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The method presented in paper I of the series is tested in the case of highly delocalized ~ systems 
where convergence should be difficult.For ~ alternant hydrocarbons with regular geometries the summa- 
tion of the terms to 4 th order is possible using a few basic parameters and some caracteristics of the 
molecular topology. Several numerical applications are given: a good agreement with exact energy 
is obtained for butadiene and benzene. 

Die in Teil I dieser Arbeit angegebene Methode wird fiir den Fall eines stark delokalisierten 
g-Elektronensystems, wo Konvergenz schlecht sein sollte, ausprobiert. Fiir geometrisch regul~ire 
Kohlenwasserstoffe mit alternierenden ~z-Bindungen ist die Summation der Terme bis zur 4. Ordnung 
mSglich, wenn man nut einige Basisparameter und charakteristische Eigenschaften der molekularen 
Struktur benutzt. Es werden verschiedene numerische Anwendungen angegeben: fiir Butadien und 
Benzol erhglt man eine gute Obereinstimmung mit der exakten Energie. 

La m6thode propos6e dans le l~f article de la s6rie est mise/~ l'6preuve sur les syst~mes ~z fortement 
d61ocalis6s oil elle devrait avoir de la peine ~ converger. Pour les hydrocarbures alternants avec g6o- 
m6tries r6guli6res il est possible d'effectuer les sommations de chaque type de contribution jusqu'au 
4 ~ ordre, en n'utilisant qu'un hombre r6duit de param6tres de base et quelques caract6ristiques de la 
topologie mol6culaire. On donne plusieurs exemples num6riques: les r6sultats obtenus pour le buta- 
di6ne et le benz6ne sont tr6s proches des r6sultats exacts. 

1. Introduction 

In  a preceeding paper  [1] we have presented the principle and  the advantages  
of a me thod  for the calculat ion of the g round  state energy of molecules. This  me- 
thod consists of four steps: 

One  chooses a set of reasonable  bond-orbi ta ls ,  bo th  bond i ng  and  an t ibonding .  
One  uses the b o n d i n g  orbi tals  (or lone pairs) to bui ld  a fully localized deter- 

m i n a n t  which represents the wave funct ion according to the chemical formula.  
This de t e rminan t  is the zeroth order  wave function.  

One  uses the a n t i b o n d i n g  orbitals  to bui ld  excited states (mono,  di . . . .  n excited 
states). The C[ matr ix  is cons t ructed  on  this basis of determinants .  

One  develops the lowest eigenvalue and  eigenstate by the Rayleigh-Schr6din-  
ger pe r tu rba t ion  expansion.  

We discussed the possible choice of the b o n d  orbitals,  the choice of the per- 
t u rba t ion  H a m i l t o n i a n  and  the use of d iagramat ic  techniques.  The purpose  of 
the present  paper  is to give an  init ial  series of appl icat ions  to rc problems. 

W h y  do we choose the 7c systems to test this method?  The convergence of the 
pe r tu rba t ion  expans ion  from the SCF de te rminan t  for correla t ion problems has 
already been studied and  the first terms of the series seem to give a reasonable  
evaluat ion  of the corre la t ion  energy in the basis [2, 3, 4, 5], especially when one 
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uses localized bonding and antibonding orbitals [6]. But we start now from a 
determinant which does not include any delocalization, and with a higher energy. 
The stronger the delocalization in the system, the less correct is the fully localized 
determinant as zeroth order wave-function. The studies of the localizability 
according to various criteria [7, 9] confirm that the ~ systems are much more 
delocalized than the a ones [6]. The localizability, which lies a t  about 8 % for 
benzene, reaches 98 or 99 % in typical o- systems [6]. Thus the delocalization is 
very important  in aromatic molecules and the energy of a K6kul6-1ike deter- 
minant should be much higher than the SCF ones. The conclusion is that aromatic 
systems should be a crucial test of the method. If it converges on benzene, it should 
behave satisfactorily for the other molecules. 

The second reason for a test study on ~ systems is that the Pariser-Parr approxi- 
mations [10J are reliable. Moreover the alternant hydrocarbons present some 
special simplifications (no polarisation for instance). In their case one may eluci- 
date simply the role of the topology and if one assumes an ideal geometry the 
algebraic derivations and the summations are very easy to perform. Under these 
favorable circumstances we have been able to make a fully explicit development 
up to fourth order. One will see also that in this case the relations between the 
Feynmann diagrams and the molecular graph appear clearly. 

2. Simplifications Due to the Pariser-Parr Approximations 

The PPP approximations [10] imply: 
the zero differential overlap: Spq = 0 for p ~ q; 
the tri- and quadricentric bielectronie integrals and exchange integrals are 

zero: (pq l rs)=(pq l pq) 6,r6qs; 
the non diagonal core Hamiltonian matrix elements are zero, except for nearest 

neighbourgs atoms: fleq = 0 if p and q are not linked; 
the diagonal terms of the core Hamiltonian are written as 

%=w2,- Z (pqJpq) 
q~p 

where Wzp is the "ionization potential" of the 2pz orbital of the atom p. 
The fully localized orbitals (FLBO) which will be used are ethylenic orbitals. 

The "ground state" wave. function will be the determinant build with "bonding" 
molecular orbitals only. The "antibonding" orbitals are used to built the "excited" 
configurations. (For u systems, the treatment is a special case of the method called 
"Molecules in Molecules" [11, 13] mainly used for excited states.) 

Configuration interaction implies the calculation of all molecular orbital 

bielectronic integrals (i k l j l ):  ( i k r~2 J l).  But the localized molecular orbitals 

are defined on different atoms. Due to the reduction of  the atomic bielectronic 
integrals to (pq ]pq)=gpq the only non-zero molecular bielectronic integrals 
are of the type 

i', i ' =  i or i* 
(i'j'[ i" j') w h e n  

I . j ' , j '=j  or j* .  

2* 
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This is the main advantage of working in a basis of bond orbitals: instead of N ~ 
integrals of the same order of magnitude [4], one has only N z important elements 
in the configuration interaction matrix. 

One gets further simplifications for the case of alternant hydrocarbons. 
The electronic charge on each atom must remain unity. There is no polarization 

and the intra-bond monoexcited states (~-)  do not interact with the ground state. 
k - /  

One has J i j  = (ij  [ i j )  = Jij* = Ji*j  -= Ji*.p" 
The transition energies keep a very simple form. One may verify easily that 

for the orbitals i and i* one has for the monoelectronic energies 

ei = WEp + fl~2 + Ju, 

where fl~ 2 is the core integral between atoms 1 and 2 of bond i. And 

e l , =  WEp - fl~2 + 2Ju* - Kii* . 

Thus, if all double bonds have the same length, all the monoelectronic energies 
are equal to e or e*. Then there are only two types of monoexdtat ion energies: 

The polarisation transitions (-~) have the energies 

A Ei--, i* = - E = e* - e - (Ju* - K u , )  

-- -2 /~ ,  

where fl is the non diagonal core matrix element for the double bond. 

The "charge-transfer" or "delocalization" transitions (~-)  need a different 
k ' /  

transition energy which will depend on the relative geometrical position of the 
bonds i and j. 

with 
A E i _ . j , ,  = - E i j  ~- e* - e - Jij* 

1 
Jij* = ~ (gil,j l -b g i l J 2  "4- g i2 , j1  q-  g i 2 , j 2 ) "  

We shall be led to keep only the excitations towards the nearest neighbour bonds. 
In that case one has only two charge-transfer "excitation energies": the "cis" 
and "trans" transition energies for linear: polyenes for instance. 

We also need the "transition energies" towards diexcited configurations. 
In general this energy depends of the relative spins of the two excitations: For two 
different spins one has 

( j *  r*'~ = 
A E \ - ~ - ~ - j  c , j ; + e , : , - - e i - - e k  + Jik + J j , : , - - J k , , - - J i . , . , - - J k i , - - J u , +  K i j , +  Kkz , ,  

and if the two spins are the same, 
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The exchange integrals are zero in our problem and these two excitations energies 
are identical. To the 3 rd order we shall only consider the excitations of the follow- 
ing types (for equal double bond lengths) 

( i*j* ~ 
A E \ ~ - / =  2e* - 2e - 2J//, - 2Kii, = - 2E 

( i* i* ~ = 
A E \  ii j ~ 2 E a 

All the diexcitation transition energies useful to the third order are thus equal to 2E. 

3. Zeroth, First and Second Order Energies 

One may verify that in the Pariser and Parr approximations the energy of 
the fully localized wave function is a sum of bond energies if the bond orbitals are 
homopolar: a cancellation occurs between the sum of coulombic integrals in 

2(i]h[ i) and the sum of coulombic integrals in ~ 2 J i j -  Kij. (Note that this 
i i j 

is no longer true for polar molecules, and this forbids the calculation of resonance 
energies as the differences between the SCF energy and the energy of the fully 
localized determinant.) 

E o = ~ Ei. 
i 

If all the double bonds have the same length, E~ = ~ = 2 W2p + 2fl + �89 1 - 3912), 
and the zeroth order energy is obtained from the number n i of double bonds: 

E 0 = n i/3 . 

The first order energy correction is zero by definition of the perturbation matrix. 
The second order correction involves the mono- and diexcited configurations. 

As the polarization states ( @ )  are .not involved, we must consider the delocali- 
/ . . ~ \  

zation or charge transfer states (J~" ] .  With the PP approximations for bielectronic 
\ z /  

integrals (i k I j* k) = 0 g k, and 

This integral will be non zero if the two double bonds are adjacent. Then 

]?ij~ = -+ ~-, 

if]? is the monoelectronic integral between two atoms singly bonded in the K6kul~ 
formula. The sign depends on the sign of the coefficient of the molecular orbital j* 
on the atom adjacent to the bond i. Let us call nij the number of neighbour bonds. 

One may consider the monoexcitations ( ~ - ) ,  ( ~ ) ,  (@.*) and ( ~ ) ,  and the 
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second order correction due to monoexcited states is 

2 4  fl~ 
i<j Eij 

If all the single bonds have the same length and if all neighbour bonds are in the 
same geometrical relation (all trans in linear polyenes, all cis in benzene and naphta- 
lene), one may write 

Iflijl = - ~ ~ V, i and j adjacent 

Eij E' ) 

9 2 
and the contribution becomes ~7-nij. 

The diexcited configurations which play a role in the 2 na order correction 
belong to two types: 

The interbond diexcitations \ ~ - /  give most of the inter-pair correlation 

[6, 14] contribution. The matrix element with the ground state is 

1 
(ij I i ' j* )  = -I- ~- [g/l jl -I- gi2j2 - gia j2 - gi2jt] 

i* j* 
+ - + - 

+ + + + 

1 2 1 2 
i j 

At long distances the bielectronic integrals decrease as 1/r. It is easy to see that 
the integral (i j]  i ' j* )  decreases as 1/r a, and one recognizes here a term analogous 
to the dispersion contribution in the expression of intermolecular forces. This 
integral decreases very rapidly with the distance. It is thus possible: 
either to take the sum of all these diexcitations, and one gets 

~,24 
i<j 

(i j I i ' j* )  2 

i ' j *  
A E 

(corresponding to the diagrams of Fig. 2 a, Part I) 

or to neglect the long distance terms and to keep the interactions between ad- 
jacent bonds only. If all these bonds are in the cis-position (as in benzene or 
naphtalene) or in the trans-position (as in linear polyenes), we may write (ijl i ' j*)  = b. 
The quantity b is negative and we get the contribution 

4b 2 2b 2 
2E nij = ~ -  nlj . 
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( i" 7" ~ 
The other possible diexcitation concerns only one bond \ ~ - ]  and leads to 

the pair correlation contribution i : 

(ii I i* i*) . 

\ l l /  

the integral a = (Jill* i*)= �89 ( g l l -  g~2) is important and is reduced by the para- 
metric PP reduction of the short distance bielectronic integrals. Thus one under- 
stands very dearly why the correlation energy in rc systems in mainly dependent 
on the values of gl~ and g22. 

The second order correction appears as a sum of bond energies and bond 
interactions energies. 

a 2 (f12 ~ )  ,~2 = ~ - n i +  ~ - +  n o �9 

4. Third Order Corrections 

In our problem, due to the nullity of el and (~,1 vI ~,), the 3 rd order correction 
is given by 

z_. z_.x~v: (~ Igl ~I) (~I I r l  ~s) (~s Igl 0) s 2 
I <J (E o - -  E l )  (E o - E j )  

~ao 

The configurations q~s and ~x belong to ~1, and it is sufficient to analyse the three 
following possibilities: 

1. Interaction of Monoexcited States 

In general the monoexcited states ( ~ - )  and ( ~ - )  do not interact. They may 

only interact if k = i  or l*=j*. If ~s= ( @ )  and ~j = (~*-)  we get the diagram 
of Fig. 4a. 

&*/~j*k*B,k* 
E ' 2  

The bonds i,j and k must be adjacent, which requires one of the following topologies. 

* * II** :c> 
Fig. 3 

1 We used this terminology in order to compare with Kutzelnigg's results but it would be better 
to use Sinanoglu's notation of "intra-bond and inter-bond correlation energies". 
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We only consider the first topology, the only one to be found frequently in alternant 
hydrocarbons�9 

The sign of the contribution does not depend on the choice of the signs of the 
coefficients on the excited orbitals, since these orbitals always appear an even 

number of time and one may verify that in our case we get 8~ ;~ .  Taking into 

account the two spin possibilities we get 

f1 3 

2E,Z Vqk 

where vij k is defined by Viik = ~ 1, i,j, and k being adjacent two by two. 
i j < k  

clear that in the topological graph @ this number is 3. We shall introduce It is 
A nijk, the number of K6kul6-1ike diagrams in the chemical formula. 

One may verify that the interaction of states i l j* and k l J* leads to the same 
contribution, and the interaction of the monoexcited states gives finally 
3/~3 A 
E,  2 nlj k. This contribution is negative and important. 

2. Interaction of Mono- and Di-Excited Configurations 

The states cannot interact with the states L~t-l ) ,  \ ~ / and L~-[-l ) .  

�9 [" i ' j *  \ 
Then there only remains the interaction with ~ j  ) .  

(if*... j] IHI i i* ... i f*)  --- - ( i f* . . .  j j  [HI i j-*.., j 7*) 

- -  t i f f ,  �9 

We get the contribution flij* fiji,(ij ] i'j*) _ f 1 2  b . 
E'E 8E'E 

Taking into account the two spin possibilities and the analogous interaction of 

with ~ - w e  get ni3, which is negative, as b, and corresponds to 

diagrams of Fig. 4 b. 

-i 0 ........... . . . . . . . .  J j 

o b r 

Fig. 4. Third order diagrams (see the text) 
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3. Interaction of Diexcited States 

The states \ ~ - , / a n d  \ ~ - - / c a n n o t  interact. But \ i i  / can interact with 

(i 
*j*~ 

~ - / w i t h  the matrix element (i*j [ i j*) = b. Taking into account the four spin 

4ab 2 
possibilities, and the interchange of the role of bonds i and j we get ~ nu, 

which is positive. This corresponds to a special case of diagram 4c. The inter- 

acting diexcited configurations may be of the type \ / - ~ f - /  and \ ~ - ] .  This 

leads to the matrix element (j* k Ijk*) = b. If we neglect the long range interactions 
the three bonds i,j, k must be adjacent as in w 4, 1~ One has thus 8 spin-possibilities 

12b3 zx 
and one gets ~ nqk, a negative quantity. 

It is important to remember that we work in a basis of single determinants 

and that we distinguish between - -  and These two configurations 
\ ij } \ ~ f - } "  

ab 2 
interact with the matrix element (]*jIjj*)= Kii, = a. This gives the term 4E ~ .  

Taking into account the two possible spins for i and the possible permutation of i 
and j we get the positive contribution 

2ab 2 
E 2 no. 

The third order correction is given by 

a [/? 2b 6ab2"~ {3 f l  3 12ba'] A 

=t,E 7- + t, + 

One may remark that if b is small compared to/? and a (which is always the case 

3/?3 zx which is negative: in benzene-like systems in rc systems) the main term is - E ~  nuk 

we shall have an important negative third order correction while in polyene-like systems 
the third order correction will be small, and positive or negative according to the 
ratio a//?. 

It seems at this step that the n th order correction involves for the first time 
"n-body" terms and many "(n - p)-body" corrections. In our problem the energy 
corrections are immetiatly obtained by counting the pairs of adjacent double 
bonds and the number of K6kul6-1ike formulas in the chemical localized graph. 

We would stress on the fact that for a given type of Goldstone's diagram one 
gets different order of, magnitudes for the corresponding elements according to 
the labelling of the lines: this is due to the fact that the intra pair correlation matrix 
elements a are much larger than the interpair contributions b. 

All these remarks will be confirmed by the analysis of the fourth order correc- 
tion. 
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5. Fourth Order Correction 

The general 4 th order contribution has the form given in Eq. (2), but we must 
calculate first the contribution of the so called EPV diagrams, corresponding to 
the RS diagrams with a single non-zero Goldstone component. 

A. 4 ~h Order EPV Diagrams Contributions 

Let us divide the 2 no order correction to the energy/32 and the first order 
correction to the wave function kg 1 into their contribution from the monoexcited 
states (/32,1 and ~1,1) and their contribution from the diexcited states (/32,2 and 
~1,2). We must analyse the non cancelling terms coming from /32'1(~1' 1[ ~T.I1,1), 
82,2(~./1,2 I ~/1,2), /32,2(tt11,1 [ ~1 ,1)  and /32,1(1[./1,2 ] ~.J1,2), 

a) /32'1~-/1'1 ] ~r11'1~. The contribution coming from (J--'~-)in /3 2 and ( ~ - )  

• fl;k~2 This implies that i is linked to in 7/1 are not cancelled. They give - ~ 7  E ~ .  

j and k, but k andj are not necessarily adjacent (see Fig. 5). If we call n~k the number 
of such 

k i j 

Fig. 5 

B 4 topological subsystems in the molecular graph 2, we get 4E,~ n~k. We could 

change the role of occupied and virtual orbirals and get an equal contribution. 

As a special case we must consider the contributions of ( ~ - ) b o t h  ine 2 and 7/1; 
\ - - /  

taking into account the two spin possibilities and the interchange of i and j, we get 
2 2 fl. ij* flkj* fl4- 
E,~ + 4ETr nij , 

b) /3z,2(~px,2 [ gl,2}. There fs no cancellation with the general summation for 

the contribution of/32,2 coming from \ ~ f - / a n d  of ~* coming from \ ~ - / / .  

There are 8 spin possibilities andj  and k may be inverted: thus we obtain 
2 2 biJ bik 2b4 A 
E3 hence - -  E ~  ~lij k . 

There are some special cases: 

( i*j*~ ( i*]*~  b 4 
~ f - /  in e 2, \ ~ - ]  ] in ~1__, b~ 

8 E 3  --~ _ - ~  n i j ,  

( i*j* ~ b 4 
~ - ]  in e 2 and kgl~ b~ --+ ~ -  l'lij 8E 3 

2 If each bond is adjacent to the two others (graphs of Fig. 3) the corresponding graph contributes 3 
times to nAijk,' if we note by m~k the number of graphs corresponding strictly to Fig. 5 (i,e. only one bond 
adjacent to the two others), we therefore have n~k = mljkA + 3 rlij k. 
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i7 / in e 2 (or ~1) and 2 -7) - - /  in ~1 (or e2)~ a2b~ 2bZa2 
8E 3 ~ E 3 nij, 

a' 
ii  / in both e 2 and k~t--* a4 8E 3 ,~-  8 ~  5-nl. 

This last term will be the only 4 th order contribution if bonds do not interact. 
It is the sum of the 4 TM order corrections for each bond, and will be the only 4 th 
correction proportional to n~. 

C) e2'1(~1/1'2 [ ~1 ,2 )  and g2'2(11~1'1 I ~Jl,1). In g2,1(~T./1,2 [ I/J1,2) the products 

of terms coming from in g2,a by terms coming from x in 7 j1'2. We 

get thus 
2 2 32b 2 110*bjk A 

4E' E ~ ~ 2E' E 2 niik" 
In a similar manner 

( ~ )  {i*k*~ 112b2 
in e 2 and \ ~ - j  in 7 jl give 2E, E 2 n~k, 

( ~ )  (i*j*~ 112b2 
in e 2 in ~a give 3nq, ' \ ~ - /  4E'E 2 

(i*'{*'](or(J*]*']'] in ~1 [ 32a2 
\ l /  in e 2 , \ / ~ - /  2 7 - / /  nij 2E' E 2 " 

If one reverses the role of e 2 and ku 1 one gets exactly the same contributions 
except for the fact that the denominators are then E '~ E instead of 2E' E 2. 

The sum of the contributions from the EPV diagrams are then 

_[4fl~,3[2n~kq_nlj ] + 2b4[ 3 "] 2b 2a  2 a4 nil 

2E'E112 i12E_+Ez_lt[(4n~k+3nij)be+2nija2] 

114 2b 4 2112 b 2 112 b 2 

[114  3b4 2b2a2 3112b2 3112b112a2112a 2 ] 
-n i j  4 ~ + ~ +  E ~ +  2 E , 2 - ~ - + ~ +  E,2~ + 2E, E ~ 

a 4 

ni 8E 3 �9 

This is a sum of positive elements, some of them being important (particularly 
the terms in fie, a 4 and c~ 2 lt2). 

Now One must calculate the general summation 

I s ~ (Eo  - -  E I )  (Eo  - E j )  (Eo  - EK) 
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We shall arrange the discussion by considering that ~i and ~r must belong to 7 jl 
and be mono- or di-excited configurations. 

B. q)1 and ~ r  Monoexcited 

a) ~s-Monoexcited. ~)s may only differ by one orbital from ~t and ~0 K. The 
possible unlabelled diagrams are then 

i!_._~__ii {and !ili~ii } and (and ~ [ [ )  

(h+I)=/~ (2) h+l=3 (31 

/ j* xx / j* \ / j* \ 
The first diagrams correspond in generalto #, = L~-) ,~j  = ~ - ) a n d  # r =  L~- ). 

This leads to the product flU*(--flik)(--flkt)flU*/E'~ The sign of  this quantity 
depends on the corresponding topological graph. In the dimethylene-cyclohexa- 
diene like graphs IV-2 ) ~  the sign of the quantity changes when i, j, k and l 
change their position and the sum is zero (see Appendix). The same cancellation 

does not occur for the octatetraene like graph IV-4 ~ ~ and one thus gets 

f14 rti~kl' where rtijkl [] is the number of octatetraene like diagrams in the chemical E ,3 

formula. The chain ~i = (~ - ) ,  4~s = ( ~ - ) ,  ~K = ( @ )  (second diagram) gives 

an equal contribution. In these diagrams, several orbitals may be in common. 
Starting from 

. . . .  i . . . . . . .  i . . . . . . .  "k-- 

J*~ii~_-.i . . . . . . . . . . . . . .  one may have j*~_~iiii~ I and J*~__iii!~ 

the first diagram gives - -  

quantity. They cancel. A more peculiar case is given by the diagram 

A 
which gives ~ E  and + --4E,3 %... In the same way, starting from 

p~ 
only + ~ n u . 

2 2  
flU*fl~k and q- n~k and the second one the reverse 

E '3 ' 4E 

one gets 
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�9 k c o r r e s p o n d s t o ~ , = ( ~ - ) , ~ j = ( ~ - ) a n d ~ K = ( ~ - )  The diagram J ~- - i  

and give - [3iJ*flikflJ*i*flkZ* [3'* 
- -  [] As special cases one meets, E ,3 g ,3 nqkt" 

, which gives fi~4r,~n~g - 
) 4E E '~ ' 

which gives 
4E 

_ f14 f l i j* f l i j f l i* j*~ j i*  _ which gives nij - - . ' k ) !  4E'3 

[34 [] 2n~k- nij] the These diagrams lead to the contribution ~ [ - 4 n l j u +  

/ x  

diagrams I I  give the same contribution. Summing the contribu- symmetrical 

x,/  

tions of the chains of monoexcited states one gets 

a) E- + n d. 

b) ~ j - D i e x c i t e d .  Here we must avoid the unlinked Goldstone diagrams a. 

Starting from for ~x and going to [ ~ - ~  as ~j,  we have a linked RS diagram 

by going back to q~o through (@.*)and (J~* ~ .  This corresponds to the following 
diagrams, ', k / 

3 In order to get the cancellations allowed by the linked duster theorem it is necessary to use 
(rl*  

2E' instead of 2E for the transition energies to diexcited configurations of the type \ ~ / .  
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and to the products --fl(i*fikl*flkj*flil*" One may verify that the study of signs and 
numeration of the possibilities gives (see Appendix) 

E,3 n~j~ for the chemical graph 

0 E,3 noel for the graphs ~ [ _ _ ~  and 

(IV -o) 

0 for ~ and 

4v-,> (Iv-~) 
The two successive excitations must be of the same spin, and this avoids the 
special cases in which the second excitation would include one of the spin orbitals 
concerned in the first one. But the second excitation may be of the polarization 

k* l* . I j* \ [ j* k* "~ /" k* \ 
t y p e ( ~ - ) i n s t e a d o f ( ~ - ) . I n t h e c h a m ~ b x = ~ T ) , ~ J = ~ - ) , ( b r = ~ -  ) 

or ( J ~ ) ,  we must calculate the matrix element ( j*ikklH[j*Tk*Tc) ,whichmay 

be compared to (iTkk IHliTkk*) known to be zero: 

(.j* tk k IH[ j* i k* k)  = q* k l j* k*) - (i k [ i k*). 

In the molecular K6kul6-1ike graph this is equal to c~= �89 This new 
parameter a appearing in the theory will be smaller but of the same order of magni- 

tude as a and much larger than b. Each chain gives f13a and taking all pos- 
16E ,3 

f13 0{ A 
sibilities, one gets - 3 ~ nijk. 

Moreover the unlinked RS diagram 

corresponding to the chain of states , \ ~ - ] ,  involves linked bielec- 
tronic parts. 

One may verify by the same procedure that they give a contribution equal to 
f12 ~2 1 .  A~4 
E '2 E (3nij~ + a 'niak) �9 

�9 f i 2  0~2 
A special case concerns k = 7 o r ]  and gives ~ n o . 

4 This case is treated in detail at the end of the paragraph 3, 2) of paper I. 
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f14- j~2 0{2 /~2 0r 
hi%)- 3 - -  _ _ _  ( 3nOk + a mUk) + n u Then b) EE,2 (nij~t nick + 3 ~ ix 1 A 

2E '3 E E 
if one does not take into account the graphs IVY). 

c) Oj-Triexcited. Starting f rom(  J---~) the only triexcited states to which we 

may go are of the type \ ~ / / ,  but we cannot come back to a monoexcited 

state without a zero matrix element <Oj IVI OK) or an unlinked diagram. 
The whole paragraph B gives then' 

f14- { fl20{2 3 fi3O:~nA+ fi20{2 A fi20{2 
B = E  7[-5nukl+nukg E'~E 2 4 ~ E W E n i J k + ~  nu 

C. 0~ Monoexcited, �9 K Diexcited (or the Reverse) 

In all this paragraph one may invert the role of O~ and O~ and one must 
introduce the factor 2 coming from the interchange of the place of the mono and 
the diexcited states. 

a) Os-Monoexcited. If Ox = and O~v = \ ~ - ] ,  one cannot find any 

monoexcited state which interacts with both �9 1 and �9 K. Thus one may try 1 = i orj.  
The following cases must be considered: 

o , =  , e , =  , 

. . . . . . . . . . . . . . . .  

- -J-*-U I 

/ / / *  \ / i* k* \ \  
The matrix element I t ~ - ) l H ] ~ - ) ) i s  equal to ( i*k l i*k*) - ( ik l ik*)=O 

~ x  / \ / !  

for homopolar  bonds. OI = T ~ - '  OK= k ~ - )  gives' 4E2E ' 

3fia b 
and + ~ 7 ~ -  n~k. 

_k_ . . . .  ~ _ _ { h + t )  = 3 

O , =  , O j =  ' OK \ j k  ] 

gives the same contribution and the symmetrical diagram. 
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c a s e s  O The more peculiar ~K = \--i7--/ and K do not give any 

contribution. 

b) ~s-Diexcited. There is no diexcited configuration which interacts with 

b o t h ( i f )  / k * l * \  
and t ~ -  ) �9 

e) ~t.= , ~ s - - [ ~ - - ] ,  �9 K = \ ~ - - j  leads to the matrix element 

U*k l j* k*) - (ik] ik*) -- cc One gets flU*~fli*J*bik 
4E 2 E' 

This contribution corresponds to the diagram: 

j *  i V . . . . .  ~--._. 

The symmetrical diagram j* _ .... gives an equal contribution. 

~/~2b \ 
The total contribution of these two types of diagrams is 2 E~ ~ - )  3nUk. 

fl) Another possible chain is ~i = , ~#s = \ - ~ j ,  ~ [  = \ - ~ - - j  which 

corresponds to the diagram j , ~  
R R ( fl. l h 

and gives the product "U*"ki*'--"J*k*'uik 
4E 2 E' 

h+[=3 

f12 b 3 n~k. An equal contribution is obtained from Their final contribution is E2 E' 4 

. ~ . t . _  
the symmetrical diagram j i 

. _ _ _ ~  I h+t :/., 

,) The chain q~,= ~s ( i * j ; ~ ,  ~K = corresponds to the ' \ ,j / \ - V f i - )  

diagram and gives fl~i*flJi*bjknik and 3 ~ n~k. 
�9 4 E  2 E '  E E 

J*~-.__i h-,-t = S 
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An equal contribution arises from the diagram in which the roles of occupied 
and virtual orbitals have been permuted. 

6) The chain ~, = , {bj = \ ~ - / ,  ~/( 2 ~ - - /  corresponds to the 

[Jij, fljk,fli.k,bij fla b 3 
diagram and gives E' and + E2E, 4 nqk. ~ 

j ~ _ _ _  i (h+t)=3 4E2 

One may change the role of occupied and virtual orbitals with ~b s = \ ~ - )  

and get an equal contribution. 

One must consider now the special cases where k = i deriving from: 

c~) The chains of states , \ - ~ - /  \ D ~ -  / and , , ~ , - ~ ] / .  

The second chain leads to the matrix element + flij* [(]*J lJ*J*)- (i J I i J*)] ill*j* bij . 
b fl 2 c~ 

As q*JlJ*J*)= 0 and (ijlij*)- 2 '  we get ~ n q .  Since the first chain 

b fl2 ~ 
turns out to give the same contribution, we finally get ~E,E 2 nij. The chains 

( ~ )  (j*7*~ (i '7"~ ( ~ _ ) ( ' q ) ( j * ] * ~  fi2ao: 
' \ - ~ - - / '  \ ~ t - / a n d  , , k j ~ - / g i v e  raise to + ~ %. 

fl) and 6) give no special case, since all excitations must be of the same spin. 
As special cases from 7) one may consider the chains 

( ~ ) ,  (i*j*'], ( i '7 ' ']  (or (j*]=* ~" ] fl 2ba 
\ / ] - - /  \ ~ - - /  \ ~ 7 - , ] /  which gives E'E ~ nij, 

\ / -~- j  / \ ~ - ]  / \ ~ - / /  which gives also E,~2 nq. 

c) q~j-Triexcited. Starting from -~- we may only go to triexcited states of the 

//j* k* I* "~ 
type ~ - k T - ) '  It is not possible to go back from this type of configurations to a 

( k* l* ~ 
~ kl--] diexcited state with a linked diagram. 

The contribution of w C may be summarized as equal to 

f12 I (flb flb 2eb b~) nij(bc~ ac~ )1 
C =  E~TE 3n~k E ; - + E - + T  + + E \ 2 + - ~ - + 2 b a  . 

3 Theoret. chim. Acta (Berl.) VoL 13 
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D. ~ and q~K Diexcited 

a) ~s Monoexcited. q~z = ~ /  may only interact with ; with 

it gives (i*j* li*j)-(ij* lij)=O. The only possible chainisthen (itJ; ~, (J~) \ z j /  

( ~  J ~ )  ( i t j ;  ) '  and is represented by \ t j . /  

2 2 f12b2 bijfli,j and ~ n u. 
4E 2 E' 

~__l____'_ _.N./ (h+[)=L 

which gives 

b) #s-Diexcited. Let us distinguish three types of diexcited states 

Type 1 are the dispersion diexcitations \ - ~ - - / .  

(i*i*~ 
Type 2 are the intrabond diexcitations k - - ~ - / .  Both belong to 7 ~1. 

Type 3 will be the other diexcited states which do not belong to 7 jl. 
4~ and ~K may be of types 1 and 2, ~s may be of types 1, 2 or 3. 

c~) 3 excitations of Type 1. The chain \ - - ~ - ] ,  \ -~ -~ - ] ,  \ ~ - , ]  gives a "ring 

[* ff~'[ k*!@ k 
diagram", the contribution bObik bit bk~ and ',z_ ............. h+t = B 

8E3 0_i ............ j* j i* i 

16b 4 [] 39 
E a (rtijkl + rlijkl). 

One must consider the following special cases: 

l=j ( i*j*~,( i*k*~ (j*k*'~ 12b4 A 
\ ,j / \ -TV) '  \ -TV/-~-~-" 'J~'  

k=j-, l=k ( i t j*~, (j*]* ~ (k*]*'~ 6b3a A 
\ ,j / \ ~ - / ' \  k ] / ~ - # - " ~ "  

\ z: / \ i~-/' \ ~ - / ~  E --Y-n'J" 

Another ring diagram ............. corresponds to the chain 

�9 16b 4 . ~ ~ -  (i ' j* ~ (i 'k* ~ (i ' l* ~ bub~kbk, b,, whichglves~T_(nijk,+nqk, ) \ ~ - j  , \ ~ - - ]  , \  ~ - - ]  and the product 8E 
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with the following special cases: 

/ = j ( o r S )  ( i* j*~,f i*k* ' ]  (i*j*~ ( o r ( i * ] * ~  12b 4 
\-UI \-TU)' C7 / '  k,-UII--~ ~-"'~' 

k=j. l=k (i'j* ~, (i:]*~, (i*k*~ 6baa 

(~'j*~ (i?~*~, (i*j*~ b2a 2 
k= 2 l=j \ ij /l'k, tj / k,-~f-/ ~ E ~ n i j "  

fl) ~x of Type 2, ~s and ~K of Type 1. 

~-z / '  \ ~ f - /  \ kj /l gives 1 2 ~ n i j  k 

with the special case k = i 

The ehain k,qT- / k, 'J / \--~fi-/gives also 12--~-n& and the special case 

b 2 a 2 
k =], which leads to 2 -~w-  nq. 

~) cb, and @, of Type 1, cbj of Type 2. The chain ( ~ ,  ( i'7" ~ {i'k* "] k, ,J /\~-;,\-~-;or 
~ ]  gives 4 -~-  n~k and we have a special case if k =j,  with a corresponding 

. 4b 4 
contribution oI ~ n u. 

5) If ~i and ~K are of Type 2, ~j cannot be of Type 2. The chains \ i i /  ( i*j*),(i*T*~ or(J*]* ~ b2a 2 
- - ~ - /  \ ~ - /  k - i f - / ]  give 2 - ~ - n q .  

a) ~sofType3. Thechains(i*j*~,(itk*~,(i*k* ~ (i*j*~,fi*j*~ 
k ' ~ - - /  k' U ,/ \ - ~ - - . ]  andk,--~--/ \ -~- - / ] '  

b2 fl 2 3 
\ - ~ k J (  i* k*~ give bu[3J*k*fljkbikgE 3 and give E3 2 nij~k" This corresponds to the 

diagrams: 

. . . . . . . . . . . .  and . . . . . . . . . . .  

___V J ..... __w 

h+t=5 h+{=5 

3* �9 
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and introduce some special cases. If k = i w e  get the chains (i*]* ~ ('~f=*~ \ ~ - ] / ' \  zj / '  

( ffT*~ (i*]=*~, (i*]_*~, ( i*i*~ bail 2 
iT / and \ lj / \ ii / \ ~ Y - /  which give the contribution ~ 5 - n ~ j .  

If j = i one gets the symmetrical chains (already taken into account) of the 

preceedingones. The c h a i n s t ~ - - ) , i , S r - ) , ~ - - ) o r k ~ - - ) , t ~ - - ;  ), \ ~ / 
�9 f12 a 2 

gwe, ~ 5 -  nij. 

Another type of diagram is k i ~ i and the symmetrical one 

............ _ V  
b+t =~ 

/ i'j* \ / i* k* \ / i'j* \ [" i'j* "~ [" i'j* "~ 
which correspond to the c h a i n s / = = - ,  l, 1 ~ | ,  l~=-. / or/==-. J , /~U- / ,  
/i*'* \ b2B~, U "Iv 2k~ / \ 'J "/b 2~ 'j "/ \ : 
( r " j "  ~. Their contribution ijPi*k or OqPjk is equal to u p n~,. The special 
\ ij ] 8E ~ 8E" 2E ~ ~ 

bZ fl 2 
labelling in which k -- 7 give the contribution ~ ni~. 

c) ~s-Triexcited. A diexcited configuration k ~ - / m a y  only interact with 

(i*k*I*~ (i*j*l*~ 
triexcited configurations of types / ~  -} or \ / ~ ] .  In the first case the 

matrix element is (j* l [ k* l*) = 0. In the second one we get ilk*t*, but to come back 
( i*j*l* ~ 

from \ ~ ]  to a diexcited state belonging to T 1 one must build an unlinked 

diagram. 

If we go to ijk we meet the following matrix element 

(i* k [ i* k*) - (i k [ i k*) + (j* k I J* k*) - (j k I J k*) = 0. 

There is no exception and the triexcited states do not give any contribution. 

d) Cj-Quadriexcited. The general chain is q~i = , CJ = \ tj / ijkl ' 
(J*.) 

�9 K = \ ~ - ] ,  \ ~ V - / '  \ j l ] '  or \ - ~ - / .  This corresponds t o  a diagram like 

, / ' i  . . . . . . . . . . . . . . . .  Z ~  h§  

J* i ............ i i 

and gives bijbubkjbu or finally: 16b4 [] 
16E 3 E 3 -  (nijkZ + nljkl ). 



Localized Bond Orbitals and the Correlation Problem. II 37 

Special labellings give particular contributions. 

b3 a zx 
1 = k -* 6 ~ y -  rtijk, 

b 4 b 3 a zx 
l = "[ --* 2 ~3-  n~k + 6 ~ 5 - -  nijk , 

k=T and l=]--* { b'~ + b2 a 2"] nij 
\ 2  / E 3 �9 

The sum of the contribution of w D is: 

1{( s x } ) 4 8 b 4 + n ~ k ( 2 4 b 4  b2f12) D = ~ -  glljkl q- glijkl q- 48b 3 a + 3 

+ni)k 6b 4+ +n~j 9 ~ - + 9 b  2a 2 + ~ + ~  1 + ~ -  + . 

Final expression of the 4 th order energy correction: 

b4)( 4 b4) 2 2 
-- - -  nijkl ~g- + 48 ~X- + tnijk 4E,2 E 4_  [] 5 + 4 8 ~  5- + :o 

,~ - -  H i j k l  E ,3 

- E,~ ~ 7 ~  + ~ 7 -  - 2  E,E~+ E2 \E' + 2 E -  

b4 16 b3a fi2cd 
Tx 

+ ni}k + 2E,~ + 4 ~ y  + 2E 2 E '2 E-E'- 

( f14 f12a2( 12 1 1 ) fl2ac~ 
+n~  4E '3 E ~ w - +  2E'E 4E 2 + 2E'E ~ 

fi2b2 I 3 2  1 5  1 
+ 4 ~  7E ~ - +  E 2 E ' ~  

/32b~ f i 2 b a { 4  1 )  b 4 b2a 2 fi2cd "~ 
+ 2E'E 2E 2 \ E '  + +3 +7 +4E j 

The expression of higher order energy corrections exhibit the same form, but 
become more and more complex. In the 4 th order correction "four body" terms 
appear for the first time, but we are compelled to distinguish the geometrical 
shape of the four molecular graphs. The three and two body corrections are 
numerous and very important. New types of three body terms appear, correspond- 
ing to new geometrical graphs (n~k), and new parameters begin to be involved as c~. 
The various contributions have opposite signs and different orders of magnitudes 
according to the power of b, which is much smaller than the other parameters, 
as it will be seen in the numerical applications. 
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Another very important conclusion from this treatment is that the triexcited 
states never contribute (except for the EPV diagrams). This is a very satisfactory 
result since many works had postulated or shown that they play a minor role. 

On the contrary the monoexcited polarisation states ~ -  lead to non negligible 

contributions. 

6. Numerical Applications 

We have applied the method to linear polyenes and aromatic compounds. 

A. Butadiene and Other Polyenes 

We have performed three calculations on the trans-butadiene n system with 
the Pariser-Parr [-10], Mataga [,15] and "theoretical" parameters [16] proposed 
by Koutecky et al. [, 17] ; these authors performed the full configuration interaction 
which gives the exact solution of the problem. Staemmler and Kutzelnigg made a 
2 nd order calculation on the basis of SCF delocalized orbitals and the pair APSG 
localized calculation [5]. Diner, Claverie and Malrieu have obtained somewhat 
better results with a 2 "d order perturbation treatment using localized SCF or- 
bitals [6]. 

Butadiene having only two adjacent double bonds, the neglect of long range 
interactions in our treatment is no longer an approximation (the same is true for 
benzene). We give in Table 1, the values of the basic parameters E, E', t ,  a, ~, b 

T a b l e  1. Basic parameters of the perturbation expansion for the ~ system of butadiene ( Pariser-Parr (PP),  

Mataga (M) and "Theoretical" (T) values of integrals [ 1 7 ] )  

P P  M T 

E - 5 .840 - 5 .100 - 6 . 4 0 0  

E '  - 7 .847 - 6 .580 - 9.568 
fl - 1.680 - 2 . 1 3 0  - 2 . 3 7 0  
a 1.577 2 .732 4.137 
b - 0 . 0 5 5  - 0 . 1 1 5  - 0 . 3 6 5  
c~ 1.705 1.155 2.465 

for the three sets of integrals and one may verify that t ,  e and a are of the same order 
of magnitude and much larger than b. The Pariser-Parr parametrization reduces 
both a and b, i.e. the pure correlation effects. Mataga's parametrization gives 
small transition energies and a large intra pair correlation effect. The theoretical 
parameters give a still larger value of a but somewhat larger transition energies. 
The PP set gives the best convergence. 

One may see from Table 2 that the 2 nd order correction throws the energy 
into the region of the exact solution, and below it. In that peculiar case the third 
order correction is small. This is due to the fact that with only two double bonds 

there is no n~k term, and that the other third order terms are proportional 
E 
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to b, which is small. Only two terms of opposite signs remain and the sign of the 
total contribution depends on the relative magnitudes of a and I/~[: the 3 rd order 
correction is negative for PP and M parameters, and positive for T ones. The 
smallness of the 3 re order correction is thus due to the specificity of the problem, 
and the fact that the 4 th order correction is larger does not demonstrate that the 
perturbation does not converge. 

The fourth order correction is about  one tenth of the 2 "~ order one and posi- 
tive. This is mainly due to EPV diagrams. This correction is too large and throws 
the energy on the other side of the exact solution, but improves the result. The 
correction is essentially due to the terms which do not involve b and which are in 
/p,/~2 a 2,/32 a c~, and a 4.  In fact, it seems that it could be possible to treat the whole 
problem as a multi-perturbation in/~, a and b. These perturbations are not of the 
same order of magnitude and it could be worthwhile for practical problems and 
even in a systems to go to the fourth order in/3 and a, and to the third only in b. 
This would simplify the expressions of the perturbation correction and insure 
a sufficient accuracy. 

At any rate the results obtained are among the best ones obtained and give 
less than 10% error on the correlation energy. They are obtained without the 
use of any computer, in a few minutes. 

For  other polyenes the number of bonds (n 0 and of adjacent bonds (nij) in- 
creases proportionaly to the number of carbon atoms while nis ~ remains zero: 
this explains why the total energy increases as n and explains very simply the 
previous results obtained in the basis of delocalized and localized orbitals [4, 6]. 

B. Benzene and Other Aromatic Compounds 

In the case of linear polyenes the delocalization was not as important as the 
intrabond correlation and of course the 2 nd order was already near the true 
energy. It is no longer the case for benzene in which the localizability is rather poor. 
And in fact, for usual values of parameters (fl = -2 .80  eV, short distances reduced 
bielectronic integrals) the 2 nd order corrected energy is not so good as the SCF 
energy (see Table 3). But in that case, there exists a strong negative third order 

correction due to E,2 n~k which brings the energy halfway between the SCF 

and the 2 "d order corrected energy. The fourth order correction is still negative: 
the perturbation expansion does not present the oscillations that we found in the 

T a b l e  3. Energies of the benzene n systems (eV) 

B a s i c  p a r a m e t e r s  E n e r g i e s  C o r r e c t i o n  C o r r e c t e d  e n e r g y  

E = - 5 .610 F u l l y  l o c a l i z e d  de t e r .  - 170.564 

E ' =  - 7 . 1 3 1  2 "a o r d e r  F L B O  - 4 . 1 1 8  - 1 7 4 . 6 8 2  

/~ = - 2 . 8 0 5  3 ra o r d e r  F L B O  - 1.410 - 176.092 

a = 1.615 4 th o r d e r  F L B O  - 0 . 2 8 0  - 176.372 

b = 0 .32 S C F  e n e r g y  - 175.774 

c~ = 1.20 2 nd o r d e r  co r r e l ,  e n e r g y  - 0 . 5 3 0  - 176.304 

E x a c t  e n e r g y  (Fu l l  C I )  [ 2 0 ]  - 0 . 5 2  - 176.294 
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case of linear polyenes. This is due to the terms in n~k, which give several negative 
large contributions. The successive corrections are in a ratio = �88 and the series 
seem to converge. 

Benzene is a highly peculiar case: in naphtalene for instance the fully localized 
determinant has an energy of -331.801 eV and the 2 n~ order correction gives 
- 337.989 eV. The SCF energy is - 337.083 eV and the 2 na order correlation energy 
is 1.451 eV. In that case the 2 na order corrected FLBO is already halfway between 
the SCF and the 2 nd order correlation-corrected energies. The same is true for 
anthracene. The third order correction lowers the energy more. It  is amazing 
to show that a simple census of the number  of double bonds, adjacent double 
bonds and kekulean diagrams in the localized chemical formula gives at a glance 
the evolution of the so called "resonance energies" in the series of polyacenes. 
It parallels the results of Hiickel or PP calculations, but the concept of resonance 
energy has received too many and too serious cristicisms and we do not give 
details on that question. 

C. Heterocyclic Compounds 

We also have included some detailed third order results for heterocyclic 
molecules (Table 4). The derivation of the general formulas for polar  systems will 
be given in the next paper. One uses reasonable bond polarities and the polari- 
zation energy becomes very weak. 

Conclusions 

Our treatment seems to call for the following remarks:  
1. It is very handy and makes clear the important  terms of the first orders; 

it enables us to select the most important  contributions of 3 rd and 4 th orders, 
and can be useful even for a systems: for bonds at long distances the Pariser-Parr 
approximations may be considered as sufficient for the 3 rd and 4 th order contri- 
butions. 

2. It shows that it is difficult to keep only certain types of diagrams. The 
ring diagrams for instance do not play the main role at 4 th order. Different dia- 
grams give various contributions of similar orders of magnitudes and opposite 
signs. A given type of diagram leads to terms of different orders of magnitude 
according to the number  of times they involve the intra-pair correlation. In fact 
it would be interesting to consider the inter-pair correlation as a smaller perturba- 
tion than the intra-pair correlation and delocalization and to leave it at the fourth 
order. This would garantee most of the 4 th order correction. 

3. It shows in a much clearer and much more correct way than the diagonaliza- 
tion of the Htickel Hamil tonian the role of the molecular topology. The formulae 
derived herein give the energy as a sum of bond, bond-pairs, bond-triplets, etc ... 
energies. The connection with graph-theory is simpler here and many amazing 
problems found during the preceeding treatment (sign of the four body corrections 
for instance) could be treated with the help of the graph-theory. But we think 
that quantum chemistry must  leave the formal field of"~-ology"  and leave these 
questions as training problems. 
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4. It shows very clearly the role of the parameters, and peculiarly the role of 
coulombic integrals through four basic parameters a, b, e,/~. One sees easily the 
effect of reduction of the coulombic integrals at short distances and we demonstrate 
once more (in a different way than Koutecky's recent paper [18] since not linked 
to the SCF formalism) that only differences between parameters are important. 

5. One may examine recent cristicisms against the concept ofaromaticity [19] : 
it is true that the K6kul6 formula is a good enough starting point for the inter- 
pretatio n of certain quantities. However it appears clearly that there is a qualitative 
difference between the convergence rate of polyenes and benzene: this is linked 
to the ratio of the matrix elements over the transition energies; i.e. to the ratio 
of the/J values for single and double bonds. 

6. By its good behaviour in the "a priori" hopeless case of benzene, the method 
gives signs of persistent convergence, and one may hope for an analogous be- 
haviour for o- systems. 

The next paper will give a generalisation of the method taking into account 
polarization effects and some applications to saturated systems. 

Appendix 
Molecular graphs involving 4 double bonds which play a role in the 4 th 

order energy correction. 
In these graphs, each double bond must be adjacent to two others. A given 

double bond i may be linked to its two neighbours by the same atom: 

-- (Case a) or by both its atoms" ~ (Caseb) 

As a result there are 5 types of graphs involving four double bonds as mentioned 
above according to the number of b-like configurations: 

"~----I'N//L_._j~ {4 cases a 

" ~  {3 cases a 

{2 cases a 

{1 case a 

0 case b} ~ graph IV-O 

1 case b} ~ graph IV-1 

2 cases b} ~ graph IV-2 

3 cases b} --, graph IV-3 

�9 {0 case a 4 cases b}~  graph IV-4 
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In the Section B, a) of Paragraph 5, the contribution of the graphs IVY), IV- l ,  
IV-3 have not been considered; anyway, such graphs do not occur frequently 
in usual alternant hydrocarbons. 

It is easy to see how the contributions of the various graphs can be calculated. 

For  example, in the section quoted above, we have to sum 2 fli)*flikflklfllj* (the E ,3 
factor 2 corresponds to the two spin possibilities) for all possible labelings of the 
orbitals in a given graph. To have a non-zero numerator,  i and 1 on one hand, 
j* and k on the other hand must be non-adjacent; we therefore have 8 possible 
labelings (we first put j* on one of the 4 bonds (4 possibilities), then k must be 
on the opposite bond; we may put i on one of the 2 remaining bonds (and I on the 

last one), hence the 8 possibilities), flik and flki are equal to ---f12' and flij*fl~* = + 4 

if j* is of type (a) and - ~ - -  if j* is of type (b). In a graph IV-p (where p = 0, 1, 2, 3, 4), 

among the 4 possible positions for j*, p of them are of type (b), and since there are 
still two possible labelings once j* is fixed, among the 8 possible labelings, 2p 
correspond to j* of type (b), and 2(4 - p) to j* of type (a); hence the total contribu- 
tion of a graph IV-p: 

f12 I ( ~ 2 )  ( ~ t l  f12 I /~21 f14 2E,~ 2p - + 2 ( 4 -  p) = 2E,~- 4 ( 2 -  p) ~ -  = ( 2 -  p) 2E,3 . 

Hence: 

f1 4 
for IV-0 the contribution E,3 , 

f1 4 
for IV-1 the contribution 2E,3 , 

for IV-2 the contribution 0,  

for IV-3 the contribution 
2E,3 , 

fl 
4. 

for IV-4 the contribution - ~ - .  

These molecular graphs also occur in the Section fl, b), where the product to be 
treated is flij~flk~*flkj*fl,*; i and k on one hand,j* and l* on the other hand must be 
opposite (i.e. non adjacent). A treatment analogous to the preceding one leads 

( r to the results given in the main text 0 for IV-1 and IV-3, + E,~ for IV-2 and 

r ) E,3 for IV-0 and IV-4 . 
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