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SEMANTICS OF P R O B A B I L I T Y  

" . . .  push on, and faith will follow" 
D'ALEMBERT, 

A measure of degrees of  similarity between possible worlds can be used to 

generate measures over propositions, or sets of possible worlds. These 

measures over propositions will count as 'probability measures', at least in the 

sense that they satisfy the axioms of the probability calculus. In a previous 

article (Bigelow, 1976), I have outlined one way in which such probability 

measures can be generated. In the present article I will present a considerably 

less devious way of generating probability measures. I will draw on two 
resources. My first resource will be standard techniques of measure theory. I 

will borrow lavishly from an excellent mathematics textbook by Friedman 

(1970). My second resource will be provided by concepts originating in modal 

logic, and also in the analysis of counterfactuals given by David Lewis (1973). 

The theory I offer rests on a natural extension of standard techniques used 

in modal logic for the analysis of concepts of necessity and possibility. The 
semantics of modal logic rest on a relation, called a (strict) accessibility 

relation on possible worlds. Different accessibility relations provide us with 

analyses of different concepts of necessity and possibility (see Hughes and 
Cresswell, 1968). 

A strict accessibility relation is used to give an analysis of the relationship 
of necessitation which may hold between propositions. We say it is true, in a 

given possible world, that one proposition necessitates another, when all the 

accessible worlds in which the first is true are worlds in which the second is 
true as well. 

But there are important relations among propositions which a strict 

accessibility relation does not illuminate. It may be, in particular, that though 

one proposition does not strictly necessitate another, yet it does nevertheless 
provide good inductive support for it. If  the first is true, it may be extremely 
probable that the second will be true as well. This will be so, I will maintain, 

when most of the worlds in which the first is true are worlds in which the 
second is true. 

Synthese 36 (1977) 459-472. All Rights Reserved. 
Copyright © 1977 by D. Reidel Publishing Company, Dordrecht-Holland. 



460 JOHN C. BIGELOW 

Yet it is not easy to see how we can measure  the degrees of overlap 
between propositions, except in the case where the propositions are true in 

only finitely many possible worlds. The strict accessibility relations of modal 

logic are not adequate for the task. 

I will show how we can measure the degree of overlap between 

propositions, by appealing to a measure of degrees of similarity between 
possible worlds. A similarity relation among possible worlds can be seen as a 

variable accessibility relation. The more similar one world is to another, the 

'more accessible' it will be. A strict accessibility relation provides us with an 

analysis of necessitation; a variable accessibility relation provides an analysis of 

inductive support. 
The foundations of probability theory are in an unhappy state. I do not 

aspire to set them all in order. One of the most vexing problems is an 

epistemological one. We need to know much more about how to determine 
the truth values of probability judgements concerning actual states of affairs. 

The truth values of probability judgements are often unclear, and it is hard to 

know how we can go about making them clearer. The status of probability 

judgements is in this respect closely parallel to that of counterfactuals. I offer 

no help with this epistemological problem. 

My aim is not to say how we can te l l  whether a probability judgement is 

true or false, but rather, to say what it means  to say it is true or false. I take it 

as given, that some probability judgements have reasonably determinate truth 

values, while others do not. A semantic theory for probability judgements 

should give an account of their meanings, in a way which will enable us, 

eventually, to explain why those with clear truth values do have those truth 

values, and why those which are uncertain are so uncertain. 
A link between probability theory and possible worlds will shed new light 

on probability. The entities appealed to in probability theory are already, in 
fact, possible worlds in all but name. It is a step forward to recognize them 
for what they are. Note also that world similarity is used for other purposes 

as well, notably in the analysis of counterfactuals. Thus a world similarity 
analysis of probability promises to reveal links between probability and 

counterfactuals. 
A link between probability theory and possible worlds is also of interest 

for another reason. Possible worlds semantics has hitherto seemed isolated 
from all the natural sciences except linguistics. But probability theory is 
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located well wffhin the mainstream of the natural sciences. By linking 

possible worlds with probability, we integrate possible worlds semantics with 

enterprises which have hitherto been independent of  it. 
It should not be too surprising that probability should be the door through 

which possible worlds enter into the sciences. In making probability 

judgements we are, of  course, describing features of  the actual world. But the 

way we do so is by envisaging and weighing up various possible alternative 

states of  affairs, or possible worlds. We describe what the world is like, by 

saying what worlds are like it. 

Degrees o f  similarity. Let W be the set of  all possible worlds. Any subset of  W 

is called a proposition. I introduce a function, d, which will be what is known 

as an extended reaLvaIued function over all pairs of  possible worlds. That is, d 

is a function which maps each pair of  possible worlds, i and ], onto an entity 
d(i, D which is ei'ther a real number, or else an entity called oo. The entity ~ is 

defined to be such that for any real number x,  x < oo. The number d(i,]) is to 
be thought of  as representing the degree of  similarity between i and ]. When 

dq, / ' )  = 0% we may think of  this as asserting that i and/" are so different that 

we can no longer discriminate degrees of  similarity for them. 
I will assume, largely for the sake of  convenience and brevity of  

exposition, that d is what is known as a metric. That is, I assume that d 

satisfies the conditions: 

D1. 

D2. 
D3. 

D4. 

dq, O~> 0 
d(i,,O = 0 if and only if i =/' 
symmetry:  d(/, ]) = dO', i) 
triangle inequality: dq,]) <~ d(i, Ic) + d(k,/). 

I am inclined to believe that, for my purposes, all I need assume are D1 

and D2. But by assuming d to be a metric, I ensure that (W, d) is what is 

known as a metric space. These have been intensively studied in mathematics. 

Hence I will have a large body of results which I can draw on. It may be 

worth enquiring, later, whether or not the results 1 need essentially depend on 

the metric properties D3 and D4. I conjecture that they do not. 
Using the metric d, we can define a number of  useful topological 

properties of  propositions. 
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Diameter. The diameter of  a subset A of  W is defined to be 

d(A) = sup {d(i,j): i,] EA} 

That is, d(A) is the least number which is greater than every distance be tween  

worlds in A. For the empty set ¢, we set d(~0) = 0. 

Distance between sets. We define the distance between two propositions A 

and B to be 

d(A, B) = inf {d(i,/'): i ~ A , / E  B} 

That is, d(A, B) is the greatest number which is less than every distance from 

a world in A to a world in B. We set d@, B) = d(A, ~o) = 0. When A = {i} for 

some i E W, we write d(i, B) for d(A, B). 

Open spheres. For any world i E W andany  number r > 0, the set 

S(i,r) = { jE W: d(i , j )<r} 

is called the open sphere (or open ball) with centre i and radius r. 

Accessible worlds. For each possible world i and each number ~ (either a real 

number or oo), we define the set of g-accessible worlds from i to be 

W(6, i) = {j E W: d(i,]) <~ ~}. 

My aim is to calculate the probabilities which various propositions have in 

any given world i. The propositions I will be interested in will all be subsets of 

W(8, i). 

Accessible spheres. Let X be the class of  all open spheres which are subsets 

o f  W(6, i). 
Let 3~f,n be the class of open spheres in of" with diameter no greater than 

1/n: 

Note  tha t  ,.,~t~n+l C o'~rn . 
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Sequential coverings. A sequence of propositions (E~), v = 1, 2 , . . .  is called a 

sequential covering of a set A, if 
Qo 

A ~  UE~ .  
v = l  

Sequential covering class. A class )V of propositions is a sequential covering 
class for a set A if, firstly, ¢ ~ 3¢ ~, and secondly, for any subset B of A there 

is a sequential covering of B contained in :~ff. 

Weight of spheres. We next require some function X, with domain f ,  which 

is such that X(¢) = 0, and for each non-empty sphere S E ~f-, X(S) is either 
some non-negative real number or else oo. 

The purpose of' X is to assign weights to spheres, so that we can use these 
spheres to assign weights (and eventually measures) to a wider class of 
propositions. We cover any given proposition by spheres of a given kind, and 
then add the weights of these spheres to obtain an approximate measure of 
the weight of that proposition. 

The function X may be defined using the metric d. I suggest that the 

weight assigned to a sphere in W(a,i) should be proportional to its diameter, 
and inversely proportional to its distance from world i. The precise definition 

of X is not important here, however. I will mention it again briefly later. 

Assumption 1. To obtain a probability measure over the propositions in W(a ' O' 

we must assume that every class of spheres Yn is a sequential covering class 

for W(~, i)- 
That is, we must assume that any proposition in W(8,i ) can be covered by 

a countable sequence of spheres of less than any given diameter. 

(This property of W(8,0 is something like the topological concept of 
compactness. A space is compact if every cover of it contains a finite cover.) 

Note that I do not assume that for every space (W(8,i),d), Sfn is a 
sequential covering class. My claim is that it is only when this condition is 
satisfied, that probability measures are definable over (W(8 O, d), using the 
present construction. I will return to this point later. 

Adding weights. When Assumption 1 is satisfied for a space (W(~ i ) ,d) ,  we 
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define a function #n* corresponding to each •n ,  as follows. We require that 
g*(¢) = O, and for any non-empty subset A of W(a,i), we have 

/a*(A) = inf (Sv): (Sv}, v = 1, 2 , . . . ,  
P 

is a subset of  J ln ,  and 

That is,/~n* measures the 'weight' of  a proposition A by adding the "weights' 
of  the spheres used in its most economical covering chosen from S n. 

Outer measures. It can be proved (Friedman, Theorem 1.4.1) that each 

function/a*, defined as above, is what is called an outer measure over IY(8,i ). 
That is, each/~* is such that 

1. The domain of  /~* is the class of  all subsets of  W(~,i) 

2. On* is non-negative and/~n*(~p) = 0. 
3. tl* is monotonic: that is, if A and B are in the domain of/1" and 

A C B, then 

11"(.4) < u*(B). 

4. /an* is countably subadditive: that is, whenever (Av) ,v  = 1, 2 , . . . ,  
is a sequence of sets in the domain of/an*, we have 

. ~< ~*(A.) 
v=l 

Taking limits. Since )fin + 1 C_. 3fin, we have 

/an*(A ) ~</an* + 1(.4). 

Hence the sequence (/2n*(A)),n = l, 2 . . . . .  is monotone increasing and 
bounded above (at least by ~).  It follows that this sequence tends to a limit. 

DEFINITION Let/~* be that function such that for any subset A of W(a,i), 

#*(A) = lim/zn*(A). 
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THEOREM. It can be proved (Friedman, Theorem 1.9.1) that g* is what is 

known as a metric outer measure. A metric outer measure is an outer measure 

which meets the further requirement that whenever 

d(A, B) > 0 

we have 

~*(A u B) = ~*(A) + ~*(B). 

Measurable sets. Given any outer measure #*, we say that a proposition A is 

g*-measurable if, for any ffther proposition B in the domain of~*,  

g*(B) = #*(B n A) + ~ * ( B -  A). 

Pictorially, the idea behind //*-measurability seems to be this. A 

/l*-measurabte proposition A is one which has a sharp and regular boundary 

in logical space. Any such proposition A will, as it were, make a clean cut 

across any other proposition B which it intersects. It will divide B into two 

portions, (B n A) and (B - A), with a sharp boundary between them. Because 

these two portions have a sharp boundary, the outer measure on the whole of 

B will be the sum of the outer measures on each of the portions, (B n A) and 

(B - A), taken separately. As the size of spheres used in coverings decreases, 

the best coverings of the two portions (B NA) and ( B -  A) separately will 

come closer and closer to forming the best cover of B as a whole. 

A special case of  a//*-measurable set will be the case of a set A which is 
such that 

d ( A , - A ) > O ,  

where - A  is the complement of  A in W(~ ,0- Call any such set isolated. 
When A is isolated, then for any set B we have 

d ( B N A , B -  A)>O. 

Hence, since/z* is a metric outer measure, we have 

/~*(B) =/~*(B n A) +/~*(B - A), 

and so A is measurable. 

I think it is reasonably plausible to suppose that some intuitively natural 
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propositions are isolated. Later, I will mention some e ~her relatively 'natural '  
propositions which are measurable. 

Measure space. Let ~(~, i) be the class of  all/2*-measurable sets in W(~,/);and 
let/2 be the restriction of/ t* to ~¢. 

Then it can be proved (Friedman, Theorem 1.3.1) that ~ ( 6 , i )  is what is 

known as a a-algebra over W(6,i). That is, ~/(~,i) meets the following 
conditions: 

1. W(~,i ) E ~l(~,i ) 

2. I f A , B E  ~ ( 8 , i ) , t h e n A - B E  ~(a, i )  

3. d (a , i  ) is a-additive: i f (Av},  v = 1, 2 . . . . .  is a subset of  ~(~,i) ,  then 

U Av E ~l(6,i ). 
I,'=1 

And it can further be shown that/2,  the restriction of/~* to J ( 6 , i ) ,  is 
what is known as a measure over J ( a , i ) .  That is,/2 is such that 

1. 

2. 

3. 

4. 

The domain of/2 is a a-algebra 

/2 is non-negative on ~(~,,i) 
/2(~) = 0 

# is o-additive (or completely additive) on ~/(8,i): that is, if 

{Av}, v = 1, 2 , . . . ,  is a sequence of disjoint sets in ~(8, i), then 

/2 : 
v 1 v=l  

A measure space is a triple (W, d , / 2 )  such that W is a set, .~' a o-algebra 

of  subsets of  W, and/2 a measure over d .  The space we have constructed, 
(W(~,i), d(~,  i),/2) is a measure space. 

Assumption 2. To obtain a probability space we must assume that in the 

measure space (W(8,i) ~(~,i),/2) we have 

0 < oo. 

I will briefly discuss this assumption later. I do not assume the assumption to 
be true for all worlds i; I assert only that the present construction yields a 
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probability measure over W(~,i) only in the case of  worlds i for which the 

assumption is satisfied. 

Probability spaces. If  0 </~ ([42(6,i)) <oo, we define a function P(6,i) as 

follows: P(~, i) (~o) = 0 and for any non-empty set A E s¢(~,i), we have 

P(6,i)(A) = t~(~W(Ali))" 

It can be proved that P(~, i) is what is known as a probability measure: that 

is, a measure whose range ties between 0 and 1. Thus 

(w(~,o, d(~, o, e(~,o) 
is a probability space: that is, a measure space whose measure is a probability 
measure. 

Semantics. The probability spaces generated in the above manner can be used 

to provide an interpretation of  sentences in a language suitable for talking 

about probability. 

For simplicity, let our language L be the propositional calculus with one 

embellishment. We obtain modal logic from the propositional calculus by 

adding one sentential operator, D, which makes a sentence, [] ct, out of  any 

sentence ~t. I will add more than a single sentential operator to the 
propositional calculus. For each real number x between 0 and 1, there will be 

a sentential operator Px. Thus for any sentence or, 

ex(~) 

will be a sentence, to be interpreted as asserting that the probability of  a is x. 

Let a frame be a triple, (W, d, 6), where W is a set, d a metric on W, and 6 

some real number (used to give a standard of  accessibility). 

An interpretation of  our language L on a frame will be a function V which 
assigns a subset of  W to each sentence of  the language. 

A model for the language L is a quadruple (W, d, 6, V), where (W, d, 6) is a 
frame, and V an interpretation. 

In a model (W, d, 6, V), the value of  a sentence 
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will be a subset of W, 

v(Px(,~)) c w. 

The value of this sentence is to be the set of worlds i E W such that the 
induced probability space 

(W(8, o, s/(~, o ,  P(~, o) 
is defined, and 

e(~, ;) ( v ( ~ ) )  = x.  

DISCUSSION 

The interpretation I have suggested for probability statements has some 

purely formal interest. It welds together modal logic and probability theory 

in a way which produces minimal distortions in both. 
Another point worth noting, is that in the present framework the main 

points of emphasis are different from the more usual ones. In particular, I 

have emphasized the fact that a statement about probabilities will have 

different truth values in different possible worlds. Its truth value in a possible 

world will depend on facts about 'what that world is like', on what alternative 

states of affairs there are for that world, and the 'ease' with which they could 

have been brought about in that world. 
These features of the theory make it attractive enough to warrant 

elaboration of its consequences, and comparison with its rivals (frequency, 

propensity, and subjectivist theories for instance). But I will restrict myself 

here to a brief discussion of a number of crucial steps in my construction of a 

probability measure from the world-similarity metric. 
The fundamental question is this. The above construction gives us 

probability measures: but only if d is a suitable sort of metric over W. Even 

when d does generate probability measures, it does so only for some possible 
worlds i, and only over some of the propositions accessible from i -  the 

'measurable' ones. 
But I want my construction to associate a probability measure with a 

world if and only if there are propositions which have determinate 

probabilities in that world. Furthermore, I want the 'measurable' propositions 
to be the ones with determinate probabilities. And I want the probabilities 
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which the construction assigns to them to be the same as the probabilities 

which they really have in that world. 
The metric d has to ensure all of this; and on top of it all, d must be 

intuitively plausible as a measure of degrees of world similarity. That is a tall 

order. 
One way of softening our problems is by beginning with an attempt to 

find any d which is formally adequate to give the right results. We begin by 

searching for a d which generates the right truth-conditions for probability 

statements. We may then argue that because it gives the right results, this 

must be the function d which best represents degrees of world-similarity. 

Too much use of this evasive manoeuver robs the theory of informative- 

ness. But there is nothing wrong with letting at least some considerations 

about desirable consequences filter back into our account of the world- 

similarity measure, I seriously maintain that the very existence of probability 

statements with relatively clear truth-conditions provides strong evidence that 

the world-similarity measure does have all the properties I need. 

Measurability One property I need d to have is the following. I need d to be 
such that the induced class of ~*-measurable sets for a world i contains all 

and only the propositions which have probabilities in world i. 

I defend the claim that d meets this condition, by illustrating the wide 

range of sets which will be #*-measurable. I have already mentioned isolated 
sets; but there are more important measurable sets than this. 

A set A is called an open set if for any i E A there is some r > 0 such that 

S(i, r) C__A. 

A set is closed if its complement is open. 

The #* corresponding to a world i is a metric outer measure over W(~, 0" It 

can thus be proved (Friedman, Theorem 1.8.2) that every closed subset of 
W(8, i) is/~*-measurable. 

The class of Borel sets of W(a, i) is defined to be the smallest o-algebra of 

subsets of W(~,i,) which contains all open sets in W(8, i). This means that the 
class of Borel sets of W(a,i ) is the class of all countable unions of open sets in 

w(~, i)- 
It can be proved (Friedman, Corollary 1.8.3) that every Borel set in W(~, 0 

is #*.measurable. 
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The unmeasurable sets will be very strange indeed. I do not mind if we are 

unable to assign them probabilities. 

Countable covers. In order to obtain a probability measure for a world i, I 

had to assume (Assumption 1) that every subset of I¢(~,i ) can be covered by a 

countable number of spheres, no matter how small. Furthermore, implicit in 

Assumption 2 is the requirement that we can always cover a set in such a way 

that the sum of weights of the spheres used is finite. Indeed, as we decrease 

the size of spheres used in the coverings, we need the sum of their weights to 
tend to some finite limit. What do we need to assume about d in order to 

ensure these assumptions are met? I will consider the second assumption first. 

I suggest that we need to assume very little about d in order to ensure the 

truth of Assumption 2. It is the function X which assigns weights to spheres; 

hence X is the function which we must ensure to be of a suitable kind. 

Roughly, what X is needed for, is to reflect the number of spheres requirea 

to cover a proposition. We could make X a simple function which assigns the 

number 1 to every non-empty sphere. Then we would calculate the weight of 

a proposition by simply counting the spheres needed to cover it. 
But this would not be a suitable definition for X. As the covering spheres 

decrease in size, more of them will be required to complete the covering. 

Hence the sum of their weights will increase as their size decreases. Taking the 
limit of progressively finer coverings, we will not in general obtain a finite 

outer measure for the proposition we are considering. Indeed, the outer 

measure of a proposition will be finite only if the proposition is true in only 

finitely many possible worlds. 
We must therefore choose a definition of X which ensures that as the 

spheres used in a covering decrease in size, the weights assigned to them will 

decrease also. That is, we want to ensure that although finer coverings will 

require more spheres, these spheres will be of decreasing weight. Then it need 

not follow that the sum of their weights increases without limit as their size 

decreases. 
I suggest that the weight assigned to a sphere should be proportional to its 

diameter: the smaller the sphere, the smaller its weight. And furthermore, the 
weight assigned to a sphere relative to world i should be inversely 

proportional to its distance from i: the closer to i, the greater its weight. 

We might therefore consider defining X by: 
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d(S) 
x ( s )  - 

d(i, S) 

However this definition is still unsuitable, since as a sphere S gets closer 

and closer to i, X(S) will tend to infinity, and when d(i, S) = O, for instance 

when i E S, X(S) will be undefined. 

Hence, I suggest we define X by: 

d(S) 
x ( s )  = 

1 +d(i,S)" 
Then when i ~." S we simply have X(S) = d(S). When d(i, S) = 0 we have 

X(S) = d(S). When cl(i, S) > 0 we have X(S) < d(S). 
This definition of  X ensures that as we progress through finer and finer 

covers of  a set, the weights of  spheres used in the cover will decrease. In finer 

coverings,the spheres will have smaller diameters; and in addition, many of 

them will be more distant from world i. Both these factors will serve to 

decrease the weights assigned to them by X. 

This definition of  X may still not be adequate. It is not  sufficient that the 

weights of  covering spheres should decrease as their number increases. The 

sum of  their weights must tend to a limit as their number increases. What 

must X and d be like for this to happen? I do not know. 

Another question I cannot answer, is: What has to be the case in order for 

every subset of  W(8,i) to be coverable by a countable sequence of spheres, no 

matter how small? That is, what must be the case for Assumption 1 to be 

satisfied? 
Yet I see no reason for thinking it would take a very strange and 

implausible metric d to meet Assumption 1. On the contrary, it is more likely 

to require a very strange d to make Assumption 1 fail - especially for worlds 

rather like our own. Of course, many possible worlds are very strange; and the 

similarity relations in their region may be very strange too. But the possible 

worlds similar to the actual world are not so strange. So the similarity 

relations of  worlds near the actual world will not be as strange as might be 

feared. And after all, it is primarily for worlds rather like the actual world 

that we want the probabilities of  propositions to be definable. 

Victoria University of  Wellington, 
New Zealand 
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