18) yields again (A.13). 
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