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The method presented in paper I of the series is tested in the case of highly delocalized 7 systems
where convergence should be difficult.For m alternant hydrocarbons with regular geometries the summa-
tion of the terms to 4™ order is possible using a few basic parameters and some caracteristics of the
molecular topology. Several numerical applications are given: a good agreement with exact energy
is obtained for butadiene and benzene.

Die in Teil I dieser Arbeit angegebene Methode wird fiir den Fall eines stark delokalisierten
n-Elektronensystems, wo Konvergenz schlecht sein sollte, ausprobiert. Fiir geometrisch regulére
Kohlenwasserstoffe mit alternierenden n-Bindungen ist die Summation der Terme bis zur 4. Ordnung
mdglich, wenn man nur einige Basisparameter und charakteristische Eigenschaften der molekularen
Struktur benutzt. Es werden verschiedene numerische Anwendungen angegeben: fiir Butadien und
Benzol erhilt man eine gute Ubereinstimmung mit der exakten Energie.

La méthode proposée dans le 1 article de la série est mise & I'épreuve sur les systémes n fortement
délocalisés ou elle devrait avoir de la peine & converger. Pour les hydrocarbures alternants avec géo-
metries régulieres il est possible d’effectuer les sommations de chaque type de contribution jusqu’au
4% ordre, en n’utilisant qu'un nombre réduit de paramétres de base et quelques caractéristiques de la
topologie moléculaire. On donne plusieurs exemples numériques: les résultats obtenus pour le buta-
diéne et le benzene sont trés proches des résultats exacts.

1. Introduction

In a preceeding paper [ 1] we have presented the principle and the advantages
of a method for the calculation of the ground state energy of molecules. This me-
thod consists of four steps:

One chooses a set of reasonable bond-orbitals, both bonding and antibonding.

One uses the bonding orbitals (or lone pairs) to build a fully localized deter-
minant which represents the wave function according to the chemical formula.
This determinant is the zeroth order wave function.

One uses the antibonding orbitals to build excited states (mono, di, ... n excited
states). The CI matrix is constructed on this basis of determinants.

One develops the lowest eigenvalue and eigenstate by the Rayleigh-Schrodin-
ger perturbation expansion.

We discussed the possible choice of the bond orbitals, the choice of the per-
turbation Hamiltonian and the use of diagramatic techniques. The purpose of
the present paper is to give an initial series of applications to = problems.

Why do we choose the 7 systems to test this method? The convergence of the
perturbation expansion from the SCF determinant for correlation problems has
already been studied and the first terms of the series seem to give a reasonable
evaluation of the correlation energy in the basis [2, 3, 4, 5], especially when one
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uses localized bonding and antibonding orbitals [6]. But we start now from a
determinant which does not include any delocalization, and with a higher energy.
The stronger the delocalization in the system, the less correct is the fully localized
determinant as zeroth order wave-function. The studies of the localizability
according to various criteria [7, 9] confirm that the = systems are much more
delocalized than the o ones [6]. The localizability, which lies at about 8% for
benzene, reaches 98 or 99 % in typical ¢ systems [6]. Thus the delocalization is
very important in aromatic molecules and the energy of a Kékulé-like deter-
minant should be much higher than the SCF ones. The conclusion is that aromatic
systems should be a crucial test of the method. If it converges on benzene, it should
behave satisfactorily for the other molecules.

The second reason for a test study on 7 systems is that the Pariser-Parr approxi-
mations [10] are reliable. Moreover the alternant hydrocarbons present some
special simplifications (no polarisation for instance). In their case one may eluci-
date simply the role of the topology and if one assumes an ideal geometry the
algebraic derivations and the summations are very easy to perform. Under these
favorable circumstances we have been able to make a fully explicit development
up to fourth order. One will see also that in this case the relations between the
Feynmann diagrams and the molecular graph appear clearly.

2. Simplifications Due to the Pariser-Parr Approximations

The PPP approximations [10] imply:

the zero differential overlap: S, =0 for p#g;

the tri- and quadricentric bielectronic integrals and exchange integrals are
zero: (pq|r5)=(Pq|pq) 6, 04

the non diagonal core Hamiltonian matrix elements are zero, except for nearest
neighbourgs atoms: f,, =0 if p and g are not linked;

the diagonal terms of the core Hamiltonian are written as

a,=W,,— Y (pqlpq)

q#p
where W, , is the “ionization potential” of the 2p, orbital of the atom p.

The fully localized orbitals (FLBO) which will be used are ethylenic orbitals.
The “ground state” wave. function will be the determinant build with “bonding”
molecular orbitals only. The “antibonding” orbitals are used tobuilt the “excited”
configurations. (For n systems, the treatment is a special case of the method called
“Molecules in Molecules” [11, 13] mainly used for excited states.)

Configuration interaction implies the calculation of all molecular orbital

1
Fi2
are defined on different atoms. Due to the reduction of the atomic bielectronic

integrals to (pq|pg)=g,, the only non-zero molecular bielectronic integrals
are of the type

biclectronic integrals (ik|jl) = < ik

J l>. But the localized molecular orbitals

i,i"=i or i*
(i/jl I il/j/!) Whel’l
Jjsj'=j or j*.

2%
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This is the main advantage of working in a basis of bond orbitals: instead of N*
integrals of the same order of magnitude [4], one has only N? important elements
in the configuration interaction matrix.
One gets further simplifications for the case of alternant hydrocarbons.
The electronic charge on each atom must remain unity. There is no polarization

. . i* . .
and the intra-bond monoexcited states (—) do not interact with the ground state.
i

One haS Jl_] = (l] | l]) = Jij* = J,*J = Ji*fk.
The transition energies keep a very simple form. One may verify easily that
for the orbitals i and i* one has for the monoelectronic energies

e; =W, + Pis+Ju,
where B} , is the core integral between atoms 1 and 2 of bond i. And
e =Wyp— Bz + 20— Ky -

Thus, if all double bonds have the same length, all the monoelectronic energies
are equal to e or e*. Then there are only two types of monoexcitation energies:

o ... i* .
The polarisation transitions (—) have the energies
i

AE; u=—E=¢*—e—(J;n—K;s)
=28,

where f is the non diagonal core matrix element for the double bond.

3k
The “charge-transfer” or “delocalization” transitions <]—> need a different
i

transition energy which will depend on the relative geometrical position of the
bonds i and j.

AEi—U*= - EUZ e* —e—~Jij*
with

1 . .
Jip= T(gil,jl +8it, 52+ &iz 1 + 8in,2) -

We shall be led to keep only the excitations towards the nearest neighbour bonds.
In that case one has only two charge-transfer “excitation energies”: the “cis”
and “trans” transition energies for linear polyenes for instance.

We also need the “transition energies” towards diexcited configurations.
In general this energy depends of the relative spins of the two excitations: For two
different spins one has

AE<JI k— ) =8f;+ & _ei_8k+Jik+J_f"l*_‘]kl*-‘]if“—ka*_Jil*+Ki1*+Kkl* ’

and if the two spins are the same,

j*l* J*l_*
AE,( lk ) :AE<T> ——Kik_Kj*l*_'_Kil*_‘_Kkj*'
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The exchange integrals are zero in our problem and these two excitations energies
are identical. To the 3™ order we shall only consider the excitations of the follow-
ing types (for equal double bond lengths)

lJ

rk sk
AE(’_I, >=—2E.
11

All the diexcitation transition energies useful to the third order are thus equal to 2 E.

AE( )228*—28~2Jii*_2Kii*:_2E

3. Zeroth, First and Second Order Energies

One may verify that in the Pariser and Parr approximations the energy of
the fully localized wave function is a sum of bond energies if the bond orbitals are
homopolar: a cancellation occurs between the sum of coulombic integrals in
Y. 2<ilh|i) and the sum of coulombic integrals in } )" 2J;;— K;;. (Note that this

i iJ

is no longer true for polar molecules, and this forbids the calculation of resonance
energies as the differences between the SCF energy and the energy of the fully
localized determinant.)

E0=2Ei.

If all the double bonds have the same length, E;=¢=2W,,+ 28+ 3(g;; — 3g;,),
and the zeroth order energy is obtained from the number n; of double bonds:

E’=ne.

The first order energy correction is zero by definition of the perturbation matrix.

The second order correction involves the mono- and diexcited configurations.
.. i* . . .
As the polarization states <—) are not involved, we must consider the delocali-

%
zation or charge transfer states <L> . With the PP approximations for bielectronic
i

integrals (ik | j*k)=0Vk, and

<0IH | ({-» = Cilhlj*> = By

This integral will be non zero if the two double bonds are adjacent. Then

B
,Bif* = i 7 )
if § is the monoelectronic integral between two atoms singly bonded in the Kékulé
formula. The sign depends on the sign of the coefficient of the molecular orbital j*
on the atom adjacent to the bond i. Let us call »,;; the number of neighbour bonds.
i Tk i T
One may consider the monoexcitations <1—>, <]T>, <l—> and <17>, and the
J

i i j
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second order correction due to monoexcited states is

2
'l

Y 4L,
i<y Ey

If all the single bonds have the same length and if all neighbour bonds are in the
same geometrical relation (all trans in linear polyenes, all cis in benzene and naphta-
lene), one may write

1Bl = — B .
4 2 » V,iandjadjacent
E;=FE
2
and the contribution becomes 5 M

The diexcited configurations which play a role in the 2*® order correction

belong to two types:

give most of the inter-pair correlation

The interbond diexcitations (

[6, 14] contribution. The matrix element with the ground state is

o s 1
@l*j*) =+ T [8i1j1 + &izja — 8injz — 8izji]

+ - + -

+ 4+ + o+

1 2 1 2
i J

At long distances the bielectronic integrals decrease as 1/r. It is easy to see that
the integral (ij | i* j*) decreases as 1/r>, and one recognizes here a term analogous
to the dispersion contribution in the expression of intermolecular forces. This
integral decreases very rapidly with the distance. It is thus possible:

either to take the sum of all these diexcitations, and one gets

(ij %7 . . .
ZZ 4 s~ (corresponding to the diagrams of Fig. 2a, Part I)
i<j AE ( l ] )
3]

or to neglect the long distance terms and to keep the interactions between ad-
jacent bonds only. If all these bonds are in the cis-position (as in benzene or
naphtalene) or in the trans-position (as in linear polyenes), we may write (ij| i*j*)=b.
The quantity b is negative and we get the contribution

4p* 2h?

BT R

i
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e P i*
The other possible diexcitation concerns only one bond ( = ) and leads to
the pair correlation contribution ®:

ii]i*i*
@] _

zi: <i*;*>,
E\—
ii

the integral a = (ii| i* i*)= § (g, — &1,) is important and is reduced by the para-
metric PP reduction of the short distance bielectronic integrals. Thus one under-
stands very clearly why the correlation energy in x systems in mainly dependent
on the values of g;; and g,,.

The second order correction appears as a sum of bond energies and bond

interactions energies.
2 2 2
a B 2b
=——n+ = ny; .
2E E + E Y

4, Third Order Corrections

In our problem, due to the nullity of &' and {(@;|V| ®,), the 37 order correction
is given by

e OV B (B, V] By < V] 0
Y) (Bo—E)) (Eq —Ey)
*0

The configurations @, and @, belong to ¥, and it is sufficient to analyse the three
following possibilities:

1. Interaction of Monoexcited States
* I
In general the monoexcited states <T> and T do not interact. They may
7 k*
only interact if k=i or I*=j* If &, = (—> and @, = <—> we get the diagram
of Fig. 4a. ! .
ﬁij* ﬂj*k* ﬁik*
E? '

Thebondsi,jand k must be adjacent, which requires one of the following topologies.

*
"* - * * i
* * /* *\ * *©=

Fig. 3

! We used this terminology in order to compare with Kutzelnigg’s results but it would be better
to use Sinanoflu’s notation of “intra-bond and inter-bond correlation energies”.



24 J. P. Malrieu, P. Claverie, and S. Diner:

We only consider the first topology, the only one to be found frequently in alternant
hydrocarbons.
The sign of the contribution does not depend on the choice of the signs of the
coefficients on the excited orbitals, since these orbitals always appear an even
3
number of time and one may verify that in our case we get T Taking into
account the two spin possibilities we get

3

SE? Viik

where vy, is defined by v =YY Y 1,i,j, and k being adjacent two by two.
P
It is clear that in the topological graph @ this number is 3. We shall introduce

ni. the number of Kékulé-like diagrams in the chemical formula.

One may verify that the interaction of states i | j* and k | j* leads to the same
contribution, and the interaction of the monoexcited states gives finally
3° A

2 n;;- This contribution is negative and important.

2.Interaction of Mono- and Di-Excited Configurations

j* P*ix Jx® k* i*
The states <_> cannot interact with the states (—l—_—>, <k—l> and <_kl_> .
i i

. . . i
Then there only remains the interaction with ( J )
1]

G LGP H| T L = — G LT H T LD
:_ﬁji*'

Bip Binlij | %) _ B*b

We get the contribution—

E'E "~ 8F'E’
Taking into account the two spin possibilities and the analogous interaction of

Y ik j* B*b S .
— } with we get —— n,;, which is negative, as b, and corresponds to
J

EE Y

diagrams of Fig. 4b.

Fig. 4. Third order diagrams (see the text)
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3. Interaction of Diexcited States

The states < — > and ( o ) cannot interact. But < —— | can interact with
11 11

.
( ! ] > with the matrix element (i*j|ij*) =b. Taking into account the four spin
1j

possibilities, and the interchange of the role of bonds i and j we get

2

nija

which is positive. This corresponds to a special case of diagram 4c. The inter-

i
leads to the matrix element (7* k | j k*) = b. If we neglect the long range interactions

the three bonds i, j, k must be adjacent asin § 4, 1°). One has thus 8 spin-possibilities
3

126 . .
and one gets —— n;; ,ane ative quantlt .
g EZ ijk g y

l*J* l* k*
acting diexcited configurations may be of the type i ) and < T ) This

It is important to remember that we work in a basis of single determinants
o ] Al i i*T* ]
and that we distinguish between ( J ) and < J_ ) These two configurations
1 1j
2

4E?
Taking into account the two possible spins for i and the possible permutation of i
and j we get the positive contribution

2ab?
EZ

The third order correction is given by
B*b  6ab* 3p° 12b°
83=<ﬁ+T mit Tt e

One may remark that if b is small compared to f and a (which is always the case
3

interact with the matrix element (j*j|jj*) = K;x»=a. This gives the term

nij .

—Eﬁnﬁk which is negative: in benzene-like systems

in 7 systems) the main term is
we shall have animportant negative third order correction while in polyene-like systems
the third order correction will be small, and positive or negative according to the
ratio a/p.

It seems at this step that the n'® order correction involves for the first time
“n-body” terms and many “(n — p)-body” corrections. In our problem the energy
corrections are immetiatly obtained by counting the pairs of adjacent double
bonds and the number of Kékulé-like formulas in the chemical localized graph.

We would stress on the fact that for a given type of Goldstone’s diagram one
gets different order of magnitudes for the corresponding elements according to
the Iabelling of the lines: this is due to the fact that the intra pair correlation matrix
elements a are much larger than the interpair contributions b.

All these remarks will be confirmed by the analysis of the fourth order correc-
tion.
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5. Fourth Order Correction

The general 4 order contribution has the form given in Eq. (2), but we must
calculate first the contribution of the so called EPV diagrams, corresponding to
the RS diagrams with a single non-zero Goldstone component.

A. 4* Order EPV Diagrams Contributions

Let us divide the 2" order correction to the energy &2 and the first order
correction to the wave function ¥* into their contribution from the monoexcited
states (¢>* and Y"') and their contribution from the diexcited states (622 and
¥"2). We must analyse the non cancelling terms coming from 21 Ph1| 1y,
82,2<[Pl,2 ‘ 'Pl’2>, 82,2<lI/1,1 | 1111,1> and 82’1<'P1’2 ! W1’2>.

" o

a) e»1(P-1| Y15 The contribution coming from (%—) in &2 and (—*>
i

B Bie

X —3
E/ El
jandk, but k and j are not necessarily adjacent (see Fig. 5). If we call nf}, the number
of such

in P! are not cancelled. They give —

. This implies that { is linked to

t J
Fig. 5
4
topological subsystems in the molecular graph?, we get — TETniAjk. We could
change the role of occupied and virtual orbitals and get an equal contribution.

%
As a special case we must consider the contributions of <]T> both in &¢* and ¥!;

taking into account the two spin possibilities and the interchange of i and j, we get
BB B

E” 47 YU
b) e®2(P-2 | ¥12) There is no cancellation with the general summation for

g ek P*
and of Y* coming from < . >

the contribution of ¢*2 coming from (
i

There are 8 spin possibilities and j and k may be inverted : thus we obtain
b b 2b*
_ 11153”‘ hence — Fﬁgk.

There are some special cases:

PN RN b} b*
( ij ) n e ( 7)Yy T

i A b b*
= ineg*and Ploo — 2 ——n,
( ij > SE3 283 7
2 Hfeach bond is adjacent to the two others (graphs of Fig. 3) the corresponding graph contributes 3
times to n@k; if we note by mi’}k the number of graphs corresponding strictly to Fig. 5 (ie. only one bond

adjacent to the two others), we therefore have nfy =mf}, + 3n%;.
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7 Tk Pk % ] 2p2 2bh2 42
(l d ) in &% (or ¥') and <liJ, ) in ¥ (or e3> — G2y ,_ =4 s
J

i 8E? E?
i*i* ) at a*
< = > in both ¢* and ¥'— — TR AR

This last term will be the only 4™ order contribution if bonds do not interact.
It is the sum of the 4™ order corrections for each bond, and will be the only 4
correction proportional to n;.

¢) g2 (WL | P2y and 2 2(PH | PRI In 21 (P2 | W2y the products
o3k

of terms coming from ]— in ¢>! by terms coming from <J _ ) in P42, We
i
get thus S .
L S
4E'E? 2E'E? T

In a similar manner

5k *k* 2b2
({—) in &% and <lik > in P! give — %n{}k,
7% % ok ZbZ
<ll—> in g2, (li; > in P! give —%3@,

g -k T - T 2 2
T ) e, (S ) (o (2 in ¥ — _@,LGi'-
i i jj 2E'E* Y

If one reverses the role of ¢ and P! one gets exactly the same contributions
except for the fact that the denominators are then E” E instead of 2E' E2.
The sum of the contributions from the EPV diagrams are then

_ —4[2?1-/\- +n,,]+£ ni +_3~n“ n 2b2 a2 - a* N
4E"” ijk ij E2 ijk 4l E3 ij gps

B> i 1
T SEE|2E + o [(4ni/\jk + 3”ij) b+ 2nija2] >

e " l: ﬁ4 2b4 2ﬂ2 bZ /32 b2 :|
— 7 Mijk

2w T B Y EE TR

_n__[ p* . 3b* N 2b2 g2 N 34%b? . 32b pra? N ﬂzaz}

9l 4F7 2E3 E3 2E’E 4F'E*  E’E = 2EE*
a4

TR

This is a sum of positive elements, some of them being important (particularly
the terms in %, a* and «? ).
Now one must calculate the general summation
TYY 0V @) D, VI @) {Ps|V]| P> (P V|0
I J K (EO_EI) (EO—-EJ) (EO—EK)
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We shall arrange the discussion by considering that &; and @, must belong to P!
and be mono- or di-excited configurations.

»
-

B. &, and @ Monoexcited

a) ®;-Monoexcited. &; may only differ by one orbital from &; and @¢. The
possible unlabelled diagrams are then

and

" "
JT , O = <]7>andd§,(= <—>

This leads to the product B;x(—pBi) (— Bu) Bi/E”. The sign of this quantity
depends on the corresponding topological graph. In the dimethylene-cyclohexa-

The first diagrams correspond in general to @, =

diene like graphs IV-2 :@ the sign of the quantity changes when i, j, k and !
change their position and the sum is zero (see Appendix). The same cancellation

does not occur for the octatetraene like graph 1V-4 © and one thus gets
4

- N, where nfj, is the number of octatetraene like diagrams in the chemical

formula. The chain @, = (T)’ P, = (T)’ Py = (—) (second diagram) gives
i

an equal contribution. In these diagrams, several orbitals may be in common.
Starting from

one may have it k and | j

2 2
the first diagram gives b ”E*,a’k ,and +

B,

4E—’3ni"" and the second one the reverse

quantity. They cancel. A more peculiar case is given by the diagram |* J

2 N2 4
which gives Etaﬁ Yand + g In the same way, starting from one gets
ﬁ4
only + —=n;.
4g” v
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¥ corresponds to @, = <T>’ b, = <7> and ¢, = (7{)

i

The diagram

and give  PrBubprBu _ _ B

i — 5 5. As special cases one meets,

which gives

ﬂ43 nAk (_ ﬁij*ﬁijﬁj;k*ﬁjk*)
4Er 1J EI >

which gives

ﬂ4 n{\'k<_ ﬁij*ﬁikﬁi*f“ﬁki*)
47 Y E ’

which gives —

Bt (_ BirByBupBie
4g™ " s .

4
These diagrams lead to the contribution %[_4nicj\kl+2ni/}k—nij] the

symmetrical diagrams give the same contribution. Summing the contribu-

tions of the chains of monoexcited states one gets

4.
a)=> a [“4"51(1 + ni/}k] .

b) @,-Diexcited. Here we must avoid the unlinked Goldstone diagrams?3.
7% 3k Ik
Starting from <i—> for @, and going to (j 7 ) as @;, we have a linked RS diagram
i i

% ik
by going back to ¢, through <l—> and <L> . This corresponds to the following
i

diagrams, k

3 In order to get the cancellations allowed by the linked cluster theorem it is necessary to use

7% Ik
2E instead of 2E for the transition energies to diexcited configurations of the type (j - >
i
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and to the products — f;js By Bij Bir- One may verify that the study of signs and
numeration of the possibilities gives (see Appendix)

B N
- nG, for the graphs D\ and
v -0

)

ﬂ4

N nul?d for the chemical graph

\ /

(IV-1) (1v-3)

The two successive excitations must be of the same spin, and this avoids the
special cases in which the second excitation would include one of the spin orbitals
concerned in the first one. But the second excitation may be of the polarization

type <T> instead o (—k—> In the chain @, = ( > o, = (T)’ Py = (T)
7k

or (—Jl—; , we must calculate the matrix element {j*ikk |H|j*7k*k), which may
be compared to (iikk |H|iikk*> known to be zero:
GETKR H| TR R = (7% K | k%) — (ik | ik*) .

In the molecular Kékulé-like graph this is equal to a= %(g,5 — g;4). This new

parameter o appearing in the theory will be smaller but of the same order of magni-
3

tude as @ and much larger than b. Each chain gives — 1B6Eofa and taking alil pos-
3

B
Moreover the unlinked RS diagram

sibilities, one gets — 3

. . J* JEk* JEN . . .
corresponding to the chain of states <, >, (—), <: > involves linked bielec-
tronic parts. l ik l

One may verify by the same procedure that they give a contribution equal to

ﬁz 2
E/2 (3nl}k + mljk) . .
2 (XZ

A special case concerns k=i or j and gives

4E7E "
4 This case is treated in detail at the end of the paragraph 3, 2) of paper L.
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ﬁ4 ﬂ3 ﬂz 2 BZ O(Z
Then b) E/Z (nukl l_]kl) 3 E/S ljk +3 E/2 (3n1]k + 2fn’luk) + 4E'DE nu

if one does not take into account the graphs IV-0.

%
c) @;-Triexcited. Starting from J—) the only triexcited states to which we
i
ikl
state without a zero matrix element (@, |V| ®x> or an unlinked diagram.
The whole paragraph B gives then:

4 ﬁzaz 3 ﬁS ﬁz 062 ﬁzaz
B=F[—5n5‘kl+n§i,+n{}k]+<3 LT3 B >n§k+ R i+

may go are of the type , but we cannot come back to a monoexcited

C. @, Monoexcited, @y Diexcited (or the Reverse)

In all this paragraph one may invert the role of @; and &, and one must
introduce the factor 2 coming from the interchange of the place of the mono and
the diexcited states.

a) @;-Monoexcited. If &;= <]T> and ¢p= <k—l>’ one cannot find any

monoexcited state which interacts with both &; and @. Thus one may try [=ior .
The following cases must be considered:

i* i*k*
The matrix element <(T> |H|< - > is equal to (i*k|i*k*)— (ik|ik*)=

ik
J* k* *k* Bip Biwier B Bix
for homopolar bonds. @, = <T>’ P,= <T>’ tDK=< T gives, — ’—4’E—2E,—
ﬁ?:
and + SEE N

gives the same contribution and the symmetrical diagram.
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PR® i* j*
The more peculiar cases <15K=( i ) and 451(( ) do not give any
il

contribution.

b) @;-Diexcited. There is no diexcited configuration which interacts with
both { = | and .
ot ( : )an ( %

o) Pp= (—;), &, = <T>’ ¢K=( T > leads to the matrix element
. , s By Bisjeb;
(*k|j*k*)—(ik | ik*)=0o. One gets—-W

This contribution corresponds to the diagram:

The symmetrical diagram |*

"
The total contribution of these two types of diagrams is 2(— “p ) 3nf.

E'E?
B) Another possible chain is @, = <T>’ D, = (T)’ Dy = < T > which

BB = Brudbu

d gives th duct
' and gives the produc A E

h+l=3

corresponds to the diagram

2

BE A nf;.. An equal contribution is obtained from

Their final contribution is

ik

*k*
1/ =< - ) corresponds to the

232

B Bjixbju ix
a2 U E

and gives — néy.
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An equal contribution arises from the diagram in which the roles of occupied
and virtual orbitals have been permuted.

0) The chain @, = <T>’ qSJ=< T ), (I)K=< T ) corresponds to the

BijBir Bimienbij
4E*FE

Bh 3,

and + —EZ—E,‘Znijk.

diagram and gives —

e
One may change the role of occupied and virtual orbitals with @;= (J. ;{ )

i
and get an equal contribution.

One must consider now the special cases where k = i deriving from:

- - T* ) T* £~ e T* (R -.*
«) The chains of states <J—>, <J l_ ), <J i ) and <L), <] J_ ), (l J_ )
i i ji i ij ij

The second chain leads to the matrix element + ;[ (*j | /*j*) — @j | ij*)] Bupby; -
2

Since the first chain

b 2
2—5}%;11.]-. The chains

j* ]* 7% i* 7% ]* J*]_* ]*]‘* ) ) ﬁz aa
L) (=), [— d{5), (55, [ 5= o + <=5 ny-
( - ),( = ) ( " an : i i give raise to + E E? ny;

B) and §) give no special case, since all excitations must be of the same spin.
As special cases from y) one may consider the chains

7* i* j* Tk ]*]'* . ] ﬁz ba
(T)’ ( i) T or I which gives g
J* i* j* i+ P j o B2ba
<i>’ ( T ), < H or i which gives also FET"U'

sk
¢) &,-Triexcited. Starting from <ll-> we may only go to triexcited states of the

e s 1 e Cp e jod o
As (*j|j*j*)=0 and (ij|ij*) = — 5 we get 4—E’E_2nij'

turns out to give the same contribution, we finally get

ik 1% %
type <J i ) It is not possible to go back from this type of configurations to a

k*1*
( il ) diexcited state with a linked diagram.

The contribution of § C may be summarized as equal to

: b pb  2ub  b? }
c=L [3n§k<£—+ﬁ—+ z +%)+ﬂ<b—“+ﬂ+2ba>}

" E'E E E E E E\ 2 2

3 Theoret. chim. Acta {Berl) Vol. 13
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D. @, and &y Diexcited
* %

. -
a) @, Monoexcited. &;= < ] ) may only interact with (JT>, with (%)
1] ]

it gives (i*j*|i*j)— (ij* | ij)=0. The only possible chain is then <l J ), (L)

(or —) ( = >, and is represented by )
lj

[
202 212
bljﬂl*] and ﬁ b

4E7E AP E

ij

b) @;-Diexcited. Let us distinguish three types of diexcited states

o
Type 1 are the dispersion diexcitations <l J )

7% 7%k

Type 2 are the intrabond diexcitations . Both belong to P*.

Type 3 will be the other diexcited states which do not belong to ¥*.
@, and Pxmay be of types 1 and 2, §; may be of types 1, 2 or 3.

o) 3 excitations of Type 1. The chain ( i >, ( T >, ( P > gives a “ring

el "_“E“ k

bijbik bil bkl an O -------------
8E? Q ,
J J i i

16b*
TE (G + ni;}ljd ).

diagram”, the contribution

One must consider the following special cases:

HE\ [k [FR*\ 12b*
I=j A
! (ij )’(ik >’<jk>“’ G
i* j* ' 6b3a
k=]a l=k ( - ) E3 nl%k’
_ _ » .. . . b2a2
k=j, 1= ( = ) g i

Another ring diagram corresponds to the chain

% ok s 1% o J% b..b..b.,b. . . 16b*




Localized Bond Orbitals and the Correlation Problem. IT 35

with the following special cases:

cwn () () o ()2
e (D)
e (DEDED
B) &; of Type 2, &, and &, of Type 1.

(EME) () e 0t

with the special case k=1

EEHEFY ()2t

i* bia
The chain ( 5 > ( > < ) gives also 12 —— N nf, and the special case

=j, which leads to 2

. T i*i* i*k*
y) @;and @ of Type 1, @, of Type 2. The chain{ —— |, { —— |, T or

ij ii
il i 4
(T) gives 4 — =3 nf;, and we have a special case if k=j, with a corresponding
4

contribution of 57 M
P 7¥

o) If @; and Py are of Type 2, §; cannot be of Type 2. The chains <l — ),

ii
i*j i* j*J b*a?
<1J >,<il,>o <J] )glveZ ERA
¢) @; of Type 3. The chains l,j, ; z.l‘c , l.k and l.]. , l.J ,
ij if ik ij ik
b2 2

??ni‘}k. This corresponds to the

S by; B By b,
<lik ) give —Lﬂjngf—L"— and give

diagrams:

3*
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and introduce some special cases. If k=17 we get the chains ( -7 >, ( T ),
J J

ik Tk 1% Tk Y sk Tk baB?

! i and ! J_ , ! J. , ! l_ which give the contribution a—ﬁanij.
ii ij ii ii 2E
If j=1i one gets the symmetrical chains (already taken into account) of the

) ) jEiE % 7 PR Tl P TE PEiE
preceeding ones. The chams( f ),(l,J__ >,< l >0r< — >,( i >,< = >
2 g2 ii ii ii ii ij ii

giVe‘ 4—E3 nij.

Another type of diagram is and the symmetrical one

which correspond to the chains gl ] ), (l — >, (l J ) or gl J >, <l,] ),
ij ij ij ij ik
b2 p

e 202 2p2” .
(li; > Their contribution %EJ:*k or éjEék is equal to T n/;.. The special
2p2
labelling in which k =i give the contribution TERAs

. . . i*j*
¢) @,-Triexcited. A diexcited configuration

) may only interact with

ijl ij
matrix element is (j* 1| k* I*) = 0. In the second one we get S+, but to come back

triexcited configurations of types< ) or < . ) In the first case the

% i e
from <l J . ) to a diexcited state belonging to ¥ one must build an unlinked
diagram.

If we go to(

ijk

> we meet the following matrix element

(%K | % k%) — (k| ik®) + (% k | j*k*) — (K | jk*) =0.

There is no exception and the triexcited states do not give any contribution.

i* J* i* ]* k* I*
d) &,-Quadriexcited. The general chain is &, = i ), b, = <—UE1—>,

by = ! ,l ) ! ,k , J _l , Or / - . This corresponds to a diagram like
il ik jl ik

byybububs
]—IkéElg—l— or finally: —5— (nGy + niu)-

and gives g
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Special labellings give particular contributions.

b*a

I=k -6 _Eé— Vl,%k,

_ b4- 3
=i —>2Fnuk+6 E3 nuk,

- _ b+ ..
k:l and l=]—) <‘7 +b2a2> Zl; .

The sum of the contribution of § D is:
bz ﬁz

D= {(nukl + ngy ) 48b* + nf, (24!)4 +48h*a+3——

bZﬂZ b baﬁ2 bZBZ zﬁz
A 4 I 2.2
+nijk<6b + > >+nij<9 5 +9%a +——2 + y) 1+ E + 1

Final expression of the 4™ order energy correction:

. O 4 b4 ﬁ4 ﬂz 2
& =nijkl<—5 E,g +48 )+nljkl E3 +48 E +muk 4E,2
Ba 33 1 Brab b2 1
e I, N Y B R
+3"“"< E/3 TEE\ETE EE | E E’ " 3E
b4 BZ 2
+8—o +1628 -t

B* bt B[t 1 2
+"”"< 2w e T T \2E T T ER

B4 B*a? [ 1 N 1 1 N B*au
TU\TAET T E \F° T 2EE  4E?) T 2B R

2 2 4 1 4 22
+ﬁb“+ﬁba< + >+3b—+7 L )

2F E? 2E> \ E  E E3 4F”E

The expression of higher order energy corrections exhibit the same form, but
become more and more complex. In the 4™ order correction “four body” terms
appear for the first time, but we are compelled to distinguish the geometrical
shape of the four molecular graphs. The three and two body corrections are
numerous and very important. New types of three body terms appear, correspond-
ing to new geometrical graphs (nf},), and new parameters begin to be involved as o.
The various contributions have opposite signs and different orders of magnitudes
according to the power of b, which is much smaller than the other parameters,
as it will be seen in the numerical applications.
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Another very important conclusion from this treatment is that the triexcited
states never contribute (except for the EPV diagrams). This is a very satisfactory

result since many works had postulated or shown that they play a minor role.
%

. L i .
On the contrary the monoexcited polarisation states | — } lead to non negligible
i

contributions.

6. Numerical Applications

We have applied the method to linear polyenes and aromatic compounds.

A. Butadiene and Other Polyenes

We have performed three calculations on the trans-butadiene © system with
the Pariser-Parr [10], Mataga [15] and “theoretical” parameters [16] proposed
by Koutecky et al. [17]; these authors performed the full configuration interaction
which gives the exact solution of the problem. Staemmler and Kutzelnigg made a
27 order calculation on the basis of SCF delocalized orbitals and the pair APSG
localized calculation [5]. Diner, Claverie and Malrieu have obtained somewhat
better results with a 27 order perturbation treatment using localized SCF or-
bitals [6].

Butadiene having only two adjacent double bonds, the neglect of long range
interactions in our treatment is no longer an approximation (the same is true for
benzene). We give in Table 1, the values of the basic parameters E, E', 8, a, o, b

Table 1. Basic parameters of the perturbation expansion for the n system of butadiene ( Pariser-Parr (PP),
Mataga (M) and “Theoretical” (T) values of integrals [17])

PP M T
E —5.840 —5.100 —6.400
E —7.847 —6.580 —9.568
B —1.680 —2.130 —2.370
a 1.577 2.732 4.137
b -0.055 —0.115 —0.365
o 1.705 1.155 2.465

for the three sets of integrals and one may verify that §, « and a are of the same order
of magnitude and much larger than b. The Pariser-Parr parametrization reduces
both a and b, i.e. the pure correlation effects. Mataga’s parametrization gives
small transition energies and a large intra pair correlation effect. The theoretical
parameters give a still larger value of g but somewhat larger transition energies.
The PP set gives the best convergence.

One may see from Table 2 that the 2™ order correction throws the energy
into the region of the exact solution, and below it. In that peculiar case the third

order correction is small. This is due to the fact that with only two double bonds
3

there is no Fn;}k term, and that the other third order terms are proportional
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to b, which is small. Only two terms of opposite signs remain and the sign of the
total contribution depends on the relative magnitudes of g and |§|: the 3™ order
correction is negative for PP and M parameters, and positive for T ones. The
smallness of the 3™ order correction is thus due to the specificity of the problem,
and the fact that the 4™ order correction is larger does not demonstrate that the
perturbation does not converge.

The fourth order correction is about one tenth of the 2*® order one and posi-
tive. This is mainly due to EPV diagrams. This correction is too large and throws
the energy on the other side of the exact solution, but improves the result. The
correction is essentially due to the terms which do not involve b and which are in
B4, B*a?, B2 aa, and a*. In fact, it seems that it could be possible to treat the whole
problem as a multi-perturbation in f, a and b. These perturbations are not of the
same order of magnitude and it could be worthwhile for practical problems and
even in ¢ systems to go to the fourth order in § and a, and to the third only in b.
This would simplify the expressions of the perturbation correction and insure
a sufficient accuracy.

At any rate the results obtained are among the best ones obtained and give
less than 10% error on the correlation energy. They are obtained without the
use of any computer, in a few minutes.

For other polyenes the number of bonds (n;) and of adjacent bonds (n;) in-
creases proportionaly to the number of carbon atoms while nf;, remains zero:
this explains why the total energy increases as n and explains very simply the
previous results obtained in the basis of delocalized and localized orbitals [4, 6].

B. Benzene and Other Aromatic Compounds

In the case of linear polyenes the delocalization was not as important as the
intrabond correlation and of course the 2* order was already near the true
energy. It is no longer the case for benzene in which the localizability is rather poor.
And in fact, for usual values of parameters (f = —2.80 eV, short distances reduced
bielectronic integrals) the 2™ order corrected energy is not so good as the SCF

energy (see Table 3). But in that case, there exists a strong negative third order
3

correction | due to 7/;,7 n§k> which brings the energy halfway between the SCF
and the 2°¢ order corrected energy. The fourth order correction is still negative:
the perturbation expansion does not present the oscillations that we found in the

Table 3. Energies of the benzene w systems (eV)

Basic parameters Energies Correction Corrected energy
E=-5.610 Fully localized deter. —170.564
E'=—7.131 2™ order FLBO —4.118 —174.682
f=—2.805 3" order FLBO -1.410 —176.092

a=1.615 4" order FLBO —0.280 —176.372

b=032 SCF energy —175.774

o=1.20 27 order correl. energy —0.530 —176.304

Exact energy (Full CI) [20] —0.52 —176.294
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case of linear polyenes. This is due to the terms in nf;, which give several negative
large contributions. The successive corrections are in a ratio = 4 and the series
seem to converge.

Benzene is a highly peculiar case: in naphtalene for instance the fully localized
determinant has an energy of —331.801 ¢V and the 2™ order correction gives
—337.989 ¢V. The SCF energyis —337.083 eV and the 2" order correlation energy
is 1.451 eV. In that case the 2" order corrected FLBO is already halfway between
the SCF and the 2" order correlation-corrected energies. The same is true for
anthracene. The third order correction lowers the energy more. It is amazing
to show that a simple census of the number of double bonds, adjacent double
bonds and kekulean diagrams in the localized chemical formula gives at a glance
the evolution of the so called “resonance energies” in the series of polyacenes.
It parallels the results of Hiickel or PP calculations, but the concept of resonance
energy has received too many and too serious cristicisms and we do not give
details on that question.

C. Heterocyclic Compounds

We also have included some detailed third order results for heterocyclic
molecules (Table 4). The derivation of the general formulas for polar systems will
be given in the next paper. One uses reasonable bond polarities and the polari-
zation energy becomes very weak.

Conclusions

Our treatment seems to call for the following remarks:

1. It is very handy and makes clear the important terms of the first orders;
it enables us to select the most important contributions of 3¢ and 4" orders,
and can be useful even for ¢ systems: for bonds at long distances the Pariser-Parr
approximations may be considered as sufficient for the 3™ and 4" order contri-
butions.

2. It shows that it is difficult to keep only certain types of diagrams. The
ring diagrams for instance do not play the main role at 4'* order. Different dia-
grams give various contributions of similar orders of magnitudes and opposite
signs. A given type of diagram leads to terms of different orders of magnitude
according to the number of times they involve the intra-pair correlation. In fact
it would be interesting to consider the inter-pair correlation as a smaller perturba-
tion than the intra-pair correlation and delocalization and to leave it at the fourth
order. This would garantee most of the 4" order correction.

3. It showsin a much clearer and much more correct way than the diagonaliza-
tion of the Hiickel Hamiltonian the role of the molecular topology. The formulae
derived herein give the energy as a sum of bond, bond-pairs, bond-triplets, etc ...
energies. The connection with graph-theory is simpler here and many amazing
problems found during the preceeding treatment (sign of the four body corrections
for instance) could be treated with the help of the graph-theory. But we think
that quantum chemistry must leave the formal field of “z-ology” and leave these
questions as training problems.
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4. It shows very clearly the role of the parameters, and peculiarly the role of
coulombic integrals through four basic parameters a, b, a, f. One sees easily the
effect of reduction of the coulombic integrals at short distances and we demonstrate
once more (in a different way than Koutecky’s recent paper [18] since not linked
to the SCF formalism) that only differences between parameters are important.

5. One may examine recent cristicisms against the concept of aromaticity [19]:
it is true that the Kékulé formula is a good enough starting point for the inter-
pretation of certain quantities. However it appears clearly that there isa qualitative
difference between the convergence rate of polyenes and benzene: this is linked
to the ratio of the matrix elements over the transition energies; i.c. to the ratio
of the p values for single and double bonds.

6. By its good behaviour in the “a priori” hopeless case of benzene, the method
gives signs of persistent convergence, and one may hope for an analogous be-
haviour for ¢ systems.

The next paper will give a generalisation of the method taking into account
polarization effects and some applications to saturated systems.

Appendix

Molecular graphs involving 4 double bonds which play a role in the 4
order energy correction.

In these graphs, each double bond must be adjacent to two others. A given
double bond i may be linked to its two neighbours by the same atom:

{ (Casea) or by bothitsatoms: __/5\_ (Caseb)
PN

As a result there are 5 types of graphs involving four double bonds as mentioned
above according to the number of b-like configurations:

S

{4 casesa O0case b}— graph IV-0

{3casesa 1 case b}— graphIV-1

=

/' \_/

{2 casesa 2 cases b} — graph [V-2

{lcase a 3 casesb}— graph IV-3

{Ocase a 4 casesb}— graphIV-4

O QN
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In the Section B, a) of Paragraph 5, the contribution of the graphs IV-0, IV—1,
IV—3 have not been considered; anyway, such graphs do not occur frequently
in usual alternant hydrocarbons.
It is casy to see how the contributions of the various graphs can be calculated.
Bij« Bix Bra B+
7" (the
factor 2 corresponds to the two spin possibilities) for all possible labelings of the
orbitals in a given graph. To have a non-zero numerator, i and [ on one hand,
j* and k on the other hand must be non-adjacent; we therefore have 8 possible
labelings (we first put j* on one of the 4 bonds (4 possibilities), then k must be
on the opposite bond; we may put i on one of the 2 remaining bonds (and [ on the
ﬂz
4

For example, in the section quoted above, we have to sum 2

last one), hence the 8 possibilities). f§;, and f3,; are equal to %’ and By fi= +

2
if j* is of type (a) and — BT if j* is of type (b). Ina graph IV—p (where p=0,1, 2, 3, 4),

among the 4 possible positions for j*, p of them are of type (b), and since there are
still two possible labelings once j* is fixed, among the 8§ possible labelings, 2p
correspond to j* of type (b), and 2(4 — p) to j* of type (a); hence the total contribu-
tion of a graph IV—p:

p p Y g p*
EET[%( >+2(4— )( ):'_ZE’3 [4(2 p) j| C=P5pr-

Hence:

4
for IV-0 the contribution %,
ﬁ4
for IV—1 the contribution ——,
2E
for IV=2 the contribution 0,
ﬁ4
for IV-3 the contribution — ——7,
2E
ﬁ4
for IV—4 the contribution — ok

These molecular graphs also occur in the Section 8, b), where the product to be
treated is Bz Bus Bij Pus; i and k on one hand, j* and I* on the other hand must be
opposite (i.e. non adjacent). A treatment analogous to the preceding one leads

4
to the results given in the main text | 0 for IV—1 and IV-3, + 5,3 for IV-2 and
4

— T for IV-0 and IV—4) .
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