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In order to test a recently proposed technique for deriving orthogonality- 
constrained HF wave functions for excited states, several applications to 
molecular systems, have been made and the results compared with those 
provided by other SCF techniques. 
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I. Introduction 

In this article we discuss some test applications of a new method, recently 
proposed by the authors [1], for deriving Hartree-Fock (HF) wave functions for 
excited states. In this method the energy of the excited state is minimized subject 
to the requirement that the corresponding HF wave function be orthogonal to 
all the HF wave functions of the lower states; the advantages of the method stem 
from its full exploitation of all the degrees of freedom in the variational space 
which are compatible with the orthogonality constraints. 

Other SCF techniques for excited states which do not explicitly maintain 
orthogonality to the approximate lower state wave functions have been proposed 
in the literature [2, 3], but we believe that a representation of the electronic states 
which maintains the orthogonality property among the exact wave functions is 
advantageous, especially in the evaluation of quantities like the transition prob- 
abilities, which simultaneously involve the wave functions of the two different 
states. 
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It should also be noted that to have an SCF method which gives variationally 
correct energies for the excited states is very important,  not only because the 
independent-particle approximation allows a clearer physical interpretation of 
the wave function, but al~o because an HF-SCF approach usually makes possible 
a reasonably accurate optimization of the molecular geometry with far less effort 
than do the MC-SCF or CI methods [4]. Furthermore it is well known that CI 
calculations - at least when limited to single and double excitations - are more 
reliable and accurate when based on SCF orbitals that are specifically optimized 
for the parent configurations [5]. 

As to the convergence properties of  our technique we observe that in the examples 
discussed in this article we have used a first order direct minimization procedure, 
based on different Fock-like operators for the different types of  orbital rotations 
[6], which makes it possible to satisfy both the orthogonality requirements and 
the correct variational conditions at each step of the process, as discussed in [1]. 
Such a procedure represents a simplified version of a general direct minimization 
approach and can be easily implemented, while at the same time it does not 
introduce any more convergence difficulties than those of a standard open shell 
SCF process. Furthermore in this procedure the convergence of the iterative 
process can be accelerated by means of one of the various techniques proposed 
in the literature (see, e.g. [7]). 

In the following sections we test our method by calculating the HF  wave functions 
for the excited states of  a few interesting molecular systems and point out some 
features of the energy minimization and the convergence properties of our 
technique. Comparisons with the results of other SCF approaches are also given. 

2. One-determinant wave functions 

2.1. Doublet states 

As the first test application of our method we have studied a few electronic 
vertical transitions in the spectrum of the ethyl radical chosen at the HF  ground 
state geometry (Cs molecular point group) [8]. This molecule represents a well 
characterized system which is appropriate for testing the capabilities of our 
method in comparison with other approaches; both the evaluation of the transition 
energy and the quality of  the wave function will be considered. In particular, 
this molecule possesses low-lying excited states of the same symmetry as the 
ground state and which are nearly degenerate, so that the use of  second-order 
SCF procedures to derive the corresponding HF wave functions has been thought 
necessary [7]. We will compare our results with those obtained by using two 
different approaches: (1) the method proposed in [2, 3] (hereafter referred to as 
Davidson's  method),  chosen as an example of the techniques in which orthogonal- 
ity to the lower state wave functions is not explicitly introduced, and (2) a 
simplified approach (referred to as the "space-restricted" method) in which the 
orthogonality constraints are imposed in a more restrictive way (see, e.g. [9]), 
i.e. by excluding the singly occupied orbitals of  the lower states from the vari- 
ational space of the excited state of interest. The transition energies are also 
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compared with those calculated in [8] using a second-order HF procedure 
(referred to as Lengsfield's method). 

In Table 1 we give the results obtained using the four different approaches 
described above. The calculations have been performed using the Dunning's 
double-zeta plus polarization valence basis [10] augmented with double-zeta 
3s, 3p and single-zeta 3d functions centered on the radical site, as explained in 
the footnote of Table 1. 

We observe that in this case our transition energies are practically coincident 
with those obtained via Davidson's and Lengsfield's methods. This equivalence 
is also confirmed by the analysis of the form of the occupied orbitals resulting 
from Davidson's method and ours, which mutually overlap by at least 0.9998. 
However, the "space-restricted" method appears to become less appropriate as 
one goes to higher excitation energies. We also stress the fact that the application 
of Davidson's method via a coupling operator technique, as proposed in [3] and 
applied to the case of the ethyl radical in [7], gives rise to serious convergence 
difficulties in the derivation of the second excited state of A1 symmetry, while 
the third excited state of that symmetry cannot be obtained at all. In contrast, 
by using this same method with different Fock-like operators for the different 
types of orbital rotations [6], we have obtained a smooth convergence for both 
the states in spite of their quasi-degeneracy. (It will be noted that in the coupling 
operator technique the effective angles used for some types of orbital rotations 
are not optimal with respect to the energy minimization process [13]). 

To conclude the discussion of this example we observe that our method can also 
be applied to higher excited states with essentially the same computational effort 
as in a standard open shell SCF procedure, since it only requires a proper 
definition of the variational space for each excited state. Further, when we started 
from the doubly occupied plus the first virtual orbitals of the next lower state, 
the number of iteration steps needed to get an accuracy of - 1 0  -8 a.u. in the 
energy value never exceeded 14. 

Table 1. Vertical excitation energies for the ethyl radical atthe SCF geometry [8], calculated 
by using our method (AEm) , Davidson's method (AEo) , Lengsfield's method (AEL) , and 
a "space-restricted" method (AEsR). The exponent for the uncontracted d polarization 
function on the carbon atom is 0.75, while the exponents of the Rydberg functions are 
a~ = 0.0437 and 0.01725, ap = 0.0399 and 0.01575, and a d = 0.015. Such a basis set is similar 
to the SCF1 basis set of [8] except for the use of Hermite Gaussian functions [11, 12] 
instead of Cartesian Gaussian functions; the ground state energy is EHV = --78.605 250 a.u. 

State AE m (eV) AE D (eV) AEsrt (eV) AE L (eV) 

2 2AI(3s ) 4.91 4.91 5.08 4.88 
3 2Al(3p) 5.68 5.69 5.92 5.67 
4 2Al(3p) 5.82 5.84 6.03 5.83 
5 2Al(3d ) 6.50 6.50 6.85 6.49 
1 2A2(3p) 5.70 - -  - -  5.68 
2 ZAz(3d ) 6.59 6.59 6.59 6.59 
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As a more stringent test of  the ability of  our method to give the proper excited 
state wave function, we have calculated the three lowest RHF wave functions of  
2E+ symmetry of  the OH radical, which correspond to the fol lowing orbital occu- 
pancies: A(2• +) :  10"22o-23o'17r4, B ( 2 s  lo'220-23o'24ty1~r2, C(2]~+):  lo '22tr24o'a~4.  

In particular, we are interested in the third state (C) ,  since the first excited state 
of  2s symmetry (B) is automatically orthogonal to both the A and C states 
because o f  differences in the orbital occupation numbers. Hence,  in our approach, 
the only orthogonality constraint which must be imposed in the SCF process 
involves the states A and C. Furthermore the ionic dissociation of  the C state 
and the anti-bonding character of  the singly occupied orbital make the construc- 
tion of  the HF energy curve for this state a difficult task. 

The calculations, results o f  which are given in Table 2, have been performed in 
a range of  internuclear distances between 3 and 6 a.u., which contains the position 
of  the minimum of  the C state, and inside which the three states (A, B and C) 
are sufficiently well separated (AE--  1-3 eV). 

Starting with trial orbitals taken from the A state, we have not encountered any 
convergence difficulty in the SCF process for the C state, although a larger 
number (about 25) of  iteration steps were necessary to obtain a convergence of  
10 -8 a.u. in the energy value. The HF energy curve so obtained is a smooth 
function of  the internuclear distance R which can be well fitted by a polynomial ,  
and qualitatively reproduces the behaviour of  the CI energy curve as obtained 

Table 2. Behaviour of the energy differences (AE) and of the dipole moment 
(/z) of the C(2s +) state of the OH radical as functions of the internuclear distance 
R. The AEmS are the energy differences obtained using our method and calculated 
with respect to the energy value at R = 4  a.u., E =-74 .991  510 a.u., while the 
AEc~s are the corresponding values obtained in [14] by using a CI approach. 
The calculations have been performed by using the [5s, 4p] and the [3s] con- 
tracted basis sets of Dunning [10a] for the oxygen and the hydrogen atoms 
respectively. Both the basis sets have been then augmented as suggested in [14], 

but Spherical Gaussian functions have been used instead of Cartesian Gaussian 
functions 

R (a.u.) AE m (eV) AEcx (eV) /z (Debye) 

3.00 1.056 588 0.79 4.054 604 

3.25 0.489 381 0.32 5.447 873 

3.50 0.157 013 0.06 6.636 898 

3.75 0.012 354 -0.03 7.675 150 
4.00 0. 0. 8.607 464 

,4.25 0.074 398 - -  9.465 926 
&50 0.202 376 0.16 10.272 160 

4.75 0.361 076 - -  11.041 096 

5.00 0.535 178 0.51 11.782 756 
5.25 0.714 805 - -  12.504 543 

5.50 0.893 588 0.84 13.211 569 
5.75 1.067 636 - -  13.907 414 
6.00 1.234 717 1.20 14.594 827 
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in [14] using the same basis  set; the difference be tween  the H F  and  the CI  results 
becomes  app rec i ab l e  only at R = 3 a.u., and  this is due to inc reased  cor re la t ion  
effects. The same cons ide ra t ions  also app ly  to the H F  d ipo le  moment ,  whose 
values  as funct ion  of  R are given in Table  2; this fact  confirms the correct  nature  
o f  our  S C F  orbi tals .  

For  compa r i son  we t r ied  to derive the R H F  wave funct ion of  the state C by  
using Dav id son ' s  me thod ,  but  we ran into ser ious  convergence  difficulties in the 
i terat ive process :  the convergence  was qui te  slow and  was charac te r ized  by 
progress ive ly  d a m p e d  osci l la t ions.  When  s tar t ing f rom trial orbi ta ls  taken  from 
the A state,  af ter  abou t  20 i tera t ions  the process  seems to converge  to an energy 
value  h igher  than  that  ob t a ined  by using our  me thod  (e.g. at R = 4 a.u., ED = 
-74 .984  154 a.u.). Fu r the rmore  the singly occup ied  orbi ta l  so ob t a ined  exhibi ts  
an i r regular  behav iou r  of  the expans ion  coefficients as funct ions  of  the  orbi ta l  
exponents .  These  convergence  prob lems  still remain  if  one uti l izes different  
Fock- l ike  opera to r s  for  the different types  o f  orbi ta l  ro ta t ions  and  cannot  be 
a t t r ibu ted  to a quas i -degeneracy  among the states,  since be tween  R = 4 a.u. and  
R = 6  a.u. the other  H F  states are app rec i ab ly  far  away in energy (AE_>3 eV), 
but  they are p r e sumab ly  due to the an t i -bond ing  and  highly po la r i zed  na ture  o f  
the s ingly occup ied  orbi ta l .  

2.2. Triplet states 

F r o m  a technica l  po in t  o f  view, we observe that  the p rocedures  requi red  for the 
app l i ca t ion  o f  our  me thod  to the t r iplet  states,  and  in genera l  to every h igh-spin  

state that  can be desc r ibed  by  a s ing le -de te rminant  wave funct ion,  are ana logous  
to those  necessary  for the doub le t  states. Therefore  we have cons ide red  only one 
o ther  mo lecu la r  example  to compare  our  t echn ique  with those  referred to as 
Dav id son ' s  and  the " space - res t r i c t ed"  methods .  The example  we chose is f rom 
the spec t rum of  the ketene  molecule  (CHzCO)  - a system well s tud ied  in the 
l i terature ,  and  which will also be cons ide red  in the next  sect ion - and  concerns  

Table 3. Vertical excitation energies for various electronic transitions of the ketene 
molecule at the experimental geometry [15], calculated using our method (AEm), 
the Davidson's method with orthogonal (AEor) or non-orthogonal (AEnor) orbitals 
and a "space-restricted" method (AEsR). Note that the value of AEno r has been 
taken from [17] and refers to the SCF ground state geometry. The calculations have 
been performed with a DZ plus polarization basis set augmented by Rydberg 
functions as described in [15], but utilizing Hermite Gaussian functions instead of 
Cartesian Gaussian functions 

State AE m (eV) AEo~ (eV) AEsR (eV) 

13At(2bl~3b 0 4.99 - -  - -  
23Al(2b I ~ 4bl) 6.56 6.58 6.57 

/kErn (eV) AEno r (eV) AEsR (eV) 

2 ~A~(2b~ ~ 3b 0 6.65 6.58 6.89 
3 !Ai(2b2~3b2) 10.90 
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the second triplet excited state of A~ symmetry obtained through the promotion 
of one electron from the highest occupied orbital (2b0 of the ground state 
(~AI: . �9 7a~ . . .  2b22... 262); the constraint of orthogonality to the first A~ triplet 
s t a t e ( . . 7 a 2 . .  2b~.. 1 �9 . .2b~3b~) was imposed. 

In Table 3 we report the results of the calculations performed with the three 
methods; note that in the "space-restricted" one the highest singly occupied 
orbital of the lower triplet state is excluded from the variational space. In this 
case we did not find any convergence difficulty in the application of the three 
methods. Furthermore, as can be seen from the results of Table 3, our technique 
gives practically the same results as the other two. 

3. Singlet excited states 

The derivation of the wave function for the first excited singlet state of the same 
symmetry as the closed shell ground state does not present any particular technical 
difficulty within our approach�9 Contrary to this, the Davidson's method cannot 
be applied using orthogonal orbitals because of the possibility of variational 
collapse onto the ground state wave function, and its generalization to non- 
orthogonal open shell orbitals is required [3]; such a generalization corresponds 
to the use of a two-configuration SCF wave function [3, 4]. 

As a significant test for the application of our method to such a case we have 
chosen the first excited singlet state of A~ symmetry of the ketene molecule - 
corresponding to the (2b~->3bl: ~-->~*) promotion from the ground state 
configuration - a problem much studied both experimentally and theoretically 
[7, 15-17]: the corresponding transition has not been clearly located in the 
spectrum, and furthermore, it is still controversial whether it is possible to describe 
this state correctly at an RHF level using orthogonal orbitals. 

We have employed our method to calculate the vertical excitation energy for 
such a transition using the same geometry and basis set as for the 3A 1 states. The 
result, given in Table 3 is compared with that obtained in [17] using the non- 
orthogonal generalization of the Davidson's method, and with that obtained 
through a "space-restricted" procedure by freezing the highest doubly occupied 
orbital of the ground state. In applying our method we have not found any 
convergence difficulty in the iterative process; furthermore, as in the previous 
cases, our result does not depend on the trial orbitals used as starting point. 

The value we get for the transition energy is very close to that obtained via 
Davidson's method, although the latter - based on a two-configuration SCF wave 
function - includes some energy contributions due to the correlation of the two 
unpaired electrons. The reason for this agreement probably rests on the Rydberg 
nature of the highest singly occupied orbital (3b0, which makes such correlation 
contributions negligible; this nature is confirmed by the fact that the expectation 
value of (x 2) (where x is the axis perpendicular to the plane of the molecule) is 
- 4 8  a.u. for the 3bl orbital, compared with a value of ~2  a.u. for the 2ba orbitals 
of the ground and the singlet excited state. Such results are in agreement with 
the conclusions of Allen and Schaefer [17]. 
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For testing the capabilities of our method in deriving the SCF wave function for 
higher excited states we have considered the state of 1Aa symmetry obtained 
through the promotion (262-~3bz) from the ground state configuration of the 
ketene molecule. In this case one has to impose two orthogonality constraints in 
the derivation of the excited state wave function 02, one with respect to the 
ground state wave function 0o and the other with respect to the first singlet excited 
state wave function 01 derived above: 

(02 [00) = D" det I(lb(22) llb(2~176 = D-  d2 = 0, (1) 

(2) (1) (2) (1) ( 0 2 1 0 , ) = D  ' '  detl(lb2 12b2 )(3b2 12b2 )1 

�9 det [(lb~Z)[lb~1))(2b~Z)13b~1)) I = D ' .  d~. d~ =0,  (2) 

where D and D'  are defined by the relations 

D = v/2[det 2 ](1 a~2)[1 a~~ . . .  (7a~2)[7a~~ �9 det 2 [(lb1(2) [lbl(~ )(2b1(2) [2b1(~ )1 

det (2) (0) (2) (0) �9 [(lb2 [lb2 )(2b2 [2b2 )1], (3) 

D ' =  2[det 2 [(1 a~2)[ 1 all)) . . .  (7a~2)17a]~))[ �9 det [(1 b~2)[1b~l))(2b~2)[2b~l))[ 

�9 det I(lb(22)llb(2'))(2b(22)12b(21))l], (4) 

The constraints (1) and (2) can be satisfied by requiring either (a) d2 = d;  = 0 or 
(b) d2 = d~=0.  Following our approach, condition (a) defines two reference 
vectors of  the same symmetry (b2) that are to be excluded initially from the 
variational space in order to satisfy the orthogonality conditions, and then 
reincluded through the use of double rotations in order to exploit all the variational 
degrees of freedom. This can be performed by following the scheme suggested 
in [1] for the second excited singlet state. Using the condition (b) instead, the 
two reference vectors belong to different symmetries (bl and b2) and for each of 
these one can use the same procedure as for the first singlet excited state. We 
have thus calculated the transition energy for the 3 1Al(262~ 3b2) state by impos- 
ing .the conditions (a) and (b) separately, and in Table 3 we report the result 
obtained through the less restrictive one, (b); however, we stress that the transition 
energy obtained via condition (a) is only slightly higher (by about 0.03 eV). Note 
that the application of Davidson's method to such a case is not straightforward 
and probably requires the generalization to a four-configuration wave function. 

In addition, to test the dependence of our results on the ordering of the states, 
i.e. on the number of  constraints imposed in the SCF process for each excited 
state wave function, we have first derived the wave function for the 1A1(2b2 -~ 3b2) 
state by requiring orthogonality to the ground state wave function only, and then 
derived the wave function for the 1Al(2bl -~ 3bl) state by requiring orthogonality 
both to the ground and to the 1Al(2b2-~3b2 ) wave functions�9 The transition 
energies obtained in this way are very similar to the ones obtained previously 
and are, respectively, AE(2b 2 ~ 3b2) = 10.85 eV and AE(2b I ~ 3b0 = 6.66 eV. This 
fact indicates that, at least in problems in which the excited state wave functions 
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are well separate in energy, the ordering of the states does not change even if 
one imposes an incorrect sequence of orthogonality constraints. 

Another interesting problem, significant for testing the properties of our method, 
is given by the derivation of the HF wave function for the lowest singlet open 
shell state (n ~ ~r*) of formaldehyde, which in the ground state C2v geometry, 
corresponds to the configuration 1A2: 2 2 2 1 1 . . .  5al lbl lb22612b2.  This problem becomes 
particularly delicate - both as regards the ordering of the states and the conver- 
gence of the iterative process - when the molecule is completely distorted, since 
the open shell state is of the same symmetry and nearly degenerate with the 
closed shell one. In this sense it has been mentioned as a case in which inversion 
of the roots is possible within a CAS-SCF calculation [7]. 

To study this problem we have performed separate SCF calculations for the 
singlet open and closed shell states at three different geometries: (a) the experi- 
mental ground state geometry, (b) the experimental singlet excited state geometry 
[ 18] (obtained from (a) through an out-of-plane bending of the CH2 group), and 
(c) a completely distorted geometry, obtained from (b) through a rotation of the 
oxygen atom by 30 degrees around an axis perpendicular to the C-O bond and 
containing the carbon atom. The experimental ground state geometry and the 
basis set have been taken from [19], and Hermite Gaussian functions have been 
used. The HF energies obtained using our method are given in Table 4; note that 
the value of the vertical excitation energy of the open shell state agrees very well 
with the corresponding value given in [7]. 

We note that, in order to have the correct order of the states at the distorted 
geometry (c) we have first derived the two HF wave functions without any 
constraint, finding the open shell state lower than the closed shell one by about 
0.13 eV, and then repeated the calculation for the closed shell wave function by 
maintaining orthogonality to the open shell lower one. The inclusion of the 
orthogonality raises the energy of the upper state by about 0.19 eV, but greatly 
improves the convergence properties of the process (the number of iteration steps 
is reduced by a factor - 3 )  because it includes the variational constraint properly. 
We also stress the fact that, in such a delicate case, our method easily converges 
to a variationally stable single-determinant representation of the excited state of 
interest. 

Table 4. HF energies (Er~v) of the lowest dosed shell (cs) and open 
shell (os) singlet states of  formaldehyde, calculated at the three 
different geometries (a), (b) and (c) explained in the text; the energies 
are given in atomic units. AE represents the energy difference, AE = 
EHe (OS) -- EHv (CS), calculated in electron volts 

Geometry Env (CS) EHF (os) AE (eV) 

(a) -113.891 124 -113.775 503 3.15 
(b) -113.795 804 -113.785 424 0.28 
(c) -113.745 122 -113.756 922 -0.32 
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4. Conclusions 

We have appl ied  our  method  to a few of the molecular  excited states concern ing  

which there are controversies in the literature. In  part icular ,  we have tested the 
quali ty of the results and  the convergence properties of the method  in cases in 

which there are problems due to quasi-degeneracies among  different states, critical 

nature  of the orbitals, or problems related to the appl icabi l i ty  of an R H F  approach 

with or thogonal  orbitals to the singlet excited states. 

The results lead us to make the following remarks. 

(a) Using a first order direct min imiza t ion  procedure,  which is very simple to 
implement ,  we have not  found  any convergence difficulties in the appl ica t ion  of 

of our  method  also to higher excited states: good results have been  obta ined  for 

both the energy and the quali ty of the wave funct ion.  

(b) Where compar i son  with other SCF methods  was possible, our  technique  gave 

essentially analogous  results, though usual ly  with better convergence properties.  

(c) Our  method  can also be applied directly to the singlet excited states of the 

same symmetry as the closed shell g round  state, thus also al lowing one to derive 

var ia t ional ly  correct H F  wave funct ions for such states without  resort to more 
complicated mul t i -conf igurat ion wave funct ions,  and  without  problems of mot -  

flipping. 
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