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P R O B A B I L I T Y  A M A L G A M A T I O N  A N D  T H E  

I N D E P E N D E N C E  I S S U E :  A R E P L Y  T O  L A D D A G A  

1. INTRODUCTION 

Suppose that a group of n individuals wishes to assign consensual 
probabilities to a sequence of propositions s l , . . . ,  Sg which are pairwise 
contradictory (i ~ j ~ (si ^ sj is logically false)) and exhaustive (slv . . .  v 
Sk is logically true). Suppose that after thorough discussion their opinions 
as to the most appropriate values of these probabilities are registered in 
an n × k matrix P = (p,;), where p~j denotes the probability assigned by 
individual i to proposition s;. The terms of the problem dictate that the 
entries of each row of P be nonnegative and sum to one. Initial consensus 
on the values of the probabilities in question is reflected in a matrix with 
identical rows. 

I f  consensus fails to obtain initially, there arises the problem of how to 
amalgamate the opinions in P into group estimates of the probabilities in 
question. One obvious possibility is to take a weighted arithmetic mean 
of the entries in each of the columns of P. Implementation of this 
procedure requires the selection of a sequence of weights w l , . . . ,  wn, 
nonnegative and summing to one, following which the group assigns 
proposition sj, for j = 1 . . . . .  k, the probability pj = w l p l ;  + "  • • + wi ,  p,,;. 

Lehrer (1975, 1976) has proposed a method for determining such 
weights by a process of iterated mutual evaluation among members of the 
group) The weights so selected are consensual and reflect the group's 
collective judgment about the expertise of each of its members as an 
assessor of the probabilities in question. 

Laddaga (1977) has criticized Lehrer's model, taking issue not so 
much with the iterative method for choosing weights, but rather with the 
basic proposal to amalgamate probabilities by any sort of arithmetic 
averaging. At the core of Laddaga's complaint is the observation that 
individuals may assign probabilities in such a way that some pair of 
propositions turns out on each of their assignments to be independent, 
while for the group probabilities produced by weighted arithmetic 
averaging this pair of propositions turns out not to be independent. 
Laddaga thinks (1977, p. 475) that "prior theoretical concerns usually 
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determine which events are considered independent", and thus views the 
aforementioned possibility as a damning defect of arithmetic averaging. 
Our response to his claim is twofold. First we show, based on recent 
results of Wagner, that if the group probability assigned to a proposition 
depends only on the probabilities assigned by individuals to that 
proposition, then requiring a method of amalgamation always to respect 
individual attributions of independence allows only "dictatorial" amal- 
gamation, unless one is willing to violate another condition on amal- 
gamation which Laddaga and we both think desirable. Second, we argue 
that for a large class of probability assessment problems, there is neither a 
prior theoretical determination of independence nor even much interest 
in posterior observations that certain propositions are independent. We 
conclude, contra Laddaga, that the failure of an amalgamation method to 
respect individual attributions of independence is nothing to get excited 
about. 

2. T H E  A X I O M A T I C S  O F  P R O B A B I L I T Y  A M A L G A M A T I O N  

Suppose, as above, that n individuals are assessing probabilities over a 
sequence of propositions Sl . . . .  , Sk which are pairwise contradictory and 
exhaustive. Denote by ~(n,  k) the set of all n × k matrices with 
nonnegative entries and rows summing to one, and by ~(k)  the set of all 
vectors (p~ . . . .  , Pk) with nonnegative entries summing to one. Members 
of ~(n,  k) correspond to possible "profiles" of individual probability 
assignments and members of ~(k)  to possible group probability assign- 
ments. Allowing for the widest possible initial range of amalgamation 
methods, we make the following definition: 

DEFINITION. A probability amalgamat ion  method (PAM) is a function 
F: ~ ( n ,  k ) - - - ~ ( k ) .  

If P = (Pij) e ~(n,  k), we denote F ( P )  by (pl . . . .  , Pk), where pj denotes 
the group probability assigned to proposition s i, j = 1 . . . . .  k. Each such 
vector F(P)  = (p l , .  • . ,  Pk) gives rise to a probability measure Ir defined 
on arbitrary disjunctions of the "atomic" propositions s l , . . . ,  sk in the 
following obvious way: If D is a subset of the index set {1 . . . . .  k} and 
u - Vsj, taken over all ] e D, one sets It(u) = ~ Pi, taken over all j ~ 0 .  2 

Similarly, the probabilities Pi l , . . .  ,Pig assigned by individual i to 
propositions s~ . . . . .  Sk give rise to a probability measure 7rl by the rule 
7ri(u) = ~ Pit, taken over all ] e D. 
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A measure 7r, derived as above from a PAM F and a matrix P,  satisfies 
all of the probability axioms and is, in this minimal sense, coherent.  
However ,  since at this point there are no restrictions on F,  the measure 7r 
might bear little or no relation to the opinions registered in P. A PAM, 
as we have defined it, might even ignore a total consensus on the 
probabilities of the propositions sl . . . . .  Sk. Assuming that we wish the 
group probability measure ~ to reflect, in some sense, the opinions in P,  
there arises the question of what restrictions to place on F in order  to 
achieve this goal. 

A restriction which comes immediately to mind is that F ought to 
respect a consensus on the probabilities assigned to any atomic pro- 
position sj. Hence,  if the entries of the j th column of P are identically 
equal to some a, then it should be the case that pj = a.  Let  us adopt as an 
axiom the following weak version of this restriction: 

Z (Zero Unanimity): For all P e ~(n ,  k), if the j th column of P consists 
entirely of zeros, then pj = O. 

It follows from Z for any proposition u that if 7rl(u) . . . . .  ~r,(u) -- 0, 
then .rr(u) = 0. Recall that a pair of propositions u and t are mutually 
exclusive relative to a probability measure p if p(u A t) = 0. 3 Clearly, a 
PAM satisfying Z respects individual attributions of mutual exclusivity, 
in the sense of the following axiom: 

R M E  (Respect for Individual Attributions of Mutual Exclusivity): 
For any propositions u and t, if ~ l (u  A t) . . . . .  ~r~(u A t) = 0, then 
~-(UA t)=0. 

Setting u = t = sj, it is clear that RME implies Z, and so these two 
axioms are in fact equivalent. Laddaga (p. 474) has endorsed RME as a 
desirable restriction on probability amalgamation and on this we are in 
agreement.  

Laddaga (pp. 474-475)  also believes that probability amalgamation 
should respect individual attributions of independence.  Recall that a pair 
of propositions u and t are independent relative to a probability measure p 
if p(u A t )= p(U)p(t). Laddaga thus endorses the following axiomatic 
restriction on amalgamation: 

RI  (Respect for Individual Attributions of Independence): For any 
propositions u and t, if 7ri(u A t) = 7ri(u)~ri(t) for all i = 1 , . . . ,  n, then 
"tr(u A t) = "rr(u)Tr(t). 
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Rather than discussing the reasonableness of RI per se at this point, let 
us identify the PAMS which Satisfy both RME and RI. We shall carry out 
our analysis under the assumption that the group probability assigned to 
a proposition depends only on the probabilities assigned by individuals to 
that proposition. We capture this assumption by means of the following 
axiom of invariance: 

IA (Irrelevance of Alternatives): Let P and P' ~ [9(n, k) and denote 
F(P)  by (Pl,. • •, Pg) a n d  F(P')  by (p'~ . . . .  , p'k). For any ] = 1 , . . . ,  k, i f  
the ]th column of P is identical to the jth column of P', then pj = p). 

An equivalent way of stating IA is the following : A PAM F satisfies IA 
if and only if for each atomic proposition sj there is a function ~: 
[0, 1] n ---> [0, 1] such that for each P = (pq) ~ ~(n,  k), F(P) = ( p l , . . . ,  pk) 
where pj = j~(plj , . . . ,  Pnj). Since the group probability assigned to sj is a 
function purely of the probabilities assigned by individuals to sj, the 
probabilities which they assigned to propositions other than sj are 
irrelevant to the determination of pj. Standing alone, IA allows for the 
possibility that the aforementioned functions/~ vary with j. However, if 
there are at least three atomic propositions (k->3) and RME 
(equivalently, Z) is postulated along with IA, then the functions ~ are 
identically equal to some weighted arithmetic mean: 

THEOREM 1. Let F: ~ (n ,  k ) - - ~ ( k ) ,  where k>-3.  Then F satisfies 
R M E  and IA if and only if there exists a sequence of weights wl . . . . .  w,,  
nonnegative and summing to one, such that for all P = (pq) ~ ~(n,  k), 
F(P)  = (Pl . . . . .  Pk), wherepj = wlplj  + . . .  + w,p,  j foreach j  = 1 . . . . .  k. 

Several different proofs of Theorem 1 have been discovered (Lehrer 
and Wagner 1981; Acz61 and Wagner 1981; and Acz61, Kannappan, Ng, 
and Wagner 1982). It follows from this theorem that if RI is postulated 
in addition to RME and IA, then there is a single individual whose 
probability assignments are always adopted as the group probability 
assignments: 

THEOREM 2. Let F: ~(n,  k)---~(k),  where k>-3.  Then F satisfies 
RME, RI, and IA if and only if there exists an individual d such that for all 
P = (pq) ~ ~(n,  k), F(P)  = (Pal . . . . .  pan). 

The proof of Theorem 2 appears in the concluding technical section of 
this article. 5 This theorem can be recast as an impossibility result if one 
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precludes dictatorial amalgamation by an additional axiom. In either 
form, its implications for probability amalgamation are oviously sub- 
stantial. 

One might simply conclude from the above that there is no reasonable 
way to amalgamate individual probability assignments, in effect giving 
up on the possibility of combining the expertise of a group of individuals. 
Alternatively, one might take issue with the reasonableness of one or 
more of the axioms RME, RI, and IA. This is the route we take, and RI is 
the axiom which we reject. 6 This leaves us with RME and IA, which as 
indicated in Theorem 1, are nicely (and exclusively) satisfied by t h e  
weighted arithmetic means originally proposed by Lehrer as amal- 
gamation functions. Our reason for rejecting RI is that in countless cases 
independence is simply not of much interest. Suppose, for example,that 
individuals are assigning probabilities of winning to a set of racehorses. 
An individual assigns probabilities Pa, Pb, and Pc tQhorses a, b, and c in 
such a way that (pa + Pb)(Pb + Pc)= Pb. We point out to him that this 
entails the independence of the propositions u: a Or b wins and t: b or c 
wins. Is he likely to have the slightest interest in this observation? Could 
he possibly, h la Laddaga, have formulated a "prior theoretical" 
commitment to the unwieldy assertion that it is as probable that a or b is 
the winner, given that b or c is the winner, as it is that a or b is the winner, 
tout court? Suppose that everyone in the group happens to assign 
probabilities in such a way that u and t turn out to be independent. Are 
they likely to have the slightest interest in guaranteeing that group 
probabilities are assigned in such a way that these propositions turn out to 
be independent? 

As with racehorses, so it goes, as in Lehrer's original example, with 
competing scientific hypotheses and, indeed, with any probability assess- 
ment situation in which the initial acts of assessment are directed at the 
probabilities of a set of pairwise contradictory, exhaustive propositions. 
In such situations the independence of certain compounds of these 
propositions is largely fo r tu i tous .  7 Why then should an amalgamation 
method respect individual attributions of independence, failing consen- 
sus about the probability values on which such attributions are based? 

3. T E C H N I C A L  A P P E N D I X  

Proof of Theorem 2. By Theorem 1 there is a sequence of weights 
w l , . . . ,  wn, nonnegative and summing to one, such that for all P = 
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(p~j) e ~ ( n ,  k), F ( P )  = (Pl, . . . , Pk), where  pj = wlpl j  + ' "  • + w,p, , ,  ] = 
1 . . . . .  k. Clearly,  at least one  of  these weights,  call it wa, is posit ive.  W e  
show in fac t  tha t  wd = 1 and  hence  that  all remain ing  weights  are zero,  
thus establishing the desired result. 

Cons ide r  the matr ix P = (P,i), defined as follows: T h e  first three  entries 
of  row d are 0, 1/2, and 1/2, and the remain ing  entries in that  row, if 
any, are 0. T h e  first three  entries of  each  of  the remain ing  rows are  1/2, 
1/2, and 0, and the remain ing  entries in those rows, if ar/y, are  zero.  
Le t  u = s l v  s2 and t = s2 v s3. T h e n  1ri(u ^ t) = 1/2 = ~ri(u)rri(t) for  
i = 1 , . . . ,  n. H e n c e  by R I  we mus t  have  ~r(u A t) = rr(u)cr(t). Since 
rr(u) = ~ ' (s0 + ~'(s2) = 1/2(1 - wa) + 1/2 = 1 - 1/2wa, ~r(t) = "tr(s2) + 
rr(s3) = 1/2 + 1/2wd, and  rr(u ^ t) = 7r(s2) = 1/2, we have  

(1 - 1 /2wd) (1 /2+  1 / 2 w a ) = 1 / 2 .  

This  quadra t ic  equa t ion  in wa has as its two solutions wa = 1 and wa = 0. 
Since by assumpt ion  wd > 0, it follows that  we = 1, as desired. 

R e m a r k .  T h e  fo rego ing  p roof  exploits wha t  migh t  be v iewed  by some 
as an unusual  case of independence .  But  it is easy to show that  if k = 3 this 
sort  of independence ,  or  someth ing  m u c h  like it, is the only kind which  
can  arise. (If Sl, s2, and s3 are assigned probabil i t ies p, q, and 1 - p - q, 
and u = s l v  s2 and t = s2 v s3 are  independent ,  than (p + q)(1 - p) = q, 
and  hence  p(1 - p - q) = 0. T h u s  p = 0 o r  p + q = 1, as in the case which  
we exploited.)  

If  k -  4, we m a y  cons t ruc t  a p roof  exploit ing an ord inary  case of 
i ndependence  which  avoids  any ass ignment  of  the ex t reme probabil i t ies 
0 and  1. For  example,  fol lowing the pa t te rn  of  the above  proof ,  we may  
consider  the matr ix P ,  where  row d consists of  the entries 1/9, 2/9;  4/9,  
2 /9 (k  - 3) . . . .  , 2 / 9 ( k  - 3), and  all remaining  rows consist  of  the entries 
4/9,  2/9,  1/9, 2 /9 (k  - 3) . . . . .  2 /9 (k  - 3). Fo r  u = sl v s2 and t = s2 v s3, 
we have  rri(u ^ t) = 2/9 = rri(u) • 7r~(0, i = 1 , . . . ,  n. H e n c e  by RI ,  rr(u ^ 
t) = ~r(u). ~r(t), f r o m  which  it follows that  

(2/3 - 1/3 wd)(1/3 + 1/3 wd) = 2/9,  

and thus that  wa = 1. 
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N O T E S  

i Earlier proposals along similar lines appear in French (1956), Harary (1959), and De 
Groot (1974). See also Stone (1961). Refinements of Lehrer's elementary model appear in 
Wagner (1978, 1980, 1981), and in Lehrer and Wagner (1981). 
2 In particular It(st) = Pt and or(u) = 0 if u is logically false, i.e., an "empty" disjunction. 
3 In particular, if u A t is logically false, then u and t are mutually exclusive relative to any 
probability measure. However, if u and t are mutually exclusive relative to some 0, u ^ t 
need not be logically false. 
4 Acz61, Kannappan, and Ng have given a complete description, for the case k = 2, of 
those PAMs satisfying IA (with identical ~) and RMU. Suffice it to say here that when k = 2 
a wide variety of nonlinear amalgamation methods satisfy these axioms. Details appear in 
Lehrer and Wagner (1981), and Acz61, Kannappan, Ng, and Wagner (1982). 
5 A weaker version of Theorem 2, based on the assumption that all probabilities, including 
conditional probabilities, are amalgamated by means 9f a single function f, appears in 
Dalkey (1972,1975). Dalkey's proof does not apply when k = 2, although he does not po in t  
this out explicitly. For an interesting discussion of Dalkey's results see McConway (1981). 
6 It would naturally be of theoreticalinterest to describe the PAMs satisfying just RME and 
RI. This is likely to be a very difficult task, however, since, without IA, the group prob- 
ability assigned to each sj might depend on every entry of P. 
7 Some authors of elementary probability texts emphasize this point by using the term 
"stochastic independence", hoping thereby to preclude automatic identification of the 
identity ~r(u ^ t) = ~r(u) ~r(t) with some higher level assertion about u and t. Of course there 
are situations, such as those involving repeated trials, where a prior attribution of 
independence is significant. In such cases arithmetic averaging may involve certain 
puzzling anomalies. See Dalkey (1972, 1975). In some such cases it is not clear what t h e  
appropriate method of amalgamation is. In others, where, for example, a class of "natural 
conjugate distributions" is being amalgamated, superior alternatives to arithmetic 
averaging have been developed. See Winkler (1968) for a penetrating analysis of the latter 
problem. 
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