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The paper reviews the theoretical and experimental results for the asymptotic 
behavior of the dynamics of critical fluctuations in fluids and fluid mixtures near 
a critical point. The implications of these results for the development of accurate 
representative equations for the viscosity and thermal conductivity of gases in 
the critical region are discussed. 
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1. I N T R O D U C T I O N  

Near  a critical point  a fluid exhibits large fluctuations of the order  
parameter  associated with the critical-point phase transition. For  gases 
near the vapo~l iqu id  critical point  the order parameter  is the density p, 
and for liquid mixtures near the critical mixing point  the order parameter  is 
the concentra t ion c. The range of  the fluctuations can be characterized by a 
correlation length ~. When  the critical temperature Tc is approached  in the 
one-phase region at the critical density or at the critical concentrat ion,  this 
correlation length diverges as [-1 ] 

 =r v (1) 

where AT* = ( T -  Tc)/Tc, Go is a system-dependent amplitude, and v = 0.63 
is a universal exponent. 

The fundamental  dynamic  phenomenon  near the critical point  is that  
the order-parameter  fluctuations decay slowly in time. Specifically, the dif- 
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fusion coefficient associated with the decay of these fluctuations tends to 
zero at the critical point in the hydrodynamic limit, i.e., in the limit of zero 
wave number q and zero frequency co. The classical methods of measuring 
the response of a system as a result of an imposed gradient become 
inaccurate near the critical point, since the state of the system becomes very 
sensitive to an imposed field. However, the time dependence of the order- 
parameter fluctuations in a system in equilibrium can be investigated 
accurately with light-scattering techniques [2]. Such measurements probe 
these fluctuations at a wave number q = 2qo sin(0/2), where qo is the wave 
number of the incident light and 0 is the scattering angle. Measurements of 
the intensity of the scattered light as a function of the scattering angle yield 
the correlation length r and from measurements of the time dependence of 
the scattered light one can deduce the diffusion coefficient associated with 
the critical fluctuations [-3-5]. 

Some of the most accurate results have been obtained for binary 
liquids near the critical point. The primary limitation of light-scattering 
measurements is the appearance of multiple scattering close to the critical 
point. In our laboratory we have made extensive experimental studies for 
the mixture 3-methylpentane + nitroethane, since in this system multiple 
scattering appears to be negligibly small up to about a tenth of a 
miUidegree from the critical temperature. The basic phenomenon is 
illustrated in Fig. 1, where the diffusion coefficient, obtained at three dif- 
ferent wave numbers q, is plotted as a function of the temperature [6, 7]. 
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Fig. l .  Diffusion coefficient of a mixture of 3-methylpentane + nitroethane at the critical con- 
centration as a function of T--T~, deduced from light-scattering measurements at three dif- 
ferent scattering angles 0 [6, 7]. 
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At temperatures away from Tc the correlation length ( is sufficiently small 
so that q~ ~ 1 and the diffusion coefficient D at wave number q may be 
identified with the diffusion coefficient in the hydrodynamic limit q ~ 0. 
This hydrodynamic diffusion coefficient decreases upon approach of the 
critical temperature, indicating the critical slowing down of the fluc- 
tuations. At the same time the correlation length ~ increases in accordance 
with the power law given by Eq. (1), and at temperatures T -  To < 0.1 ~ 
one reaches a nonlocal critical regime where q( > 1 and the diffusion coef- 
ficient D becomes explicitly dependent on the wave number q. 

It is now possible to characterize this behavior quantitatively with 
considerable accuracy. Near the critical point the diffusion appears to be 
inversely proportional to the correlation length ~ and the shear viscosity t/. 
Thus in order to assess the status of the subject we shall review the results 
obtained for both the diffusion coefficient and the viscosity. 

2. REVIEW OF THEORETICAL PREDICTIONS 

In the theory of critical phenomena systems are classified in terms of 
universality classes. Systems within the same static universality class have 
the same critical exponents and the same scaling functions that characterize 
the asymptotic behavior of the equilibrium properties near the critical 
point. These universality classes depend on the dimensionality d of the 
system, the number of components n of the order parameter, and whether 
the forces between the constituent particles are short-range or long-range. 
Specifically, gases near the vapo~liquid critical point and fluid mixtures 
near the critical mixing point all belong to the same static universality class 
as the three-dimensional Ising model (d= 3, n = 1). The specification of 
dynamic universality classes depends on the number of relevant 
hydrodynamic modes. Since in fluids and fluid mixtures there are two 
relevant coupled modes, namely, the diffusive decay of the order-parameter 
fluctuations and that of the transverse momentum fluctuations, all gases 
near the vapor-liquid critical point and fluid mixtures near the critical mix- 
ing point are expected to belong to the same dynamic universality class. As 
we shall see, there is evidence that fluid mixtures near a tricritical point 
belong to this same dynamic universality class also. 

The decay rate of the order-parameter fluctuations in gases near the 
vapor-liquid critical point is proportional to the thermal diffusivity 
DT = 2 / p C p ,  where 2 is the thermal conductivity and Cp the isobaric specific 
heat [3, 5]. Universality of critical dynamics implies that the behavior of 
the thermal diffusivity D~ of gases near the vapor-liquid critical point will 
be completely analogous to the behavior of the binary diffusion coefficient 
D of fluid mixtures near the critical mixing point discussed in the previous 
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section. The decay rate of the transverse part of the momentum fluc- 
tuations is related to the viscosity, which is predicted to exhibit the same 
divergent behavior for all these systems. 

Two approaches have been developed for the theoretical treatment of 
dynamic critical phenomena. The first is the mode-coupling theory of 
critical dynamics; the second is the dynamic renormalization-group theory. 
The relationship between these theories has been discussed by Hohenberg 
and Halperin [8] and by Gunton [9]. The predictions of these theories are 
quite similar. The dynamic renormalization-group theory is suitable for an 
analysis of the universal aspects of the divergent behavior of the transport 
properties. The mode-coupling theory yields two coupled integral 
equations for the diffusion D and the viscosity r/ which yield a relation 
between these transport coefficients and other properties of the system. 

The diffusion coefficient D can be related to a conductivity L and a 
response function X as D = L/Z [10]. For the binary diffusion coefficient, L 
is the mass conductivity and Z = (Oc/Ol~)T in the limit q ~ 0; for the thermal 
diffusivity, L is the thermal conductivity 2 and Z = PCr, in the limit q --, 0. In 
the treatment of dynamic critical phenomena it is customary to separate 
the transport coefficients L, 2, and r/into background contributions L, 2, 
and f/and singular contributions AL or A2 and At/ [11]. 

L=AL+L, 2 = A 2 + 2 ,  q=Arl+O (2) 

This procedure was originally suggested from an analysis of the experimen- 
tal data [12] and corresponds to the separation of the transport coef- 
ficients into a bare part and a singular part in the mode-coupling theory 
[ 13]. The idea is that the bare coefficients are the transport coefficients in 
the absence of the long-range critical fluctuations. Unfortunately, there 
does not exist a rigorous procedure for making this separation. In our 
approach we have identified the background contributions with the values 
obtained when experimental data outside the critical region are 
extrapolated into the critical region [14]. This procedure is suitable only if 
the background contributions are weak functions of temperature, and the 
question of how to deal with background contributions is still subject to 
some controversy. In the dynamic-renormalization group theory con- 
sideration of background contributions does not appear explicitly, since the 
theory is designed to isolate the asymptotic behavior only. However, the 
temperature range where the singular viscosity At/ is larger than the 
background viscosity 0 is completely inaccessible [ 15 ], and in practice one 
cannot avoid consideration of background contributions in the inter- 
pretation of the experimental data. 
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The dynamic renormalization-group theory predicts that the viscosity 
t/will diverge as [8] 

~/oc~ z (3) 

where z is a universal critical exponent which has the same value for all 
systems belonging to the same dynamic universality class. This prediction 
applies to the asymptotic behavior, presumably when A~/> 0. On the other 
hand, the mode-coupling theory enables one to estimate the singular 
viscosity when At/is small, and in first approximation one finds [13, 16] 

q + Aq =q [ l + l~-~ ln(Q~.) ] (4) 

The two predictions can be reconciled if one considers Eq. (4) as the first 
approximation of a power law of the form 

~1 = q(Q~)Z (5) 

with z = 8 / 1 5 n  2 = 0.054 a first-order estimate for the critical exponent. This 
is the origin of the postulate that the viscosity exhibits a multiplicative 
anomaly, that is, the exponent z is the exponent of a power law for the 
viscosity ratio q/q rather than for the singular viscosity itself [-17]. The 
system-dependent amplitude Q is related to the background contribution L 
in the conductivity L as noted by Oxtoby and Gelbart [18]. However, as 
pointed out by Bhattacharjee et al. [19], Q also depends on a Debye cutoff 
wave number qD in the mode-coupling equations. In practice, the 
amplitude Q is treated as an adjustable parameter. 

The theoretical estimates available for the exponent z are presented in 
Table I. In the renormalization-group theory the universal quantities are 
often evaluated from a perturbation expansion in terms of the parameter 

Table I. Theoretical Values for the Viscosity Exponent z 

Theory a Exponent z Reference 

RG, order e 0.053 Halperin et al. [20] 
RG, order 8 2 0.065 Siggia et al. [21] 
RG, order e3 0.050 Bhattacharjee and Ferrell [22] 
MC 0.054 Ohta and Kawasaki [23 ] 
MC 0.051 Bhattacharjee and Ferrell [22 ] 

RG, renormalization-group theory; MC, mode-coupling theory. 
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= 4 -  d. The predictions from the renormalization-group theory and from 
the mode-coupling theory are in reasonable agreement. The first-order 
estimate z = 8/15~ 2, mentioned above, appears to yield a surprisingly good 
estimate of what is likely to be the theoretical value [22]. In preparing 
Table I, as well as all the other tables in this paper, I have made some per- 
sonal judgments in omitting information which I consider less reliable. For 
instance, a theoretical estimate for z as high as 0.07 has been reported by 
Garisto and Kapral [24] and by Paladin and Peliti [25]. The estimate of 
Garisto and Kapral is based on the numerical evaluation of an integral 
which in retrospect appears to be logarithmically divergent [22]. The 
estimate of Paladin and Peliti is based on a first-order evaluation and 
Paladin et al. do not quote this estimate in a subsequent comparison with 
experimental data [26]. 

It should be emphasized that the power law given by Eq. (5) refers to 
the viscosity t / in  the hydrodynamic limit q ~ 0 and ~o ~ 0. Dependence of 
the viscosity on the wave number q [27] and on the frequency ~o [28] 
becomes important in the critical region, and the experimental data should 
be corrected for such effects in order to extract a value for the exponent z 
from the experimental data. 

The separation of the conductivity L into a singular contribution A L  
and a background contribution L implies a similar separation for the dif- 
fusion D: 

D = A D + D  (6) 

where D = L/)~. In principle, the diffusion coefficient also depends on both 
the wave number q and the frequency ~0. The frequency dependence has 
been detected experimentally in our laboratory [29, 30]; the effect is small, 
in agreement with the theory, and can be neglected here. However, as dis- 
cussed in Section I, it is important to consider the dependence of the dif- 
fusion coefficient on the wave number q in the interpretation of light-scat- 
tering data. 

The theory predicts that the singular diffusion coefficient AD should 
asymptotically satisfy an equation of the form [8] 

k ~ T  
D - D = AD(q)  = 6--~q~ O(q~) (7) 

where k B is Boltzmann's constant, t/ is the viscosity in the hydrodynamic 
limit q ~ 0 as given by Eq. (5), and #2(x) is a universal dynamical scaling 
function. The function Y2(x) satisfies the boundary conditions 

lim ~(x)  = R, lim Y 2 ( x ) ~ x  y (8) 
x ~ 0  x ~ o O  
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where R is a universal constant and where y satisfies the exponent relation 

y =  l + z  (9) 

Equation (7) implies that in the hydrodynamic limit q~ ~ 1, AD(O) will vary 
in accordance with the Stokes-Einstein diffusion law AD(O)= RkB T/6rc~l~ 
independent of q and, hence, will go to zero as ~ Y. On the other hand, at 
the critical point (q~ --+ ~) ,  AD(q) is no longer independent of q but will 
vary a s  qY. 

Burstyn et al. [7] have derived for O(x) a closed-form approximant of 
the form 

Q(x) = Rf2K(x ) 1 § (10) 

where f2K = (3/4x2)[1 + x 2 + (x 3 - x 1) arctan x] is the so-called 
Kawasaki function. This Kawasaki function is a first-order approximant 
for the dynamic scaling function obtained when one neglects the singular 
viscosity Aq in the evaluation of the mode-coupling integral for AD(q) 
[13]. A slightly different approximant for Q(x) has been proposed by 
Paladin and Peliti [25]. 

The theoretical estimates reported for the universal dynamic amplitude 
ratio R are presented in Table II. From the mode-coupling theory one has 
deduced the estimate R =  1.03. Calculations on the basis of the renor- 
malization-group theory have yielded values which vary from 0.79 to 1.20. 

3. VISCOSITY OF LIQUID MIXTURES NEAR A CRITICAL POINT 

In the interpretation of experimental viscosity data one may need to 
consider corrections for a nonlinear dependence of the viscosity on the 
shear gradient [27, 32] or, when appropriate, for a possible dependence on 

Table II. Theoretical Values for the Dynamic Amplitude Ratio R 

Theory ~ Amplitude ratio R Reference 

RG, order ~2 0.79 Siggia et al. [21] 
RG, order e 2 + MC 1.20 Siggia et al. [21] 
RG 1.07 Paladin and Peliti [25 ] 
MC 1.03 Kawasaki and Lo [31] 
MC 1.03 Burstyn et al. [7] 

~ RG, renormalization-group theory; MC, mode-coupling theory. 
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frequency [28]. Moreover, the critical temperature Tc itself is also affected 
by a shear gradient [33, 34]. Furthermore, to compare the experimental 
data with the predicted power law given by Eq. (5), one needs an estimate 
for the background viscosity fi as a function of temperature. This is a 
problem in binary liquid mixtures where the measurements have all been 
made at constant pressure, so that the density and, hence, the background 
viscosity g/change appreciably as a function of the temperature. Sufficient 
independent information to determine 0 as a function of temperature is 
usually not available. Instead, one adopts an empirical equation for fi as a 
function of temperature, such as an Arrhenius-type equation, and then tries 
to determine the parameters in the equation for ~ and the exponent z 
simultaneously from the experimental viscosity data. This procedure has 
two disadvantages. First, one does not know a priori whether the 
postulated equation for 0 is really correct, and the values deduced for the 
exponent z may be biased by the choice for this equation. Second, the 
procedure does not yield a determination of the amplitude Q, which is also 
of physical interest. 

The viscosity of the liquid mixture 3-methylpentane + nitroethane near 
the critical mixing point has been measured by a number of investigators 
[35-39]. For this mixture attempts have been made to obtain an indepen- 
dent estimate of 0. Figure 2 shows a log-log plot of the ratios q/0 thus 

5- methylpentane + nitroethane 
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Fig, 2. Log- log plot of the viscosity ratio ~/q as a function of 
the correlation length ~ for 3-methylpentane + nitroethane at 
the critical concentration [7]. 
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deduced from the experimental data of Tsai and Mclntyre [36] as a 
function of ~. The data satisfy the power law given by Eq. (5) with 
parameters [7] 

Q =  1.4 nm -~, z - -  0.063 (11) 

It is difficult to assess the accuracy of the exponent value determined 
experimentally. From an analysis of data of several investigators for 3- 
methylpentane+nitroethane, Burstyn et al. [7] concluded that 
z=0.062_+0.005, a value slightly larger than the theoretical estimate 
z ~ 0.054. 

Table III gives a list of experimental values that have been obtained 
for the universal dynamic exponent z. In all cases I have assigned a 
minimum error of _+0.005 to the reported exponent value. The experimen- 
tal values cover a range from a minimum value of 0.046 to a maximum 
value of 0.066. Beysens et al. [26] have attributed the differences in 
exponent values to the presence of nonanalytic corrections to the 
asymptotic power law. While this is indeed possible in principle, I think it 
more likely that the differences are a result of errors either in the 

Table IIL Experimental Values for the Viscosity Exponent z 

System Exponent z Reference 

Isobutyric acid + water 
lsobutyric acid + water 
2,6-Lutidine + water 
Butyl Cellosolve + water 
Polydimethylsiloxane + 

diethylcarbonate 
3-Methylpentane + nitroethane 
3-Methylpentane + nitroethane 
2-Butoxyethanol + water 
Hexadecane + acetone 
Polystyrene + cyclohexane 
n-Hexane 4- nitrobenzene 
n-Dodecane + chlorez 
Triethylamine + water 

Ethanol 4- water 4- benzene + 
ammonium sulfate 

Nitrogen 
Carbon dioxide 
Carbon dioxide 

0.061 • 0.005 
0.063 • 0.005 
0.062 _+ 0.005 
0.060 • 0.005 

0.052 • 0.005 
0.062 • 0.005 
0.056 + 0.005 
0.065 _+ 0.005 
0.063 • 0.005 
0.046 + 0.005 
0.063 • 0.005 
0.066 • 0.005 
0.051 • 0.005 

0.054 • 0.005 

0.057 • 0.007 
0.055 • 0.005 
0.056 __ 0.005 

Izumi and Miyake [40] 
Calmettes [41 ] 
Calmetter [4l ] 
Izumi et al. [42] 

Hamano et al. [43] 
Burstyn et al. [7] 
Pegg and McLure [39] 
Pegg and McLure [39] 
Pegg and McLure [39] 
[zumi et al. [44] 
Beysens et al. [26] 
Beysens et al. [26] 
Beysens et al. [26] 

Izumi and Miyake [45] 

Basu and Sengers [46] 
Iwasaki and Takahashi [47] 
Bruschi and Torzo [48 ] 
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experimental data themselves or due to various assumptions in the 
analysis, such as the estimated behavior of ~. For instance, while we found 
z --- 0.062 + 0.005 for 3-methylpentane + nitroethane I-7], a recent 
experimental study by Pegg and McLure [39] has yielded z = 0.056 +__ 0.005 
for the same system. In view of these uncertainties, I think that the 
agreement between theory and experiment is reasonable. It would be of 
interest, of course, if the exponent z could be determined with a higher 
accuracy. 

It is interesting to note that Izumi and Miyake 1-45 ] have also studied 
the behavior of the viscosity in the quaterny mixture ethanol + water + 
benzene+ammonium sulfate near its tricritical point. They found 
z=0.054+0.005, which strongly indicates that liquid mixtures near a 
tricritical point belong to the same dynamic universality class. Experimen- 
tal evidence that fluid mixtures near a plait point belong to the same 
dynamic universality class as well has been presented by D'Arrigo et al. 
1-49] and Lee 1,32]. 

It is possible to determine the exponent z independently from 
measurements of the diffusion coefficient D. The theory predicts that at the 
critical point, D will vary as qY = ql + z in accordance with Eqs. (8) and (9). 
If one therefore determines an effective exponent yeff(T) such that 
Dcx2q yerf(T) at temperatures close to To, one can determine 1 + z  as the 
limiting value of Yerf(T) at T = To. In Fig. 3 we show the exponent Yerf as a 
function of the temperature obtained by us for 3-methylpentane+ 
nitroethane. Extrapolating these values to T~ we find y = 1.05 + 0.02, in 
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excellent agreement with the exponent values determined for z from the 
viscosity data [7]. However, we cannot discriminate between z = 0.05 and 
z = 0.06 on the basis of the light-scattering measurements. 

4. VISCOSITY OF GASES NEAR THE CRITICAL POINT 

It is somewhat more difficult to determine the exponent z for the 
viscosity of gases near the vapor-liquid critical point. First, the data have 
to be taken at elevated pressures. Second, the attainable experimental 
accuracy is complicated by the divergent behavior of the compressibility. 
The presence of gravitationally induced density gradients needs also to be 
considered [50]. Furthermore, as we shall see, the magnitude of the 
anomalous behavior of the viscosity of gases near the vapor-liquid critical 
point appears to be smaller than that of the viscosity of liquid mixtures 
near the critical mixing point. On the other hand, at a given density, the 
background viscosity 0 is only a very weak function of temperature. 

The viscosity near the vapo~liquid critical point has been investigated 
for various gases such as xenon [51], nitrogen [2], ethylene [53], ethane 
[47], sulfur hexafluoride [54], and carbon dioxide [-47, 48]. The available 
information for steam is discussed later in this paper. 
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Fig. 4. Viscosity of nitrogen as a function of density at various temperatures near 
T c = 126.20 K. The data were obtained by Zozulya and Blagoi [52]  and the curves are 
calculated from Eq. (15). 
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The data of Strumpf et al. [51] have limited accuracy and may be 
affected by frequency dependence. The early viscosity data obtained by 
Zozulya and Blagoi [52] are shown in Fig. 4. These data have been 
analyzed by Basu and Sengers [46]. The viscosity ratio t//O is shown in 
Fig. 5 as a function of the correlation length 3, and the data are consistent 
with the asymptotic power- law given by Eq. (5) with parameter values 
[46] 

Q = 0.45 nm-1, z = 0.057 (12) 

On comparing Eq. (12) with Eq. (11) we note that the amplitude Q for 
gases is smaller than the corresponding amplitude Q for binary liquids. As 
a consequence, the temperature range of the anomalous behavior is also 
smaller is gases. For instance, from the data in Fig. 2 we note that the 
asymptotic power law is already satisfied at r as small as about 10 A, 
which corresponds to T -  Tc~20~ so that AT* <9  x 10 2. On the other 
hand, from Fig. 5 we note that the asymptotic power law is not reached 
until ~ is well beyond 100 ~, which corresponds to T-To~<0.2~ or 
A T * < 2 x  10 3. This result indicates that the mode-coupling effects dis- 
appear in gases at smaller wave numbers than in liquids [-19]. 

Because of the small temperature range of this asymptotic behavior, 
we do not have sufficient data in the asymptotic range to deduce a reliable 
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exponent z for most gases [55]. Taking into account correction terms to 
the asymptotic behavior described below, we estimate that the data of 
Iwasaki and Takahashi [47] for carbon dioxide are consistent with 
z=0.055_+0.005 [56]. Recently, Bruschi and Torzo [48] reported some 
new viscosity data for carbon dioxide which supersede their earlier fre- 
quency-dependent data for the same gas [-57]. From these data they 
deduce z = 0.056 with high apparent precision. 

5. DIFFUSION OF LIQUID MIXTURES NEAR A CRITICAL POINT 

In order to compare experimental data for the diffusion coefficient D 
with the theoretical prediction (7), one needs to consider possible correc- 
tions for a background contribution D = L/X. For liquid mixtures near the 
critical mixing point, estimating this background contribution is com- 
plicated by the fact that no independent measurements for the mass con- 
ductivity L are available. Background contributions have often been 
neglected in analyzing experimental light-scattering data near the critical 
mixing point [58, 59]. However, it has been demonstrated that corrections 
due to background contributions are important in the interpretation of 
experimental data for gases [12] as well as for binary liquids [60, 61]. 

A procedure has been developed to estimate/5 from the amplitude Q 
of the power law given by Eq. (5) for the viscosity ratio r//f/[7, 18, 19]. We 
do not discuss the problem here except to note that for the experimental 
data shown in Fig. 1, the correction is smaller than 1% when 
T -  Tc ~< 0.1~ 

From Eq. (7) it follows that it is convenient to define a scaled diffusion 
coefficient as 

D* 67tr/~ 
- k ~ T  A D ( q )  (13) 

The experimental values deduced for D* are shown in Fig. 6. The data, 
obtained as a function of both q and ~, indeed collapse onto a single curve 
(2(q~). The solid curve in Fig. 6 represents the theoretical dynamic scaling 
function (10); it reproduces the data within experimental accuracy [7]. 

There has been some controversy concerning the experimental value of 
the dynamic amplitude ratio R. Currently available experimental values are 
presented in Table IV. When Siggia et al. [1] estimated R_~l.20, it was 
speculated that the diffusion coefficient would satisfy a Stokes-Einstein dif- 
fusion law with prefactor 1.2/6~ -~ 1/57z in accordance with Stokes's law for 
a spherical droplet with radius ~ moving in a medium with the same 
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T a b l e  IV. 
i 

System 

Experimental Values for the Dynamic Amplitude Ratio R 
i 

Amplitude 
ratio R Reference 

3-Methylpentane + nitroethane 
3-Methylpentane + nitroethane 
Polydimethylsiloxane + 

diethylearbonate 
n-Hexane + nitrobenzene 
n-Hexane + nitrobenzene 
n-Dodecane + chlorex 
Triethylamine + water 

Ethanol + water + benzene 
+ ammonium sulfate 

Xenon 
Ethane 

1.02 + 0.06 
1.01 __+ 0.04 

1.03 _+ 0.06 
0.99 _+ 0.05 
1.06 +_ 0.07 
1.06 + 0.06 
1.06 + 0.06 

1.0+0.1 

1.01 + 0.06 
1.01 + 0.10 

Burstyn et al. [37] 
Burstyn et al. [7] 

Hamano et al. [43] 
Zalczer et al. [66] 
Beysenset al. [26] 
Beysens et al. [26] 
Beysens et al. [26] 

Kim et al. [67] 

Gfittinger and CanneU [68 ] 
Chang and Doiron [69] 
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viscosity as that of the liquid droplet [62]. This result appeared to be con- 
firmed by several investigators [63-65]. As we see below a value of R-~ 1.2 
appeared also to be supported by the thermal conductivity for gases in the 
critical region. However, we were unable to reproduce this result from the 
light-scattering measurements obtained at that time in our laboratory and 
we were forced to study this amplitude ratio R more carefully [37]. 

From Eqs. (7), (10), and (13) we note that R can be deduced from the 
experimental data as 

R=D*/QI<(q~)[I +(f)21 z/2 (14) 

The values, thus obtained for R from our light-scattering data at 90~ 
wfiich have the higher accuracy [7], are shown in Fig. 7 as a function of 4. 
For small ~ the values deduced do depend on the background correction, 
but for large r they do not. The dynamic amplitude ratio thus obtained is 

I.I0 

1.05 

R 1.00 

0.95 

0.90 

I I I 

5 - methylpentane + nitroethane 
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q m 

b 

0 O 0  0 0 -] 

~ o  

I I I 
lO I 0 0  I 0 0 0  

( ,  nm 

Fig. 7. Dynamic amplitude ratio R for 3-methylpentane + nitroethane as a 

function of ~ 
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indeed independent of ~, and we find R = 1.01 with a precision of _+0.04 
[7]. This result is in good agreement with the value R = 1.03 predicted 
from the mode-coupling theory but differs from the most recent theoretical 
estimate R = 1.075 from the renormalization-group theory (see Table II). In 
Table IV we list experimental values for R reported by several 
investigators. Good agreement with the predicted value R = 1.03 has also 
been found by Hamano et al. [43] for polydimethylsiloxane+diethyl- 
carbonate and by Chen et al. [61] for n-hexane + nitrobenzene. 

An accurate determination of R requires reliable information for D, ~, 
and q for the same system. Also, the value obtained for R may be too large 
if one neglects background contributions to D [59]. As in the other tables, 
I have omitted in Table IV reported values that I consider less reliable. For 
instance, Beysens et al. [26] recently reported light-scattering data for 3- 
methylpentane + nitroethane earlier obtained by Calmettes, from which 
they deduce that R =  1.14_+0.07, in disagreement with the value R =  
1.01 + 0.04 obtained by us. Since they use the same data for ~ and q, the dif- 
ference can be traced to a difference between our decay-rate data and those 
of Calmettes. The decay rates have been remeasured by Jefferson et al. for 
this system and they find agreement with our data within 2 % at all tem- 
peratures [70]. 

It is also of interest to consider an earlier investigation by Kim et al. 
[67], who measured the decay rate together with ~ and q for the quaterny 
mixture ethanol + water + benzene + ammoniumsulfate near the tricritical 
point. They found that their data were consistent with R = 1.0 to within 
10%, a result which again indicates that fluid mixtures near a tricritical 
point belong to the same dynamic universality class. 

6. THERMAL DIFFUSIVITY OF GASES NEAR THE 
CRITICAL POINT 

Several investigators have measured the Rayleigh linewidth of light 
scattered through gases near the critical point which yield the thermal dif- 
fusivity D T. It turns out that the effect of background contributions is quite 
important for gases, but in this case they can be estimated from indepen- 
dent thermal conductivity data [12, 14, 58]. The early experimental work 
was reviewed by Swinney and Henry [-58]. Most experimental light-scat- 
tering data reported in the literature for gases are not sufficiently accurate 
to yield the dynamic amplitude ratio R within an accuracy of 10% or bet- 
ter. An exception is the work of Giittinger and Cannell [68], who made a 
careful study of R for xenon at about the same time we were determining 
this quantity for 3-methylpentane + nitroethane. They found R = 
1.01 +_0.04, in excellent agreement with the value found by us for 3- 
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methylpentane + nitroethane near the critical mixing point. Light-scattering 
measurements of Chang and Doiron [69] for ethane have yielded R = 
1.01 _+ 0.10, consistent with the above results. 

It should be noted that the data shown in Fig. 7 for the amplitude 
ratio R of the binary liquid 3-methylpentane + nitroethane corresponds to 
a temperature range for which ~ >~ 80 ,~. Hence, the validity of Eq. (14) 
with R = 1.01_ 0.04 has been verified for this binary liquid mixture for 
AT*<~3 x 10 -3. On the other hand, to obtain R =  1.0! _+0.04 for xenon, 
Gfittinger and Cannell [68] had to restrict the data to temperatures for 
which AT*<~ 2 x 10 -4. Just as for the viscosity, the range of validity of the 
asymptotic behavior for the diffusion of the order-parameter fluctuations 
could be smaller for gases than for binary liquids. 

7. CROSSOVER FUNCTIONS FOR THE VISCOSITY OF GASES IN 
THE CRITICAL REGION 

As discussed earlier, the viscosity ratio ~/~ of gases does not reach its 
asymptotic power law given by Eq. (5) unless the temperature is very close 
to To. Hence, in order to represent the actual experimental viscosity data in 
the critical region, one needs a crossover function that reproduces both the 
asymptotic power law given by Eq. (5) close to Tc and the normal behavior 
of the viscosity away from the critical point. A similar problem is encoun- 
tered in the theory of equilibrium properties, where one needs a crossover 
function that connects the scaling-law behavior of the thermodynamic 
properties near the critical point with the regular analytic behavior of these 
properties sufficiently away from the critical point [71-73]. 

For the viscosity we define a crossover function as 

(15) 
q 

such that 

lira F.(r (Qr lim F~(~)= 1 
~ 0  

The simplest approximation is a step function 

F,(~) = (Q~)Z for Q~ > 1 
(16) 

F , ( ~ ) = I  for Q r  

Such a step function was originally used by Basu and Sengers [46] for 
nitrogen and is represented by the curves in Fig. 3. The disadvantages of 

840/6/3-2 



2~ ~ n ~  

this step function are twofold. First, the transition between the asymptotic 
power law given by Eq. (5) and the regular behavior does not occur 
sharply at Q~ = 1. Second, this representation uses the power law given by 
Eq. (5) in a temperature range where the asymptotic behavior is not fully 
reached and, hence, tends to yield an effective exponent value z which may 
be smaller than the asymptotic value. 

In principle, a crossover function can be derived from the mode-coupl- 
ing theory, since the validity of the mode-coupling equations is not limited 
to the asymptotic behavior only. In order to obtain a crossover function in 
a mathematically closed form, one is forced to consider approximate 
solutions of the mode-coupling equations. Using this procedure we have 
proposed a crossover function of the form [19] 

F,(~) = exp(zH) (17) 

where 

f f  sin40 dO 
H=qc~ 1 +qc~cos  0 (18) 

with ~u= arccos(1 +qD2~2) -U2. Here qc is a wave number related to the 
background values f/and 2 at the critical point and qD is a Debye cuttoff 
wave number where the mode-coupling contributions disappear. The 
function H reproduces the power law (Q~)Z in the limit ~ ~ 0 with 

Q-1 1 =~  (qc 1 +qD 1) e 4/3 (19) 

The integral in Eq. (18) can be evaluated by elementary techniques and the 
explicit form of the crossover function H is given elsewhere [19]. This 
function has been used by Basu and Sengers [55] to represent the 
experimental viscosity of a variety of gases in the critical region with qD as 
an adjustable parameter and with an exponent value z = 0.065, which in 
retrospect may be slightly too large. The values thus obtained for the 
viscosity ratio ~//f/for nitrogen in the critical region are represented by the 
solid curve in Fig. 5. 

Improved versions of this crossover function for the viscosity of gases 
in the critical region are presently being developed by our research group. 
Such more refined crossover functions depend on the temperature and den- 
sity not only via the correlation length ~ but also through other ther- 
modynamic properties such as compressibility and specific heat. 
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8. C R O S S O V E R  FUNCTIONS FOR T H E  T H E R M A L  
CONDUCTIVITY OF GASES IN THE CRITICAL REGION 

From Eq. (7) it follows that the thermal conductivity of a gas in the 
hydrodynamic limit will asymptotically near the critical point behave as 

k B T  
A2 = R ~ pcp (20) 

Since Cp diverges as 32- 0, where ~/~ 0.03 is a small exponent that charac- 
terizes deviations of the static order-parameter correlation function from 
the classical Ornstein-Zernike form El], it follows from Eqs. (5) and (20) 
that the singular thermal conductivity A2 will diverge as 

A2oc~%clAT*l-~v (21) 

with 
~b= 1 - r ) - z  (22) 

Attempts have been made to determine the exponent ~b from experimental 
thermal conductivity data [11, 12, 14, 74], the most successful being that 
of Pittman et al. [75] for 3He. In all these attempts the data deduced for 
A2 were fitted either to the simple power law given by Eq. (21) at p =po or 
to a simple scaling law when data off the critical isochore were included, 
which in fact extended to values of A T* as large as 0.1. However, in Sec- 
tion 4 we noted that the corresponding power law given by Eq. (5) for the 
viscosity r/ of gases was restricted to AT* < 2 x  10 -3. Moreover, as dis- 
cussed in Section 6, the corresponding power law for the thermal diffusivity 
3D-r = A2/pc v has thus far been verified only for A T * <  2 x 10 -4. Hence, it 
is questionable whether this procedure reveals the truly asymptotic 
behavior of the thermal conductivity. In order to interpret the available 
experimental thermal conductivity data for gases in the critical region, it is 
desirable to formulate a crossover function for A2 which approaches 
Eq. (20) asymptotically at the critical point and approaches zero far away 
from the critical point. 

In the case of the viscosity almost any crossover function works in 
practice since the anomaly is weak and restricted to a small temperature 
range. In the case of the thermal conductivity the singular contribution A2 
is significant in a large range of temperatures and densities around the 
critical point. As a consequence the requirements for a suitable crossover 
function for the thermal conductivity are more demanding if one wants to 
obtain a representative equation that reproduces the thermal conductivity 
contribution A2 at all temperatures and densities within experimental 
accuracy. 
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To date empirical crossover functions have been employed to 
represent the thermal conductivity of gases in the critical region. In our 
earlier work we have proposed an equation of the form [76, 77] 

kBT 
A2 = R ~ p(Cp - Cv) F~(A T*, Ap*) (23) 

where cv is the specific heat at constant volume, A T* = ( T -  Tc)/Tc, Ap* = 
( P -  Pc)/Pc, and Fx(AT*, Ap*) is an exponential damping function 

Fx(AT*, Ap*)= ~ e x p { -  [A(AT*) 2 + B(Ap*) 4]} (24) 

The coefficients A and B are treated as adjustable constants, while n = 0 or 
n = 1/2 is a simple exponent. In the absence of light-scattering data the 
correlation length ~ can be estimated from an approximate relationship 
with the isothermal compressibility [78]. This empirical function has been 
used by several investigators [79-84]. Other types of empirical functions 
have also been proposed [85-87]. 

In Fig. 8 we show the values predicted by Eq. (23) for the thermal con- 
ductivity of carbon dioxide in the critical region with parameters 

n = 0, R = 1.0, A = 39.8, B = 5.45 (25) 

The equation is compared with the thermal conductivity data of Michels et 
al. [89] and with the values deduced from the thermal diffusivity data 
obtained by Becker and Grigull [90] for CO2 from holographic inter- 
ferometry. In applying Eq. (23) we imposed the value R = 1.02 as originally 
determined by Burstyn et al. [37] for the asymptotic behavior of the dif- 
fusivity from light-scattering data and treated A and B as adjustable con- 
stants. The equation yields a reasonable representation of the thermal con- 
ductivity in the critical region. There are some discrepancies, but it should 
be kept in mind that close to the critical point, the analysis becomes 
extremely sensitive to uncertainties in T~, which affect the value calculated 
for Cp that enters into the comparison between the thermal conductivity 
data and the equation as well as in the comparison between the thermal 
conductivity data and the experimental thermal diffusivity data. For 
instance, it makes a difference in the analysis whether one attributes to the 
data of Becker and Grigull the best value for Tc of COa quoted in the 
literature, as done in constructing Fig. 8 [88], or the different value for T~ 
quoted by Becker and Grigull themselves. 

Nevertheless, there exist some unsolved problems. First, there is 
evidence from our work as well as that of others [83, 85] that Eq. (23) 
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Fig. 8. Thermal conductivity data for CO2 in the critical region as a functions of 
density along isotherms. The curves represent the values calculated from Eqs. (23) 
and (24) with the parameter values given in Eq. (25) [88]. 

does not always reproduce the thermal conductivity at all temperatures 
and densities where a critical enhancement is observed. Second, when 
Eq. (23) or a similar equation is used to fit the experimental thermal con- 
ductivity data with R as adjustable parameters, one often finds a value 
R ~  1.2, in disagreement with the value R =  1.01 _+0.04 established for the 
asymptotic behavior of the diffusion of the critical fluctuations in fluids 
fi'om light-scattering experiments. Our  own thermal conductivity 
measurements seemed to indicate that R =  1.15+_0.05 [14, 76]. A value 



224 Sengers 

R =  1.2 has been reported by Le Neindre and co-workers [87] for the ther- 
mal conductivity of ammonia and propane and by Trappeniers [74] and 
co-workers for the thermal conductivity of argon. Weber also needed 
R = 1.2 to represent his thermal diffusivity data for oxygen obtained from 
light-scattering measurements [83]. I am puzzled by these results. The 
most probable explanation is that the thermal conductivity data are not in 
the asymptotic range and that Eq. (23) is not accurate enough to yield the 
correct asymptotic behavior from experimental data outside the asymptotic 
regime. This possibility is illustrated by the work of Tufeu et al. [84, 91], 
who measured for ammonia the thermal conductivity directly as well as the 
thermal diffusivity from light scattering. The light-scattering data are con- 
sistent with R = 1.0, but the thermal conductivity data require R = 1.2. 
Nevertheless, the two data sets are not inconsistent, but the light-scattering 
data probe a temperature range closer to To then the thermal conductivity 
data. In those cases where the light-scattering data and the thermal con- 
ductivity data overlap near To, the combined accuracy is usually not much 
better than 20% [75, 87, 92]. 

Hence, it becomes imperative to develop crossover functions for the 
singular thermal conductivity A)~ that have better foundations in theory. 
Such a crossover function can be derived in principle from the mode- 
coupling equations in a manner similar to the formulation of a crossover 
function for the viscosity discussed earlier. Such research is currently in 
progress. 

9. VISCOSITY OF STEAM IN THE CRITICAL REGION 

In conclusion we consider the behavior of the transport properties of 
steam in the critical region. The primary source of information for the 
viscosity of steam in the critical region is a set of experimental data 
obtained by Rivkin and co-workers [83]. These data do indicate an 
anomalous behavior of the viscosity near the critical point. The 
phenomenon has been confirmed for steam by Oltermann [94]. Unfor- 
tunately, Rivkin et al. have measured the kinematic viscosity rl/p as a 
function of temperature and pressure. To convert these data to values for 
the shear viscosity r/as a function of temperature and density, one needs to 
calculate the densities from the equation of state. As discussed elsewhere 
the results are very sensitive to the choice of T - T  c to be assigned to the 
data 1-95]. In Fig. 9 we show the viscosity q as a function of density at tem- 
peratures close to the critical temperature To; this figure is based on the 
data of Rivkin and co-workers as reinterpreted by Watson et al. [-96]. 

In order to represent the critical behavior of the viscosity, we need an 
equation for the background viscosity of steam. In 1975 the International 



or) 
0 
13- 

(D 
' o  

0 rJ 
to .D 

> 

50  

45  

4 0  

I I I I 

�9 374 .2  ~ 

374.5  ~ 

o 3 7 5 . 0  ~ 
0 375.5 ~ 
| 5 8 0 . 0  ~ 

35 

I, I 
3O I I I I I 

2 0 0  250  5 0 0  Pc 550  4 0 0  4 5 0  

Density, kg. r63  

Fig. 9. The viscosity r/ of steam as a function of density at temperatures 
close to the critical temperature. The data points are deduced from the 
measurements reported by Rivkin et al. [93 ] and the curves represent values 
calculated from the equation of Watson et al. [96]. 

0.10 

A 

"~ 0.05 
e -  

H20 I ~ 

. . 4  
�9 ^ / ~ 0  . . . . .  _ 

_~ ~ 1374.2~ 
_ ~  A 374 .5oc  

O~ [] 375.0 ~ C 

0 I 
20 5O I00 2O0 

~', I0-10 m 

Fig. 10. Log-log plot of the viscosity ratio r//r~ of steam as a function of the 
correlation length ( [55]. 



226 Sengers 

Association for the Properties of Steam (IAPS) adopted an equation for 
the viscosity of water substance of the form 

where Tr=647.27K and pr=317.763kg 'm -3 are reference constants 
close, but not identical, to the critical parameters Tc and Pc. The functions 
t/0(SP ) and t/l(T, fi) are defined by 

E2 tlo( T) = ~ a~/T k (27) 
0 

with coefficients a~ and b} given elsewhere [97]. The IAPS equation (26) 
does not account for any critical enhancement of the viscosity and, in prin- 
ciple, must therefore be considered an equation for the background 
viscosity O. In practice, the IAPS equation does not yield sufficiently 
reliable values for the background viscosity O in the critical region. For this 
purpose Watson and co-workers [96] developed an improved version of 
the IAPS equation by redetermining the coefficients b,} in Eq. (28). With 
this improved equation for the background viscosity, the critical viscosity 
enhancement can be represented in terms of the crossover function (15) 
with parameter values 

Q = 0.38 nm 1, z = 0.05 (29) 

The values thus calculated are represented by the curves in Fig. 9 [96, 98]. 
In Fig. 10 we show a log-log plot of the viscosity ratio q/O of steam as 

a function of the correlation length 4. Again it appears that we have not yet 
reached the fully asymptotic regime where the viscosity ratio t//f/ has 
reached the simple power law (Q~)Z and the actual exponent z may be 
slightly larger than 0.05. As shown by Bhattacharjee et al. [19], it is 
possible to represent the viscosity data for steam with a slightly larger 
value of the exponent z, if one introduces the more complete crossover 
function given by Eq. (17). 

I conclude that the behavior of the viscosity of steam in the critical 
region is fully consistent with the behavior found for the viscosity of other 
gases near the critical point. 
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10. THERMAL CONDUCTIVITY OF STEAM IN THE 
CRITICAL REGION 

That the thermal conductivity of steam exhibits a pronounced enhan- 
cement in the critical region was first demonstrated by Le Neindre and co- 
workers [99]. The thermal conductivity of steam in the critical region has 
been investigated subsequently by Sirota and co-workers [100, 101] in 
great detail and with considerable accuracy. In 1977 the IAPS adopted a 

0 .7  

0 .6  

0 ,5  

0,4 
r 

I I I 
o 22.6 MPa 
x 23 ' l  MPa , q~ '~ f~  
A 23.6 MPa 
+ 24.1MPa ~o \~o 
o 27.6 MPa o o 

* 30. I MPa o ~176 

• 0 
~o 

t 

0,3 

0 .2  

0.1 

TFC68 Equation of State 

V m I I 
I I ' , I I 

100 200 3001 400  500 600 
& 

Density, kg. rrT 5 
Fig. 11. The thermal conductivity of steam in the critical region as a [unction of den- 
sity at constant pressures. The data are those of Sirota eta].  [ ]01 ]  and the curves 
represent the va]ues calculated from the IAPS equation adopted in 1977 [102]. 



228 Sengers 

representative equation for the thermal conductivity of water and steam 
that takes into account the enhancement of the thermal conductivity in the 
critical region [102]. The equation for the background thermal conduc- 
tivity ~ adopted by the IAPS has the same mathematical form as the 
equation (26) for the viscosity. 
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with 

2o(T ) -- (31) 

21(T, r = exp [r ~ ~ b,~ ( 1 -  1)' (r 1) g] (32) 

The singular contribution A2 for steam is represented by the crossover 
function given by Eq. (23) with parameter values [81, 102] 

n = 1/2, R = 1.2, A = 18.66, B = 1 (33) 

I n  Figs. 11 and 12 we show a comparison between the values thus 
calculated for the thermal conductivity of steam in the critical region and 
the experimental data of Sirota et al. The thermal conductivity equation 
adopted by the IAPS was originally developed with the aid of the 1968 IFC 
formulation for the thermodynamic properties; the values thus calculated 
are shown in Fig. 11. In 1982 the IAPS adopted a new formulation for the 
thermodynamic properties of water substance which was developed by 
Haar et al. [-103, 104] and the IAPS release on thermal conductivity was 
amended so as to be used with this new formulation for the ther- 
modynamic properties; the values obtained by the latter procedure are 
shown in Fig. 12. For further details the reader is referred to a separate 
publication [102]. 

In developing a representative equation for the thermal conductivity of 
steam, we encountered the same problem mentioned earlier for other gases. 
To obtain satisfactory agreement with the experimental data we had again 
to select R =  1.2, in disagreement with the expected limiting value of 
R = 1.01 _+ 0.04. The behavior of the thermal conductivity of steam in the 
critical region appears to be quite similar to that observed for other gases. 
However, as of yet we do not have a representative equation fully con- 
sistent with the expected value for the amplitude R. 
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