Torsional Piezoelectric Crystal Viscometer for Compressed Gases and Liquids¹

D. E. Diller² and N. V. Frederick²

A torsional piezoelectric crystal viscometer for compressed gases and liquids at temperatures to 600 K and a pressures to 70 MPa has been developed. Several torsional crystals were prepared from swept (electrolyzed) quartz to obtain a good performance at high temperatures. Measurements of the bandwidth of the crystal resonance curve were automated using an impedance analyzer. The viscometer was tested on compressed gaseous argon and methane at temperatures to 500 K and at pressures to 50 MPa. The measurements differ from accurate wide-range correlating equations by less than 2%.

KEY WORDS: argon; compressed gases and liquids; correlating equation; crystal resonance curve bandwidth; high pressures; high temperatures; methane; swept quartz; torsional crystal viscometer.

1. INTRODUCTION

Transport properties data and models are required for processing gases and liquids at high temperatures and pressures. There are few viscometers available for measurements at both high temperatures and high pressures. This report describes a new torsional crystal viscometer for both gases and liquids at temperatures up to 600 K and at pressures up to 70 MPa. The viscometer has been tested extensively on compressed gaseous argon and methane, and the data have been compared with accurate, wide-range correlating equations [1, 2].

¹ Paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A.

² Thermophysics Division, National Institute of Standards and Technology (formerly National Bureau of Standards), Boulder, Colorado 80303, U.S.A.

2. METHOD

The torsional piezoelectric crystal method is described in Refs. 3 and 4. We have computed all viscosities reported here using the data reduction equation published previously [4],

$$\eta = \frac{\pi f_{\text{fluid}}}{\rho} \left[\frac{M}{S}\right]^2 \left[\frac{\Delta f_{\text{fluid}}}{f_{\text{fluid}}} - \frac{\Delta f_{\text{vac}}}{f_{\text{vac}}}\right]^2 \tag{1}$$

where ρ is the density of the fluid, f is the resonant frequency, M is the mass of the crystal, S is the surface area of the crystal, and Δf is the bandwidth of the crystal resonance curve. $\Delta f_{\rm fluid}$ is measured with the quartz crystal surrounded by the test fluid, and $\Delta f_{\rm vac}$ is measured with the cell evacuated with a typical oil diffusion pump.

The torsional crystal viscometer method has several advantages over other methods. It can be used at extreme temperatures and pressures, it does not require calibration with a fluid of known viscosity, it can be easily automated, and it permits measurements on fluids very close to equilibrium.

2.1. Apparatus

This apparatus is an adaptation of a low-temperature apparatus, described in Ref. 4, to higher temperatures.

2.1.1. Transducer

A schematic drawing of the transducer (end view) is shown in Fig. 1. This transducer is very similar to the transducer described in Ref. 4. Only

Fig. 1. Torsional crystal transducer (end view).

	Crystal D	Crystal 2
Mass, g	0.9662	0.8004
Length, cm	5.0076	4.2984
Diameter, cm	0.3046	0.2995
Resonant frequency, Hz	39,537.	45,870
Preparation	"Unswept"	"Swept"

Table I. Quartz Crystal Parameters and Resonant Frequencies

important differences between them are discussed here. Most of the differences involve materials which were selected for use at high temperatures.

2.1.1.1. Quartz Crystals. For measurements on gases, $Q_{\rm vac}^{-1} = \Delta f_{\rm vac}/f$ should be as small as possible. $Q_{\rm vac}^{-1}$ for quartz increases rapidly with temperature at temperatures above 450 K, making quartz unsuitable for use as a high-temperature viscometer. However, when natural quartz is swept or electrolyzed, $Q_{\rm vac}^{-1}$ is nearly independent of temperature to 846 K [5]. Two

Fig. 2. High-pressure cell.

crystals, an unswept crystal and a swept crystal, were selected from crystals prepared for this work. Their masses, dimensions, and resonant frequencies are given in Table I. Their diameters are nearly the same and their lengths are significantly different.

2.1.1.2. Crystal Holder. The crystal is suspended in the crystal holder by a soft stainless-steel wire, held in tension by two tungsten springs (not shown). Machinable ceramic spacers electrically separate the brass electrodes from the stainless-steel crystal holder. The bolts which fasten two of the electrodes to the crystal holder are separated electrically from the holder by glass fabric tubes. The other details of the crystal holder are similar to Ref. 4.

2.1.2. Cell and Oven

A schematic drawing of the cell is shown in Fig. 2. The transducer is contained in a cavity, 2.9 cm in diameter and 19.7 cm long, drilled in a 316 stainless-steel cylinder, 12.7 cm in diameter and 30.5 cm long. When assembled, the remaining cell volume contains less than 25 cm³ of fluid. Two platinum resistance thermometers are placed in vertical holes, 1 cm in diameter and 20 cm long, drilled in opposite ends of the cell, and on opposite sides of the transducer cavity. Two 1.6-mm-o.d. electrical leads, which pass through the lid of the cell, are sealed by small cones of polypyromelitimide (PPMI) [6]. The lid is sealed with a silver-platted, solid copper O ring, compressed by 12 stainless-steel bolts. A 3.2-mm-o.d. stainless-steel tube is silver soldered into the lid to permit the test fluids to enter.

The oven was constructed from commercially available rectangular and cylindrical modules. Each module was vacuum molded from aluminum silicate fibers and has iron-chrome-aluminum alloy heater wires imbedded in one surface. There is a 1.3-cm air gap between the heater wires and the cell.

2.2. Procedures

2.2.1. Gas Purity

The measurements were made on commercially available researchgrade argon and methane. The 99.99% pure argon contained less than 10 ppm nitrogen, 1 ppm hydrogen, 5 ppm oxygen, 5 ppm hydrocarbons, and 3 ppm water. The methane was also specified 99.99% pure by the supplier, with nitrogen, carbon dioxide, and ethane the most likely impurities.

2.2.2. Temperature and Pressure

The temperature was measured with a commercially available platinum resistance thermometer of secondary standard quality, calibrated at NBS, and placed in a vertical hole in the top of the cell. The long-term temperature drift of the cell thermometer was less than 0.2 K/day. For comparison, another platinum resistance thermometer was placed in a vertical hole in the bottom of the cell (see Fig. 2). The two thermometers usually differed by less than 0.2 K. The uncertainty in the cell temperature is estimated to be smaller than 0.2 K.

The temperature was controlled by a platinum wire sensor, connected to a proportional, off-line power controller. The sensor was placed in the air gap between the cylindrical heater and the cell. The long-term temperature drift of the cell temperature was less than 0.2 K/day.

The pressure was measured with a commercially available quartz transducer pressure gauge used at ambient temperature. Its calibration was checked by comparing it with an oil, deadweight piston gauge. The two gauges differed by less than 0.05 % at pressures larger than 1 MPa.

2.2.3. Density

Fluid densities were obtained from temperature and pressure measurements and an equation of state [7]. The estimated errors in the densities are smaller than 0.2%.

2.2.4. Viscosity

An impedance analyzer was used for measuring the electrical conductance of the transducer as a function of frequency. Measurements of $\Delta f_{\rm vac}$, the bandwidth of the crystal resonance curve in vacuum, were carried out at the end of every run. Measurements on the transducer in vacuum were made at a voltage level of 0.01 V, to obtain conductances which were independent of voltage. The bandwidth in vacuum, $\Delta f_{\rm vac}$, was usually albout 0.1 Hz. For this case, the frequency increment during a scan was 0.01 Hz. However, the value of $\Delta f_{\rm vac}$ could be read to about 0.002 Hz. For the transducer in vacuum, conductances at resonance were usually in the range 150–300 μ S and could be read to 0.2 μ S. Figure 3 shows our measured values of $Q_{\rm air}^{-1} = \Delta f/f$ for an unswept torsional crystal and a swept torsional crystal at temperatures to 600 K. $Q_{\rm air}^{-1}$ for the swept crystal is nearly independent of temperature in this range.

Measurements of Δf_{fluid} , the resonance curve bandwidth for the transducer in a fluid, were made with a voltage drop of 0.1 V. Δf_{fluid} was usually between 1 and 15 Hz. The frequency increment during a scan ranged from

Fig. 3. Q⁻¹_{air} of a torsional crystal as a function of temperature: (△) unswept crystal; (○) swept crystal.

0.05 Hz for the most dense gases to 0.02 Hz for low-density gases. Conductances at resonance were between 3 μ S for the most dense gases and 25 μ S for low-density gases. These conductances were read to the nearest 0.01 μ S. Several hundred conductance-frequency pairs were measured during each scan of the resonance curve. The conductance of the cable between the analyzer and the transducer was nulled in the analyzer. The conductances at frequencies far from resonance (± 1 kHz) were measured after every scan and used to adjust the conductances measured at frequencies near resonance. All frequency scans were made at the slowest possible scan rates (about one step/s) to obtain conductances which were independent of the scan rate. Many comparisons were made between bandwidths measured with the impedance analyzer and bandwidths measured with a conductance bridge [4]. No significant differences were observed.

3. RESULTS AND DISCUSSION

Shear viscosity measurements for argon, at temperatures to 500 K, at pressures to 50 MPa, and at densities to 17 mol \cdot L⁻¹, are presented in

<i>T</i> (K)	<i>P</i> (MPa)	$\rho \pmod{L^{-1}}$	$\eta (\mu Pa \cdot s)$	$100(\eta_{\rm meas}-\eta_{\rm calc})/\eta_{\rm calc}{}^a$	Crystal ID ^b	
T = ambient						
292.90	50.362	17.675	49.3	-0.4	D	
295.90	41.619	15.694	44.1	0.2	D	
293.50	39.124	15.200	42.9	0.5	D	
295.00	35.040	13.899	40.0	0.8	D	
293.50	27.906	11.724	35.7	1.4	D	
295.90	27.878	11.581	35.6	1.1	D	
295.90	20.890	8.933	31.3	1.3	D	
293.50	20.739	8.977	31.1	1.1	D	
293.80	13.892	6.037	27.3	0.8	D	
295.90	13.882	5.973	27.0	-0.6	D	
293.50	9.539	4.111	25.2	-0.2	D	
296.00	9.444	4.024	25.3	-0.1	D	
297.40	6.989	2.934	24.0	- 1.9	D	
293.50	6.925	2.953	24.3	0.1	D	
296.00	6.911	2.917	24.5	0.6	D	
293.80	5.170	2.183	23.9	0.6	D	
293.50	3.485	1.460	23.1	-0.6	D	
296.00	3.311	1.373	23.5	0.9	D	
		T =	400 K			
399.78	55 110	13 736	46.5	16	n	
400.04	54.808	13.674	45.4	-04	D	
400.16	53.463	13 431	44.9	-0.6	2	
400.00	51.757	13.127	44.3	-0.4	л Д	
400.00	48.305	12.477	43.9	1.5	D	
400.10	48.286	12.471	42.8	-0.8	2	
399.74	48.241	12.474	43.8	1.3	Đ	
400.22	45.006	11.819	42.3	0.8	2	
400.07	44.896	11.802	42.7	1.7	2	
399.99	44.629	11.750	41.4	-1.1	D	
400.20	43.367	11.485	41.8	1.1	2	
400.07	41.425	11.083	40.8	0.4	2	
400.80	41.424	11.084	41.0	0.6	D	
399.69	41.351	11.078	41.5	2.1	D	
400.09	38.007	10.339	40.0	1.4	2	

Table II. Viscosities of Compressed Gaseous Argon

^{*a*} η_{calc} is from Ref. 1. ^{*b*} D and 2 are crystal D and crystal 2, respectively, in Table I.

Diller and Frederick

<i>T</i> (K)	P (MPa)	$\rho (\text{mol} \cdot L^{-1})$	η (μPa · s)	$100(\eta_{\rm meas}-\eta_{\rm calc})/\eta_{\rm calc}$	Crystal ID ^b
		T =	400 K		
399.99	37,982	10.336	38.9	-1.4	D
400.14	37.961	10.327	39.2	-0.4	2
400.17	34.607	9.563	39.0	2.0	2
399.67	34.518	9.555	38.9	1.8	D
400.14	34.479	9.534	38.3	0.5	2
399.97	34.436	9.528	38.3	0.4	D
400.07	31.057	8.719	37.5	1.3	2
400.11	31.022	8.710	36.9	-0.3	2
399.76	27.602	7.866	35.7	-0.2	D
400.20	27.600	7.856	35.8	-0.1	2
399.65	27.549	7.855	36.4	1.7	D
399.65	25.854	7.420	35.9	1.9	2
400.09	24.227	6.985	35.0	0.8	2
400.13	24.154	6.965	34.7	0.1	2
399.65	22.520	6.512	34.7	1.6	2
400.13	20.716	6.041	33.5	-0.5	2
400.21	20.684	6.031	33.9	0.9	2
399.91	20.681	6.035	33.3	-0.9	D
399.66	20.621	6.023	34.0	1.3	D
399.58	18.965	5.568	33.4	1.1	2
400.13	17.287	5.090	33.3	2.0	2
400.14	17.259	5.082	33.0	1.2	2
399.55	15.529	4.599	32.4	1.0	2
399.93	13.811	4.101	31.8	0.3	D
400.10	13.755	4.083	32.0	0.9	2
399.71	13.745	4.085	31.8	0.5	D
399.54	12.056	3,596	31.6	1.3	2
400.13	10.375	3.097	31.3	1.4	2
400.09	10.331	3.085	30.8	-0.1	2
399.94	6.912	2.073	29.9	-0.5	D
400.23	6.882	2.063	29.9	-0.5	2
399.71	6.806	2.043	20.2	0.7	D
399.95	3.429	1.031	29.7	1.0	D
400.16	3.425	1.029	29.4	0.0	2
400.29	3.423	1.028	29.5	0.3	2
399.97	3.295	0.990	29.7	0.9	D
400.17	1.371	0.412	28.8	-1.2	2

Table II. (Continued)

<i>T</i> (K)	P (MPa)	$\rho \;(\mathrm{mol}\cdot\mathrm{L}^{-1})$	$\eta (\mu \mathbf{Pa} \cdot \mathbf{s})$	$100(\eta_{\rm meas}-\eta_{\rm calc})/\eta_{\rm calc}{}^a$	Crystal ID ^b
		T =	500 K		
499.75	57.420	11.389	48.2	3.6	2
499.24	55.768	11.150	46.9	1.7	2
499.78	52.421	10.618	46.8	3.5	2
499.67	49.986	10.230	45.9	3.0	2
499.71	44.804	9.366	44.3	2.3	2
499.67	43.119	9.077	43.9	2.5	2
499.63	37.925	8.150	42.6	2.5	2
499.04	36.211	7.834	42.1	2.3	2
499.57	34.474	7.509	40.9	0.3	2
499.58	31.030	6.846	40.7	2.1	2
499.70	27.591	6.162	39.1	-0.1	2
499.58	24.180	5.465	39.2	2.2	2
499.76	20.696	4.729	37.8	0.5	2
499.51	17.226	3.981	37.7	2.0	2
500.50	11.040	2.582	36.3	1.4	2
500.29	10.975	2.576	36.3	1.3	2
499.51	10.350	2.437	36.0	0.8	2
500.05	6.871	1.630	35.8	1.9	2
499.97	3.456	0.826	34.9	0.7	2
499.52	3.433	0.821	34.8	0.5	2
499.93	1.350	0.324	34.4	0.0	2

Table II. (Continued)

Fig. 4. Differences between measured and calculated viscosities [1] for argon at 400 K: (\bigcirc) unswept crystal, D; (\triangle) swept crystal, 2.

<i>T</i> (K)	P (MPa)	$ ho \ (\mathrm{mol} \cdot \mathrm{L}^{-1})$	$\eta (\mu \mathbf{Pa} \cdot \mathbf{s})$	$100(\eta_{ m meas}-\eta_{ m calc})/\eta_{ m calc}{}^a$	Crystal ID ^b	
T = ambient						
294.50	54.817	17.834	37.4	3.8	2	
297.40	54.717	17.674	36.2	1.8	D	
297.40	48.478	16.870	34.0	2.1	D	
294.50	41.935	16.034	31.5	1.8	2	
295.20	41.930	15.989	31.3	1.6	D	
297.40	41.587	15.808	30.7	0.7	D	
295.20	34.703	14.614	27.8	0.8	D	
294.70	34.285	14.553	27.0	-1.7	D	
294.50	28.137	13.004	24.4	0.6	2	
295.20	28.117	12.951	24.2	-0.0	D	
294.70	27.719	12.867	23.6	-2.0	D	
295.20	20.841	10.372	10.1	0.5	D	
294.70	20.797	10.386	20.0	-0.1	D	
294.70	13.937	7.001	15.9	0.3	D	
295.20	13.891	6.953	16.0	0.6	D	
298.00	6.934	3.149	12.9	0.4	2	
295.20	6.920	3.188	12.5	- 1.9	D	
294.70	6.867	3.169	12.7	-0.3	D	
295.20	6.843	3.148	12.8	0.9	D	
298.00	3.460	1.484	12.0	1.2	2	
295.20	3.384	1.466	11.6	-1.7	D	
294.50	3.350	1.455	11.6	-1.1	2	
T = 400 K						
399.60	56.553	13.647	30.0	4.7	D	
400.24	53.761	13.236	29.5	5.8	2	
399.64	48.275	12.424	27.2	2.8	D	
399.61	41.300	11.217	24.9	1.6	D	
399.58	34.468	9.836	22.8	1.1	D	
401.61	33.912	9.652	22.2	0.8	2	
399.56	27.611	8.221	20.8	1.5	D	
400.25	24.229	7.319	20.1	2.5	2	
401.61	20.665	6.299	18.4	-1.1	2	
399.57	20.359	6.255	18.7	1.0	D	
400.24	17.344	5.357	18.1	2.6	2	
399.59	13.859	4.309	16.8	0.1	D	
400.25	10.464	3.244	16.2	1.2	2	
399.59	6.693	2.065	15.2	-0.4	D	
399.62	3.463	1.058	14.6	-0.9	D	

Table III. Viscosities of Compressed Gaseous Methane

^{*a*} η_{calc} is from Ref. 2. ^{*b*} D and 2 are crystal D and crystal 2, respectively, in Table I.

_

<i>T</i> (K)	P (MPa)	$ ho$ (mol \cdot L $^{-1}$)	η (μPa·s)	$100(\eta_{\rm meas}-\eta_{\rm calc})/\eta_{\rm calc}{}^a$	Crystal ID ^b	
	T = 500 K					
500.44	57.653	11.094	27.2	1.1	2	
499.50	56.187	10.923	27.0	1.2	2	
500.39	51.602	10.281	26.0	1.1	2	
499.50	48.172	9.805	25.3	0.7	2	
500.39	44.746	9.267	24.6	0.9	2	
499.50	41.193	8.716	24.0	1.2	2	
500.25	37.880	8.145	23.2	0.5	2	
499.53	34.285	7.521	22.4	0.1	2	
500.25	31.069	6.904	21.7	-0.3	2	
499.53	27.245	6.177	20.8	-1.1	2	
500.14	24.163	5.541	20.3	-0.8	2	
499.56	20.606	4.795	19.7	-0.7	2	
500.14	17.231	4.047	19.0	-1.1	2	
499.56	13.667	3.245	18.4	- 1.4	2	
500.05	10.283	2.455	17.6	-3.0	2	
499.58	6.851	1.645	17.2	-2.7	2	
499.44	6.735	1.618	17.2	-2.6	2	

Table III. (Continued)

Table II. Viscosity measurements for methane in the same temperature, pressure, and density ranges are presented in Table III. All of the measurements at ambient temperature and some of the measurements at 400 K (labeled D) were made with the unswept crystal. The rest of the measurements at 400 K (labeled 2) and all measurements at 500 K were made with the swept crystal. The measurements, made with two crystals of significantly different lengths, are in good agreement. Tables II and III and Fig. 4 give comparisons between the data and accurate, wide-range correlating equations [1,2], developed previously at NBS. Most of the differences between measured and calculated viscosities are smaller than 2%. The differences, for argon at 400 K, are shown in Fig. 4.

4. ERRORS

Our error estimates are summarized in Table IV. (See also Ref. 4.) There is no published analysis of the errors in the derivation of Eq. (1), which is based on the simplest approximation to the theory of the instrument. The largest error in the crystal parameters is due mainly to the quartz cylinder being slightly out of round. The repeatability of Δf_{fluid} , and

0.2 %
0.2 %
0.5 %
5%
2%

Table IV. Error Estimates

therefore the viscosity, ranges from 0.2 to 0.5%, depending on the density. The value of $\Delta f_{\rm vac}$ is about 0.1 Hz at all temperatures and is very repeatable (0.005 Hz). The error in $\Delta f_{\rm fac}$ is usually a small part of the error in $(\Delta f_{\rm fluid} - \Delta f_{\rm vac})$, which gives the viscosity. The error estimate for the viscosity is based on the preceding factors and on comparisons of our data for argon and methane with accurate, wide-range correlating equations. The differences are usually smaller than 2%.

Errors in the viscosities can also be caused by standing waves [3, 8, 9]. Anomalously large values for $\Delta f_{\rm fluid}$, and hence the apparent viscosity, can occur when $\lambda_s/2 = W_s/f \cong d$, where λ_s is the wavelength of a longitudinal wave in the fluid, W_s is the speed of sound, and d is a characteristic distance, probably a diameter, inside the crystal holder. For example, with crystal 2 in our transducer, we obtained standing waves for $\lambda_s/2 = 0.37$ cm and $W_s = 340 \text{ m} \cdot \text{s}^{-1}$, which occurred for argon at ambient temperature and at about 5 mol·L⁻¹. Although we have been unable to eliminate standing waves, we have usually been able to avoid them by changing the length or the diameter of the crystal. Changing the length changes f and therefore, λ_s . Changing the diameter changes the distance d.

5. SUMMARY

A new torsional piezoelectric crystal viscometer for use on compressed gases and liquids at temperatures to 600 K and at pressures to 70 MPa has been developed. The viscometer makes use of swept (electrolyzed) quartz crystals for good performance at high temperatures. The viscosity measurements have been automated by using an impedance analyzer with a microcomputer; however, complete runs cannot be made unattended. The apparatus has been tested on compressed gaseous argon and on methane at temperatures to 500 K and at pressures to 50 MPa with good results. The experimental error appears to be smaller than 2% in most cases. The apparatus is currently being used on carbon dioxide, ethane, and their mixtures. Further comparisons are being made between these pure fluid data and wide-range correlating equations.

ACKNOWLEDGMENTS

We would like to thank W. M. Haynes for his suggestions and encouragement. R. C. Haltiwanger, A. Henins, and C. A. Hamilton assisted with crystal preparation. Many people in the NBS Thermophysics Division, Boulder, were generous with their assistance. This work was carried out under a grant from the U.S. Department of Energy, Division of Engineering and Geosciences, Office of Basic Energy Sciences.

REFERENCES

- 1. B. A. Younglove, J. Phys. Chem. Ref. Data 11:Suppl. 1 (1982).
- 2. H. J. M. Hanley, W. M. Haynes, and R. D. McCarty, J. Phys. Chem. Ref. Data 6:597 (1977).
- 3. B. Welber, Phys. Rev. 119:1816 (1960).
- 4. W. M. Haynes, Physica 67:440 (1973).
- 5. J. C. King and D. B. Fraser, Proceedings 15th Annual Frequency Control Symposium, (1961), p. 2.
- 6. G. C. Straty and B. A. Younglove, Rev. Sci. Instr. 43:156 (1972).
- 7. J. F. Ely, Unpublished data, National Bureau of Standards, Boulder, CO 80303.
- 8. D. E. Diller, J. Chem. Phys. 42:2089 (1965).
- 9. D. E. Diller, Physica 119A:92 (1983).