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Recent  y e a r s  in the field of mo lecu l a r  theory  have seen  the development  of an effective method for  
calculat ing exci ted s t a t e s  on the bas i s  of the t rans i t ion  densi ty  ma t r i x  [1, 2]. An excited s ta te  4 .  is he re  
cons t rued  as a Superposi t ion of singly exci ted configurat ions ffi---p 

N M 

i=l p~N.q-I 

where  dpi a r e  the configurat ional  coeff ie ients .  The eonfigurat ions ~i-*p a r e  cons t ruc ted  f rom the s ingle-  
de te rminan t  wave function of the ground s ta te  ff by replac ing  in this de te rminan t  the fil led spin orb i ta l s  
I i > by vacant  spin orb i ta l s  Ip >. In the f o r m a l i s m  of the densi ty mat r ix ,  the coeff icients  dpi a r e  rep laced  
by the m a t r i x  equivalent ,  i .e. ,  the Hermi t i an  component  D of the s ing le -pa r t i c l e  t rans i t ion  densi ty ma t r i x  

D = ~ (dpilp) (i[ + d~ili)  (p [). (2) 
i ,p 

For  the t rans i t ion  m a t r i x  D, a m a t r i x  equation was obtained in [2] in the f o r m  of a p rob lem in e igen-  
values  for  a ce r t a in  s u p e r m a t r i x ,  and a method of numer i ca l  solution was indicated and was rea l i zed  suc -  
cess fu l ly  in speci f ic  calcula t ions  [3-5]. Its appl icat ion does not requi re  any explici t  a s s ignment  of mo lecu -  
l a r  orb i ta l s  li >, but is based  on a p rev ious ly  ca lcula ted  one -e l ec t ron  densi ty  ma t r i x  of the ground s ta te  

N 

P= ~ [ i > < i l  o r  on the equivalent  Y = 2p-1 ;  d i r ec t  means  for  finding this quantity (atomic basis)  a re  
i = l  

avai lable ,  

Calculat ion of the m a t r i x  D is a lso  c a r r i e d  out success fu l ly  with a bas i s  of a tomic  orb i ta l s  without 
the cons t ruc t ion  of a configurat ion in te rac t ion  o r  solution of the comple te  eigenvalue p rob lem,  in the 
cour se  of such calculations~ however ,  the explici t  f o r m  of the coeff icients  dpi is not de te rmined .  Mean-  
while, fo r  the ana lys i s  of the s t r u c t u r e  of exci ted s ta tes ,  use  is genera l ly  made of configurat ion coeff icients  
in mo lecu la r  o rb i t a l s ,  which a r e  used  to judge the degree  of configurat ion in te rac t ion  (number  of ground 
configurat ions) ,  local iza t ion of the e lec t ron ic  exci ta t ion on f r agmen t s  of the molecule ,  etc. ,  (see, for  ex-  
ample ,  [6-9D. 

He re  we will show that  in the solution of such p r o b l e m s ,  the t rans i t ion  ma t r i x  D is a m o r e  effect ive 
means ,  both in the f o r m a l  and in the applied aspec t s ,  than the t rad i t iona l  approach we have just  descr ibed .  
Let  us examine f i r s t  the f o r m a l  p r o b l e m  of the m a x i m u m  poss ib le  number  of configurations r in the 
wave function (1). Since the re  a r e  a total  of N fi l led spin orb i ta l s  l i > and the number  of vacant  spin o rb i -  
ta l s  is equal to M - N  (where M is the d imension  of the bas i s  o n e - p a r t i c l e  functions,  for  example ,  the num-  
be r  of a tomic  spin orb i ta l s ) ,  then the m a x i m u m  poss ib le  number  of t e r m s  in (1) is g iven by the product  
N(M-N}.  We will  show that  t he r e  is a lways poss ib le  a r e p r e s e n t a t i o n  4 ,  in which the max imum number  of 
s ingly exci ted configurat ions is subs tant ia l ly  s m a l l e r ,  no g r e a t e r  than rain (N; M - N ) ,  i .e . ,  no g r e a t e r  than 
the s m a l l e r  of the pa i r  of num ber s  N and M - N .  
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�9 To do this, let us c a r r y  out the t rans format ion  of the filled spin orbitals  by a unitary mat r ix  U of di-  
mension N, and the vacant  spin orbi tals  correspondingly by a unitary mat r ix  V of dimension M - N .  Having 
made use of the conventional rules  for  operations with determinants ,  we find that the configuration r 
thereupon becomes  the superposi t ion 

q),_~p ---- (det U) X Vpq U;flJ;.,q, 
I;q 

where @'j...q is a singly excited configuration made up of the t r ans fo rmed  sp in  orbitals 

(3) 

l i ' )=XU*I i ) ,  [p')=XV~qlq). ~'/ (4) 
/ r 

The determinant  of the uni tary  mat r ix  forms a phase fac tor  of the wave function and is not taken into ac-  
count here.  Then it follows f rom (3) that the superposi t ion (1) with the unitary t ransformat ion  (4) of the 
filled and (separately) vacant  spin orbitals remains  invariant,  i .e. ,  

* . :  Z (5) 
i;p 

where the mat r ix  of the new configuration coefficients d' = iJd'pi II is a special  form of the t r ans fo rmed  ma-  
t r ix  d = IIdpi II of the f o r m e r  coefficients 

d" = VdU +. (6) 

It is known f rom matr ix  theory  [10] that an a rb i t r a ry  rec tangular  matrix,  by a t rans format ion  of the 
type of (6), can be reduced to diagonal fo rm 

d = 

d l 0  . . . .  011 : 0// 
oo oil, 

.... Oll 

(7) 

if we select  as U a unitary matr ix  diagonalizing d+d, and as V a mat r ix  diagonalizing dd +. The number  of 
nonzero diagonal elements  coinciding with the rank r of the mat r ix  d does not exceed the smal les t  of the 
dimensions of the mat r ix  d, i.e., rain(N; M - N ) .  If we consider  that the t ransi t ion matr ix  D in the basis  
MO's has the fo rm 

then the t ransformat ion  of the matr ix  D by the unitary mat r ix  

W =  0 ' 

diagonalizing, evidently, the matr ix  D 2, is completely equivalent to t ransformat ion  of the block d. 

It is easy to determine that, by the mat r ix  W, t ransformat ion  is effected to a basis  of natural  spin o r -  
bitals of the excited state (1). Indeed, the one-par t ic le  density mat r ix  of the excited state,  according  to [3, 
11], has the form 

P. = p - -  D2Y. (8) 

In view of (2), the mat r ix  D ant icommutes with Y: 

DY + YD ---- 0. (9) 

Therefore  the mat r ix  D 2 commutes  with Y and this means that it also commutes  with the  density matr ix  of 
the ground state p. Consequently: the eigenfunctions of D 2 diagonalize the ~singte-particle density mat r ix  
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p .  (8); i.e., they a re  by definition natural  spin orbitals  of the excited state.~ In the end we a r r ive  at an im-  
por tant  statement:  in the basis  of natural  spin orbitals ,  the number of configurations in the superposit ion 
of Singly excited configurations is minimal  and is equal to the rank of the mat r ix  of the configuration coef-  
f icients:  

O, = ~ daO a_~v+a, (10) 

where r -< min(N; M-N) .  

Let us c lar i fy  the requi rement  upon which the superposi t ion (1) is reduced to a single determinant.  
The known neces sa ry  and sufficient condition for  this reduction is idempotentiality of the one-par t ic le  dens-  
ity matrix,  in the given case  p2, = p , .  F r o m  (8), taking into account (9) and the condition of involution y2 = 
1, we obtain 

P* = P - -  2D2YP --I- D 4. 

As a consequence of the identity Yp = p = 1/2 (1 + Y), we have p2 = o . _ D  2 + D4; and hence the requirement  
of idempotentiality p ,  reduces to fulfillment of the equality 

D 2 ----- D 4. (11) 

More convenient fo r  calculations than the mat r ix  relat ion (11) is its "integral" charac ter i s t ic ,  i.e., its 
t race .  As a consequence of normal izat ion of the configuration coefficients Sp d+d = Sp dd + = 1. And in the 
light of (7), for  any matr ix  D 

SpD 2 = 2. (12) 

Hence, in the s ingle-configurat ion case  (11), the requi rement  that SpD 4 = 2 is fulfilled. 

This integral  condition is also sufficient. For  this we will show that the value 2 is the maximum pos-  
sible value for  the quantity SpD 4, and that this value is reached only for  a value of the rank r = 1. Let us 
designate eigennumbers  D 2 in t e rms  o f / ~  = Ida 12 ~ 0,  fo r  which, f rom normal izat ion of (12) and double 
degeneracy of the spec t rum of the mat r ix  D 2 (nonzero eigennumbers d+d and dd + are  always equal), we 
have 

~ lx~ = 1. (13) 
~x=l 

It is evident that the analysis  of SpD 4 reduces to a study of the sum 2 ~ ~ with the additional condition 

(13). Squaring the equality (13) and neglecting the quantity ~ ~ ~ 0 ,  we obtain ~ ~< 1, where the 
a ~  a = l  

equality is possible only with r = 1. F rom the known inequality for  the square of the ari thmetic mean [12], 
it is easy to obtain the lower  boundary, having thereby the two-s ided inequality 

1/r ~. ~ ~2a ~ l, 

which for  SpD 4 is writ ten direct ly  in the fo rm 

2/r ~< SpD 4 ~< 2. (14) 

The left-hand equality is accomplished for  the t rans i t ion  matr ix  D with/~ = l / r ,  hence satisfying the equa- 

tion 

D2 = rD4, (15) 

i .e. ,  the lower limit,  in accordance  with (10), is reached at the grea tes t  collective (in our  terminology) o f  
the excited state  in which all r configurations of the fo rm r247 part ic ipate  with identical weight 1/v'r'~. ~ 

Sit can be cons idered  that the natural" spin orbitals  of the s ingle-determinant  ground state @ and the ex-  
cited state  r  (1) coincide, since the one-par t ic le  density mat r ix  of the ground state is the opera tor  of p ro -  
jection on the l inear  shell of occupied  orbitals;  and hence these orbitals ,  which for  @ are  simultaneously 
the natural  orbitals ,  a re  determined with an accuracy  within a tmitary t ransformat ion.  The function of 
such a unitary t rans format ion  may be served  by a t ransformat ion  by the mat r ix  U diagonalizing d+d. 

356 



Thus, c loseness  of SpD 4 to the r ight-hand limit in (14) cor responds  to a very  nearly s ingle-configurat ion 
description,  and c loseness  to the left-hand l imit  signifies maximum development of configurational mixing, 
which is possible only for  superposi t ion of singly excited configurations.  

When the inequality (14) is taken into account, the quantity SpD ~ can be used to evaluate the degree of 
collectivi ty of the excitation (1). In addition to the technical s implici ty in using this matr ix  cr i ter ion,  there 
are  also advantages in principle;  for  example, it is possible to identify false collectivity of a t ransi t ion 
that may be suggested by a superf icial  examination the configuration coefficients.  As an example that is un- 
favorable to tradit ional  analysis  of (1) on the basis of coefficients dpi, we can use the excited state 

qb, -- 1 2 q3i~r~' (16) 
I/:N (M --N) 

i;p 

in which all N(M-N) single excited configurations are  represen ted  with equal weight (such an example was 
used in [13] in i l lustrat ing the idea of collective excitation). Meanwhile, calculation of SpD 4 for  the wave 
function (16) gives the value 2, i.e., a "multffunctional" wave function (16), by t ransformat ion  to natural o r -  
bitals,  is reduced to a single determinant.  This also follows from the corresponding matr ix  of the config- 
urat ion coefficients 

[ l  1 1 

d - -  1 I l l  . . 1 

I.N(M--N) / / i : : : i  ' 

the rank of which is obviously equal to 1. In the genera l  case ,  utilization of the c r i te r ion  of collectivi ty 
with respec t  to the quantity SpD 4 does not require  knowledge of dpi; it is sufficient to use the method de- 
sc r ibed  in [2] to find the mat r ix  D in the basis  of atomic orbitals  and to calculate the corresponding trace.  

Another cha rac te r i s t i c  of the excited state that is usually found f rom calculational data on configura-  
tion interact ion is the local izat ion of electronic excitation on individual f ragments  of molecules.  Exper i -  
ence in spec t roscopic  r e s e a r c h  on organic molecules  gives obvious evidence for  such statements  [14-16]. 
Attempts have been made to obtain such information theoret ical ly ,  operat ing with representa t ions  of charge 
t r ans f e r  (see for  example [8]); however,  no c l ea r - cu t  quantitative c r i te r ion  has yet  been introduced. F u r -  
ther ,  the magnitude of charge t ransfer ,  calculated as the algebraic  sum of the changes in charge Aq u on 
the atoms of the f ragments ,  does not give an adequate reflect ion of the nature of electron redistr ibut ion 
upon excitation. The weakness of this c r i t e r ion  is detected for  even al ternant  hydrocarbons ,  where in the 
P a r i s e r - P a r r - P o p l e  approximation Aqv = 0 on all carbon atoms [3], and hence analysis of the local iza-  
tion of excitation on the f ragments  proves  to be impossible.  

A c r i t e r ion  f ree  of such defects is natural ly obtained on the basis of the t ransi t ion density matrix.  
Here let us consider  the change in the density matr ix  A p  = p , - - p  upon excitation. According to (8), Ap = 
-D2y ,  and hence the absolute value l a p  I, which is understood in the matr ix  sense as the matr ix  JAp] = 
~A--~Y, in view of (9) and the involutivity Y = 1, coincides with the mat r ix  D2: 

[APl ---- D2. (17) 

It is proposed  to use the elements of the mat r ix  D 2 in the atomic basis  for  evaluating the degree of exci ta-  
tion on the atoms.  If the mat r ix  element < v I D 21 u > differs substantial ly f rom zero,  the e lectronic  exci ta-  
tion will affect the given atom v to a significant degree.  The measure  of localization L A of tile excitation 
on a cer ta in  molecular  f ragment  A consist ing of atoms v 6 A is introduced as the sum of such matr ix  e le-  
ments 

1 W D2 ~). LA = -~- (~ I I (18) 
yEA 

As a c o n s e q u e n c e  of the nonnegat ive  d e t e r m i n a c y  and the n o r m a l i z a t i o n  of D 2 (12), w e  have  the inequal i ty  

0 ~< L A ~< 1. (19) 

The v a l u e s  of  L A a r e  n o r m a l i z e d  in the s e n s e  that 

L A = 1. (20) 
A 
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The upper l imit  in (19) cor responds  to complete localization of the excitation on the fragment A, and the 
lower limit cor responds  to the absence of localization. 

Let  us establish the physical  sense of the c r i te r ion  that has been introduced. Onthe basis of eigen- 
functions D 2, which, as  indicated above, a re  the natural spin orbitals  of the excited state, the following s e r -  
ies is valid: 

D2= ~ .~(l~><o~l +lN q-~><N +~l). (21) 

The origin of Eq. (21) becomes evident if we consider that the wave function of the excited state in the ba- 
sis of natural orbitals (10) corresponds to a transition density matrix (2) of the form 

D = ~ (da[N +~x) (~l + d ~ l s )  (N + ~l), 
a = l  

with #c~ = Ida  12. Together  with (18), this gives the following representa t ion  of the quantity LA: 

r 

= +ICN+ J ), 
a=l yEA 

signifying that, if the transition is localized on the fragment A, then the natural orbitals that describe such 
excitation in accordance with (I0) are also localized on this fragment, i.e., 

C v 2 
~EA YEA 

where C~ v = < v I ~ > are  the coefficients in the expansion of the natural  orbitals  t ~ > with respec t  to the 
atomic spin orbitals  [ v >. 

Thus, localization of excitation on a cer ta in  f ragment  of the molecule means that the t ransi t ion to the 
excited state takes place between natural  orbi tals  that are  local ized on this fragment .  This s tatement  is 
based on the uti l ization of the mat r ix  module l ap  I for  evaluating the localization of the transit ion,  this ma -  
t r ix  module having been introduced above on the basis  of fo rmal  considerat ions.  

This d iscuss ion applies to the orbi ta l -spin  ma t r i ces  D, D 2, etc., i.e., the mat r ices  acting in the space 
of the spin orbitals .  In pract ica l  calculations,  the operat ions a re  usually with nonspin ma t r i ce s ,  the t r ans i -  
tion to which in our case can be pe r fo rmed  by a procedure  that is described,  for  example, in [11]. For  
singlet excited states (the ground state is also considered singlet) and correspondingly for t r iplet  states 
with zero  project ion of spin Sz -- 0, we have 

D s=Do%, Dro----Do~ z, SpD20=l, (22) 

where D o represents  the nonspin t rans i t ion  density mat r ices  in the singlet and t r ip le t  states (in each ease 
their  own), which, according to [2], a re  d i rec t  e lements  of the numer iea l  calculation of the excited states; 
% and az are  the single two-row matr ix  and the Pauli mat r ix  for  the spin opera tor  w 

In the ease of a t r ip le t  state with a project ion Sz = i l ,  normal ized to 2, the solutions of the secu la r  
equation for  the orbital  spin t rans i t ion  opera to r  have the fo rm 

1 (D0ox-+- iDoYo%), (23) Dr_+= ]/2- 

where as the orbi tal  (i.e., nonspin) t ransi t ion matr ix  we have that same matr ix  D o as for  DT0 in (21). Fo r  
t r iplets  with the t ransi t ion matr ix  (23), by taking into account the simple proper t ies  of Pauli mat r ices  of 
the type ~c~ 2 = %, ~x(ry = i~z, etc. ,  we can reduce the requi rement  of monodeterminant  (11) to the analogous 

condition for  the orbi tal  mat r ix  Do: 

D~ = 2D~. (24) 

Since the matrices D o for DT 0 and DT~ coincide, the condition (24) for the orbital-spin transition op- 

erator has the same form 

D~. = 2D~0. (25) 
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whence it follows that  the in tegra l  value is given by SpDT04 = 1, and it  neve r  a s s u m e s  l a r g e r  values ,  in p a r -  
t i cu la r  the m a x i m u m  poss ib le  value of 2 that  is achieved for  the component  of a t r ip le t  with Sz = �9 1. In 
accordance  with (15), this  means  that  the co r respond ing  wave function of the exci ted s ta te  is f o rmed  by at 
l ea s t  two de te rminan ts ,  which, as is well  known, a r e  n e c e s s a r y  fo r  the cons t ruc t ion  of sp in - f r ee  singly 
exci ted configurat ions,  t 

F o r  the s a m e  r ea s ons ,  in the case  of a s ingle t  s ta te ,  the m a x i m u m  value of SpDs 4 is equal  not to 2 
but 1; this can be shown independently by c a r r y i n g  out fo r  the orb i ta l  m a t r i x  those  s a m e  a rgumen t s  that  
we re  used above in obtaining the inequali ty {14). Here  it may  be cons ide red  without loss  of genera l i ty  that,  
in the bas i s  of m o l e c u l a r  o rb i t a l s ,  D o has  a block s t r u c t u r e  of the type of (7') 

Let  us now adopt the following natura l  t e rmino log ica l  definit ions.  We will define a configurat ion not 
as the de te rminan t  of the spin orb i ta l s ,  but a r e g u l a r - s p i n  combinat ion of de te rminan t s  obtained by r e p l a c -  
ing the cor responding  spin functions of occupied nonspin orb i ta l s  by vacant  orb i ta l s .  Here ,  in the in t e re s t  
of uni formi ty ,  a degenera te  se t  D fo r  a t r ip le t  is conveniently r e p r e s e n t e d  by only a single component  DT0. 
Then max  SpD 4 = 1, and the inequali ty (14), which i s  valid in the genera l  case ,  is detai led as follows fo r  
s ingle t  and t r ip le t  s ta tes :  

! 
~0 < "~hD O4~ 1. (27) 

Here  r 0 is the rank  of the m a t r i x  of the configurat ion coeff icients  d o for  the configurat ions defined above, 
with r 0 - min(n, m - n ) ,  where  n is the num ber  of f i l led nonspin orb i ta l s ;  m is the number  of bas i s  nonspin 
functions,  fo r  example ,  the number  of a tomic  orb i ta l s  ut i l ized IXv). As a resul t ,  it is evident that  the r ight -  
hand l imi t  in (27) co r re sponds  to the s ing le -conf igura t ion  case  in the sense  indicated above, both fo r  s ing-  
lets  and for  t r ip le t s ;  deviat ion f r o m  this l imi t  indicate a substant ia l ly  mnl t ieonf igurat ional  c h a r a c t e r  of the 
exci ted s ta te .  

Fo r  the local iza t ion number  LA (18), it is easy  to p e r f o r m  the in tegra t ion with r e spec t  to spin (atomic 
spin orb i ta l  I~ ~ ) = IXv ) •  ~l ) ,  where  V is the spin function of the electron);  as a resul t ,  t he re  r ema in  the 
pure ly  a tomic  m a t r i x  e lements  of the orb i ta l  t r ans i t ion  m a t r i x  D O 

LA= ~ (Xv ID~I%,,). (28) 
~EA 

The inequali ty (19) evidently r e m a i n s  val id he re .  In accordance  with [11], the ma t r i x  D~ for  the t r ip le t  is 
the spin densi ty m a t r i x  no rma l i zed  to 1. Hence,  LA (24) for  t r ip l e t  s ta tes  s imul taneous ly  c h a r a c t e r i z e s  
the m e a s u r e  of sp in -dens i ty  local iza t ion on the f ragment .  As an example  i l lus t ra t ing  our  approach,  let  us 
cons ider  s inglet  and t r ip le t  7r-excitation of the a l t e rnan t  s y s t e m  1, 3-diphenylbutadiene,  fo r  which it is 
na tura l  to dist inguish the f r agmen t s  A, ]3, and C: 

B 
~C =C --C =C'. 

The values of SpD 4 and L A for the lower transitions are listed in Table 1, where the superscript "+" 
or " - "  for the symbols of electronic states indicate respectively the allowed or forbidden character of the 
transitions with respect to alte~acy. From these data i t  follows that the s i~ le t  transitions under consid- 
eration a re  s t rongly  local ized on the r e spec t i ve  pa r t s  of the molecules :  LA+,~(SI +) =0.959; LA+B(S2--) = 
0.999; LB+c(S~-) =0.997; LB+c(S~+) =0.892. F o r  the lowest  s inglet  excitat ion,  the S o -* S + t rans i t ion  p roves  
to be  v e r y  nea r ly  one-e lec t ron .  F o r  the t r ans i t ions  S o -~ S 2- and S 0 -~ $3-, in accordance  with (15), r  is 
cons t ruc ted  mainly  of two singly exci ted configurat ions f o r m e d  f r o m  natura l  orb i ta l s .  If we judge by the 
configurat ion coeff ic ients  dpi, the main  contr ibut ion is made,  in approx ima te ly  the s a m e  weight, by four  
configurat ions f o rm ed  by mo lecu l a r  orbi ta ls  (e igenveetors  of the Fock mat r ix) .  Here  not. all of the orb i ta l s  

t F o r  S z = • 1, such configurat ions a r e  r e p r e s e n t e d  by a single de te rminan t  that  is  cons t ruc ted  f r o m  the 
p r i m a r y  de te rminan t  by r e p l a c e m e n t  of an occupied spin orbi ta l  by a vacant  orb i ta l  with opposi te  spin. 
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TABLE 1. Collect ivi ty  and Local iza t ion  of Elec t ronic  Trans i t ions  
in 1,3-  Diphenylbutadiene 

Transition S p D  4 LA LB LC 

So-.S + 

So---,S~" 

So~S~ 

So-,S + 

So~T + 

So~T~ 

0,984 
0,499 
0,499 

0,676 
0,979 
0,567 

0,309 

0,869 
0,003 

0,108 

0,124 
0,412 

0,650 
0,130 
0,127 

0,379 
0,761 
0,168 

0,041 
0,001 
0,870 

0,513 

0.115 
0,420 

par t ic ipa t ing  in the configurat ional  in te rac t ion  p rove  to be local ized on the corresponding f ragments ,  and 
the fac t  of local iza t ion of exci ta t ion could be r a the r  puzzling if we over look the c i r cums tance  pointed out 
above, that  only a t rans i t ion  to na tura l  orb i ta l s  makes  it explicit .  Let  us  emphas ize  that,  in o rde r  to de-  
tec t  the local izat ion i tself ,  there  is no need to find local  orb i ta l s ,  it being sufficient to c a r r y  out ca lcu la -  
t ions through Eq. (24). 

Local izat ion of exci ta t ion on f r agmen t s  s ignif ies that  the cor responding  spec t roscopic  c h a r a c t e r i s -  
t ics  of the molecules  should a lso  have v e r y  s i m i l a r  analogs for  the i so la ted  f ragment .  A compar i son  of the 
energy  k i for  the t r ans i t ions  S o -~ S i with the exci ta t ion ene rg ie s  of the pure  f r agment s ,  1-phenylbutadiene 
(A + B) and 2-phenylbutadiene (B + C), which were  calcula ted independently in the s a m e  s e m i e m p i r i c a l  
scheme,  leads to in ternal ly  s e l f - cons i s t en t  r e su l t s  (k, eV): 

Z, + = 4.316 )~ = 4,560 k~- = 4.670 

X + (A + B) = 4.357 L~- (A + B) = 4.540 ~,~- (B + C) = 4.567 

= 5 , 0 6 0  

)~2 + (B -~ C) = 4,628. 

The agreement was rather poor only for the transition S o --" $4, the degree of localization of which is also 
less satisfactory than for the preceding excited states. On the whole, it can be concluded that the first two 
excited states in this particular system correspond to excitation of only the 1-phenylbutadiene fragment. 
Subsequent excitations S o --~ S 3- and S o ~ $4- affect mainly the fragment corresponding to 2-phenylbutadiene 
and overlapping with the 1-phenylbutadiene fragment. 

For triplet excitations, localization on these same fragments is less pronounced: LA+n(T,+) =0;885, 
LA+B(T:+) =0.580 . Here, for the first singlet-triplet transition, 0.75 of the spin density is concentrated 
on the butadiene fragment. 
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