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Recent years in the field of molecular theory have seen the development of an effective method for
calculating excited states on the basis of the transition density matrix [1, 2]. An excited state ®« is here
construed as a superposition of singly excited configurations ®j—p
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where dpj are the configurational coefficients. The configurations ®j—p, are constructed from the single-
determinant wave function of the ground state ® by replacing in this determinant the filled spin orbitals

|]i > by vacant spin orbitals |p > In the formalism of the density matrix, the coefficients dpi are replaced
by the matrix equivalent, i.e,, the Hermitian component D of the single-particle transition density matrix

D= Xy lp){il+dy i) (). (2)

For the transition matrix D, a matrix equation was obtained in [2] in the form of a problem in eigen-
values for a certain supermatrix, and a method of numerical solution was indicated and was realized suc-
cessfully in specific calculations [3-5]. Its application does not require any explicit assignment of molecu-
lar ogbitals Ii >, but is based on a previously calculated one-electron density matrix of the ground state

p= Xli><i| or onthe equivalent Y = 2p—T; direct means for finding this quantity (atomic basis) are

i=1

available,

Calculation of the matrix D is also carried out successfully with a basis of atomic orbitals without
the construction of a configuration interaction or solution of the complete eigenvalue problem. I the
course of such calculations, however, the explicit form of the coefficients dp;j is not determined, Mean-
while, for the analysis of the structure of excited states, use is generally made of configuration coefficients
in molecular orbitals, which are used to judge the degree of configuration interaction (number of ground
configurations), localization of the electronic excitation on fragments of the molecule, etc., (see, for ex-~
ample, [6-9]).

Here we will show that in the solution of such problems, the transition matrix D is a2 more effective
means, both in the formal and in the applied aspects, than the traditional approach we have just described,
Let us examine first the formal problem of the maximum possible number of configurations Pijp in the
wave function (1). Since there are a total of N filled spin orbitals |i > and the number of vacant spin orbi-
tals is equal to M—N (where M is the dimension of the basis one-particle functions, for example, the num-
ber of atomic spin orbitals), then the maximum possible number of terms in (1) is given by the product
N(M—N). We will show that there is always possible a representation &, in which the maximum number of
singly excited configurations is substantially smaller, no greater than min (N; M—N), i.e., no greater than
the smaller of the pair of numbers N and M—N,
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.To do this, let us carry out the transformation of the filled spin orbitals by a unitary matrix U of di-
mension N, and the vacant spin orbitals correspondingly by a unitary matrix V of dimension M—N, Having
made use of the conventional rules for operations with determinants, we find that the configuration ®;-.;,
thereupon becomes the superposition

@, =detl) IV (3
: /iq

pe " jiT [
where ‘I"j—*q is a singly excited configuration made up of the transformed spin orbitals
li'>=;u;,rf>, ip'>=;v;q|q>. @)
The determinant of the unitary matrix forms a phase factor of the wave function and is not taken into ac-

count here, Then if follows from (3) that the superposition (1) with the unitary transformation (4) of the
filled and (separately) vacant spin orbitals remains invariant, i.e.,

szggw (5)
ip
where the matrix of the new configuration coefficients d' = [ld'p;ll is a special form of the transformed ma-
trix d = |ldp; Il of the former coefficients
4’ =VdU~. (6)

It is known from matrix theory [10] that an arbitrary rectangular matrix, by a transformation of the
type of (6), can be reduced to diagonal form

ld, 0. .. .. 0
0d,. . ... 0

d—lbd.'.'d,'.'.'.b ’ : ™
0o0. . ... 0

if we select as U a unitary matrix diagonalizing d*d, and as V a matrix diagonalizing dd*, The number of
nonzero diagonal elements coinciding with the rank r of the matrix d does not exceed the smallest of the
dimensions of the matrix d, i.e., min(N; M—N). If we consider that the transition matrix D in the basis
MO's has the form

0 d*
D=”do I‘

, (7")

then the transformation of the matrix D by the unitary matrix

Uuo

v=o

?

diagonalizing, evidently, the matrix D?, is completely equivalent to transformation of the block d.

It is easy to determine that, by the matrix W, transformation is effected to a basis of natural spin or-
bitals of the excited state (1). Indeed, the one~particle density matrix of the excitedv state, according to [3,
11], has the form :

p, =p—D¥. (8)
In view of (2), the matrix D anticommutes with Y:

DY 4+ YD =0. (9)

Therefore the matrix D* commutes with Y and this means that it also commutes with the density matrix of
the ground state p. Consequently, the eigenfunctions of D? diagonalize the ‘single-particle density matrix
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p* (8); i.e., they are by definition natural spin orbitals of the excited state,f In the end we arrive at an im-
portant statement: in the basis of natural spin orbitals, the number of configurations in the superposition
of singly excited configurations is minimal and is equal to the rank of the matrix of the configuration coef-
ficients:

(D. == gldama_»,_l_u, (10)

where r = min(N; M—N).

Let us clarify the requirement upon which the superposition (1) is reduced to a single determinant,
The known necessary and suff1c1ent condition for this reduction is idempotentiality of the one-particle dens-
ity matrix, in the given case p? %= Px From (8), taking into account (9) and the condition of involution Y% =
1, we obtain

0. =p—2D%p + D*.

As a consequence of the identity Yp =p = 1/2 (1 +Y), we have p% = px—D? + D% and hence the requirement
of idempotentiality px reduces to fulfillment of the equality

D' = D" (11)

More convenient for calculations than the matrix relation (11) is its "integral® characteristic, i.e,, its
trace. As a consequence of normalization of the configuration coefficients Sp d*d = Sp dd* = 1. And in the
light of (7), for any matrix D

SpD” = 2. (12)
Hence, in the single-configuration case (11), the requirement that SpD4 = 2 is fulfilled,

This integral condition is also sufficient. For this we will show that the value 2 is the maximum pos~
sible value for the quantity SpD?, and that this value is reached only for a value of the rank r = 1, Let us
designate eigennumbers D? in terms of o = [dg |2 = 0, for which, from normalization of (12) and double
degeneracy of the spectrum of the matrix D? (nonzero eigennumbers d*d and dd* are always equal), we
have

2 B = L. (13)

o=

1t is evident that the analysis of SpD* reduces to a study of the sum 2 2 p2  with the additional condition
(13), Squaring the equality (13) and neglecting the quantity 2 Wt >0, we obtain 2 p? < 1, where the

equality is possible only with r =1, From the known 1nequa11ty for the square of the arithmetic mean [12],
it is easy to obtain the lower boundary, having thereby the two-sided inequality

Ur< Ep‘a ’

a=1
which for SpD? is written directly in the form
2/r < SpD* < (14)
The left-hand equality is accomplished for the transition matrix D with p = 1/r, hence satisfying the equa-
tion
D = rD*, (15)

i.e., the lower limit, in accordance with (10), is reached at the greatest collective (in our terminology) of
the excited state in which all r configurations of the form & o—N+q participate with identical weight 1/ VT,

TIt can be considered that the natural spin orbitals of the single-determinant ground state ¢ and the ex~
cited state &4 (1) coincide, since the one-particle density matrix of the ground state is the operator of pro-
jection on the linear shell of occupied- orbitals; and hence these orbitals, which for ¢ are simultaneously
the natural orbitals, are determined with an accuracy within a unitary transformation, The function of
such a unitary transformation may be served by a transformation by the matrix U diagonalizing d*d.
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Thus, closeness of SpD! to the right-hand limit in (14) corresponds to a very nearly single-configuration
description, and closeness to the left-hand limit signifies maximum development of configurational mixing,
which is possible only for superposition of singly excited configurations,

When the inequality (14) is taken into account, the quantity SpD* can be used to evaluate the degree of
collectivity of the excitation (1). In addition to the technical simplicity in using this matrix criterion, there
are also advantages in principle; for example, it is possible to identify false collectivity of a transition
that may be suggested by a superficial examination the configuration coefficients. As an example that is un-
favorable to traditional analysis of (1) on the basis of coefficients dpj, we can use the excited state

+ 7 71\7—6,1——_'17) , i (16)
op
in which all N(M—N) single excited configurations are represented with equal weight (such an example was
used in [13] in illustrating the idea of collective excitation). Meanwhile, calculation of SpD4 for the wave
function (16) gives the value 2, i.e,, a "multifunctional" wave function (16), by transformation to natural or-
bitals, is reduced to a single determinant, This also follows from the corresponding matrix of the config-
uration coefficients
D S

B 1 IR

TS 77y, o R
i

the rank of which is obviously equal to 1, In the general case, utilization of the criferion of collectivity
with respect to the quantity SpD* does not require knowledge of dpi; it is sufficient to use the method de-
scribed in [2] to find the matrix D in the basis of atomic orbitals and to calculate the corresponding trace,

Another characteristic of the excited state that is usually found from calculational data on configura-
tion interaction is the localization of electronic excitation on individual fragments of molecules., Experi-
ence in spectroscopic research on organic molecules gives obvious evidence for such statements [14-16].
Attempts have been made to obtain such information theoretically, operating with representations of charge
transfer (see for example [8]); however, no clear-cut quantitative criterion has yet been introduced. Fur-
ther, the magnitude of charge transfer, calculated as the algebraic sum of the changes in charge Aq,, on
the atoms of the fragments, does not give an adequate reflection of the nature of electron redistribution
upon excitation, The weakness of this criterion is detected for even alternant hydrocarbons, where in the
Pariser— Parr —Pople approximation Aq,, = 0 on all carbon atoms [3], and hence analysis of the localiza-
tion of excitation on the fragments proves to be impossible,

A criterion free of such defects is naturally obtained on the basgis of the transition density matrix,
Here let us consider the change in the density matrix Ap = px—p upon excitation. According to (8), Ap =
—D%Y, and hence the absolute value |Ap |, which is understood in the matrix sense as the matrix |Ap| =
v (Ap)z, in view of (9) and the involutivity Y = 1, coincides with the matrix D%

[Ap| = D2, amn

It is proposed to use the elements of the matrix D? in the atomic basis for evaluating the degree of excita-
tion on the atoms. If the matrix element < v|D?|v > differs substantially from zero, the electronic excita-
tion will affect the given atom v to a significant degree. The measure of localization Lp of the excitation
on a certain molecular fragment A consisting of atoms v € A is introduced as the sum of such matrix ele-
ments

I
LA=-2->—(VID2]V).

vEA

(18)

As a consequence of the nonnegative determinacy and the normalization of D?* (12), we have the inequality
0<sL,< L (19)

The values of Ls are normalized in the sense that

dL,=1 (20)
A
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The upper limit in (19) corresponds to complete localization of the excifation on the fragment A, and the
lower limit corresponds to the absence of localization.

Let us establish the physical sense of the criterion that has been introduced. Onthe basis of eigen-
functions D?, which, as indicated above, are the natural spin orbitals of the excited state, the following ser-
ies is valid: '

D2___zlua(|q)(al+IN+a)(N+aI). (21)

The origin of Eq. (21) becomes evident if we consider that the wave function of the excited state in the ba-
sis of natural orbitals (10) corresponds to a transition density matrix (2) of the form

D = 3 @IV +) (al +4; 1) (N + al

with po = ldgl? Together with (18), this gives the following representation of the quantity La:

1 r
Ly=5 ¥ Yo (Cf +1630),
a==! v€A
signifying that, if the transition is localized on the fragment A, then the natural orbitals that describe such
excitation in accordance with (10) are also localized on this fragment, i.e.,

JICiP = D1 Chal1,

vEA VEA
where CqY = <vla > are the coefficients in the expansion of the natural orbitals |@ > with respect to the
atomic spin orbitals {v>,

Thus, localization of excitation on a certain fragment of the molecule means that the transition to the
excited state takes place between natural orbitals that are localized on this fragment, This statement is
based on the utilization of the matrix module |Ap| for evaluating the localization of the transition, this ma-
trix module having been introduced above on the basis of formal considerations.

This discussion applies to the orbital-spin matrices D, D?, ete., i.e., the matrices acting in the space
of the spin orbitals. In practical calculations, the operations are usually with nonspin matrices, the transi-
tion to which in our case can be performed by a procedure that is described, for example, in [11], For
singlet excited states (the ground state is also considered singlet) and correspondingly for triplet states
with zero projection of spin sz = 0, we have

Dg=Dg, D, =Dg, SpD;=1, (22)

wheré D, represents the nonspin transition density matrices in the singlet and triplet states (in each case
their own), which, according to {2], are direct elements of the numerical calculation of the excited states;
oy and oy are the single two-row matrix and the Pauli matrix for the spin operator §.

In the case of a triplet state with a projection sz = +1, normalized to 2, the solutions of the secular
equation for the orbital spin transition operator have the form

1 , '

DTi = %) (Do iDYa,), (23)
where as the orbital (i.e., nonspin) transition matrix we have that same matrix Dy as for D, in (21). For
triplets with the transition matrix (23), by taking into account the simple properties of Pauli matrices of
the type 0of = 0y, Ox0y = i0z, etc., we can reduce the requirement of monodeterminant (11) to the analogous

condition for the orbital matrix Dy

D = 2D}, (24)

Since the matrices D, for DT, and Dy coincide, the condition (24) for the orbital-spin transition op-
erator has the same form

D}, = 2Dz, (25)
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whence it follows that the integral value is given by SpDT04 =1, and it never assumes larger values, in par-
ticular the maximum possible value of 2 that is achieved for the component of a triplet with sy =+1, In
accordance with (15), this means that the corresponding wave function of the excited state is formed by at
least two determinants, which, as is well known, are necessary for the construction of spin-free singly
excited configurations.t

For the same reasons, in the case of a singlet state, the maximum value of SpDS4 is equal not to 2
but 1; this can be shown independently by carrying out for the orbital matrix those same arguments that
were used above in obtaining the inequality (14). Here it may be considered without loss of generality that,
in the basis of molecular orbitals, D, has a block structure of the type of (7')

o df
d, 0

, Spdid, = Spdodi” = 1. (26)

0

Va2

Let us now adopt the following natural terminological definitions. We will define a configuration not
as the determinant of the spin orbitals, but a regular-spin combination of determinants obtained by replac-
ing the corresponding spin functions of occupied nonspin orbitals by vacant orbitals, Here, in the interest
of uniformity, a degenerate set D for a triplet is conveniently represented by only a single component D,
Then max SpD4 =1, and the inequality (14), which is valid in the general case, is detailed as follows for
singlet and triplet states:

1
"27<SPD4< 1. @2m
0

Here r; is the rank of the matrix of the configuration coefficients d; for the configurations defined above,
with ry = min(n, m—n), where n is the number of filled nonspin orbitals; m is the number of basis nonspin
functions, for example, the number of atomic orbitals utilized |xv). As a result, it is evident that the right-
hand limit in (27) corresponds to the single-configuration case in the sense indicated above, both for sing-
lets and for triplets; deviation from this limit indicate a substantially multiconfigurational character of the
excited state,

For the localization number LA (18), it is easy to perform the integration with respect to spin (atomic
spin orbital |v) =]y ) X|{n ), where 7 is the spin function of the electron); as a result, there remain the
purely atomic matrix elements of the orbital transition matrix D,

L,= ;Amwz %) 28)

The inequality (19) evidently remains valid here, In accordance with [11], the matrix Dg for the triplet is
the spin density matrix normalized to 1. Hence, La (24) for triplet states simultaneously characterizes
the measure of spin-density localization on the fragment. As an example illustrating our approach, let us
consider singlet and triplet m-excitation of the alternant system 1, 3-diphenylbutadiene, for which it is
natural to distinguish the fragments A, B, and C:

B8

g

The values of SpD? and Lp for the lower transitions are listed in Table 1, where the superscript "+"
or "—" for the symbols of electronic states indicate respectively the allowed or forbidden character of the
transitions with respect to alternacy. From these data it follows that the singlet transitions under consid-
eration are strongly localized on the respective parts of the molecules: Lais(S+)=0.959; La;p(S:)=
0.999; Lpic(Ss~)=0.997; Lpic(Sst)=0.892. For the lowest singlet excitation, the S; — S'{ transition proves
to be very nearly one-electron, For the transitions S, — S,” and 8; — 837, in accordance with (15), &x is
constructed mainly of two singly excited configurations formed from natural orbitals. If we judge by the
configuration coefficients dpj, the main contribution is made, in approximately the same weight, by four
configurations formed by molecular orbitals (eigenvectors of the Fock matrix). Here not-all of the orbitals

tFor 8, = =1, such configurations are represented by a single determinant that is constructed from the
primary determinant by replacement of an occupied spin orbital by a vacant orbital with opposite spin.
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TABLE 1. Collectivity and Localization of Electronic Transitions
in 1,3-Diphenylbutadiene

Transition SpD* La Lp Le
Se—ST 0,984 0,309 0,650 0,041
S¢Sy 0,499 0,869 0,130 0,001
S-Sy 0,499 0,003 0,127 0,870
Sy—St 0,676 0,108 0,379 0,513
STy 0,979 0,124 0,761 0,115
STy 0,567 0,412 0,168 0,420

participating in the configurational interaction prove to be localized on the corresponding fragments, and
the fact of localization of excitation could be rather puzzling if we overlook the circumstance pointed out
above, that only a transition to natural orbitals makes it explicit. Let us emphasize that, in order to de-
tect the localization itself, there is no need to find local orbitals, it being sufficient to carry out calcula-
tions through Eq. (24).

Localization of excitation on fragments signifies that the corresponding spectroscopic characteris-
tics of the molecules should also have very similar analogs for the isolated fragment. A comparison of the
energy A4 for the transitions S; — S; with the excitation energies of the pure fragments, 1-phenylbutadiene
(A + B) and 2~-phenylbutadiene (B + C), which were calculated independently in the same semiempirical
scheme, leads to internally self-consistent results (A, eV):

A =4.316 Ay = 4,560 Ay =4.670
A (A4 B) =4.357 A (A+ B)=4.540 A7 (B+C) = 4.567
A = 5,060

A (B + C) = 4,628,

The agreement was rather poor only for the transition S, ~ S,, the degree of localization of which is also
less satisfactory than for the preceding excited states. On the whole, it can be concluded that the first two
excited states in this particular system correspond to excitation of only the 1-phenylbutadiene fragment.
Subsequent excitations Sy — S;~ and S, — 8, affect mainly the fragment corresponding to 2-phenylbutadiene
and overlapping with the 1-phenylbutadiene fragment,

For triplet excitations, localization on these same fragments is less pronounced: Lays(7)=0,885,
Lais(To+)=0580 . Here, for the first singlet—triplet transition, 0.75 of the spin density is concentrated
on the butadiene fragment,
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