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T H E  P R O G R E S S I V E  AND T H E  I M P E R F E C T I V E  

P A R A D O X *  

1.  AIMS 

The research pursued here fits into a programme the aim of which is 
to supply the formal semantics of  natural language. The assumption 
underlying this venture is that the meaning of linguistic expressions can 
be characterised by defining all their possible logical consequences. Our 
aim is to supply a solution to a problem known as the "imperfective 
paradox". According to intuitions, sentence (1) entails (2), but no 
entailment holds between (3) and (4). 

(1) Max was running a business 
(2) Max ran a business 
(3) Max was building a house 
(4) Max built a house 

Since (1) and (3) would seem to have similar logic forms, they ought 
to have similar entailments. A solution to the imperfective paradox 
must explain why this is not so. 

The imperfective paradox has serious implications for more general 
questions concerning natural language, for example, the relationship 
between syntax and semantics. The progressive involves a uniform 
syntactic operation, and so from the perspective of formal semantics, 
one would expect it to be related to a uniform semantic operation. But 
(1) and (3) have different semantic import. The problem is: How can 
the uniformity of the progressive in syntax be squared with its semantic 
'irregularity'? 

To solve the imperfective paradox, two tasks must be achieved. First, 
we must characterise the semantic distinction between (2) and (4), 
which is revealed in natural language by their different behaviours with 
the progressive. Second, we must define the semantics of the progress- 
ive so that it is sensitive to this distinction and so results in a solution 
to the imperfective paradox. 

This paper is divided into two parts. In Part I we evaluate what I 
shall call the Eventual Outcome Strategy for defining the progressive. 
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This strategy is commonly used; it has been deployed by Dowty (1979), 
Hinrichs (1983) and Cooper (1985). The strategy is highly intuitively 
motivated. We shall show, however, that the formulations of the in- 
tuitions give rise to conflicts and tensions when it comes tO explaining 
the natural language data, and so it cannot be used as part of a solution 
to the imperfective paradox. In Part II we offer a new approach to 
tackle the imperfective paradox. This new approach overcomes the 
problems with the Eventual Outcome Strategy. 

PART I: THE EVENTUAL OUTCOME STRATEGY 

1 .  T H E  M O T I V A T I O N  F O R  T H E  E V E N T U A L  O U T C O M E  S T R A T E G Y  

The Eventual Outcome Strategy gives us a way of defining the semantics 
of the progressive. To see how the strategy is motivated, let us examine, 
from an intuitive perspective, what criteria are used to decide whether 
a progressive sentence is true. To start with, are there any criteria that 
one may apply directly to the current state of affairs, to discover whether 
that state of affairs makes a progressive sentence true? Consider sen- 
tence (5). 

(5) Max is winning the race 

It seems that such criteria would be difficult to describe. The states of 
affairs which make sentence (5) true could amount to almost anything. 
Sentence (5) may be true when Max is ahead, or when he is second 
but the athlete in first place has just twisted his ankle. If the race is 
happening over two days with a period of rest overnight, then (5) may 
be true even if Max is asleep. 

What property,  if any, do all these states of affairs have, that can be 
regarded as the property making the progressive sentence true? The 
puzzle is: Given the wealth of states of affairs that can be regarded as 
an instance of (5), it seems that a search for a common property among 
them would prove fruitless. However,  there is the following strong 
intuition: (5) is true just in case there is something going on now, 
whatever that is, such that if it were to continue uninterrupted, then 
the outcome would be that Max is the winner of the race. 

This intuition indicates that the common property of all the progress- 
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ive state of affairs may not be found by looking at the state only at the 
current time; instead one must investigate the outcome of the state of 
affairs. This may offer a strategy to yield the formal semantics of the 
progressive. The truth conditions placed by the semantic definition of 
the progressive on the current state of affairs should not be conditions 
that concern what is going on now, but must be conditions on the 
eventual outcome of what is going on now. I call this strategy for 
defining the progressive the Eventual Outcome Strategy. 

To get a clearer picture of what the Eventual Outcome Strategy 
involves, let's see how it would relate sentences (6) and (7). 

(6) 
(7) 

Max was winning the race 
Max won the race 

Intuitively, (7) refers to a process which leads to a culmination. Sen- 
tence (6) refers to that process, but it does not assert that the culmi- 
nation of the process occurred. The idea behind the Eventual Outcome 
Strategy is to define the semantics of (6) and (7) so that they do not 
place conditions directly on what the process leading to the culmination 
consists of. For example, the semantics of these sentences will not talk 
of whether Max had a good start to the race, whether he was ahead at 
the half-way stage, and so on. Instead, the process is characterised in 
the semantics of the progressive in terms of the culmination: Whatever 
the process is, if  it were to continue uninterrupted, then it would 
lead to the culmination. So the definition of the progressive under 
the Eventual  Outcome Strategy essentially involves modality of the 
'counterfactual '  kind. 

We have seen that what process (5) refers to is characterised in 
the Eventual Outcome semantics of the progressive in terms of the 
culmination, plus some appropriate sense of modality. Given this sem- 
antics, any formulation of the strategy must fulfil two tasks. First, it 
must offer a semantic account of the culmination that the process would 
lead to. Second, it must offer an account of the modality in the defini- 
tion of the progressive, i.e., an explanation of the phrase "if  the process 
were to continue uninterrupted".  

Our objective is to test whether the Eventual Outcome Strategy can 
be formulated, and if so, establish how the formulation would deal with 
the two tasks at hand, 
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race" is true race" is false race" is true race" is true 

Fig. 1. The  scenar io .  

2. T H E  C O N S E Q U E N C E S  O F  T H E  E V E N T U A L  O U T C O M E  

S T R A T E G Y  

In order to have a perspective from which to test the Eventual Outcome 
Strategy, I shall now set up a question that concerns the consequences 
of formulating it. Consider the following situation: suppose that Max 
is running in a race of four laps. Suppose he is ahead at the start of 
the third lap and running the fastest. Then according to intuitions, 
sentence (5) is true at this time. 

(5) Max is winning the race 

Now suppose that at the start at the fourth lap, Max has fallen behind 
in the race. He is now last, and it looks as though only a miracle could 
bring him victory. So according to intuitions, sentence (5) is now false. 
Suppose that, despite everything, Max surges forward half way through 
the fourth lap to gain first position again. Then according to intuitions 
(5) is true once again. Now suppose that Max crosses the finish line in 
first place to win the race. Then, since according to intuitions the 
above situation is possible, The Scenario (given Figure 1) must depict a 
possible state of affairs. 

The question now is: When is sentence (8) true in this state of affairs? 

(8) Max wins the race 

Sentence (8) must be true at some time in the Scenario, since Max does 
actually win the race. Suppose that (8) is a true with respect to a period 
of time, to reflect the idea that (8) is about a process that goes on over 
a period of time which leads to a culmination. Then our question is: Will 
the formulation of the Eventual Outcome Strategy allow this period to 
contain all the times depicted in Figure 1, yielding the temporal struc- 
ture in Figure 2, labelled The Test Structure? 

Clearly, the state of affairs depicted in Figure 1, which any satisfac- 
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tory semantic theory must deem as possible, is related to the state of 
affairs depicted in Figure 2, and just how they are related in the theory 
depends on the semantics of the progressive and the semantics of (8). 
Our puzzle is: Will an Eventual Outcome theory allow for a semantic 
interpretation of the progressive and (8) that describes the state of 
affairs depicted in Figure 2? In the rest of this chapter, I shall define 
the state of affairs depicted in Figure 2 as consistent if there is a semantic 
interpretation of the progressive and (8) that describes that state of 
affairs, and inconsistent if there is no such semantic interpretation. So 
our puzzle can be stated in another way: Will an Eventual Outcome 
theory establish the state of affairs depicted in Figure 2, The Test 
Structure, as consistent or as inconsistent? 

I shall examine whether the Test Structure is consistent in Dowty's 
(1979) theory that formulates the Eventual Outcome Strategy. We have 
seen that an Eventual Outcome semantics of the progressive defines 
the semantics of sentence (5) purely in terms of the culmination, plus 
some appropriate notion of modality. I shall argue that one can obtain 
an appropriate notion of rnodality only if one establishes that the state 
of affairs depicted in the Test Structure is inconsistent. On the other 
hand, I shall argue that if one is to characterise (5) in terms of the 
culmination, then one must allow the Test Structure to be consistent. 
This exposes a tension in the two tasks that must be tackled in formulat- 
ing the Eventual Outcome Strategy. I shall show in this paper that 
this argument applies to Dowty's (1979) formulation of the Eventual 
Outcome Strategy, and in Lascarides (1988) I showed that the argument 
also carries over to the other two theories that formulate the strategy; 
that of Cooper (1985) and Hinrichs (1983). Therefore I shall conclude 
that even though the Eventual Outcome Strategy is highly intuitively 
motivated, it is ultimately untenable. 

It is important to realise that our argument against the Eventual 
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Outcome Strategy is independent of the intuitions one might have 
concerning whether the Test Structure should be consistent or inconsist- 
ent. There seems to be something highly counterintuitive in allowing 
for a semantic interpretation of (8) and (5) that describes the state of 
affairs depicted in Figure 2. One feels that sentences (8) and (5) should 
refer to the same process, and so the period of time over which (8)'s 
process goes on should not contain times at which (5) is false. And yet 
in the Test Structure, (5) is false in that period. So according to in- 
tuitions, the Test Structure should be inconsistent. However, it must 
be stressed that our argument against the Eventual Outcome Strategy 
is not based on this intuition. The argument is based on something 
slightly stronger. Any formulation of the Eventual Outcome Strategy 
must account for the Test Structure as consistent or as inconsistent. I 
shall argue that either way, the formulation fails. In each case, the 
reasons it fails are independent of the intuition that the Test Structure 
should be inconsistent. 

Parsons (1989) and Vlach (1981) mention some problems with Dow- 
ty's analysis of the progressive, but the status of their criticisms is 
unclear as their arguments against Dowty's theory are not formalised. 
It is therefore difficult to see if the criticisms are valid, let alone evaluate 
whether they stem from Dowty's particular formulation of the theory 
or from his basic approach. To avoid these problems, we aim for an 
argument against Dowty's strategy for defining the progressive couched 
in formal terms. 

3. D O W T Y ' S  F O R M U L A T I O N  O F  T H E  E V E N T U A L  O U T C O M E  

S T R A T E G Y  

Before we look at Dowty's Eventual Outcome definition of the pro- 
gressive, let us look at how he analyses non-progressive sentences like 
(8), for the progressive will be defined in terms of these. 

(8) Max wins the race 

Dowty represents the semantics of sentences like (8) by formulating 
Vendler's (1967) classification of aspect into a semantic framework. 
Vendler divided linguistic expressions into four aspectual classes, ac- 
cording to their different temporal behaviours, and provided metaphys- 
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ical descriptions of these classes which were meant to explain their 
different temporal behaviours. 

Vendler 's  classification consists of four aspectual classes: there are 
activity sentences like (2); accomplishment sentences like (4); achieve- 
ment sentences like (8); and stative sentences like (9). 

(2) Max ran a business 
(4) Max built a house 
(9) Max is insane 

Activities are processes in time, 'most' parts of which are themselves a 
process of the same type; e.g., 'most' parts of Max running a business 
are themselves instances of Max running a business. In contrast, ac- 
complishments are more than processes; they essentially involve a 'cul- 
mination' or 'conclusion'. Thus any part of an accomplishment which 
doesn't  include the culmination cannot be an accomplishment of the 
same type. Achievements also invoke a culmination, but they differ 
from accomplishments in that they do not necessarily invoke a 'prior'  
process leading to the culmination. States can occur over a period of 
time, but they are not processes. 

In formulating Vendler 's  distinctions between the aspectual classes, 
Dowty achieves the first goal in solving the imperfective paradox that 
we stated earlier: distinguishing the semantics of (2) and (4). 

Dowty proposes his theory of aspect in an interval-based semantics: 
the truth of a sentence is defined relative to an interval of time. Accord- 
ing to Vendler,  an accomplishment occurs over an interval of time since 
the process it describes goes on over an extended period. One can 
capture this using Dowty's interval-based framework. If (4) is true at 
an interval I, then there is an interval J, earlier than I, where the 
tenseless sentence "Max build a house" is true; this reflects the idea 
that the accomplishment occurs over the interval J. 

Dowty's objective is to interpret all non-stative sentences as combi- 
nations of statives with explicitly interpreted operators. To achieve this, 
he postulates a single class of predicates, which are the stative predicates 
such as "is insane". The logical form of the stative sentence (9) is the 
atomic formula (9a). 

(9) Max is insane 
(9a) insane'(max')  

Dowty's analysis of statives is homogeneous, i.e., if (9a) is true at an 
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interval I, then it is true at all subintervals of I. This reflects the intuition 
that any part of a state is itself a state of the same type. In other words, 
every part of Max being insane is itself an instance of Max being insane. 
Activities, accomplishments and achievements are all derived from sta- 
tives by the application of certain operators and connectives, which 
yield heterogeneous interpretations of these classes: i.e., an activity, 
achievement or accomplishment sentence may be true at an interval I 
and false at subintervals of I. This reflects the intuition that certain 
parts of an activity, achievement or accomplishment are not themselves 
an activity, achievement or accomplishment of the same type. In other 
words, not all parts of Max running are themselves instances of Max 
running; not all parts of Max building a house are themselves instances 
of Max building a house; and so on. 

3.1. Dowty's Semantic Interpretation of Achievements 

We shall be testing the Eventual Outcome Strategy using sentence (8). 

(8) Max wins the race 

Sentence (8) denotes an achievement, and Dowty observes, in agree- 
ment with Kenny (1963), that an achievement always involves the 
coming about of a particular state of affairs. In order to capture this 
observation, Dowty represents achievement sentences with the aid of 
the operator BECOME. The logical form of tenseless achievement 
sentences is given by (10), where q~ denotes the state of affairs once 
the achievement is completed. 

(10) [BECOME ~1 

For example, the tenseless achievement sentence (11) will have the 
logical form ( l la ) ,  where winner ' (max' ,race ')  represents the state that 
Max is the winner of the race. 

(11) Max win the race 
(11a) [BECOME (winner'(max',race'))[ 

The truth conditions for [BECOME qb], where qb is a formula, are 
given below: 

[BECOME @] is true at the interval-world index (I, w) if 
and only if there is an interval Y containing the initial bound 
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of I such that -7q5 is true at (J, w) and there is an interval 
K containing the final bound of I such that • is true at 
{K, w). 

The truth of the sentence [BECOME ~] requires the temporal structure 
in Figure 3: The Temporal Structure for BECOME.  

-,, K 
-,q I y 

[BECOMES] 

Fig. 3. The  t e m p o r a l  s t ruc ture  for B E C O M E .  

Note that achievement sentences are false at all minimal intervals 
(i.e., intervals with no proper  subintervals) where a minimal interval 
is a singleton set {t} (for Dowty views intervals as connected sets over 
the reals). For  if [BECOME q~] is true at {t}, then both q~ and -n~ 
must be true at {t}. Therefore  [BECOME ~] is false at all minimal 
intervals for all ~ .  Vendler  claims that achievements are punctual, and 
yet Dowty's achievements are false at all minimal intervals. Therefore  
Dowty's analysis of achievement sentences does not conform exactly to 
Vendler 's  metaphysical description of them. 2 

The truth value of [BECOME qb] at the interval I is determined 
solely by what goes on at the endpoints of I. No conditions are placed 
on what goes on during the interval I. Thus Dowty avoids defining 
directly in the semantics of (8) what constitutes the process that leads 
to Max being the winner of the race. This is an essential part of the 
Eventual  Outcome Strategy. There is an abundance of states of affairs 
that may correspond to the coming about the target qs, and Dowty 
avoids describing these. 

Clearly, it is not just any state of affairs that deserves to be regarded 
as the process that leads to the goal. The innovation in the Eventual 
Outcome Strategy is that the definition of the progressive in modal 
terms will reveal when the process goes on. 
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3.2. Dowty's Analysis of the Progressive 

Dowty interprets the progressive as a mixed modal-temporal operator. 
Its definition is the following: 

[PROG qb] is true at an index (I, w) if and only if there is 
an interval I '  such that I is contained in I '  and I is not a 
final subinterval of I ' ,  and for all the worlds w' E Inr((l, w)), 

is true at (I ' ,  w'). 

The primitive function Inr is defined as part of the model. It is a two- 
placed function, taking an interval and a world as its arguments. The 
evaluation of Inr((I, w)) gives the inertia worlds at (I, w), and these 
characterise the 'natural course of events' at (I, w). Intuitively, 
Inr((I, w)) contains all worlds w' that (a) are like the world w up to and 
including the interval I, and (b) include the natural course of events 
with respect to the situation in w at I. In other words, an inertia world 
can be thought of as a world in which nothing unexpected happens. So 
the above definition of PROG states that [PROG ~] is true only if q~ 
is true in every world where nothing unexpected happens. 

The logical form of (5) is (5a). 

(5) Max is winning the race 
(5a) [PROG [BECOME winner'(max',race')]] 

In fact, the progressive forms of all achievement sentences are repre- 
sented by a formula of the form [PROG [BECOME ~]], which receives 
the following truth conditions: [PROG [BECOME q~]] is true in a 
model M at (I, w) just in case there is an interval I '  containing I such 
that I is not a final subinterval of I ' ,  and for all w ' E  Inr((l, w)), 
[BECOME qb] is true at (I ' ,  w'). This is the case if and only if there is 
an interval J containing the initial bound of I '  such that ~@ is true in 
M at (J, w'), and there is an interval K containing the final bound of 
I '  such that qb is true in M at (K, w'). So the truth of [PROG [BE- 
COME qb]] requires the temporal structure depicted in Figure 4: The 
Temporal Structure for [PROG [BECOME ~]]. These truth conditions 
capture the following intuition: if [PROG [BECOME ~]] is true then 
whatever the current state of affairs is, that state of affairs must lead 
to the target qb in the 'natural course of events'. 

According to Dowty, the actual world w is not necessarily a member 
of the set Inr((I, w)); this captures the intuition that unexpected things 



THE P R O G R E S S I V E  AND I M P E R F E C T I V E  P A R A D O X  411 

~ • ~ w' 

I 
I w and w' alike up to here 

I 

W 

[PROC~ FB~JO~ ~l l  

Fig. 4. The temporal structure for [PROG [BECOME ~]]. 

can happen in the actual world. Therefore the truth of [PROG [BE- 
COME q)]] at (I, w) does not guarantee the truth of [BECOME qb] in 
w. Hence there is no entailment from sentence (6) to (7), which is just 
as required in order to solve the imperfective paradox. 

(6) Max was winning the race 
(7) Max won the race 

Suppose that [BECOMEqb] is true at an interval I ' .  Then even 
though no conditions are placed in the truth conditions [BECOME ~] 
on what goes on during the interval I ' ,  it is possible to evaluate the 
truth value of [PROG [BECOME q~]] in terms of [BECOME qb] at all 
times during I ' .  In this way, the definition of the progressive in terms 
of inertia worlds reveals the structure of the interval I' at which [BE- 
COME q~] is true; i.e., one reveals at what times in I '  the process that 
leads to the target q~ goes on. 

Dowry invokes inertia worlds in the analysis of the progressive to 
specify when the current state of affairs leads to the target. It is the 
target happening inertially that is crucial to the analysis of the progress- 
ive of achievements. It doesn't matter in evaluating (5) whether Max 
is ahead or in second place at the time in question. 

(5) Max is winning the race 

Even though there are endless possible actions corresponding to (5), 
they all have one thing in common, and that is that they inertially lead 
to the target state. 

Dowty's approach seems fruitful, but one cannot adopt it until one 
fully understands the notion of rnodality invoked in the definition of the 
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progressive. In Dowty's theory, this amounts to solving the following 
problem. Can the function Inr be uniquely defined, with respect to a 
given model M, so that the the resulting interpretation of the progress- 
ive agrees with intuitions? It is inertia specification that gives the analy- 
sis of the progressive its "eventual outcome" properties. The question 
remains as to whether inertia specification is sufficient for describing 
what is going on at the time of (5) in a way that squares with our 
intuitions. 

4. INR AND WHY F I O U R E  1 :(THE TEST S T R U C T U R E )  

IS INCONSISTEN T 

In order to explore the nature of Dowty's function Inr we shall now 
ask, relative to Dowty's theory, the question that was posed in Section 
3. In Section 3, I argued that according to intuitions, it is possible for 
sentence (5) to be true, and then false, and then true, and then Max 
may go on to win the race (i.e., the situation depicted in Figure 1 is a 
possible state of affairs). The question we ask is: When is sentence (8) 
true in this scenario? 

(8) Max wins the race 

Can the period with respect to which (8) is true contain the time at 
which (5) is false? That is, can we have a semantic interpretation of 
the progressive and (8) that describes the state of affairs depicted in 
Figure 2 (i.e., in our terminology is the Test Structure consistent)? 

[PROG [BECOME ~]] -~[PROG [BECOMES]] [PROG [BECOME ~]] 
" ~  I ~'- ~'~ J " - -" - - '~  ~ K --~II~ 

I' ~ w 
[BEL-~ME ~] 

Fig. 5. Dowty's version of the test structure. 

This question amounts to the following in Dowty's theory: Can 
[PROG [BECOME qb]] (where • is the formula winner '(max' ,race'))  
be true at an index (I, w), and then false at U, w), and then true at 
(K, w), where I, J and K are contained in an interval I '  and [BE- 
COME ~] is true at (I ' ,  w)? In other words, is Dowty's version of the 
temporal structure in Figure 2 consistent, as depicted in Figure 5? 

Given that Dowty places no restrictions on what goes on during the 
interval I '  in the truth definition of [BECOME qb] at I ' ,  this seems like 
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a legitimate question to ask. Whether  or not the Test Structure is 
consistent will depend on the semantics of PROG,  and in particular, 
on how the function Inr is defined. The object of this section is to 
demonstrate that in order for the function Inr to be well-defined, we 
must ensure that the Test Structure depicts a state of affairs that is 
inconsistent. 

To show this, I shall assume the hypothesis that the Test Structure, 
as depicted in Figure 5, is consistent, and show that Inr cannot be well- 
defined under this hypothesis. Suppose that a model M describes the 
state of affairs depicted in Figure 5: i.e., [PROG [BECOME ~]] is true 
in M at (I, w), false in M at (J, w), and true in M at (K, w), and 
[BECOME ~] is true in M at (I ' ,w),  where I < J <  K, and I, J and K 
are all contained in I ' .  Then the question we ask is: Should w be a 
member  of the inertia worlds at (I, w) with respect to M? In exploring 
this question, we shall reveal that the function Inr cannot be well- 
defined. We first examine the consequences of the assumption that w 
is a member  of Inr((I, w)) in the model M. 

4.1. Why the Assumption that w is Inertial is Inadequate 

Suppose we assume that w is a member  of Inr((l, w)) in the model M 
that describes the state of affairs corresponding to Figure 5. Then the 
resulting interpretation of inertia worlds does not square with intuitions 
concerning the progressive. It will be shown that this follows from the 
fact that for any model M'  where, like the model M, [PROG [BE- 
COME (b]] is true at (I, w) and false at (J, w) where I < J and I and J 
are both contained in an interval I '  where Max is running in a race, it 
is not possible to maintain the supposition that w is inertial at (I, w) in 
m t" 

I now argue for this conclusion by considering such a model M ' ;  it 
will be shown that w cannot be a member  of Inr((I, w)) in M ' .  Consider 
the following model M' :  suppose that Max is running in a race at 
(I ' ,  w), and suppose that he falls over at (J, w), where J is contained in 
I ' .  Since Max is lying flat on his face on the track at (J, w}, according 
to intuitions, (12), whose logical form is (12a), is true at (J, w) with 
respect to M ' .  

(12) It is not the case that Max is winning the race 
(12a) ~ [PROG [BECOME winner ' (max' , race ' ) ] ]  



414 A L E X  L A S C A R I D E S  

Suppose in the model M'  that before Max fell over at {J, w), he was 
winning the race, i.e., (5a) is true with respect to M'  at (I, w), where 
I < J and I is contained in I ' .  

(5a) [PROG [BECOME winner ' (max' , race ' )]]  

Then given these assumptions on M' ,  is w inertial at {I, w) in M'9  
According to intuitions, after the progressive action has been in- 

terrupted, anything can happen. But the progressive action is in- 
terrupted in the model M'  at (J, w) because Max falls over at (J, w), 
and so anything that happens after J in w should be consistent with the 
truth of (5a) at (I, w) where I < J. In particular, the truth of (5a) in the 
model M'  at (I, w} should be consistent with "Max wins the race" being 
false in w. But if w is inertial at {I, w) in M ' ,  then by the definition of 
PROG,  the truth of (5a) at (I, w) requires that Max wins the race in 
w. This is contrary to intuitions, and therefore one cannot assume that 
w is inertial at (I, w) in the model M ' ,  if the definition of the progressive 
is to agree with its actual use. 

This model M'  describes a state of affairs that is like the state of 
affairs depicted in Figure 5, in that the formula [PROG [BECOME qb]] 
is true at {I, w) and then false at (J, w), where I is earlier than J and I 
and J are both contained in the interval I '  where Max is running in the 
race. Therefore,  the argument presented here that w must not be 
inertial at (I, w) in M'  supports the claim that w must not be inertial 
at (I, w) in the model M with respect to which the state of affairs in 
Figure 5 is true. What are the consequences of this? 

4.2. Circularity 

In light of the above, I shall now show that the two-place function Inr 
is not well-defined. Furthermore,  if one were to try to modify the 
function to make it well-defined, then the analysis of the progressive 
would be reduced to circularity. 

In order to show that Inr is not well-defined, we must establish in 
more depth how to interpret the phrase "an inertia world is one where 
the state of affairs continues uninterrupted".  In the semantic evaluation 
of a progressive sentence, say (5), 

(5) Max is winning the race, 

do we assume (a) that a world w' is inertial at (I, w) with respect to a 
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model M if and only if all the states of affairs at (I, w) 'continue 
uninterrupted' in w', or (b) that a world w' is inertial at (I, w) with 
respect to M if and only if the 'winning' event 'continues uninterrupted' 
in w'? The difference between assumptions (a) and (b) is clear. Assump- 
tion (a) entails that absolutely nothing can be interrupted in an inertial 
world, and (b) entails that in the semantic evaluation of (5), only the 
winning event has to remain uninterrupted. Furthermore, (a) and (b) 
are the only two possible assumptions, since there are no other plausible 
ways of picking the inertia worlds if they are to capture a notion of 
events continuing uninterrupted. 

We shall now show that assumption (a) is not sustainable, and so 
inertia worlds must be chosen according to assumption (b). We shall 
demonstrate that assumption (a) is inadequate by means of the follow- 
ing example: suppose that sentences (5) and (13) are both true at (I, w) 
with respect to a model M' .  

(13) John is sabotaging the race (by planting a bomb on the 
race track that is due to blow up Max before the race is 
completed). 

Let us consider what will happen if the two corresponding events "con- 
tinue uninterrupted'.  If John succeeds in sabotaging the race, i.e., the 
bomb goes off and the race is never completed, then Max will not win 
the race, i.e., Max's winning will be interrupted. On the other hand, 
if Max's winning the race continues uninterrupted so that he becomes 
the winner of the race, then John did not succeed in sabotaging the 
race. So there is no world where both the state of affairs corresponding 
to (5) and the state of affairs corresponding to (13) continue unin- 
terrupted to the target. Therefore, if assumption (a) is correct, then 
the set of inertia worlds at (I, w), with respect to this model M', will 
be empty. But this is clearly undesirable, since it follows from this, by 
the definition of PROG,  that any progressive sentence is true at (I, w) 
with respect to M' .  Hence assumption (a) is not satisfactory and as- 
sumption (b) must hold. 

We shall now show Inr is not well-defined due to the combination 
of assumption (b) and the fact that w cannot be inertial at (I, w) with 
respect to M (Section 4.1). Suppose that the model M is as described 
above. That is, M corresponds to the state of affairs in Figure 5. 
Suppose furthermore that in M, [BECOME ~]  is true at ( I ' ,  w) for 
some state ~ (where ~ is not related to ~) ,  and [PROG [BECOME 'tr]] 
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[PROG [BECOME ~P]] [PROG [BECOME W]] [PROG [BECOME W]] 

[BECOME 

Fig. 6. 

is true in w at every interval contained in I ' .  So the model M corre- 
sponds to the temporal structure in Figure 6 in w as well as that of 
Figure 5. The state of affairs in Figure 6 'continues uninterrupted' ,  
since the progressive action continues in w from the interval I to the 
time when the target 'I r is true. Therefore  according to assumption (b), 
w must be a member  of the inertia worlds at (I, w) with respect to the 
model M in order  to obtain the right truth conditions of [PROG [BE- 
COME ~]] .  But we concluded in the previous section that w cannot  
be inertial at (I, w) if we are to gain the right truth conditions for 
[PROG [BECOME q~]]. Therefore  we have a situation where w is in 
Inr((I, w)) with respect to M and w is not in Inr((I, w)) with respect to 
M. Hence the two-place function Inr that takes an interval and a world 
as its arguments is not well-defined. 

How may one modify the function Inr, in order to make it well- 
defined? If Inr is to be well-defined, then it must be defined relative to 
the semantic interpretation of  fo rmulae ,  as well as intervals and worlds, 
so that inertia specification in the model M can distinguish the inertial 
status of w in the semantic evaluations of [PROG [BECOME q~]] and 
[PROG [BECOME ~]] .  But which formulae are appropriate, and at 
which indices are their truth values relevant for determining whether 
w is inertial at (I, w) with respect to M? 

The semantic values of the formulae • and • in the world w cannot 
be the appropriate arguments to Inr, because they may have identical 
truth values at all intervals in w with respect to M. This would make 
the sets of inertia worlds relative to • and ~ identical, and in particular, 
there would be no means for distinguishing the inertial status of w in 
the two cases. This, as we have indicated, is contrary to our require- 
ments. A similar argument also demonstrates that the truth values of 
[BECOME q~] and [BECOME ~ ]  in the world w are not appropriate 
input to Inr. 

In light of the above, one might choose to define Inr so that the truth 
values of q~ in worlds other than w play a crucial part in determining 
whether w is inertial at (I ,w) in the semantic evaluation of 
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[PROG [BECOME ~]]. In doing this, we would enable the inertial 
status of w to be different for the two cases we are considering. We 
could add semantic values of the formulae ^~ and ^xp, which represent 
the intension of • and the intension of ~ ,  as an argument to the 
function Inr in the truth conditions of [PROG [BECOME ~]] and 
[PROG [BECOME ~]] ,  respectively. In our example, ~ and ^~  de- 
note different propositions, hence, the sets Inr((I, w), ^~) and 
Inr((I, w), ^xp) may be different, which is just as we require. 

But although following this course is technically satisfactory, it results 
in a departure from the intuitions behind the Eventual Outcome Strat- 
egy for defining the progressive. The function Inr is supposed to repre- 
sent the appropriate notion of modality in the Eventual Outcome Strat- 
egy, i.e., it must capture the intuitions behind the phrase "if the current 
state of affairs continues uninterrupted". According to intuitions, 
whether or not the state of affairs at (I, w) continues uninterrupted in 
w must be determined solely by what happens in w. For example, the 
fact that Max falls over in some world other than w should not affect 
our judgement about whether anything unexpected happens to Max's 
winning in w; one should merely wait and see what happens to Max in 
w. The assumption we entertain here is that in determining whether w 
is inertial ("nothing unexpected happens") at (I, w) in the semantic 
evaluation of [PROG [BECOME ~]], the truth values of oo in worlds 
other than w must play a central role. In other words, the inertial status 
of w at {I, w) is not determined by what happens to Max in w alone. 
This is contrary to our intuitions about the phrase "the state of affairs 
in w continues uninterrupted", and so if we were to determine the 
inertial status of w at {I, w) with respect to the value of • in worlds other 
than w, we would be undermining the Eventual Outcome Strategy. A 
similar argument demonstrates that if ^[BECOME ~] is added as an 
argument to Inr, then we would undermine the Eventual Outcome 
Strategy. 

To see what formula must be added as an argument to the function 
Inr, let's look more closely at our example that shows the current 
function Inr to be ill-defined. We argued that [PROG [BECOME ~] [  
requires w to be inertial at (I, w) in the model M on the basis that 
[PROG [BECOME XIr]] is true at (J', w) in the model M for every 
interval J '  contained in I ' .  On the other hand, [PROG [BECOME qb]] 
requires w not to be inertial at (I, w) in the model M because 
[PROG [BECOME q~]] is false in the model M at some (J, w) where 
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[PROG [BECOME,Z,I] 

/ I X  
--, [BEC~ME ~,] ,.- 

Fig. 7. The required relation between PROG and BECOME. 

I < J and J is contained in I '  (cf. Section 4.1). Therefore,  in order for 
Inr to predict that w is inertial at (I, w) in M in the semantic evaluation 
of [ P R O G [ B E C O M E ~ ] ]  but not in the semantic evaluation of 
[PROG [BECOME ~]] ,  Inr must be defined relative to the truth value 
of the progressive sentence at the intervals contained in I ' ,  i.e., Inr 
must be a function whose arguments for the semantic evaluation of 
[PROG [BECOME ~]] are I, w, and the truth values of [PROG [BE- 
COME • ]] at times contained in I ' .  

This leaves us with the following problem in defining Inr. The func- 
tion Inr is well-defined only if it includes as arguments the truth values 
of [PROG [BECOME ~]]. But one cannot know the truth values of 
[PROG [BEFORE ~]]  until one has defined Int. Defining inertia is 
thus reduced to circularity. 

We have shown that in the model M that describes the state of affairs 
depicted in Figure 5 (the Test Structure), the two-place function Inr 
that takes an interval and a world as its arguments is not well-defined. 
Furthermore,  if one were to try and make it well-defined, then the 
analysis of the progressive would be reduced to circularity. Therefore,  
the function Inr cannot be defined with respect to the model M. In 
other words, if the Test Structure is consistent, then one cannot success- 
fully specify Inr. 

But specifying Inr is crucial to defining the progressive in terms of 
eventual outcome in Dowty's theory. Therefore,  to preserve the Even- 
tual Outcome Strategy, one must place conditions on the semantics of 
P R O G  and B E C O M E  to ensure that the Test Structure is inconsistent. 
In other words, the semantics of P R O G  and B E C O M E  must ensure 
that if [ B E C O M E S ]  is true at an interval I, then [PROG[BE- 
COME q~]] is true at all intervals contained in I, i.e., the state of affairs 
must be that depicted in Figure 7 above. 
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5 ,  H O W  T O  E N S U R E  T H A T  T H E  T E S T  S T R U C T U R E  

IS I N C O N S I S T E N T  

How may one guarantee that if [BECOME @] is true at an interval I, 
then [PROG [BECOME qb]] is true at all subintervals of I? I shall 
argue that this temporal structure cannot be satisfactorily derived from 
Dowty's current semantics for BECOME. Furthermore, it cannot be 
derived by revising the semantics of BECOME without undermining 
the Eventual Outcome Strategy. 

5.1. The Current Semantics for BECOME 

Suppose one fixes Dowty's semantics for BECOME,  and suppose that 
the function Inr is defined so that if [BECOME c~] is true at the interval 
I, then [PROG [BECOME ~]] is true at every interval contained in I 
(i.e., the state of affairs is that in Figure 7). Then although placing 
conditions on inertia specification to guarantee this temporal structure 
may be technically viable, it is materially inadequate, given the current 
truth conditions for BECOME. To show this, I shall construct a model 
M" where the truth of (5) in M" does not agree with its actual use. 

Consider the model M" where Max is born at {N, w), and (8a), which 
is the representation of (8), is true at {I', w) where I '  spans twenty 
years and contains N. 

(8) Max wins the race 
(Sa) [BECOME winner '(max' ,race')]  

Such a model is admissible with the current truth conditions for BE- 
COME. 3 If inertia is specified so that (5a), which is the representation 
of (5), is true at all times during the interval I ' ,  then (5a) is true in M" 
at {N, w}, the time when Max is born. 

(5) Max is winning the race 
(5a) [PROG [BECOME winner '(max',race')]]  

This does not accord with the actual use of the progressive. The discrep- 
ancy between the truth value of the progressive and its actual use is a 
direct result of the fact that BECOME does not place conditions in the 
interpretation of (8) on what goes on during I' ,  and so there is no 
guarantee that the state of affairs during I '  is one where the winning 
process is going on. 
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The required relationship between [BECOME dO] and [PROG [BE- 
COMEdO]] cannot be obtained with the current semantics of BE- 
COME. T h e  question now is: How should the semantics of B E C O M E  
be modified? 

5.2. A Change to B E C O M E  

How should Dowty's definition of BECOME be revised to ensure that 
the Test Structure is inconsistent? In other words, how should BE- 
COME be modified so that [PROG [BECOME dO]] is true throughout 
any interval I at which [BECOME dO] is true, in such a way that the 
truth values assigned by the theory to [PROG [BECOME dO]] square 
with the actual use of the progressive? To obtain such a semantics for 
B E C O M E  the following must hold: if (Sa), which represents (8), is 
true at an interval I, then the semantic definition of BECO ME must 
ensure that the state of affairs during I is one where we would naturally 
assert (5) as true, e.g., Max is ahead in the race, or he is second but 
the athlete in first place has just twisted his ankle, etc. In other words, 
the semantics of B E C O M E  must ensure that all the intervals contained 
in I are ones where the process that leads to the target is going on, and 
to achieve this, the semantics of B E C O M E  must characterise the pro- 
cess that leads to the target. 

The Eventual Outcome Strategy is an attempt to characterise the 
process that leads to the target in terms of eventual outcome. This is 
given in the semantics of [PROG [BECOME dO]], which invokes the 
semantics of BECOME.  So one cannot use this Eventual Outcome 
Strategy to define BECOME,  or the analysis is reduced to circularity. 
Instead, the definition of B E C O M E  must characterise the process that 
leads to the target by placing conditions directly on what the process 
consists of, i.e., it must assert in the case of (8) that the process goes 
on only if Max is ahead, or second but the athlete in first place has just 
twisted his ankle, etc. 

This goes against the grain of the Eventual Outcome Strategy. The 
aim is to characterise the process purely in terms of eventual outcome. 
Therefore,  one undermines the Eventual Outcome Strategy if the sem- 
antics for (8) places conditions directly on what the process consists of. 
But we have argued that having such a semantics for (8) is the only 
way to explain that the state of affairs depicted in Figure 5 is inconsist- 
ent. Hence one cannot modify Dowty's definition of B E C O M E  in order 
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to ensure that Figure 5 is inconsistent without undermining the Eventual 
Outcome Strategy. 

I have argued that one cannot explain that Figure 5 is inconsistent 
in Dowty's theory with his current semantics for BECOME, and one 
cannot revise the semantics of BECOME without undermining the 
Eventual Outcome Strategy. Therefore, Figure 5 must be consistent. 

But this is in conflict with the argument given in Section 4, that in 
order to give a satisfactory specification of Inr, the Test Structure 
(Figure 5) must be an inconsistent state of affairs. The semantics of 
BECOME and the specification of Inr are both essential ingredients 
to Dowty's formulation of the Eventual Outcome Strategy because 
BECOME characterises the culmination of an event, Inr characterises 
the appropriate modal notion of the current state of affairs continuing 
uninterrupted, and the Eventual Outcome Strategy defines the pro- 
gressive in terms of these two things. But Dowty's way of characterising 
the culmination requires the Test Structure (Figure 5) to be consistent 
and his way of defining the appropriate notion of modality requires the 
Test Structure to be inconsistent. Therefore, Dowty's formulation of 
the Eventual Outcome Strategy fails. 

Cooper (1985) and Hinrichs (1983) offer alternative formulations of 
the Eventual Outcome Strategy, this time within the framework of 
situation semantics. But in Lascarides (1988), it is demonstrated that 
the argument presented here against Dowty's theory carries over exactly 
to their formulations of the Eventual Outcome Strategy as well. That is, 
their ways of characterising the culmination require the Test Structure 
(Figure 2) to be consistent, but their ways of defining the appropriate 
notion of modality require the Test Structure to be inconsistent. There- 
fore, although the Eventual Outcome Strategy is intuitively appealing, 
we have exposed a tension between the two tasks that must be tackled 
in formulating it. 

One is now left with a puzzle. In this part of the paper, I have 
investigated whether one may canvass in the formal semantic analysis 
of the progressive the intuition that the common property among the 
states of affairs that make (5) true is one of eventual outcome, the 
eventual outcome being the one described by "Max wins the race". 

(5) Max is winning the race 

This intuition is not sufficient to yield a satisfactory logical analysis of 
the progressive however. The puzzle is: How else may the progressive 
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be defined? In the next part of the paper, we shall propose an alterna- 
tive strategy, and show how our new approach to aspect may solve the 
imperfective paradox. 

P A R T  H: A N E W  A P P R O A C H  TO THE IMPERFECTIVE 
P A R A D O X  

1.  I N T R O D U C T I O N  

We shall now offer a totally new approach to solve the imperfective 
paradox, that will make use of a novel semantic interpretation of the 
classification of aspect. The formal theory offered will rely on two 
different tools. First, the theory will be expressed in an interval-based 
temporal logic known as IQ (Richards et al. 1989). Second, we shall 
capture in this theory some of the intuitions that underlie Moens and 
Steedman's model of temporal reference (Moens and Steedman 1988, 
Moens 1987). 

IQ is a temporal logic with at least two innovations. First, like Dow- 
ty's theory, IQ adheres to the following principle of homogeneity: an 
atomic sentence is true at an interval I only if it is true at all subintervals 
of I. However, unlike Dowty's theory, IQ allows atomic formulae to 
represent non-stative sentences. Second, IQ offers a new technique 
whereby temporal expressions can have representations that receive 
their semantic interpretation with respect to context. 

We shall show how homogeneity and context in IQ can be used to 
characterise the semantics of aspect, where the characterisation is based 
on Moens's model. This provides a novel way of thinking about the 
semantics of aspectual phenomena in general, and in particular, offers 
an arena in which to tackle the imperfective paradox anew. We explain 
the entailment between (14) and (15), and at the same time, explain 
why no entailment holds between (6) and (7). 

(14) Max was running 
(15) Max ran 
(6) Max was winning the race 
(7) Max won the race 

Furthermore, we overcome the problems with the Eventual Outcome 
Strategy. Hence our solution to the imperfective paradox is an improve- 
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ment on those of Dowty, Cooper, and Hinrichs, even though, like 
Dowty, we offer the solution in an interval-based framework. 

2. T H E  C L A S S I F I C A T I O N  O F  A S P E C T  

As we have discussed, solving the imperfective paradox consists of two 
tasks. The first is to characterise the semantics of the aspectual classes 
and so provide distinctions between sentences like (15) and (7), and 
the second is to provide a definition of a progressive that builds on 
this characterisation to solve the imperfective paradox. This section is 
concerned with solving the first task. We use some of the ideas behind 
Moens's model of aspect to do this. 

We shall distinguish between three types of sentences: state sentences 
(e.g., "Max knows the answer"); process sentences (e.g., "Max runs"); 
and event sentences (e.g., "Max wins the race", "Max builds a house"). 
Our state sentences correspond exactly to Vendler's states, and process 
sentences correspond exactly to Vendler's activities. Events, on the 
other hand, correspond to Vendler's accomplishments and achieve- 
ments grouped together in one class. So all our event sentences describe 
culminations, and some of them are also associated with 'prior' pro- 
cesses that led to the culmination. The way we capture this in our 
formalism will shortly be examined in detail. 

Moens's taxonomy of aspect contains five categories whereas ours 
contains only three. Nevertheless, we shall exploit some of the ideas 
that lie behind his classification of aspect. One of these is the way in 
which an event can be analysed into stages that are identified deictically, 
i.e., by extra-linguistic context. For example, the process that leads to 
the culmination described by sentence (16), i.e., that the house gets 
completed, will be identified deictically. 

(16) Max build a house 

In the context where Max is spending money on building materials with 
the intention of building a house, "Max is building a house" is true 
and the process it refers to is Max spending money on building ma- 
terials. But in the context where Max is spending money on building 
materials without the intention of building a house, "Max is building a 
house" is false, and the process it describes is n o t  Max spending money 
on building materials. It is this intuition that we aim to capture in our 
semantics. 
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Since our theory will be expressed in IQ, a few remarks about this 
semantic framework are in order. 

3. A N  I N F O R M A L  I N T R O D U C T I O N  T O  IQ 

IQ (standing for Indexical Quantification) is an interval-based flame- 
work originally designed to provide a formal semantic treatment of 
tense and temporal quantification in English (Richards et al. 1989). 
Similar to Dowty's theory, propositions are functions from world- 
interval pairs to truth values; this is why IQ is viewed as an interval- 
based framework. 

IQ offers a new technique for representing deictic expressions (i.e., 
those expressions that are not fully interpretable independently of extra- 
linguistic context). This is achieved by invoking in the object language 
of IQ a set of referring expressions known as parameters, which are 
used to represent deictic terms like "this" and "that". 

A possibly partial function go, which is known as the indexical func- 
tion and which forms part of the model for IQ, assigns denotations to 
the parameters. For historical reasons, the subscript "c" on g¢ stands 
for extra-linguistic context, but don't be confused: the function gc is 
fixed for any given model and so will not change as the natural language 
discourse being considered progresses. 

Instead of gc changing as the context of utterance changes, the pa- 
rameters in the representations of the utterance will change, thus en- 
abling the same sentence to refer to different things in different contexts 
of utterance with respect to the same model. This technique of using 
different terms for representing the same natural language expression 
in different utterances is used by Montague in his analysis of pronouns. 
Just as his theory makes no claims for representing the mechanism we 
use in resolving pronouns, our theory will not represent the mechanism 
we use in resolving deictic expressions. Nevertheless, because the pa- 
rameter used for representing a demonstrative like "that" will be differ- 
ent for different utterances of "that", one can think of parameters as 
deictic in nature, for we shall achieve different references for "that" in 
different contexts. Any expression in the object language will 'inherit' 
the deictic nature of the parameters it invokes, as its semantics will 
depend on the denotation of these parameters, which are determined 
by the indexical function go. We shall use parameters to capture in our 
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semantics the idea that sentences may describe the stages of a particular 
event where these stages are identified by extra-linguistic context. 

3.1. The Syntax and Semantics 

The language of IQ (henceforth Liq) is an extension of the ordinary 
predicate calculus, which contains the usual constants, variables, 
n-place predicates, truth-functional connectives and quantifiers. The 
constants and variables are sorted into four domains in the extended 
version of IQ that we are going to use here; they range over individuals, 
possible worlds, intervals of time and propositions. 4 1 stress that this is 
an extended version of the framework of IQ, where the language has 
referring expressions that denote propositions. The standard framework 
of IQ does not invoke any such referring expressions. 

To achieve a diectic analysis of tense, Liq has a set of referring 
expressions over and above constants and variables. As I have already 
mentioned, these are parameters, and the indexical function gc assigns 
parameters their denotations. In fact, parameters are rigid designators. 
The parameters are 'sorted' like the constants and variables, and in the 
extended version of IQ that we are discussing here, they range over 
the four domains of individuals, worlds, intervals and propositions. 
Parameters occur in the syntax of Liq on deictic sentential operators 
such as tense. They appear as subscripts on the operators. For example, 
the past tense version of an untensed sentence A (such as win(max, 
race)) is represented as PAST(v,o(A), where v is a parameter which 
ranges over the domain of possible worlds, and t is a parameter which 
ranges over the domain of intervals of time. PAST(v,o(A) is true if the 
following holds: 

PAST(v,o(A) is true at the world-time index (w, i) if and 
only if gc(V) = w, gc(t) = i and there exists an interval j ear- 
lier than i such that A is true at (w,j) .  

In the above definition the function gc assigns the parameter v and t 
the 'place' (i.e., possible world) and time of speech. Thus Richards's 
analysis of tense is Russellian in that it refers essentially to speech 
time. 5 For a full discussion of the novel properties of this definition of 
tense, see (Richards et al. 1989). In our theory, parameters will not 
only play a central role in tense, but also in aspect. 

A model for Liq is a septuple (D, W, I, F, ~ ,  g~, f)  where the four 
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non-empty sets D, W, I, and F correspond respectively to the domains 
of individuals, possible worlds, intervals of time and propositions; ¢ is 
a partial ordering relation on the domain I of intervals; g¢ is the function 
that assigns parameters their denotations; and f is the interpretation 
function which assigns the non-logical constants of Liq their intensions. 

The interpretation function f is designed so as to maintain a certain 
degree of homogeneity. That is, the truth clauses for the expressions of 
Liq are such that the definition of truth will yield the following homo- 
geneity property for atomic formulae of Liq (which I shall subsequently 
define) and their Boolean combinations: 

An atomic formula (e.g., win(max,race), run(max)) or a 
positive Boolean combination of atomic formulae is true at 
an index (w, i) only if for all subintervals j of i it is true at 
(w,j). 

The above homogeneity principle is fundamental to the framework IQ, 
and the way it is used sets IQ apart from other interval-based frame- 
works, such as Dowty (1979). Dowty represents the sentence "Max win 
the race" so that it may be true at an interval i and false at an interval 
j contained in i. This is not the case for IQ, for "Max win the race" is 
represented by an atomic formula (i.e., win (max,race)6), and so is 
subject to the above homogeneity restriction. It must be stressed, how- 
ever, that the homogeneity restriction will not apply to all the sentences 
of the language, but only the positive Boolean combinations of the 
atomic sentences. 

So to summarise, there are basically two leading ideas in IQ. First, 
there are certain temporal expressions, such as tense, whose semantic 
interpretations are essentially about the context of utterance. Second, 
the framework of IQ is designed so as to maintain the above homo- 
geneity restriction. Now that the general motivation for Liq is in place, 
I shall give the formal definitions of the syntax and semantics of Liq. 

3.2. The Syntax 

The basic expressions of Liq are defined below: 

(i) Four countably infinite sets of variables: VD, Vw, Vz, and 
re. 
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(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

Four (possibly empty) sets of name constants: Co, Cw, Cz, 
and CF. 
Four (possibly empty) sets of parameters: Po, Pw, PI, and 
P F .  

For n ~> 0 a countably infinite set pn of n-place predicate 
constants. 
Quantifiers: 3, V. (We read 3 and V as "some" and "all" 
respectively.) 
The set of D-terms is VD U Co U Po, the set of W-terms is 
Vw U Cw U Pw, the set o f / - te rms  is Vx U C, U Pz, and the 
set of F-terms is VF U CF U PF. 
Tense operators: PRES(v,t), PAST(v,t), FUT(v,t), where 
v E Pw and t E Pz. 

The well-formed formulas (wffs) of Liq can now be defined inductively 
in the familiar way. 

(i) 

(ii) 

(iii) 

Where R,, is an n-place predicate constant and dl . . . . .  dn 
are D-terms, Rn(d l , . . . ,  dn) is an atomic wff. 
Where A is a wff and x belongs to VD, 3xA and VxA are 
wffs. 
If A is a wff and II is a tense operator, IIA is a wff. 

3.3. The Semantics 

Although IQ is an interval-based system, points play an essential role. 
In effect, intervals are connected sets over points of time, and their 
ordering is determined by the partial ordering of the points of time in 
the intuitive way (an interval i is earlier than an interval ] if and only 
if all the points in i are earlier than all the points in j'). 

An IQ-structure M is defined as follows: M is a septuple 
(D, W, I, F, ~,  gc, f) such that: 

(a) D, W and I are disjoint non-empty sets to be understood 
respectively as the set of possible objects, possible worlds, 
and intervals of time. The non-empty set F is understood as 
the set of propositions (built from the sets W and I) .  It 
consists of all functions from W x I to the truth values 
{0, 1, u} ( "u"  is to be glossed as "undefined").  
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(b) ~ is the partial ordering of I induced by the ordering on the 
set of points of time. 

(c) gc is a function (the "indexical" function) from the pa- 
rameters of Liq to corresponding denotations. 

(d) f is a function which assigns to the constants of Liq the 
suitable (possibly partial) intensions from W x I. 

The interpretation function f is subject to the following homogeneity 
restrictions (these will yield the homogeneity principle described in the 
previous section): 

(i) For every name constant b and predicate rn, f (b)(w,  i) and 
f(rn)(w, i) are defined for all (w, i) in W x I, where i is a 
singleton. 

(ii) For all name constants b, f (b)(w,  i ) = f ( b ) ( w , j )  for all j 
included in i (all subintervals of i). 

(iii) For any predicate constant rn, f (rn)(w, j )  is included in 
f(r,,)(w, i) for all subintervals i and j. 

Because of the homogeneity restrictions on f, intensions will typically be 
partial. However,  the appropriate valuation space for an IQ-structure is 
one with three truth values: 1 ("true"),  0 ("false") and u ("undefined").  
A formula will have the value u whenever any of its non-logical con- 
stants are undefined. It must be stressed that u is a third truth value 
rather than a truth value gap. 

The truth definition for Liq proceeds in terms of the notion of an IQ- 
interpretation based on an IQ-structure M. 

An IQ-interpretation is a pair (M, g) such that M is an IQ- 
structure and g is a function which assigns values to the vari- 
ables of Liq. 

Given an IQ-interpretation, the denotation of a well-formed ex- 
pression /3 is defined recursively in the familiar way. We let 
~/3~<M'g>(W, i) be the denotation of /3  relative to the IQ-interpretation 
(M, g) with respect to the pair (w, i) E W x I. ~/3]<M.g> is defined recur- 
sively in the following way. 

(a) Where/3 is a variable, ~/3]<M'g>(w, i) = g(/3). 
(b) Where /3  is either a name constant or a predicate constant, 

~/3~<M'g>(W, i) = f (b)(w,  i). 
(c) Where/3  is a parameter, ~/3]<M'g>(w, i) = gc(/3). 
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(d) 

(f) 

(g) 

(h) 

W h e r e  fl is an a tomic wff p"(d~, . . . , dn), [/3~(M'g>(w, i) = 
1 if (~dl](M'g>(w, i ) , . . . ,  ~dn]<M'g>(w, i))  belongs to 
[p"]<M'g>(w, j ) ,  
0 if (~dl~<M'g>(w, i ) , . . . ,  ~dn~<u'g>(W, i))  does not  belong 
to ~pn~<M'g>(W, j ) ,  
U if ~di ~(M'g>(w, i)  is undef ined for  any i where  1 <~ i ~< n 
or  ~p"]<M'g>(w, i)  is undef ined.  

Where  /3 is a wff 3 x A  with the individual variable x, 
~/3~<M'g>(w, i) is 

1 if ~A~<M'g(x'e)>(w, i) = 1 for  some e belonging to D,  7 
0 if ~A]<~t'g(x'e)>(w, i)  = 0 for  all e belonging to D,  
u otherwise.  

W h e r e  /3 is a wff V x A  with the individual variable x, 
~/3~<M'g>(w, i)  is 

1 if ~A]<~'~(x'~)>(w, i ) =  1 for  all e belonging to D,  
0 if ~A~<~t'g(x'e)>(w, i ) = 0  for  some e belonging to D,  
u otherwise.  

W h e r e  /3 is a wff PRES(~.o(A ) with v E Pw and t E Pz, 
~/3]<~'g>(w, i) is 

1 if ~v] <M'g) = w and  ~t] (M'g) = i and ~A~(M'g)(w, i) = 1, 
0 if ~v] <M'*> and It]  <M'g> are def ined b u t  [l~ (M'g) ~ W or  

i or i )  = O, 
u otherwise.  

Where  /3 is a wff PAST(~,t)(A) with v ~ Pw and t ~ Pz, 
~/3~<M'g>(w, i) is 

1 if ~v~ <~4"g> = w and ~t] <~'g> = i and ~A~<M'g>(w,j) = 1 for  
some j ~ i 
0 if ~v~ <M'g> and ~t~ <~'g> are defined but  ~v~ (M'g> # w or 
~t~ (M'g) # i or ~A~(M'g)(w, i) = 0 for  all j ~ i, 
u otherwise.  

Where  /3 is a wff  FUT(v,t)(A) with v ~ P w  and t ~ P z ,  
~/3~(M'g)(w, i) is 

1 if ~v] <M'g> = w and [t~ (M'~> = i and [A]<M'~>(W, k) = 1 for  
some k such that  i ~ k, 
0 if [v] <M'g> and  ~t] (M'g) are def ined but  ~v] <M'g> ~ i or 
~t~ <M'g> ~ i or  ~A~<M'~>(w, i) = 0 for  all k such that  i ~ k, 
u otherwise.  

The  above  t ru th  definit ion (d) for  a tomic wff toge ther  with the homo-  
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geneity restrictions (i), (ii) and (iii) on fy ie ld  the homogeneity principle 
in (17). 

(17) An atomic sentence or a positive Boolean combination of 
atomic sentences will be true at an index (w, i) only if for 
all subintervals j of i, it is true at (w,j). 

Now that the syntax and semantics of the language of IQ are in place, 
I shall explore how one might implement the suggestions outlined 
earlier, that is, to formulate the taxonomy of aspect in the framework 
IQ. 

4 .  F O R M U L A T I N G  T H E  T A X O N O M Y  OF A S P E C T  IN I Q  

If the distinctions between the three aspectual classes of states, pro- 
cesses and events are to be thought of as semantic distinctions, then 
the task ahead is to provide a suitable model structure that captures 
this. The set F of propositions, which corresponds to the set of all 
functions from W x I to {0, 1, u}, must be divided into at least three 
classes corresponding to the three aspectual categories: F must consist 
of a set S of state propositions, a set Pr of process propositions and 
a set E of event propositions. So a state sentence, such as "Max 
know the answer",  will be represented in IQ as the atomic formula 
know(max, answer), and this formula will denote a state proposition; 
i.e., a member  of the set S. The process sentence "Max run" will be 
represented by the atomic formula run(max), which will denote a 
member  of Pr. The event sentences "Max win a race" and "Max 
build a house" will be represented respectively by the atomic formulae 
win(max, race) and build(max, house), and they will both denote mem- 
bers of E. 

Our task now is to provide a way of distinguishing the members of 
S, Pr and E. How may this be done? First, let us consider what restric- 
tions we require on the set E of event propositions. I shall claim that 
because of the homogeneity principle, any proposition from E must 
return the value true only at minimal intervals (these are the singleton 
sets in IQ). Suppose that an atomic untensed sentence A denoting an 
event proposition is true at an extended interval i, however small. 
Then,  by homogeneity,  A is true at every subinterval of i. One is now 
committed to one of two undesirable consequences. The first alternative 
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is that the structural representation of A is not related to the 'goal' or 
'conclusion' of the event it denotes. The second alternative is that A 
has a 'goal' or 'conclusion' associated with it, but homogeneity estab- 
lishes that this conclusion occurs at every interval contained in i (since 
A is true at every interval contained in i). Hence a homogeneous 
interpretation of events is satisfactory only if they are true only at 
min ima l  intervals. Under this restriction, the structural representation 
of A can entail a 'goal' or 'conclusion', which will occur at the minimal 
interval at which A is true. 

The analysis of event propositions that we have been forced into by 
homogeneity may at first seem puzzling. According to intuitions, some 
events such as "Max build a house" do seem to extend to time, and 
yet we represent events as punctual entities. The puzzle is: How are 
we to formulate in this framework the intuition that some events have 
'preparatory' processes that lead to the culmination? This puzzle will 
shortly be addressed in full. The technique whereby expressions in 
IQ can achieve semantic interpretation with respect to extra-linguistic 
context will play a central role in answering it. 

The 'punctual' property of event propositions is captured in the 
following analysis of F. The set F is partitioned into four classes: Pr 
(process propositions); S (state propositions); E (event propositions); 
and • (the remaining functions in F).  

The conditions placed on the members from these classes are as 
follows: 

Condi t ion on E 

e ~ E if and only if for all (w, i) ~ W x I such that e(w,  i)  = 
1, i is a min ima l  interval. 

If e E E, then the function e returns the value true only at minimal 
intervals. The fact that the members of E have this 'minimal interval' 
property reflects the idea that the culmination of an event is punctual 
(for it happens at the minimal interval at which the event is true). 

In classifying the set Pr of process propositions, we capture Moens's 
idea that processes essentially extend in time and have definite end- 
points (but not  culminations). The propositionsin Pr satisfy the follow- 
ing: 

Condi t ion on Pr  

pr E Pr if and only if for all indices ( w , i ) E  W x I, if 
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pr(w, i) = 1 and if for all intervals j such that i is contained 
in j p r (w, j )  = 0, then i is a closed non-minimal interval. 

By the above condition, if pr E Pr, then it has what I call a closed 
interval structure, that is, the proposition pr may be true on an open 
interval, but any such interval is surrounded by a non-minimal closed 
interval at which pr is true. Similarly, any minimal interval at which pr 
is true is surrounded by a non-minimal closed interval at which pr is 
true. Essentially, the maximal (connected) intervals at which a process 
proposition returns the value true are always non-minimal and closed. 
The fact that these are non-minimal reflects the intuition that processes 
happen over an extended period, and the fact that they are closed 
reflects the intuition that they have definite endpoints (but not culmi- 
nations). 

The classification of the set S of state propositions captures the idea 
that states essentially extend in time but do not have definite endpoints. 
The propositions in S must satisfy the following condition: 

Condition on S 
s ~ S if and only if for all (w, i) E W x I, if s(w, i) = 1 and 
if for all intervals j such that i is contained in j s(w, j )  = O, 
then i is open. 

So if s ~ S, then it has what I call an open interval structure. That  is, 
the function s may be true on a closed interval, but any such interval 
is surrounded by an open interval at which s is true. So essentially the 
maximal (connected) intervals at which a state proposition returns the 
value true are always open. The fact that they are open reflects the 
intuition that states don' t  have definite endpoints. 

The functions that are in the set qb satisfy the following condition: 

Condition on @ 
~b ~ @ if and only if none of the conditions on E, Pr, or S 
hold. 

So the largest intervals at which a function ~b ~ ~ returns the value 
true are a mixture of open, closed and minimal. The set of functions 
qb does not correspond to any of the aspectual categories, but is included 
as a subclass of F since F contains all functions from W x I to {0, 1, u}. 
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5 .  T H E  P R E P A R A T O R Y  P R O C E S S  O F  A N  E V E N T  

As we have already mentioned, we intend to represent the event sen- 
tence "Max build a house" with the atomic formula build(max, house), 
and this formula will denote an event proposition. So build(max, house) 
will be true at an interval i only if i is minimal. 

Given this analysis of the event sentence "Max build a house",  how 
can we provide a semantic interpretation of the preparatory process of 
building a house that leads to the culmination of the house being 
completed? The challenge is to provide a temporal relation between this 
process and the event build(max, house). For Dowry, the preparatory 
process that leads to the culmination of an event occurs during the 
interval at which the event itself occurs. Clearly, we need to provide a 
different temporal relation to this, for our events are true only at 
minimal intervals, and so the process cannot occur at an interval con- 
tained in the minimal intervals. 

We propose to define the process that leads to the culmination of an 
event in terms of the event itself: If A is an event sentence, then PR(A) 
is a sentence that represents the process that leads to the culmination 
of A, where PR is a sentential operator. Our task now is to define the 
semantics of this sentential operator PR. In so doing, we must stipulate 
the temporal relation that holds between A and PR(A). 

In characterising this temporal relation, the intuition we shall trade 
on is that whenever the event (i.e., culmination) occurs, the preparatory 
process that leads to the culmination must have been going on just 
before. This temporal precedence relation between a preparatory pro- 
cess and culmination is formulated in (R) below: 

(R) If the event sentence A is a true at (w, i), then there is some 
interval j such that i is the final bound of ] and PR(A) is a 
true at (w,j) .  8 

Note that (R) expresses a necessary relation between A and PR(A), 
since it must hold for every world-time index. 

But simply stating (R) does not supply a full semantic analysis of 
the sentence PR(A). This relation (R) will not uniquely specify the 
proposition pr that the sentence PR(A) denotes. So what is the proposi- 
tion denoted by PR(A)? 

Our proposal is that the process proposition (18) refers to, for exam- 
ple, is not uniquely specified independently of its context of utterance. 
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(18) 
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PR(build(max,house)) 

Extra-linguistic context will determine the process that (18) refers to, 
but the semantics for (18) will be such that the possible choice for this 
process is subject to the restriction that it must satisfy the necessary 
relation (R) to build(max,house). So, as we mentioned before, in the 
context where Max is spending money on building materials with the 
intention of building a house, (18) will be true, and the process it refers 
to will be Max spending money on building materials. But in the 
context where Max is spending money on building materials without the 
intention of a building a house, (18) will be false, and the process it 
refers to will not be Max spending money on building materials. 

To formulate this idea in our theory, we shall replace the sentential 
operator PR with a complex sentential operator PRp, where p is a 
referring expression that will refer to a process proposition which is 
identified by extra-linguistic context. So the preparatory process of 
building a house is now represented with (19), 

(19) PRp(build(max,house)), 

and the semantics of PRp(A) will define a relation between the event 
proposition denoted by A and the process proposition denoted by p, 
whose value is determined by extra-linguistic context. 

But how can the logical analysis of PRp(A) be defined so as to refer 
to a proposition denoted by p whose value is determined by extra- 
linguistic context? The preceding discussion indicates that the relation 
between the sentence PRp(A) and context is a matter of logical form. 
IQ provides us with just the technique we need to capture this idea. 
We make the referring expression p in the sentence PRp(A) a parameter 
that denotes a proposition. It will thus achieve denotation with respect 
to extra-linguistic context via the indexical function gc that is part of 
the model. In the truth conditions of PRp(A), the parameter p is to be 
thought of as describing the preparatory process of A whose value is 
determined by context. So, in the building a house example that we 
have been considering, gc(p) could be Hspend(max, money, building- 
materials)l, where the formula spend(max,money, building-materials) 
represents the process of Max spending money on building materials. 
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5.1. The Truth Conditions of  PRp(A) 

We have already mentioned two conditions that must hold for PRp(A) 
to be true. First, p must denote a process proposition and A must 
denote an event proposition. This ensures that the semantics of PRp(A) 
relates a process to an event. Second, there must be a temporal pre- 
cedence relation between the preparatory process of A and A itself. 
Since the parameter p is to be thought of as describing the preparatory 
process of A, whose value is identified by context, this entails that the 
truth of PRp(A) enforces the condition that whenever A is true, the 
proposition denoted by p must have been true just before. So although 
the denotation of p is chosen according to extra-linguistic context, the 
possible choices will be semantically restricted by this temporal pre- 
cedence relation with A. 

The above requirements on the semantics of Prp are captured in its 
following truth conditions: 

PRp(A) is true with respect to (M, g) at (w, i) if 

(a) the proposition denoted by A (which we refer to as 
[A~ (M'g)) is a member of E, and g¢(p) is a member of Pr, 
and 
(b) for all indices (w', i ' )  E W × I, if  ~A](M'g)(w ', i') = 1 
then there is an interval j '  whose final bound is i' and 
gc(p)(w',j') = 1, a n d  

(c) gc(p)(w, i) = 1; 

it is false if either conditions (a), (b) or (c) do not hold; and otherwise 
it is undefined. 

Let us discuss the semantic roles of the condition (a), (b) and (c) in 
the above definition. Condition (a) requires A to denote an event 
proposition and p to denote a process proposition. Hence the operator 
PRp operates on an event sentence, and it also invokes reference to a 
process proposition whose value is determined by context, which is as 
required. 

Condition (b) states that the process proposition go(p) and the event 
proposition denoted by A stand in a necessary temporal precedence 
relation; whenever A occurs, p occurs just before. The result of con- 
dition (b) is effectively to semantically restrict our possible choices for 
gc(P). It captures the intuition that the truth of A must be result of the 
process gc(P) that was going on just beforehand. Condition (b) also 
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ensures that PRp(A) and A will stand in the temporal precedence 
relation (R) mentioned earlier. 

According to condition (c), PRp(A) is true at (w,i) only if 
gc(p)(w, i) = 1. It is important to note that PRp(A) is defined in terms 
of, among other things, the sentence A, but the truth of PRp(A) at 
(w, i) does not entail the truth of A at any time. This reflects the 
intuition that the preparatory process of A may go on without the 
culmination ever being reached. Our ability to formulate this intuition 
in IQ will prove important when it comes to solving the imperfective 
paradox. 

Furthermore, by conditions (a), (b) and (c), we can show that the 
sentence PRp(A) denotes a proposition from Pr. Suppose that PRp(A) 
is true at the index (w, i), then by condition (a), go(P)E Pr and, by 
condition (c), gc(P) is true at (w, i). So, by the properties of proposi- 
tions in Pr, either i is a non-minimal closed interval, or i is contained 
in a non-minimal closed interval j such that g¢(p) is true at (w,j). 
Suppose i is contained in a non-minimal closed interval j such that g~(p) 
is true at (w,j), then given that PRp(A) is true at (w, i), conditions (a) 
and (b) are satisfied for the evaluation of PRp(A) at (w,j) (because 
these conditions are independent of the index of evaluation). So since 
g~(p) is true at (w,j), then by condition (c) so is PRp(A). Hence, if 
PRp(A) is true at (W, i), then either i is a non-minimal closed interval 
or i is contained in a non-minimal closed interval j such that PRp(A) is 
true at (w,j). Hence the proposition denoted by PRp(A) satisfies the 
condition on the set Pr, and so it must be a process. This is just as 
required: we want PRp(A) to denote process proposition since it repre- 
sents the preparatory process of the event A. 

Also note that as long as PRp(A) is possibly true with respect to a 
model M, then it satisfies the temporal precedence relation (R) with 
A. For if PRp(A) is true at some index, then by condition (a), gc(P) is 
defined (remember that g~ is partial), and by condition (b), whenever 
A is true, gc(P) is true just before. Therefore by condition (c), whenever 
A is true, PRp(A) is true just before. In essence, this captures in our 
semantics the idea that the event is the result of a preparatory process 
which is chosen in a suitable way from context. 

Finally, note that although the formula PRp(A) and the referring 
expression p may denote the same proposition, the definition of PRp(A) 
is not circular even though it is given in terms of p. This is because 
g¢(p) is not defined in terms of PRp(A). gc is simply a one-place function 
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that assigns the term p a proposition as its denotation. Context will 
determine whether the proposition denoted by p in PRp(build(max, 
house)) will be true when the plans for the house are being determined, 
or whether p is true only when the action of building is going on, for 
example. 

Let us consider sentence (3). 

(3) Max was building a house 

The analysis of (3) will have embedded in it the sentence (19) (the full 
analysis of (3) that incorporates the representation of the progressive 
will be given shortly). 

(19) PRp(build(max,house)) 

The value of p, i.e., gc(P), is some proposition that is picked out 
deictically - as we have mentioned, it could be the proposition denoted 
by ~spend(max,money,building-materials)~. 9 The choice of gc(P) deter- 
mines which process is said to be in progress when we utter (3). Note 
that sentence (19) is true at (w, i) only if gc(p) is true at (w, i), but it 
does not assert that build(max, house) is ever true. 

6. O U R  A P P R O A C H  C O M P A R E D  W I T H  P R E V I O U S  

I N T E R V A L - B A S E D  A P P R O A C H E S  

We have now completed the first task connected with the imperfective 
paradox: we have formulated the classification of aspect in an interval- 
based framework, and in so doing have provided semantic distinctions 
between process sentences like "Max run" and event sentences like 
"Max build a house".  Let us see how our analysis of the classification 
of aspect compares with previous interval-based accounts. 

Dowty's interval based formulation of the classification of aspect 
features a heterogeneous semantics for accomplishments such as "Max 
build a house" where this sentence may be true at an interval i and 
false at a subinterval of i. 

Our interpretation of the classification of aspect takes on a wholly 
different approach from Dowty's. We do not give a heterogeneous 
analysis of the untensed sentence "Max build a house". Indeed, such 
truth conditions for "Max build a house" would not even be expressible 
in the framework IQ because of the homogeneity principle (17), which 
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entails that if build(max,house) is true at (w, i), then it is true at (w, j') 
for all subintervals j of  i. 

(17) An atomic sentence or a positive Boolean combination of 
atomic sentences is true at the index (w, i) only if for all 
subintervals j of i, it is true at (w, j ) .  

Thus one important original feature of our theory is that it is the first 
formulation of the classification of aspect where the various aspectual 
classes are assigned a homogeneous analysis. And yet even though our 
analysis of aspect is homogeneous,  we can capture all the important 
intuitions that are captured in Dowty's heterogeneous analysis, for 
example, the intuition that events can have preparatory processes. 

Dowty characterises the process of Max building a house purely in 
terms of the eventual outcome of the current state of affairs, but we 
use something else. Instead of the semantics of PRp(build(max,house)) 
being in terms of the eventual outcome, the extra-linguistic context of 
utterance plays a crucial part, for its semantics is dependent  on the 
value of gc(P). Hence our strategy is distinct from the Eventual Out- 
come Strategy. 

It is shown in Lascarides (1988) that in using our strategy of iden- 
tifying parts of an event via extra-linguistic context, one can account 
for the fact that sentence (20) is acceptable in certain contexts, but not 
in others. 

(20) Max ran in four minutes (this morning) 

Sentence (20) is acceptable in the context where Max runs a fixed 
distance every morning. For  example, in the context where Max runs 
a mile every morning, the culmination is Max reaching the distance of 
one mile, and (20) means it took four minutes for Max to run a mile. 
In the context where Max runs two miles every morning, the culmi- 
nation in the semantics of the event "Max run" is identified as Max 
reaching the distance of two miles, and (20) means it took four minutes 
for Max to run two miles. In Lascarides (1988) we show how to charac- 
terise the semantics of the event sense of "Max run" as it appears in 
(20), where the culmination is identified by context. Our formal theory 
is able to account for this by invoking a parameter  in the representation 
of the event "Max run" which will identify the appropriate culmination 
(if there is one) given the context. Because deixis does not play a 
central role in Dowty's theory on aspect, he is unable to account for 
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the fact that the acceptability of (20) is dependent on the context in 
which it was uttered. 

So to conclude, I have offered a formal interpretation of the tax- 
onomy of aspect in the framework IQ. The theory offered is a new 
approach to formalising the taxonomy of aspect because it contained 
essentially two original features: the aspectual classes are assigned a 
homogeneous interval-based analysis; and context plays a central role 
in describing their semantics. Thus this formulation of the taxonomy 
of aspect provides an arena in which to tackle the imperfective paradox 
anew. But can our theory yield a solution to the imperfective paradox, 
in a way that overcomes the problems encountered in previous at- 
tempts? 

7 .  A S O L U T I O N  T O  T H E  I M P E R F E C T I V E  P A R A D O X  

Our objective now is to deal with the second task connected with the 
imperfective paradox, that is, to build on the classification of aspect we 
have proposed by defining the semantics of the progressive that solves 
the imperfective paradox. 

A satisfactory solution to the imperfective paradox must explain the 
entailment from sentence (14) to (15), and, at same time, explain why 
there is no entailment from (6) to (7). 

(14) Max was running 
(15) Max ran 
(6) Max was winning the race 
(7) Max won the race 

One would also like an explanation of the entailments from (15) to 
(14), and (7) to (6). This section is concerned with providing an analysis 
of the progressive that accounts for these intuitions. 

Moens claims that the progressive requires a process as input, and it 
outputs a state which describes the process as being in progress. To 
reflect this idea in our semantics, we shall represent the progressive as 
an operator PROG, that will operate on the process sentence A, so 
that PROG(A) denotes.a state proposition which describes the process 
A as being in progress, that is, PROG(A) will assert that the process 
A began at some earlier time and has not yet stopped. The truth 
definition of PROG is given below: 
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PROG(A) is true with resepct to (M, g) at (w, i) if and only 
if ~A~ <M'g> ~ Pr and there exists a closed interval ]" such that 
i is a proper subinterval o f ]  and A is true at (w,j);  it is false 

a t  (w, i) if either ~A] <M'g> is not a member of Pr, or there is 
no closed interval j' such that i is a proper subinterval of ]' 
and A is true at (w,]);  and otherwise it is undefined. 

The sentence PROG(A) is false where A does not denote a process 
proposition. Furthermore, the sentence PROG(A) must denote a state 
proposition, since the largest connected intervals at which PROG(A) 
is true are the open interiors of the largest connected intervals at which 
A is true, and so PROG(A) satisfies the condition on the members of 
S that we have stipulated. Since PROG(A) is true at the open interior 
of the interval where A is true, our definition of PROG(A) reflects the 
idea that it is true if the process A started at some earlier time and has 
not yet stopped. 

7.1. The Entailments from the Progressive to the Non-Progressive 

At first glance, the operator PROG does not seem to offer anything 
interesting towards a solution to the impeffective paradox. However, 
the combination of the operators PROG and PRp provides us with the 
desired analysis of sentence (6): (6) does not entail (7). 

(6) Max was winning the race 
(7) Max won the race 

The formula (21) is not a possible representation of (6) because 
the formula win(max,race) denotes a proposition from E and not a 
proposition from Pr, and so by the definition of PROG,  (21) is always 
false. 1° 

(21) PAST(v.t)[PROG(win(max,race))] 

In fact, the only possible representation of (6) in our formalism is (6a). 

(6a) PAST(v,t)[PROG[PRp(win(max,race))] ] 

I shall now show that our theory blocks the entailment from (6) to (7). 
I shall do this by constructing a model M such that (6a) is true in M at 
(w, i) and (7a), which is the logical form of (7), is false. 

(7a) PAST~v,t~(win(max,race)) 
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Suppose that sentence (6a) is true in a model M at an index (w, i). 
This is the case if and only if g¢(v) = w and go(t) = i, and there exists 
an interval j ~ i such that (6al) is true at (w, j ) .  

(6al) PROG[PRp(win(max,race))]  

This is the case if and only if (6a2) denotes a process proposition, and 
there exists a closed interval k such that j is a proper subinterval of k 
(6a2) is true at (w, k). 

(6a2) PRp(win(max,race)) 

This is the case if and only if (a) ~win(max,race)~<M'g>~ E and 
gc(p)  ~ Pr and (b) for all indices (w',  i ' )  E W x I, if win(max,race) is 
true at (w' ,  i ' ) ,  then there is an interval j '  such that i '  is the final bound 
of j '  and gc(p)  is true at (w',  j ' ) ,  and (c) g~(p) is true at (w, k). 

Now the truth of gc(p)  with respect to (M, g) at (w, k) is consistent 
with the formula win(max,race) being false at all times in w. So suppose 
win(max,race) is false at all times in w, then sentence (7a) is false in 
m at (w, i). 

(7a) PAST(v,o(win(max,race)) 

But this is the logical form of (7). Hence,  (6) does not entail (7). 
The semantics of P R O G  provides an explanation of the entailment 

from (14) to (15). 

(14) Max was running 
(15) Max ran 

The logical form of (14) is (14a), and the logical form of (15) is (15a). 

(14a) PAST(v.o[PROG(u(max))]  
(15a) PAST(v,o(run(max)) 

We can show that the truth of (14a) in a model M at an index (w, i) 
entails the truth of (15a) at (w, i). Suppose that (14a) is true in a model 
m at (w, i), then g~(v) = w,  gc(t) = i, and [PROG(run(max))]  is true 
at an index ( w , j )  where j ~ i; so [run(max)~ ~M'g~ E Pr, and there exists 
a closed interval k such that j is a proper subinterval of k and run(max) 
is true at (w, k). By the homogeneity principle satisfied by the frame- 
work IQ, if run(max) is true at (w, k), then it is also true at ( w , j ) ,  
since j' is a proper subinterval of k. But j ~ i, and so (15a) is true in 
the model M at (w, i), hence, (14) entails (15), as required. 
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7.2. The Entailments from the Non-Progressive to the Progressive 

Let us now investigate the entailments from (15) to (14), and (7) to 
(6). First consider sentence (7), whose formal representation is (7a). 

(7) Max won the race 
(7a) PAST(v.o [win(max,race)] 

Suppose (7a) is true in the model M at (w, i), then go(v) = w, gc(t) = 
i and there is an interval j ~ i such that win(max,race) is true at (w, j ) .  
Suppose also that (non-linguistic) context provides a suitable process to 
win(max,race) at (w,j), so this process satisfies the necessary temporal 
precedence relation with the denotation of win(max,race). Let gc(p) 
be this process in (6a), the logical form of (6). 

(6) Max was winning the race 
(6a) PAST~v,o[PROG[PRp(win(max,race))]] 

gc(p) is a suitable process to win(max,race) at (w,j),  and so (by the 
temporal precedence relation) since win(max,race ) is true at (w, j) 
there exists an interval k whose final bound is j such that gc(p) is true 
at (w, k). Hence by the definition PRp, PRp(win(max,race)) is true at 
(w, k), and by the definition of P R O G ,  (6al) is true in w at the open 
interior of k. 

(6al) PROG[PRp(win(max,race))]  

But j ~ i and j is the final bound of k, so k ~ i and the open interior 
of k is earlier than i. Thus, (6a) is true at (w, i) and, hence, (7) entails 
(6) as long as extra-linguistic context provides a suitable prior process 
to Max becoming the winner of the race (i.e., gc(P) is defined appro- 
priately), as required. 

Problems appear to arise when one investigates whether sentence 
(15) entails sentence (14). 

(15) Max ran 
(14) Max was running 

One can show that the current analysis does not account for a logical 
entailment from (15) to (14). I shall show this by constructing a model 
M where (15) is true at an index (w, i), but (14) is false at (w, i). Let 
run(max) be true in the model M only at the index (w,j)  and at 
subintervals of j. Then let int(j) be the open interior of ]. Since 
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run(max) denotes a proposition from Pr, j must be closed, and so the 
initial bound k of the interval j is not contained in int(j)  and so k is 
earlier than int(j).  Furthermore,  by homogeneity run(max) is true at 
(w, k) (since k is contained in j) .  Now let us evaluate the truth value 
of (15a), which is the representation of (15), at (w, int(j)).  

(15a) PAST(v,t)(run(max)) 

(15a) is true in the model M at (w, int(])) if gc(V) = w and gc(t) = int(j) 
and there is an interval l earlier than int(j)  such that run(max) is true 
at (w, l). Assuming that gc(V) = w and gc(t) = int(j) ,  (15a) is true at 
(w, int(j)) since k is earlier than int(j)  and run(max) is true at (w, k). 

However ,  we can show that (14a), the representation of (14), is false 
in the model M at (w, int(j)).  

(14a) PAST(v,o[PROG(run(max))] 

(14a) is true at (w, int(j))  if gc(V) = w and gc(t) = int(j)  (these assign- 
ments hold by our assumption), and there is an interval l earlier than 
int(j)  such that PROG(run(max))  is true at (w, l). We shall now show 
that there is no such interval I. Since run(max) is true in M only at 
( w , ] )  and the subintervals of j, by the definition of P R O G ,  P R O G  
(run(max)) is true in M only at (w, int(j)) (int(j') is the open interior 
of ]) and subintervals of int(j).  Hence there is no interval l earlier than 
int(]) such that PROG(run(max))  is true at (w, l), and so (14a) is false 
at (w, int(j)) .  Thus we have constructed a model M where (15a) is true 
at (w, int(])) and (14a) is false at (w, int(j)) ,  and so there is no logical 
entailment from (15a) to (14a). We are able to construct such a model 
as a direct result of the fact that PROG(run(max))  is true only at the 
open interiors of the interval j at which A is true, and it is not necessarily 
true at j itself. 

In view of the apparent inability to explain why (15) entails (14), the 
analysis seems to be flawed. However ,  following Taylor (1977, 1985), 
one could explain away this flaw by appealing to the distinction between 
truth and assertability. We appeal to the hypothesis that even though 
in the above model M (15) is true at the open interval int(j) in virtue 
of run(max) being true at the initial bound of int(j) ,  one is not in a 
position to assert at the open interval int(j)  that run(max) was true at 
the initial bound of int(j).  This hypothesis is motivated by the intuition 
that an action must go on for an extended per iod  of time before one 
can recognise the action and so assert that it is going on. For example, 
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one cannot tell from a snapshot taken of Max at some singleton {t} 
(i.e., minimal interval) whether Max was running at {t}, and so one 
cannot assert that run(max) is true at {t} even if run(max) is true at {t}. 
If one accepts this, then one explains that the assertion of (15) entails 
the assertion of (14). 

Our strategy for defining the semantics of the progressive is distinct 
from the Eventual Outcome Strategy because the semantic definition 
of PROG does not place conditions on the outcome of the current state 
of affairs. We do not appeal to constructs such as inertia worlds. In 
place of these constructs we have the temporal precedence relation 
betweenp and A in the definition of the formula PRp(A). This temporal 
precedence relation captures the intuition that if the event A occurs, 
the process p must have been going on just before. So instead of 
defining the effects or eventual outcome of the process p, as the Eventual 
Outcome Strategy does in terms of inertia worlds, we define what must 
have happened before A.  As a result of our departure from the Eventual 
Outcome Strategy, our solution to the imperfective paradox does not 
suffer that strategy's problems. We are able to account for the possibil- 
ity that while Max is running in the race, "Max is winning the race" is 
true, and then false, and then true, and then Max wins the race; for 
there is an admissible model M where PROG[PRp(win(max,race))] is 
true at (w, i), false at (w,j) and true at (w, k), and win(max,race) is 
true at (w, l) where i ~/ '  ~ k ~ l. Furthermore, by our analysis of 
PROG, PRp and win(max,race), the situation in Figure 2 is inconsist- 
ent. This is because win(max,race) is only true at minimal intervals, 
and so PROG[PRp(win(max,race))] cannot be true and then false and 
then true at an interval contained in one where win(max,race) is true. 

One may look upon our analysis of aspect as replacing Dowty's 
primitive function Inr in the model with another primitive function, go 
Thus it appears that the explanatory power of our theory is no more 
than that of Dowty's. However, our theory is an improvement on 
Dowty's in two very important respects. First, the function gc is motiv- 
ated independently from the analysis of aspect, unlike Dowty's function 
Inr, because parameters are used to analyse all indexical expressions. 
Second, our function gc is well-defined, and we showed that Inr cannot 
be well-defined without reducing the analysis of aspect to circularity. 
So our theory overcomes the problems encountered in Dowty's ap- 
proach to aspect. 
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8o C O N C L U S I O N  

Solving the imperfective paradox consists of two tasks. The first is to 
represent a semantic distinction between sentences like (15) and sen- 
tences like (7). 

(15) Max ran 
(7) Max won the race 

The second is to provide a definition of the progressive that is sensitive 
to this distinction and so results in a solution to the imperfective para- 
dox. I presented an account of the semantic distinction between (15) 
and (7) by formulating a classification of aspect in the framework of 
IQ, and provided a suitable definition of the progressive that builds on 
this. 

Two properties of IQ play a central role in the analysis of aspect. 
The first is the homogeneity condition which is fundamental to the 
framework IQ. Homogeneity plays a crucial role in explaining the 
entailment between (14) and (15), for example. 

(14) Max was running 
(15) Max ran 

The second important feature of the analysis is the role played by 
parameters. In using parameters we capture the intuition that extra- 
linguistic context determines exactly what process an utterance like 
"Max was building a house" denotes. 

I offered an account of the entailment from (14) to (15), and at the 
same time showed why no such entailment holds between (6) and (7). 

(6) Max was winning the race 
(7) Max won the race 

I also offered an account for why (15) entails (14) and (7) entails (6), 
and thus solved the imperfective paradox. 

In the first part of this paper, I exposed irresolvable problems in 
attempting to solve the imperfective paradox with the Eventual Out- 
come Strategy, but our definition of the progressive is not subject to 
these problems; it is wholly distinct from the Eventual Outcome Strat- 
egy. So our solution to the impeffective paradox transcends the prob- 
lems encountered in previous theories. 
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N O T E S  

* Many thanks are due to Barry Richards, Marc Moens and Jon Oberlander, whose 
responses to my work have contributed in no small way to whatever coherence exists 
here. 
1 For the sake of simplicity, nouns, such as "house"  and "race" will be represented by 
name constants. This simplification does not have any bearing on our purposes here. 
2 Dowty himself observes some undesirable consequences of his definition for the oper- 
ator BECOME,  but his criticisms are not relevant for our purposes here. 
3 Dowty offers alternative truth conditions for BECOME (call the new operator BE- 
COME1), where [BECOME1 q)] identifies the smallest interval over which the change of 
state from 7q)  to q5 takes place. The definition of BECOME1 requires Dowty to assume 
that there are truth-value gaps; i.e., that value of cI, must be undefined at all intervals 
properly contained in the interval I at which [BECOME1 ~] is true. The idea is that q5 
is undefined at exactly those intervals where the process leading to q5 goes on. But Dowry 
does not characterise when the truth value of a sentence like "Max is the winner of the 
race" (whose formal representation is winner ' (max' , race ' ) )  is undefined. Indeed, if he 
did then he would undermine the Eventual Outcome Strategy, for he would be charac- 
terising the process that leads to Max being the winner of the race directly (note that it 
couldn't be done in terms of inertia worlds because this presupposes the semantics of 
BECOME is fixed), and he could simply define the progressive sentence as true at exactly 
those intervals where the truth value of winner ' (max' , race ' )  is undefined. There would 
thus be no need for inertia worlds. Since Dowry does not characterise when the truth 
value of winner ' (max' , race ' )  is undefined, there is still the possibility of constructing a 
model where the interval I ' ,  which spans twenty years and contains N, is the shortest 
interval where the change from winner ' (max' , race ' )  being false to being true takes place; 
winner ' (max' , race ' )  could be undefined throughout I ' .  Hence,  there is nothing in the 
truth conditions of BECOME1 that bars the model M" from being admissible. 
4 An extended version of IQ, that includes referring expressions ranging over proposi- 
tions, is used to account for temporal connection (Richards et al. 1989). 
5 IQ's tenses are deictic in a limited way; they don' t  invoke definite reference to (say) 
past time. Cf. Partee (1973) for an alternative view of the deietic nature of tense. 
6 We shall view "race" as a term in order to simplify the analysis for our purposes here. 
7 g(x, e) is the same as g, save that g(x, e)(x) = e. 
s The minimal interval i is the final bound of ] if and only if i = {t} and t is the supremum 
of the set of points that make up j. 
9 How gc assigns this reference to p is not a matter we shall discuss here. 
lO We make the assumption here that a grammar could be constructed such that (7a) is 
the logical form of (7). 
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