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G L O B A L  A N A L Y S I S  AND E C O N O M I C S  

Pareto Optimum and a Generalization of Morse Theory 

One has considered for celaturies the problem of maximizing a function 
via differential calculus. Morse theory could be regarded as a globalization 
of this problem. Relatively recently, economists have considered in a 
special case the problem of 'optimizing' several functions at once, ob- 
taining in this way what is called the Pareto Optimum. Our goal here is to 
place this problem in the setting of global analysis, or several differen- 
tiable real functions on a manifold. We extend the notion of Pareto 
Optimum to a larger set which we call the critical Pareto set 0. This set 0 is 
the analogue and generalization of the set of critical points of a single 
differentiable function while the old Pareto optimum is the analogue and 
generalization of a maximum of a single function. This expansion of the 
economists, setting allows for the systematic introduction of calculus and 
global differentiable methods to the process of optimizing several func- 
tions on a manifold. For example, we obtain a natural notion of dynamics 
in this setting to generalize that of a gradient flow. Our approach con- 
trasts with the more usual equilibrium or static approach mathematical 
economists take toward the study of a pure exchange economy. 

Precisely the problem we consider is the following: One is given real 
differentiable functions u~:W-oR defined on a manifold W say for 
i= 1,..., m. What is the nature of curves q~: R --, W with the derivative 
d/dt(u~oqO(t ) positive for all i, t? For what x~ W does there exist such 
a ¢p with ~p (0)=x? The critical Pareto set 0 is defined as the set of x~ W, 
for which there is no such ~o. The main problem is the study of 0. Another 
way of looking at this is: how and when can one gradually improve the 
values of several functions simultaneously? One could consider this 
subject as part of game theory. 

These questions lead to attractive mathematical problems. But espe- 
cially one obtains a new way of studying utility, Pareto sets in economics, 
where traditional assumptions of convexity and monotonicity need not 
play such a key role. Also I believe that the questions of optimizing several 
functions at once, transcend economics; in other social problems, opti- 
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mization of  several functions rather than one permits one to go beyond a 
1-dimensional point of  view. The question is one of  many values in 
partial conflict vs maximization of  a single value. 

Our intention is to follow this article by one on price systems in econo- 
mics treated from a related point of view. 

I would like to warn the reader of  the slightly tentative nature of some 
of  the later parts &th is  paper. For  example, while Section 5 seems simple 
and straightforward enough, I haven't  carefully verified the axioms of  the 
theory of stratified sets for these cases. Also 'Theorem' 2 of  Section 6 will 
need hard work before it could be regarded as a solid theorem (if true). 

Let me end this introduction by thanking Gerard Debreu for getting me 
into this subject and for many helpful discussions. 

SECTION 1 

Here we give review of  the notion of  pure exchange economy and the 
classical Pareto Optimum. The mathematician reader can skip this sec- 
tion if he is not interested in economics or concrete applications and the 
econometrist reader will know these things. For  more details, one can see 
Debreu [3]. 

Commodity space will be an open set in Cartesian space R z. There will 
be l different commodities in this pure exchange economy, each measured 
in quantity by a real number (fixing a unit of measurement) which can be 
considered a coordinate on R t. We are concerned with only positive 
amounts of  each commodity and thus define commodity space as the 
positive orthant P of  R I. So P =  { x e R  l [ x has each coordinate positive}. 
A point of  P represents a bundle of commodities, which might be pos- 
sessed, for example, by a certain consumer in the economy. 

It  is assumed that there are a finite number of consumers, say m, with 
the possessions of  the ith consumer denoted by xieP. An unrestricted 
state of  the economy is a point x = ( x l  .... , Xm) in the Cartesian product 
pm ( a manifold of  dimension ml). We suppose, however, that the total 
resources in this economic model are fixed, say a point weP. Thus the 
attainable states form a subset W of P ~ defined by W= {xepm [ ~, xi=w}.  
W is an open subset of  an affine subspace with compact closure in 
(RZ) m. Wis the basic state space we consider in this paper. 

Each consumer is supposed to have his preferences represented by a 
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function ui:P ~ R, his utility function which we suppose as differentiable 
as necessary. Thus consumer i prefers x', to xi if and only if ui(x',)> ui(xi). 
Consumer i is indifferent to commodity bundles in the same level surface 
of us. Hence the u~- 1 (c) are called indifference surfaces. In fact it is these 
surfaces that are given primarily in economics and it is these surfaces on 
which our analysis ultimately rests. However the uf are convenient for 
purposes of communication. 

Let z q : P ' ~ P  be the projection n , (x)=xi ;  then we have induced 
functions on W, still denoted by us, defined as the composition 

W inclusion , p m . ,  p , ,  R .  

One considers exchanges in W, which will increase the utility of each 
consumer or increase each u~ on W. A state xe  Wis called Pareto optimal 
if it has the property; there is no x' ~ W with u~(x') ~ u~ (x), all i, and uj(x') > 
uj (x), somej. The idea is that if x~ Wis not Pareto, then it is not economi- 
cally stable; there will be some trade which will take place and tend to 
make it Pareto, 

We consider this situation more generally in the succeeding sections; we 
study a manifold Wwith m real valued smooth functions ul .... ,Um defined 
on W and look at this situation from an (extended) Pareto point of view. 

We end this section with a proposition communicated to me by 
Truman Bewley. 

PROPOSITION. Using the notation of this section, let utility functions 
u,, i=  1,...,  m be defined and continuous o n P  and suppose: 

(a) 'convexity': u ;  1 [c, oo) is strictly convex for each i, c; 
(b) 'mononicity': Define for x', x~P, x ' > x  if x ' - x ~ P  and similarly 

for y', y ~ R ' .  Then x ' > x  implies u(x')>u(x),  where u=(ul , . . .  , u,,,). 
Under these conditions the set of Pareto Optima is homeomorphic to a 

dosed ( m -  1)-simplex. 

SECTION 2 

Here we consider W a smooth (C ~°) manifold with smooth functions 
u~: W ~  R, i=  1,...,  m, where m ~< dim W. A prime example is the manifold 
W of attainable states of a pure exchange economy of the previous see- 
tion where the ul, ..., um are utility functions o f m  consumers. The main 
goal of this section is to introduce a differentiable extension and generali- 
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zation of  the Pareto Optimum which we call the critical Pareto set, 0. 
Let u: W ~ R  m be defined by u=(u 1 .. . . .  urn) and Pos c R  m be the set of  

(Yl,... ,  Y,,) sRm such that y~> 0, each i. 
Now let H(x) =Du(x) -1 (Pos), where Du(x): Tx(W) ~ R m is the deri- 

vative of u at x, considered as a linear map from the tangent space of  
W at x to R m. Thus H(x) is an open cone in Tx(W ). Then the critical 
Pareto set 0 is defined by 0=  {xs W[ H(x) is empty}. Clearly 0 is a 
dosed subset of W. 

We have the following alternate descriptions for H(x). Let H i ( x ) =  
= {v~Tx(W)]Dui(x ) (v)>0}. Then H ( x ) =  OiHi(x) and, of course, also 
H(x)={veTx(W)[Du(x)(u)ePos}. Thus one sees that ¢p :Ro  W has 
increasing (infinitesimally) utility for e a c h / i f  and only if 9 '  (t)sH(~0 (t)), 
all t. We say that ~o is admissible in this case. It  is clear that an admissible 
curve doesn't admit any type of  recurrence; e.g., if ¢p: [a, b] ~ W is 
admissible then ~p (a) # ~p (b). An admissible curve could be thought of  as 
a sequence of small trades in the example of  Section 1. 

Thus xl e0  is the condition that there is no curve through x increasing 
infinitesimally all the u~'s. I f  m = 1, then 0 is precisely the set of  critical 
points of  the function u. The field of cones x ~ H(x) on W is continuous 
in the following sense. 

PROPOSITION (trivial). Let X be a continuous vector field on W with 
X(xo)eH(xo), some Xoe W. Then X(x)~H(x) for all x in some neigh- 
borhood ofxo.  

Note that if x is Pareto in the classical sense than xeO. So we have not 
lost anything. But our critical Pareto set 0 is bigger in general than the 
old; we consider now certain natural subsets of  0 which are significant 
economically. 

Suppose ~p: [a, b)--. W is an admissable path and limt-,bcp (t)=X. Then 
we say that ~p ends at x. In this case we also say that ~p starts at ¢p (a) = w. 
I f  w(~O, let O(w) be the subset of 0 of x for which there exist admissable q~ 
starting at w and ending at x. Thus O(w) is the set of Pareto critical points 
accessible from the initial state w by a sequence of  (infinitesimally) small 
trades. 

Next we can define naturally in our context the notion of stability for  
x~O. Say x~O is stable or x~O s if given a neighborhood U(x) of  x in 0, 
there exists a neighborhood V(x) in W such that if ¢p is any admissible 
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path  in W starting in V(x) and ending in 0, then q~ ends in U(x). Clearly 

Os will be the most  significant part  of  0 f rom the economic point of  view. 

Note  that Os is an open subset of  0. Note also that for m = 1, just as 0 is the 
critical point set, 0 s is the set of  local maximums of  u, at least in the non- 

degenerate case. 
Let Os(w)= Os c~ O(w). We will later show that  frequently one can assert 

that Os (w) # c~. 
I t  seems to be the case that if the conditions of  the final proposition 

of Section 1 are satisfied, then 0 = 0 s = classical Pareto Optimum. 

S E C T I O N  3 

The goal of  this section is to develop the idea of a 'Hessian'  in our con- 
text. Using this we are able to obtain a criterion for a point x e  W to be 
a stable Pareto point. For  the case of  one function u: W ~  R this amounts 
to saying that x e  W is a local maximum, and stably so, if  the first deri- 
vative Vu(x) is zero and the second derivative is negative definite. 

The context we are in now is that of  a smooth map u: W ~  R"  f rom a 
manifold to Euclidean space. I t  is convenient to make an assumption, the 
rank assumption, as follows: 

D E F I N I T I O N .  Say that xeOc  W satisfies the rank assumption if  rank 
Du(x) ~> m -  1 and that  u satisfies the rank assumption if x does for all x s  0. 

Some remarks are in order. First it is clear that  if  xeO, then rank 
Du(x)<.m-1. Thus one could write equality in the rank assumption 
instead of inequality. 

We make a little excursion into the way we use the expressions 'a lmost  
all' and 'generic property' .  One can put a natural Ca-topology on the 
space of maps u: W ~  R m, 1 ~<r~< 0% which makes this space a Baire space 
[1]. A Baire space has the property that a countable intersection of  open 
dense sets is dense and is called a Baire set. 'Almost  all' refers to being an 
element of  some Baire set. A generic property for u is one that  is true for 
all elements of  some Baire set. 

For  almost all u in this Baire sense, almost all points of  0 will satisfy the 
rank assumption. However, one cannot say that  it is a generic property for 
u to satisfy the rank assumption. 
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On the other hand if (dim W+ 4)/2 > m, then almost all u will satisfy 
the rank assumption. The above facts follow from Whitney or Thom (cf. 
Calabi [2] or Levine [4]). In the case of a pure exchange economy, this 
dimension condition will always be met (at least if there is more than one 
commodity) as a simple counting argument shows. Thus the rank assump- 
tion does not seem too serious a restriction. 

We now define the Hessian of u: W~R"  at xeO. Suppose xeOc W 
satisfies the rank assumption. Then Du(x):T~(W)--. R" has rank m - 1 .  
The second derivative can easily be shown to define an invariantly 
(independent of chart) defined symmetric bilinear map Hx on T~ (W) with 
values in the 1-dimensional vector space Rm/ImDu(x). This 1-dimensional 
vector space R"/ImDu(x) has a canonically defined positive ray (or or- 
thant, etc.) from the fact that image Du(x) does not intersect P o s c R  m. 
This last is key for our whole development and allows us to define nega- 
tive definite, index, nullity etc. for x. These ideas do not extend to the 
theory of singularities of maps because in this general case there is no 
natural definition of a positive part of R"/IrnDu(x). 

We can now state our theorem. 

THEOREM. Suppose u: W--*R" is C r, r large enough and x is in the 
critical Pareto set 0. Suppose also that x satisfies the rank condition and 
the generalized Hessian Hx is negative definite. Then x is in the stable 
Pareto set i.e., xeOs. 

For example, the proof could go via the normal forms in Levine [5]. In 
fact no doubt a direct simple argument using Taylor's theorem would 
work with r = 2. 

Note from similar considerations that if x is as in the theorem and if 
an admissable curve cO: [0, 1) ~ W has x in the closure of its image then 
actually q~(t) ~ x  as t-~ 1. 

Note finally that if xeO satisfies the rank condition, we have defined 
for x, the index, nullity, nondegeneraey as the index, nullity, nondegeneracy, 
respectively, of the bilinear form H~. 

SECTION 4 

We devote this section to four examples: 
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EXAMPLE 1. Let Wbe E 2, the Euclidean plane with norm 11 1[ given by 
an inner product. Suppose m =2,  with u i:E 2 ~ R given by u~ (x )=  -Ilxll 2 
u2(x)= -llx-xoll 2 where XoeE 2 is some fixed point in E 2, xo~O. The 
0, x o are 'satiation points' for number 1 and number 2 respectively, i.e. 
points of  maximum happiness. Then one can check through the defini- 
t ions to see that 0 = Os = the closed segment between 0 and Xo. Any ad- 
missible path which is complete in the obvious sense will end at 0. This 
example is illustrated in Figure 1 where we also mark off 0 (w), and show a 
typical admissible path. 

0 
Fig. 1. 

EXAMPLE 2. Edgeworth box. This is a standard example from econo- 
mics and fits into the case of Section 1, where we suppose there are two 
commodities, two consumers. 

(o,o) 
Fig. 2. 

w) 

(w',w") 

xi 
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Suppose the total resources are denoted by wEP, with w=(w',  w"), w' 
the amount of  the first commodity, w" of the second. Then a state x ~ P  2 is 
of  form x = (xl, x2), xl  eP,  x2 ~P, and we can write xt = (x~, x"), where x~' is 
the amount of the first commodity owned by the first consumer, etc. Then 

t /  f 0 < x~, 0 < x~ and W is the set of  (x~, xl ,  x2, x~) which satisfy . . . .  xl  + x2 = w', 
t t  t !  t !  ! t t  xl  +x2 = w .  Thus we could describe W also with coordinates xl ,  xa with 

0<x~ < w', 0<x~  < w" as in Figure 2. In Figure 2 are drawn the level 
curves of  ul, u2, respectively, where we suppose the standard convexity 
conditions of traditional economics are met. Here 0 = Os = the arc of  com- 
mon tangents of  these level curves. In this case 0 is called the Edgeworth 
contract curve. The situation is locally as in Example 1, away from the 
end points. 

EXAMPLE 3. Here we relax the convexity assumption on u~ in the prev- 
ious example. Suppose in fact that u2 is as in Example 2 and ua has the 

Fig. 3. 

"x ,~  B 

Fig. 4. 



GLOBAL ANALYSIS AND ECONOMICS 353 

qualitative features in Figure 3. Then arguing via common tangents one 
constructs 0, 0 s as in Figure 4 (0 the circle and segment without any arrows). 
Some admissible curves are drawn with arrows. These indicate how the 
circle part of 0 gets divided into a stable and unstable part. For  some 
we W, 0 (w) may have 2 components. Also part of  Os may not be classical 
Pareto Optimal and one sees how global problems enter into trading, vs 
sequences of small trades. Some acquaintance with [8] is helpful in 
understanding this example. 

EXAMPLE 4. Here W = S  2, the unit sphere in R 3, ul, u2 are two coordi- 
nate axes so that u: W--+ R 2 is projection into the appropriate coordinate 
plane n. Then Os is the intersection of the 1st quadrant of n with S 2 and 
the only other part of 0 is the intersection 0' of  the 3rd quadrant of 
with S 2. (See Figure 5.) 

4 
S 

S 

Fig. 5. 

u 2 

Admissible curves will tend to go from 0' to Os. This suggests the possi- 
bility of a Morse theory for this problem; we pursue this later. Note that 
a neighborhood of Os is the same as Example 1. 

SECTION 5 

The goal of this section is to give some picture of the structure of 0, Os and 
then to  construct a generalisation of a gradient vector field. 

For  this first part it is useful to assume that u: W ~ R "  satisfies the 
jet transversality condition of Thorn. (Cf. [4].) This is a generic property 
and means that the derivatives of u are transversal to the manifolds of 
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singular jets. I f  in addition, the rank assumption is also true for u, as we 
shall assume, then the set of  points x of  Wwhere Du(x) is not surjective, 
forms a submanifold S 1 of W of dimension m -  1. Furthermore, this S 1 
contains a sequence of  submanifolds St, q =  1, 2, 3, . . . ,  m with dimension 
S ~ = r n - q .  See [5] for details of  this case of  the theory of  singularities of  
maps. Since 0 c $1, these results have a strong bearing on the nature of 0. 

We need a further generic property on u as follows: 

DEFINITION.  Say that u: W--+ R '~ satisfies transversality condition A 1 
if  it satisfies jet transversality and if the restriction u/S1 : $1 ~ R"  has its 
1 st derivative transversal to all the coordinate subspaces of  R m. 

The point of  transversality condition A 1 is that it insures reasonable 
behavior as IrnDu(x) passes into Pos c R  m or gives us a reasonable struc- 
ture to d0. In fact the following proposition would seem to be valid. 

PROPOSITION. Suppose u: W.-->R" satisfies the rank assumption, jet 
transversality, and transversality condition A1. Then (if not empty!) the 
critical Pareto set 0 is an ( m -  1) dimensional manifold with corners in the 
sense of  J. Cerf (thesis) or stratified set in the sense of  Thom [7]. Thus 0 
has the structure of  an ( m -  1)-dimensional manifold 01 together with its 
boundary d0 = 0 -  0,. The boundary is a union of submanifolds of dimen- 
sion < m -  1. 

Compare this with the examples of  Section 4. The reader will be able to 
construct more interesting examples with m = 3. 

To obtain similar information for Os we introduce a generalization of  
transversality condition A 1, another generic property: 

DEFINITION.  Say that u: W ~ R  '~ satisfies transversality condition A 
if  it satisfies jet  transversality and if the restriction u/Sf: S f  ~ R m has its 
1st derivative transversal to all the coordinate subspaces of R m, for 
q=  1, 2 , . . . ,  m. 

Actually for our immediate purposes q = l  and 2 would be good 
enough. Apparently the following proposition is valid. 
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PROPOSITION. Suppose u: W ~ R "  satisfies the rank assumption, jet 
transversality and transversality condition A. Then Os, the stable Pareto 
set, if not empty, has the structure of an ( rn -  1)-dimensional stratified set. 
Furthermore Os can be characterized as the (open) set of  xeO with index 
and nullity zero. 

The simplest cases are in Section 4. 
Given u: W ~ R  m, a gradient vector fieM for u is a smooth tangent 

vector field X defined over W with the property that X(x)eH(x)  for x$  0 
and X ( x ) = 0  for xeO. It is an easy argument to show that one can con- 
struct a gradient vector field for any u. 

SECTION 6 

The goal of  this section is to try to gain a global theory of the critical 
Pareto set and stable Pareto points. 

T H E O R E M  1. Suppose u:W--+R m satisfies the rank assumption, jet 
transversality and transversality condition A with W compact. Then for 
any we Wwith weO, Os(w)#d~. 

We give an outline of how a theorem generalizing Morse theory to this 
case might go. This Morse theory perspective requires the introduction of 
the notion of cycle. Always S n denotes the n-sphere. 

DEFINITION.  Suppose u: W ~ R  m. Then a cycle is a continuous in- 
jective map f : S  1--, W such that S t can be written as a finite disjoint 
union of intervals I ,  and on each I~, either ui of is non-decreasing each i or 
the image of I~ is in 0. 

The thoughtful reader will be able to construct an example of  u with 
a cycle, even a map u:S2-+R 2 satisfying the rank and transversality 
conditions. 

Define Oa to be the set ofxeO with index ,~ and nullity zero, and O, the 
set of x e 0 with nullity positive. 

Next let ~iI ..... ~ be the coordinate subspace defined by setting Yt,..o ,Yk 
all equal to zero in R m. 
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Let 
S h ..... ~ = { x e S  1 ] Du(x)(Tx(S1) ) is not transversal to 

7~h, .. . ,  ik}" 

By our transversality assumptions all the 2; h ..... ~k are manifolds and meet 
transversally with the St  in S1. 

Let G be the set of xe~;i some i such that x~2;ik everyj, k and xq~S~ 
each q>  1. Then A will be the main part of the boundary of 0 (i.e. the 
union of the (m-2)-dimensional strata of 00). 

We want to assign a + or - to each point of A. This goes as follows. 
Let x ~ A  and suppose xeE~. This implies Du(x)(Tx(Si) )=II  ~. If  the 
normal to u(O) at u(x) is positive (along the y~ axis) then we say that 
x e A  +, otherwise x e A - .  Then let 0 '= the  closure of (0nwA +) and 
O; =O'c~ Oi. 

'THEOREM' 2. Suppose u : W ~ R  m has no cycles, satisfies the rank 
assumption, jet transversality, transversality condition A with Wcompact. 
Let M, = ~ l  dim Hi -  l (0a, 0~) with coefficients an arbitrary field. Then the 
M, satisfy the Morse relations. That is if B, denotes the ith Betti number 
of  W, 

Mo ~>go 
M1 - Mo ~> B1 - Bo 

. . .  

Z ( -  1)'M, = Z ( -  1)'B,. 

Note that a Morse function u: W--* R clearly satisfies the hypotheses of 
'Theorem' 2. Thus 'Theorem' 2 contains the usual Morse theory. 

We check now how this specializes to rn = 2. First observe that M o = 
= dimHo (0o, 0;), 

M1 = dimHl(0o, 0;) + Ho(Oi, Oi) 
M, = d imHt  (0i_ a, 0'_ l) + dimHo (0,, 0;) 

for O < i < n = d i m W  

and Mm = dim H1 (O,_l, 0',_ 1). 
This follows from the fact that 0 is 1-dimensional and the index is 

strictly less than n. 
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Now what are the possible cases for the topology of (04, 0])? Let us 
call points of S~ and A + both generalized cusps by a slight abuse of  
language. Then we have for the components 0] of 04: 

Case 1. O] is a circle with O empty. 
Let ~4 denote the number of these. 
Case 2. O] is an interval no end point a generalized cusp. 
Let e4 denote the number of these. 
Case 3. O~ is an interval with one end point a generalized cusp. 
Let ~ denote the number of these, and 
Case 4. O~ is a interval with both end points a generalized cusp. 
Let Y4 denote the number of these. 

Then 

Mo = ~o + % 
M ,  = + + (o, + @, 0 < i < n 

M, = ~,-1 + V,-1. 

Thus the Morse relations give relations between the cra, e~, 74 and the 
Betti numbers of W. 

For example the Euler characteristic Zw satisfies 

Zw = E ( -  1 ) ' a i -  }-'1 ( -  1)'y,. 

By taking dim W=2, one gets a further simplication, still interesting. 
Here is the idea of how the proof of 'Theorem' 2 would go. Choose a 

gradient system on Wfor  u. Then define for each strata 0~ of 0, W"(O~) as 
the set of points tending to 0~ as t-+ - o o  for the gradient dynamical 
system. Thus M =  U~ w"(o~) • At this point one can see Theorem 1. 
Now one follows the argument in [6] using strongly the hypothesis that 
there are no cycles and defining the L k in the same way via the W~(O~). 
Finally one evaluates the M i = ~ k  dimHi(Lk, Lk_ 1)and applies the alge- 
braic argument of [6]. 

Perhaps a more complicated version of Morse theory could take into 
account existence of cycles. 

We end this paper with the following remarks. 
First, to what extend could one proceed with these things without the 

rank assumption? Certainly some things could go through, but in general 
the complexities of the theory of singularities of maps would make for 
tough going. 
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Next one could object that the main example of  Section 1 does not  
satisfy the compactness condition on W of this section. While that is true, 
I feel it is important  so see basic ideas at first in their simplest form. Later 
perhaps these ideas can carry over into more technical situations. For  the 
example of  Section 1, one needs to consider carefully the implications of  
various boundary condition on u: W ~ R m. 

Finally, one could ask how does the 'core' of  theoretical economics 
relate to what I have done here ? I don' t  think the concept of  core fits in 
very well to this approach. The reason is that here we have change, much 
change, as a basic element of  this approach to Pareto theory. It  is an 
essentially dynamic approach we are considering. On the other hand the 
core, it seems to me, involves an essentially static or equilibrium approach. 
For  example the initial resources of  each consumer are needed to define 
the core. But these change after a single trade, and after several trades may 
be forgotten. This after some initial but not terminal exchange, the idea 
of  coalition to describe the core loses validity. 

Dept. o f  Mathematics, University o f  California, Berkeley 
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