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1. INTRODUCTION 

Discussions about foundations are typically accompanied by much 
unnecessary proselytism, name calling and personal animosities. Since 
they rarely contribute to the advancement of the debated discipline one 
may be strongly tempted to brush them aside in the direction of the 
appropriate philosophers. However, there is always a ghost of a chance 
that some new development might be spurred by the arguments. Also the 
possibly desirable side effects of the squabbles on the teaching and on the 
standing of the debated disciplines cannot be entirely ignored. This partly 
explains why the present author reluctantly agreed to add to the extensive 
literature on the subject. 

Another reason for the present essay is the fortuitous circumstance that 
this author had the benefit of five years of spirited discussions with 
Etienne Halphen whose views were not entirely out of line with the 
present neo-Bayesian philosophies. By virtue of these special 
circumstances, it happened that, contrary to what seems to be the case for 
most American statisticians, we learned a form of the neo-Bayesian creed 
before being exposed to the classical theory of statistics. 

From these long discussions, in which the works of de Morgan, Venn, 
Keynes, Jeffreys and many others were constantly quoted, we have 
retained a certain awe for the Bayesian approach itself, but above all for 
the fascination its attractive simplicity seems to have for the sharpest 
minds. 

However, we could not defend ourselves at that time, and cannot 
defend ourselves now from the sentiment that this age and times should 
see an elaboration of a formalized mathematical theory in which the 
subject could not only be debated but also studied. 
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Since no such formalism is available yet, at least for the purposes which 
neo-Bayesians seem to have in mind, and since we have failed to build 
one, it is impossible for us to contribute anything of substance to the study 
of the problem. We shall therefore content ourselves with an informal 
description of some of the shortcomings which lurk behind the admittedly 
attractive facade of the Bayesian approach. 

This is not to say that any form of condemnation of the Bayes theory 
should be suggested, on the contrary. However, even those physicists who 
are most fascinated by the kinetic theory of gases would hesitate to use it 
to compute the size of wood beams for their own abode. In the same spirit 
we would venture to suggest that statisticians restrict their use of the 
Bayes approach to those cases in which they understand its assumptions 
and implications. 

In the following pages little will be said about statistical inference, for 
the simple reason that this author does not understand what inference, 
statistical or otherwise, really means. If inference is what we think it is, the 
only precept or theory which seems relevant is the following: 'Do the best 
you can.' This may be taxing for the old noodle, but even the authority of 
Aristotle is not an acceptable substitute. 

The following section describes some of the goals and purposes occa- 
sionally attributed to the theory of statistics. The third section gives a 
brief account of some mathematical structures which enter in the 
Neyman-Pearson-Wald theory of decision functions. The fourth section 
gives a short, and hopefully correct, statement of the theorem which 
underlies L. J. Savage's approach and goes forth to elaborate on the 
reasons why this approach is too naive for many purposes. Briefly stated 
the reasons are the following. 

(1) The neo-Bayesian theory makes no difference between 'experi- 
ences' and 'experiments'. 

(2) It confuses 'theories' about nature with 'facts', and makes no 
provision for the construction of models. 

(3) It applies brutally to propositions about theories or models of 
physical phenomena the same simplified logic which every one of us 
ordinarily uses for 'events'. 

(4) It does not provide a mathematical formalism in which one 
person can communicate to another the reasons for his opinions or 
decisions. Neither does it provide an adequate vehicle for transmission 
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of information. (This, of course, is irrelevant to a purely 'personalistic' 
approach.) 

(5) The theory blends in the same barrel all forms of uncertainty and 
treats them all alike. 

The above shortcomings belong to the neo-Bayesian theory. The 
neo-Bayesian movement has additional unattractive facets, the most 
important of which is its normative interpretation of the role of Statistics. 
Presumably a statistician who does not abide by its regulations is either 
irrational, inconsistent or incoherent. We shall attempt to argue on the 
contrary that the Bayesian viewpoint cannot be held consistently and that 
even its most recent supporters have had to violate their own rules when 
expounding it. 

In summary, the Bayesian theory is wonderfully attractive but grossly 
oversimplified. It should be used with the same respect and the same 
precautions as the kinetic theory of perfect monoatomic gases. 

2. THE SCOPE OF STATISTICS 

The recent revival of the Bayesian approach is probably correlated with 
the contemporary trend to define Statistics as the 'Science of decision in 
the face of uncertainty'. Assuming that the statistician can make approp- 
riate apologies to his colleagues from Economics, Management Science, 
Operations Research (not to mention true sciences), this may not be a bad 
definition. 

Traditionally, Statistics was a branch of knowledge which appeared 
helpful in the handling of masses of data, the transmission of information, 
the design of experiments and the ascertainment of conclusions from 
experimental evidence. Handling of extensive numerical data is now 
more and more delegated to electronic machines with the results one 
would expect from this robotization. 

The vigorous young discipline of Information Theory has formalized 
some of the problems relating to the transmission of information in the 
specialized context most directly connected with the operation or con- 
struction of machinery for the transmission of verbal or written messages 
between humans. Unfortunately, information theory has little to say 
about scientific or experimental 'information' in the acceptance of the 
word often used by statisticians. 
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The success of the classical theory of statistics in the fields of design of 
experiments and of ascertainment of behavioral conclusions from experi- 
mental evidence is well known. We shall return to this in the next section. 

To define Statistics as the 'science of decision in the face of uncertainty' 
is to embrace a lot of territory. Since it is difficult to dissociate actual 
decision making from a justification of it, the science of decision is quickly 
converted to the study of 'confirmation' or 'degree of beliefs' now called 
pistimetry. An evolution of this type is visible in Savage's own writings. 
His 1954 book on the Foundations of Statistics is devoted to a personalis- 
tic theory of decision, but the 1959 booklet is entitled the Foundations of 
Statistical Inference. Thus, from 'decision' to 'pistimetry' and formal 
logic the statistician would be led to assume responsibility for the entirety 
of the old Leibnizian dream of a Universal Characteristic. 

The beginnings of the calculus of probability saw developments of this 
general nature. The first treatise on the subject (1713) is accordingly 
called 'Ars Conjectandi'. With the ensuing development of the ideas of 
mathematical and moral expectations (Daniel Bernoulli among others), 
the theory of probability seemed closer to fulfill Leibniz' wishes than 
anything else available at the time. The years following Ars Con]ectandi 
saw also the caution of Bayes who attempted to make distinctions 
between a priori and a posteriori probabilities. Bayes was also unsure of 
the validity of his arguments. His Essay was only published posthumously 
(1763). 

The major impetus to the theory of probability came only with Lap- 
lace's 'Theorie analytique des probabilit6s' (1812) with its exposition of 
the method of generating functions and an almost rigorizable proof of the 
Central Limit Theorem. Laplace also gives examples of tests of hypoth- 
eses, a discussion of loss functions and many other things. 

It is quite natural that the explosion following the discovery of the 
theory of probability would lead to excessive claims for its power. It is also 
natural that it would be tried in all kinds of appropriate and inappropriate 
domains. However, even the impetus given by Laplace could not delay 
indefinitely an examination of the abuses to which probability can be 
subjected. 

De Morgan's Formal Logic contains a definitely pistimetric theory of 
probability, but Venn's Logic of Chance contains an equally devastating 
review of the deficiencies of such theories. 



A N O T E  O N  M E T A S T A T I S T I C S  137 

Even after probabilists turned their attention to the study of the 
mathematical structure so neatly described by Kolmogorov in 1933 the 
arguments about pistimetry versus frequency interpretations lingered on, 
as can be seen for instance from the Proceedings of the Geneva Collo- 
quium of 1937. Probabilists now care little about the foundations of their 
discipline. They are satisfied with developing its mathematical content. 
The dispute has been delegated to statisticians. 

In this respect, it is particularly disturbing that the neo-Bayesian school 
does not introduce ideas or techniques essentially different from those of 
1763. This school seems to ignore the long and quarrelsome history of the 
subject and in particular the difficulties pointed out by Venn. 

What is perhaps more important is that the neo-Bayesian school has 
generally added to the confusion by claiming that the personalistic theory 
of decision ignores pistimetry but is a substitute for or an improvement of 
the Neyman-Pearson theory. 

Since it appears now that the Neyman-Pearson theory, even sup- 
plemented by Wald, is essentially a theory of 'experiments' and since the 
distinction between 'experiences' and 'experiments' is not explicitly 
recognized by the personalistic decision approach, it is not clear how the 
latter can be an improvement of the first. 

To be more precise we shall now describe a few general features of the 
Neyman-Pearson theory. 

3. S O M E  C O N C E P T S  O F  C L A S S I C A L  S T A T I S T I C S  

By classical statistics is meant here the theory usually associated to the 
names of Neyman, Pearson and Wald. The theory says nothing about 
inference or pistimetry and precious little about behavior. If you happen 
to find on the street a page covered with numbers, classical statistics will 
not tell you what to do with them. In fact, lay opinion to the contrary, 
classical statistics says practically nothing about numbers. 

Whatever may be the historical motivation for the existence of this 
theory, it appears now that classical statistics is essentially concerned with 
the study of experiments and of functions defined on or by experiments 
which are described by a formal mathematical structure as follows. 

A single stage experiment consists of a set @, a set ~, a o'-field M of 
subsets of ~ and a family {Po; 0 ~ ®} of probability measures on M. 
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Multi-stage, or sequential experiments involve in addition to the sets O 
and ~Y a partially ordered set S and a family {s¢~; s ~ S} of o--fields of 
subsets of ~. Corresponding to each s ~ S there is a family {Po,~; 0 ~ O} of 
probability measures on s¢~. It is often assumed that these families are 
compatible in the sense that if A e d s  and A ~ ~¢t then Po.s (A)  = Po.,(A). 

To avoid complications we shall comment  mostly on the single stage 
structures. 

Let  g' = {O, ,T, J ,  {Po}} be an experiment. A test is an J - m e a s u r a b l e  
function ~0 defined on ~ and bounded by zero and unity. The power 
function of the test ~o is the function 0 ~/3(0)  = ~o(x)Po(dx). 

Confidence sets are defined as follows. Let  A be a set in the cartesian 
product  O x ~. Assume that for each 0 ~ O the section Ao of A at 0 has Po 
measure at least equal to a ~ [0, 1]. Let  A x be the section of A at x. Since 
the relations 'x ~ Ao'  and '0 ~ A ~' are equivalent to the relation '(0, x) 
A '  one can write Po{O ~ A x} = Po{x ~ Ao}. 

A sub-o--field ~ of ~¢ is called sufficient if for each bounded sg- 
measurable function q~ there is a bounded ~-measurab le  function 4t such 
that 

I ¢,(x)u (x)Po(dx) = I ~(x)u (x)Po(dx) 

identically in 0 for every bounded Y3-measurable function u. 
An experiment g~ = {O, ~f, d ,  {P0}} can be used to define a variety of 

other mathematical entities, two of which will be used below. Let  Mo be 
the space of equivalence classes of bounded sO-measurable functions. 
Consider the P0 as linear functionals on Mo. 

The linear functionals on Mo can be provided with the norm !t 11 = 
sup,  {Sq~(x)tz(dx); I~ol <~ 1}. Let  L(~d) be the smallest linear space contain- 
ing all the Po, all the positive linear functionals smaller than finite linear 
combinations XajPoi and all their limits for the norm. Let  M(ff )  be the 
adjoint of L(~) .  

Let  @ = {®, ~, 9~, {O0}} be another experiment having the same index 
set O as ft. The deficiency 6 (~, ~ )  of ~ with respect to e is the number 

6(~, ~-) = inf sup [[IIPo - 0o[[ 

where the infimum is taken over all positive linear maps II from L (g), to 
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L(~--) which are such that their adjoint (a map from M(~--) to M(~')) 
transforms the function identically one on ~ into the function identically 
one on 4.  

The 'distance' of (4, 90 is the maximum of 8(~, 90 and 8(~,  4). This is 
only a pseudometric which becomes a metric if two experiments ~ and #r 
such that 8 (4, ~ + 8(~, 4 ) =  0 are identified. 

ExcelSt for the usual measure theoretic technicalities the equality 
8(4, 90 = 0 would correspond to the possibility of constructing another 
experiment {®, ~ x ~, s¢x  ~ ,  {R0}} where Ro has Po and Qo for margi- 
nals and where s / i s  sufficient for s¢x N. Except for further technicalities, 
this is also equivalent to the possibility of duplicating ~- by an appropriate 
post-experimental randomization of 4. 

Wald's theory introduces additional elements besides the experiment 
4. Specifically Wald uses in addition to ~ a set T and a function W from 
® x T to ( -  oo, + oo]. Also we shall assume given a vector lattice C of 
bounded numerical functions defined on T and denote by <8 the smallest 
o--field for which they are measurable. Further we shall assume that for 
each 0 e ® the function t -~ W(O, t) is bounded below and Cg-measurable. 

A decision function O is then a map x ~ px from ~ to the probability 
measures on c~ with the added property that for each 3' c C the integral 

y(t)px(dt) is s¢-measurable in ~f. 
For Wald's theory of decision functions, the statistical structure is 

entirely specified by the experiment 4, the sets T and C, function W and a 
set N of decision functions. 

Under the assumptions made above a decision function p: x-->p~ 
possesses a risk function r o defined on 0 by 

r°(0)= I I  W(O,t)px(dt)Po(dx). 

Let ~ be the class {r o; p ~ 9}. The ordering of real numbers induces on 
a partial ordering. Elements of ~ which are minimal for this ordering are 
called admissible. A subset ~o c ~ such that for each r ~ 9~ there is an 
ro ~ ~o  for which ro ~< r is called complete. One can also say that ~0 
dominates ~ .  An element r0 ~ 9~ which minimizes in ~ an integral of the 
type ~ r(O)~(dO)with respect to a finite positive measure ix is called a 
Bayes risk function for/z. A point r is called low or a Bayes solution in the 
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wide sense if whatever may be s > 0 there is no element 9~ smaller than or 
equal to r - s .  

The general theory of decision functions attempts to find small 
tractable complete subsets of 9~. It also attempts to describe decision 
functions which have admissible risk functions and sets itself other goals 
of the same general nature. 

A particular theorem which is of interest for the present discussion is 
the following. 

THEOREM 1. Let * = {®, ~, M,-{Po}.} be an experiment and let ~ be the 
set of all decision functions corresponding to the sets T and C. Assume 
that 

(1) there is a finite measure a on M such that A(A)=0 implies 
Po(A )= O, 

(2) the set T carries a topology and C is the set of bounded continuous 
functions on T, 

(3) for each a real and each 0 the set {t~ T; W(O, t)~a} is compact 
and metrisable. 

Further let @1 be a subset of ~ which is closed in ~ for the topology of 
convergence of the integrals ~u (t)px (dt)O(dx) with u ~ C and O ~ L. Let 
9~1 be the corresponding set of risk functions. If for each finite positive 
measure/.~ carried by a finite subset of O the set 9~1 contains the Bayes 
risk functions for/.~ then 9~1 is complete. 

Many improvements and many variations of the above theorem are 
readily available. 

Of course the above brief description does not even touch upon some 
of the most beautiful achievements of the classical theory. It has been 
given here only for purposes of comparison with the personalistic theory. 
To this end it will be necessary to elaborate on the motivation and 
interpretation of the above formalizations. 

A convenient interpretation is the following. Each 0 ~ O represents a 
particular theory about the physical phenomena under consideration. 

In the particular experiment under study the elements of ~t are events 
which may or may not occur. The class ~¢ includes those events which 
satisfy two important conditions. First, the experimenter has conceived 
that they could possibly occur. Second, he has at his disposal instruments 
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which can check whether or not they occur. Events are assumed to follow 
the usual distributive and associative laws of Boolean algebra. Therefore, 
there is no danger in taking advantage of their representability by subsets 
of a certain set ~, called the set of possible results of the experiment. 

For each 0 the measure Po is an expression of physical laws governing 
the machinery of the experiment. 

The set T is a set of possible decisions. A decision function is a rule 
which to each possible result of the experiment associates a particular 
mode of random selection of an element of T. 

The loss function W gives a crude evaluation of the damage which may 
result from a decision t when the theory 0 is applicable. 

Some important features of the theory are the following. 
(1) The theory deals with experiments described by appropriate 

mathematical structures. 
(2) The theory concentrates on the study of properties of decision 

[unctions not of individual decisions. 
(3) Whether a particular physical theory, such as quantum theory, the 

Newtonian theory of gravitation or Bergeron's theory of meteorological 
fronts is correct or adequate remains a vague concept not discussed in 
formalized language in any work with which the author is acquainted. 
Similarly the classical theory of statistics takes for granted the possibility 
of describing the physical regulations governing the machinery of actual 
experiments by probability measures. However, it does not contain any 
formalization of the concept of adequacy of a theory 0. 

(4) The theory says nothing about the situation in which an experi- 
menter finds himself if he happens to notice the realization of an event 
which was not included in the list M. 

(5) The theory does not have any prescriptions about decisions to be 
taken if the result of an experiment suggests that a certain theory 0 not 
previously included in O is a more adequate description of the physical 
phenomenon. 

In all these cases it is assumed that common sense and the use of our 
limited brains will be involved. 

In particular the theory does not volunteer any statements about the 
probability that such or such a theory of nature be correct. Above 
all it does not volunteer any statement about its own correctness or 
adequacy. 
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Within the classical theory; one can exercise a liberal amount of 
freedom in selecting objects of study. For instance, for an experiment 
{®, ~, ~ ,  {Po}} it is perfectly feasible to study the properties of a test 
conditionally given a sub-o--field ~ of ~g. This is done as a matter 
of course when ~ is a sufficient o--field. It leads to the introduction 
of 'tests having Neyman structure', that is, tests ~p such that E[~p[9~] 
is constant. 

If somebody wants to study estimates or tests about the expectation of a 
normal distribution conditionally given the sample covariance matrix, 
this remains his privilege. Also if someone wants to avail himself of A. 
Birnbaum's theorem which states that binary experiments are equivalent 
(for the distance max {6(~, ~),  6(o~, ~)} defined above) to mixtures of 
experiments in which the variables can take only two values, this remains 
his privilege. 

In its most restricted form the theory seems to be well adapted to the 
following type of problem. If two persons disagree about the validity, 
correctness or adequacy of certain statements about nature they may still 
be able to agree about conducting an experiment 'to find out'. For this 
purpose they will have to debate which experiment should be carried out 
and which rule should be applied to settle the debate. If one of them 
modifies his requirements after the experiment, if the experiment cannot 
be carried out, or if another experiment is used instead, or if something 
occurs that nobody had anticipated, the original contract becomes void. 

Since the classical theory is essentially mathematical and clearly not 
normative it is rather unconcerned about how one interprets the proba- 
bility measures Po. The easiest interpretation is probably that certain 
experiments such as tossing a coin, drawing a ball out of a bag, spinning a 
roulette wheel, etc., have in common a number of features which are 
fairly reasonably described by probability measures. To elaborate a 
theory or a model of a physical phenomenon in the form of probability 
measures is then simply to argue by analogy with the properties of the 
standard 'random' experiments. 

The classical statistician will argue about whether a certain mechanism 
of tossing coins or dice is in fact adequately representable by an 'experi- 
ment' in the technical stochastic sense and he will do that in much the 
same manner and with the same misgivings as a physicist asking whether a 
particular mechanical system is in fact isolated or not. 
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Just as the physicist may say 'let us pretend that the system is isolated 
and apply the laws of conservation of energy', the statistician may say 'let 
us pretend that the system at hand is representable by an experiment'. 
Whether the conclusions derived from this 'pretending' game are 'right' 
or 'wrong' is a question which has received no solution so far, assuming of 
course that the question has a meaning. 

About  'behavior' the only prescription we have been able to find in the 
classical literature is the one proposed by J. Neyman under the name of 
'principle of inductive behavior'. In a soft, informal wording the principle 
states essentially this. 'If you have no substantial reason to do otherwise it 
is not altogether silly to use a procedure which has a high probability of 
success.' Certain theorems underlie this principle, one of which is the 
following. 

For each j = 1, 2, .  • •,  n, let ~j = {Oi, ~ ,  ~j, {Pj, o}} be an experiment. 
Let {O, ~, .if} be the cartesian product of the {®i, ~ ,  ~1i}. For O m =  

{01, 02, • • •,  0,}e O let Po, be the cartesian product of the Pj, 01. Further, 
for each j let ~oj be a test function having/3j for power function. 

Finally, for each xj ~ ~.  let Z i be a random variable which, conditionally 
given x = x l ,  x z , ' " ,  x ,  takes value unity with probability ~oj(xj) and 
value zero with probability 1 -  q~i(x~). Let/3(oJ) = ( 1 / n ) ' Z B j ( O j ) .  Then 

• I 4 n e  " 

According to this theorem, if one applies in n different and unrelated 
experiments procedures with a small average probability of error, then 
the average number of mistakes will be small with overwhelming proba- 
bility as soon as n is sufficiently large. 

In other words, the actual batting average will be close to the average 
probability of being correct. 

It has been shown recently by H. Robbins and others that for certain 
sequences ~j; j = 1, 2, •. •, n ; it is possible to improve the batting average 
by treating all the problems together (or sequentially) instead of individu- 
ally but this is a refinement which does not endanger the principle itself. 

Since we are concerned here with a comparison of the classical and 
neo-Bayesian approaches it seems necessary to comment on the impor- 
tance of Theorem 1. Suppose to avoid infinite difficulties that 0 ,  ~, s¢ and 
everything else in sight is finite. Then Theorem 1 says that Bayes solutions 
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form a complete class if the set ~ is the set of all decision procedures. This 
is an extension of classical results concerning Lagrange multipliers. One 
can understand its philosophical implications better by comparing it with 
the following remark. 

Let ~o be the subset of ~ consisting of those r ~ ~ which minimize 
expressions of the type sup ( lr (O)- f (O)l;  0 ~ O} for functions f which are 
neither in ~ nor larger than elements of ~.  The class ~o is complete. 

In other words, admissible solutions are minimax solutions for suitable 
functions [, and in fact this statement remains valid under the conditions 
of Theorem 1 assuming only in addition that the elements of ~ are real 
functions. 

Apparently nobody claimed that this result gives the minimax principle 
an advantage over other principles. Nobody even seems to claim that the 
minimax principle should be used. 

It is also clear that neither the completeness of the class of Bayes 
solutions nor the completeness of the class of modified minimax solutions 
will necessarily hold for cases where ~ is a proper nonconvex subset of 
the class of all decision functions. In such cases there may be admissible 
functions which are not Bayes solutions and the classical statistician may 
then feel that it is not necessary for him to behave as if he had an a priori 
distribution. 

Another point on which there is some disagreement is the following. 
Suppose that 0 actually was a random variable with a distribution/.~ 
known to the statistician. Should he use the Bayes procedure relative to 
/.t? The classical theory does not say. He may prefer to look at risk 
functions conditionally given 0 (and possibly other things) and take 
various precautions instead of shooting for the best average with respect 
to/x. To be sure if the same problem presented itself over and over again 
there may be some advantage in using #. However, if 0 has been selected, 
it is not random even if it is unknown and two persons having an argument 
over its actual value may well agree to use a procedure which does not use 
/z explicitly. 

4 .  T H E  P E R S O N A L I S T I C  T H E O R Y  O F  D E C I S I O N  

Any given person indulges in beliefs, preferences and prejudices. As far 
~as beliefs are concerned ordinary language makes a small and obviously 
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inadequate provision for their expressions by means of words such as 
probable, very probable, likely, certain, possible, impossible. It is very 
tempting to try to construct a mathematical framework describing these 
states of mind more accurately as well as their possible modifications 
through the intervention of fresh observational evidence or other infor- 
mation. Such an attempt should be considered as reasonable as the early 
attempt to formalize the concepts of temperature and quantity of caloric. 
Unfortunately the attempts of a theory of pistimetry which have come to 
our attention are not very convincing and not very precise. 

Several authors have noted that introspection on degrees of belief is 
difficult to formalize but that one may be able to pin down expressions of 
opinion by offering suitable bets. Unless the bets are actually performed 
this is only an assisted form of introspection. However, with the introduc- 
tion of such considerations one can build a formal theory of a 'homo 
economicus' which deals at the same time with beliefs and preferences. 

The most widely known theory of this type is perhaps the one 
expounded in 1954 by L. J. Savage. In certain respects it is also the 
simplest and the most beautiful. Thus we shall restrict our comments to 
Savage's theory, ignoring in particular the more recent, but less convinc- 
ing, papers. 

It is characteristic of the pistimetric and preferential theories available 
at the present time that they do not attempt a formalization of the concept 
of experiment and tend to treat experiments and fortuitous observations 
alike. In fact, the main reason for their periodic return to fashion seems to 
be that they claim to hold the magic which permits to draw conclusions 
from v~hatever data and whatever features one happens to notice. 

It seems also that their recurrent fading is very closely linked to the fact 
that they are imprecise, naive and unable to allow substantific discussion 
involving several persons. To exemplify we shall now restate in our own 
language the very first result of Savage's theory. 

Savage usds nine axioms or postulates couched in almost formal 
mathematical language. They are restated below in six parts. We hope 
that the informality of the language has not led u,s to gross misinterpreta- 
tions. 

The axioms are relative to two sets S and C and to the set ~(S, C) of all 
functions from S to C. If f ~ ~(S, C) and A c S the restriction of f to A 
will be denoted flA. The complement of A will be denoted A c. An 
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element f of o%(S, C) which coincides with g on A and h on A c will be 
denoted f = gIa + hlA c. The set of functions from A c S to C will be 
denoted ~r(A, C). 

Axiom 1. Each one of the spaces ,9-(A, C), A c S is totally preordered by 
a relation deno t ed '  ~< ', and the preorder  of o~(S, C) is not the trivial one 

where f ~< g for every pair (f, g). 
For  a particular A c S let f be a function identically equal to a on A 

and let g be a function identically equal to/3. The preorder  of ~-(A, C) 
induces a preorder  on C by considering that c~ ~</3 is equivalent to f ~< g. 

Axiom 2. For  every A c S the preorder  induced by ~T(A, C) on C is 
either trivial or identical to the order  induced by ~-(S, C). 

Axiom 3. The relation '(flA)<~ (glA)' is equivalent to the relation: 

fIA + hlAc ~ glA + hlAc for every h ~ ~(S,  C) .  

Axiom 4. Suppose that g < h in ~-(S, C). Then for every a ~ C there is a 
partition {Ai; j = 1, 2 , . . . ,  k} of S such that if gj = glA~ +alAj and hj = 
hlA? + alA~ then either gj < h or g < h i. 

Axiom 5. Let  a, a ' , /3  and/3 '  be constant elements of ~(S,  C) such that 

a '  < a and/3 '  </3 in the ordering of ~(S,  C). If 

ala + a'IAo <~ aIB + a %° 

then 

/3Ia +/3[A ¢ ~- aIB + a ' IB , .  

Let  g be an element of ~r(A, C). If s ~ A let gs be the element of 
~-(A, C) which is identically equal on A to the value of g at s. 

Axiom 6. Let  f and g be two elements of @(A, C). If for every s ~ A the 
relation f ~< gs holds t h e n f ~  < g. Similarly/--- > gs for all s ~ A impliesf  ~ > g. 

From these postulates Savage derives a result, which, ff our interpreta- 
tion and translation is correct, can be stated as follows. 
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T H E O R E M  2. If the axioms 1 to 6 are satisfied there is a numerical 
function U defined on C and a finitely additive probability measure P 
defined on the o--field of all subsets of S such that f~< g is equivalent to 

U[f(s)]P(ds)<~ I U[g(s)lP(ds) 

for every pair ([, g) of elements of ~(S, C). 
Furthermore, P is uniquely defined and U is unique up to a linear 

transformation. 

Although we have not checked the proof of this theorem in detail and 
may have misinterpreted Savage's assertions it is fairly clear that the 
theorem as stated or a small modification of it must be correct. Assuming 
this, it is a beautiful theorem, deriving from purely qualitative assump- 
tions a precise quantitative conclusion. 

In this respect previous theorems by von Neumann, de Finetti and 
others, as well as the more recent work of Pratt, Raiffa and Schlaifer are 
not nearly as appealing. 

Of course axiom 4 implies that S is an infinite set, so that one may be 
reluctant to use all the functions from $ to C and look at measures defined 
for all the subsets of S. However, it is fairly clear that one could assume 
that S carries a ~r-field ~t and restrict oneself to sets which belong to ~¢ 
and to functions which are ~/-measurable. The measure P would then be 
defined only on ~¢. Savage's proof seems to be left unchanged by this 
modification, although, here again, we have not checked the details. 

Axiom 5, which is an anti-bribery law, is not relevant if C has two 
elements. Similarly Axiom 6 loses in this case much of its strength. Since 
for the purpose of proving the existence of P one can choose two elements 
of C and work with a set having only two elements, the main axioms 
leading to the existence of P are essentially the first four. 

The first four axioms are closely related to those of B. O. Koopman, but 
they are more attractive, even though they are subject to the same kind of 
criticism that Koopman himself raised against his own axioms. 

It is of course possible to reject the theory altogether because the 
axioms are intuitively too strong and unacceptable. However, the situa- 
tion is unfortunately not that simple as the following elaboration will 
show. 
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Let M be an arbitrary Boolean algebra. There is, of course, no loss of 
generality in assuming that ~ is a Boolean algebra of subsets of certain set 
$. If A e ~ ,  let IA be unity on A and zero otherwise. Let 7/be the set of all 
such indicators. Let  Se be the vector space of step functions on s4. 
Explicitly f ~ 6 e if f is a finite sum f = ~ajlAi where the at are real and 
where {Aj} is a partition of S by elements of .~. Instead of real numbers, 
one could use rational numbers without essential changes. 

Let  R be a subset of ~ x  7/. It will be assumed throughout that 
(0, v) ~ R for every v ~ 7/. 

Following the method of Kraft, Pratt, and Seidenberg one can use the 
relation R to induce an order, or more precisely a preorder on Se. 

Let  K be the set of elements f of SP which can be written in the form of 
finite sums 

f = E~j(v; - uj) 

with at I> 0 and (ui, vj) ~ R. The requirement (0, v) ~ R for every v implies 
that K contains all the positive elements of 5e. The set K is a convex cone 
in 6e. Thus, it induces a preorder on SP. This preorder is obviously the 
smallest one which is compatible with the linear structure of 5" and the 
relation R. 

Since the existence of a positive linear functional tz such that (u, v) ~ R 
impl ies /z (u)~  </z(v)  is a very weak property it is convenient to require 
somewhat more, as follows. 

Let  R and R1 be two subsets of 7 /x  ~ such that 
(1) R1 c R. 
(2) (0, v) ~ R for every v ~ ~'. 
(3) (0, O~nl. 
A positive linear functional ~ on 5" will be called compatible with the 

pair (R,R~) if (u ,v)~R implies ~(u)<~t~(v) and (u,v)sR1 implies 
/z (u )<  t~ (v). The case where only R is under consideration reduces to 
this by putting for R1 the set consisting only of the point (0, I). 

T H E O R E M  3. Let  (R, R1) be a pair of subsets of ~ x 7/" such that R i c R 
and (O,v)eR for every v e ~  and (O,I)eR1. Let K be the cone of 
functions f ~ Se having the form 

f = ~,~j(vj - u;)  

with at  I> 0 and (uj, vj) e R. 
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There exists a positive linear functional/z which is compatible with the 
pair (R, R 1) if and only if there is a function e from R 1 to the open half line 
(0, oo) such that no function g of the type 

g = f + h ,  w i t h f e K  and 

h =~,~j[(v~-uj)-8(uj, vj)], ,~ > 0, 

(uj, vi)e R1 vanishes identically. 

Proof. Let C be the convex cone formed by functions f of the type 
f = ~ai(vj - uj) with oq > 0 and (ui, vj) ~ R1. The existence of a/z compati- 
ble with (R, R~) is equivalent to the existence of an open convex cone G 
such that 0 ~ G and C + K c G. 

Indeed, if such a cone exists, the Hahn-Banach theorem insures the 
existence of a linear functional/z such that/z (f) > 0 for f e G. This implies 
/z ( f  + a )  > 0 for every f e K and every ot > 0, hence tz ([) >t 0 for f e K. 
Since K contains the cone of positive elements of Se, the functional/z is 
necessarily positive. The converse implication is trivial. 

If an open convex cone G exists, for every pair (u, v )e  R1 there is an 
e > 0  such that ( v - u ) - e  e G hence the necessity of the condition 
expressed in the theorem. Conversely if the function e exists, then the set 
C~ of functions g such that g>>-~ai[(vj-uj)-n(uj ,  vi)] with a i > 0  and 
(ui, vj) e R 1 and n (u, v) < e (u, v) is an open convex set containing C. The 
cone C1 + K is an open cone which contains C + K and the origin does not 
belong to C1 + K. This completes the proof of the theorem. 

In the particular case where R~ is reduced to the single point (0, I)  of 
7/- x 7/- the condition can be rephrased as follows. 

COROLLARY.  If R1 = {(0, I)} there is a positive linear ~ compatible 
with (R, R1) if and only if the function identically equal to - 1  does not 
belong to K. 

This can be checked directly or can be deduced from Theorem 3 by 
taking e (0, I)=~.1 

This corollary can be given the following interpretation. 
Suppose that a statistician is challenged to express his opinions about 

the location of point s e S. For every pair (A, B)  of elements of M he may 
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either decline to answer or indicate that if he were forced to choose he 
would choose B in preference to A. 

It is assumed that the statistician will prefer any nonempty set A ~ ~¢ to 
the empty set and that he does not prefer the empty set to the whole 
space. 

The challenger decides to test the preferences expressed by the statisti- 
cian as follows. For a pair (A, B)  for which the statistician expresses 
preference of B over A the challenger selects a positive number o~. If B 
occurs but not A, the statistician receives a. If A occurs but not B, the 
statistician pays o~. This is done for a finite number of pairs (Aj, Bi) with 
the effect that the total amount paid by the statistician is f ( s ) =  
~/Olj[IAI(S)-- IBj(S )]. 

Unless the preferences expressed by the statistician are compatible 
with some finitely additive probability measure on ~ the challenger can 
select pairs (Aj, Bj) and numbers aj such that : (s)  is always larger than 
unity, for all values of s ~ S. 

When the algebra ~ is finite the condition given in the theorem can be 
simplified. The function e is not relevant. It is necessary and sufficient that 
no function f +g, f~K, g =Ea~(vj-uj) with aj>O and (uj, vj)~R1 be 
identically zero. This is the result of Kraft, Pratt and Seidenberg. The 
finiteness of ~ implies that St is finite dimensional. Hence the simplifica- 
tion. 

In general, the function e defined on R1 can be interpreted as follows: 
there are prizes e (u, v) so small that even if they are offered a bet on v 
against u still seems preferable to the sure prize e (u, v). 

Combining Theorem 3 with the theorem of de Finetti which states that 
preferences expressed by odds must follow the rules of the calculus of 
probabilities, and with the various theorems of Koopman, Savage and 
others it does seem that one would be forced to admit that opinions or 
preferences must be probabilistie to be coherent. 

At least it is impossible to deny that a pair of relations (R, R1) satisfying 
the general conditions of Theorem 3 but incompatible with every finitely 
additive probability measure, must have rather disagreeable properties. 

Fortunately, or unfortunately depending on one's personal views, the 
implications of this for statistical purposes are rather meager as we shall 
now try to show. 



A N O T E  O N  M E T A S T A T I S T I C S  151 

First, under most circumstances, statisticians are not called upon to 
express a whole spectrum of opinions about the location of a point s or the 
value of a parameter. Clearly, any expression of opinion of the type 'A is 
better than A c and B is better than B c' will be compatible with a measure 
provided only that A n B be not empty. 

Second, whether or not one adopts arguments of the pistimetric type, 
the validity of the statements of the classical theory of statistics remains 
entirely unaffected. 

Third, pairs of relations (R, R1) which are compatible with a unique 
probability measure do not arise very commonly. It is true that the total 
order and the partitioning possibilities invoked by Savage (in Axiom 4 of 
our list) will enforce uniqueness of the compatible measure. However, the 
practical cases where such an extensive relation can effectively be spelled 
out are very few and very special. To claim that an ideal person could in 
principle specify such a relation is to beg the question. To claim that since 
an ideal person could do it, a real person should do it is to introduce a 
dogma for which we have little justification. 

It appears therefore more acceptable to resign oneself to the fact that in 
many if not most cases the pair (R, R1) does not specify tt entirely. 

Fourth, some people have complicated minds. If they did attempt to 
express their opinions on the location of a point s ~ S the opinions would 
include statements such as these: A~ is less likely than B1, but A2 is much 
less likely than B2 and A3 is incomparably less likely than B3. To 
formalize this one would have to introduce not a pair of relations (R, R1) 
but a whole string of relations {R0, R~, R2 . . . .  , Rn}. 

Let us suppose for the sake of argument that we have such a string of 
relations with R i ~ Rj+I. If there is a ~ compatible with (R0, R~) and even 
if such a /~  is unique, it does not follow in any way that the relative 
magnitudes of the numbers tz (A) and ~ (B) are any reflection or indica- 
tion of the validity of the relations R2 or Rn. 

To put it differently, suppose that we have three relations (A, B)~  Ro 
expressing that A is not preferable to B, (A, B)~  R 1 expressing that B is 
strictly preferred to A and (A,B)~R2 expressing that B is vastly 
preferred to A. 

Suppose that the pair (R0, R~) is compatible with one and only one 
measure tz. If it turns out that cI.L(A)<- I~(B) for c = (10) 137, this does not 
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in any way imply (A, B)~ R2. In fact, it might turn out that for all pairs 
(A, B) ~ RE with A ~ O one has (10)/.~ (A) ~/z (B) but that for some pairs 
(A, B) which are in R1 and not in R2 one has ctz(A)<.lz(B). 

Fifth, from a technical point of view the existence of measures compati- 
ble with relations (R, R1) is closely connected with the fact that the 
relations were supposed to be relations on a Boolean algebra. If the only 
sets entering in the relations R and R1 were reduced to sets consisting of 
one single point the whole analysis would be quite spurious. In this case 
similar arguments would lead to the existence of a function defined on S 
not to the existence of a measure on the subsets of S. From 'states of 
nature' which are described in quantum mechanical terms it is often 
impossible to construct Boolean algebras unless one deliberately ignore~ 
the laws of physics. In this case again theorems such as Theorem 3 lose 
their relevance. 

Finally, some people have complicated minds and some people do have 
most complicated minds to the extent that even a string of relations 
{Ro, R1 . . . . .  Rn} would not allow them to express themselves. True, one 
may be forced to satisfy oneself with unsatisfactory choices, and one does 
so every day, however a theory of decision which claims that one ought to 
be satisfied goes too far. The situations in which one would be forced to 
admit that/.~ (A) =/~(B) because he has no relevant information and the 
situations in which one definitely states/z (A)=/~ (B) because the system 
selecting s has been programmed to give A and B equal chances (as in 
roulette wheels) are vastly different. One should perhaps investigate 
relations not only in ~t × ~¢ but on strings of relations. The firmness of a 
belief that/~ (A) =/z (B) does not appear to be expressible in terms of/.~. 

With this in mind, let us pass to some considerations on the possibility 
of applying Savage's theory and for this purpose let us return to the 
framework proposed by Savage. In this framework there were two sets S 
and C and the set ~(S, C) of functions from S to C. For purported 
applications the set S is supposed to represent the set of possible 'states of 
nature'. The set C is a set of 'consequences' and the elements of ~r(S, C) 
are 'acts' which associate consequences to states of nature. 

The present author finds himself quite unable to understand what is 
meant by 'states of nature'. Savage's own explanations are inadequate 
and careless. In the famous six egg omelette, Savage lists two states of 
nature and six consequences but only three acts instead of the more usual 
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62 possible acts. This would not be too serious if it did not go to the heart 
of the applicability of the theory. One can argue that in many cases it is 
impossible for certain consequences to be associated with certain events. 
Examples where 'consequences' are inextricably mixed with the 'events', 
or states of nature are easily constructed. For instance, when debating the 
possibility of buying some life insurance, or contributing to a retirement 
fund, can one compare the values independently of whether one will be 
dead or alive? Can one invent acts which will permit one equally to enjoy 
retirement in the countryside whether dead or alive? 

In the example of the six egg omelette, was there an act which 
permitted us to have a six egg omelette even if the sixth egg was rotten? 

Typically the answer to such questions is no, and this is probably why in 
all the examples given by Savage to each pair (s, f )  consisting of a state of 
nature s and an act f corresponded a consequence c (s, f )  not all con- 
ceivable assignments being possible. 

In fact, since generally, the preference ordering of 'consequences' may 
be strongly affected or even reversed according to whichever state of 
nature happens to be true one could argue with Dr~ze that Savage's 
theory applies only to those cases where our actions modify the prob- 
abilities of the various states of nature. 

Since, according to all appearances, even Theorem 3 would require us 
to specify what is meant by 'state of nature' one cannot evade the 
difficulty by slight modifications of the axioms. 

In some cases it is easy to specify what the 'states of nature' are since 
only questions of fact are involved. This happens for instance if one asks 
whether a certain passage in the Federalist Papers was written by 
Madison or Hamilton. However, what are the 'states of nature' in the 
question 'is Krebiozen effective against cancer?' If this appears too clear, 
what are the states of nature in the problem of finding out whether cancer 
is caused by a virus or by one mut.ation or by two successive mutations? 

In many problems to which statistical methods are now routinely 
considered applicable there are no recognizable 'states of nature' only 
various 'theories' or 'models'. 

Whether some specified theory is an adequate or 'correct' representa- 
tion of the physical world is not satisfactorily formalizable at present. It is 
possible for instance for two contradictory theories to be representations 
of the same phenomenon with different and overlapping domains of 
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adequacy. Thus one should not expect 'sets of theories' to behave 
according to the laws of Boolean algebra. 

To go further, most models or theories of nature which are encoun- 
tered in statistical practice are probabilistic or stochastic. The probability 
measures entering in these models are only vaguely related to opinions 
and preferences. On the contrary, they are used to indicate a certain 
structure which can, in final analysis, be reduced to this 'Everything is as if 
one were drawing balls from a well-mixed bag,' 

One of the peculiarities which is bound to occur in the application of 
Savage's system to such situations is the following. Suppose that one is 
faced with the problem of testing some hypothesis about the value of a 
parameter  0 ~ {0, 1}. Suppose also that the experiment to be conducted is 
a Binomial one where 

Presumably a neo-Bayesian statistician can look at the subsets of the set 
S = O x J  where J is the set of integers J =  {0, 1, 2 . . . . .  n} and induce a 
pair (R, R1) of relations on the algebra ~ of subsets of S. Presumably 
there exists at least one measure /z  compatible with (R, R1) on s~ and 
presumably this measure/~ is also compatible with the Binomial prob- 
abilities listed above. 

If/z is not uniquely defined, the theory does not tell us what to do. If/.t 
is unique then Bayes theorems will give the required answers after X is 
observed. 

In this form the neo-Bayesian statistician is in just about  the same kind 
of situation as the classical one except that he may have somewhat more 
trouble convincing his customer. 

However,  one of the advantages of the neo-Bayesian theory is that it 
pretends to answer questions about 0 even when X has already been 
drawn and made available so that for the classical statistician nothing 
stochastic would be left. In this case there are two possibilities, one is to 
ignore the value of X and proceed to the same introspection as above 
without letting oneself be influenced by the known value X = k. The other is 
to assign a measure in the set ® directly without regard to the machinery 
by which k was obtained. Both possibilities appear to us quite unrealistic. 
But if one has to have recourse to the arguments which take place before 
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the experiment is conducted, the neo-Bayesian approach has no particu- 

lar advantage over the classical one. 
This same binomial example can be used to illustrate the fact that the 

theory does not allow sufficient formalism for communication of informa- 
tion to others. Nor does it allow any debate on the reasons why certain 
decisions are taken or why certain opinions are held. 

Consider the same binomial experiment with 0 ~ O = [0, 1]. It seems to 
be a consequence of the theory that after the observation has taken place 
and X has been found equal to k the entirety of the relevant evidence or 
opinion of the neo-Bayesian statistician is expressed by the measure 

which possesses a density 

0k(1 - 0)n-k 
p(O) = 

Itk(1 -- (dr) t)n-kA 

with respect to the initial measure A on 19. This measure A could for 

instance be any one of a family having densities 0 '~(1-0)  a with 
respect to Lebesgue measure. The density p(O) is then proportional to 
ok+~(1--Ot) n-k+13. Thus if we follow the theory and communicate to 

another person a density C01°°(1-0) 1°° this person has no way of 
knowing whether (1) an experiment with 200 trials has taken place or (2) 
no experiment took place and this is simply an a priori expression of 
opinion. 

Since some of us would argue that the case with 200 trials is more 
'reliable' than the other, something is missing in the transmission of 
information. 

If the neo-Bayesian has to give not only his final measure, but also his 
initial measure, the description of the experiment and the result obtained 
there, the simplicity of the Bayes approach is lost. 

What is more,  an admission that such a complete description should be 
given is an admission of the fact that a probability measure is unable to 
convey the whole of the relevant evidence. Why should one then argue 
that the theory is still adequate for the behavior of one single person, 
since this same person will forget from one day to the next and will have to 
refresh his memory by asking what experiments have been performed? 

To comment  briefly on another point, the neo-Bayesian theory seems 
to treat alike all forms of uncertainty. However,  it is clear that we can be 
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uncertain for many reasons. For instance, we may be uncertain because 
(1) we lack definite information, (2) the events involved will occur or not 
according to the results of the spin of a roulette wheel, (3) we could find 
out by pure logic but it is too hard. The first type of uncertainty occurs in 
practically every question. The second assumes a well-defined mechan- 
ism. However, the neo-Bayesian theory seems to make no real distinction 
between probabilities attached to the three types. It answers in the same 
manner the following questions. 

(1) What is the probability that Eudoxus had bigger feet than Euclid? 
(2) What is the probability that a toss of a 'fair' coin will result in tails? 
(3) What is the probability that the 10137+ 1 digit of 7r is a 7? 
Even Savage and de Finetti admit that, especially in cases involving the 

third kind of uncertainty, our personal probabilities are fleeting, more or 
less rapidly in that the very act of cogitating to evaluate precisely the 
probabilities is enough or can be enough to modify or totally overcome 
the uncertainty situation which one wanted to express. 

Thus, presumably, when neo-Bayesians state that a certain event A has 
probability one-half, this may mean either that he did not bother to think 
about it, or that he has no information on the subject, or that whether A 
occurs or not will be decided by the toss of a fair coin. The number ½ itself 
does not contain any information about the process by which it was 
obtained, fleetingly or not. 

As a final comment, it seemes necessary to mention that in certain 
respects the theory of personal probability is very similar to a theory of 
personal mass, which exhibits the same shortcomings. 

Suppose that a store owner is asked to assign weights to the items in his 
store. For this purpose he can group items in sets and compare them by 
hand. If a set A appears to him lighter than a set B we shall say that 
(A, B)~  R. It is fairly easy to see, in the spirit of Theorem 3, that if the 
relation R is not compatible with an assignment of individual masses to 
the items and with the additivity of masses, the system is not very 
coherent. It is also possible to show that if there are enough items which 
could be indefinitely divided into 'equally weighty parts' the assignment 
of masses will be unique up to a multiplicative constant. 

Nobody would be particularly surprised however if it turned out that 
ten thousand peas which were judged all alike when compared pairwise 
turn out to be quite different when parted into two sets of 5000. 
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In theory one would try to reconcile these contradictory feelings but it 
is not clear that it could be achieved nor that it would be worth the 
trouble, since similar difficulties may then crop up elsewhere. 

In spite of the theoretical possibility of assigning masses by hand 
comparison in this manner, nobody seems to claim that this is just what 
should be done in stores. Nobody even claims that since masses are 
masses there is no point in specifying whether they were obtained by hand 
comparison, or by using a spring scale or by using a balance. In addition 
the hand comparison system would lead to classify people in Categories 
according to their ability to guess weights and according to their ability to 
avoid self-deceptions due to size of containers or density of the material. 

The parallelism between this and the proposals of the neo-Bayesian 
school is quite evident. The proposal to classify people according to the 
sharpness of their ability for statistical guessing has already been made. 
For instance, Halphen could state that there is no good and bad statistics, 
there are good and bad statisticians. 

If the process of measuring something as definite as masses by hand 
comparison seems rather unreliable, can one really expect a similar 
theory of measurement of ethereal opinions to inspire much confidence? 
If an indication of the process of measurement is helpful in the masses 
problem, it also appears necessary in the opinion problem. 

Finally, an assignment of masses may conceivably be checked by 
experimenting with a scale, but the neo-Bayesian theory does not even 
pretend to make statements which could be checked by an impartial 
observer. 

5.  C O N C L U S I O N  

In the foregoing pages we have attempted to indicate that the classical 
theory is essentially a formalization and study of experiments and func- 
tions defined on experiments. We also have attempted to show that the 
backbone of the neo-Bayesian theory is a naive assumption that since by 
forcing an individual to make decisions one can perhaps force him to 
behave as if there was a probability measure on certain undefined states 
of nature, there is no point in elaborating further what kind of prejudices 
and what more or less unreliable evidence entered in the decisions. 

Classical statistics achieves some kind of interpersonal communicabil- 
ity by restricting its domain to well-defined experiments. Whether the 
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neo-Bayesian theory can reach this goal without losing its flavor appears 
doubtful. However, it seems clear that any theory which pretends to 
permit discussion between two persons of the quality and nature of the 
evidence available will have to be more complicated than the Bayesian 
theory. It also will have to imbed some indication of the possibility of 
verification of the validity of the statements made. 

For the practical purposes of teaching statistics, the neo-Bayesian 
approach does not seem to have any definite advantage over the classical 
one but it has already led to some strange claims, which, if taken seriously, 
would tend to undo a generation of patient and often painful public 
education. 

One of the claims is that the experiment matters little, what matters is 
the likelihood function after experimentation. Whether this is true, false, 
unacceptable or inspiring, it tends to undo what classical statisticians have 
been preaching for many years: think about your experiment, design it as 
best you can to answer specific questions, take all sorts of precautions 
against selection bias and your subconscious prejudices. It is only at the 
design stage that the statistician can help you. 

Another claim is the very curious one that if one follows the neo- 
Bayesian theory strictly one would not randomize experiments. The 
advocates of the neo-Bayesian creed admit that the theory is not so 
perfect that one should follow its dictates in this instance. This author 
would say that no theory should be followed, that a theory can only 
suggest certain paths. However, in this particular case the injunction 
against randomization is a typical product of a theory which ignores 
differences between experiments and experiences and refuses to admit 
that there is a difference between events which are made equiprobable by 
appropriate mechanisms and events which are equiprobable by virtue of 
ignorance. Furthermore, the theory would turn against itself if the 
neo-Bayesian statistician was asked to bet on the results of a poll carried 
out by picking the 100 persons most likely to give the right answers. 

In spite of this the neo-Bayesian theory places randomization on some 
kind of limbo, and thus attempts to distract from the classical preaching 
that double blind randomized experiments are the only ones really 
convincing. 

There are many other curious statements concerning confidence inter- 
vals, levels of significance, power, and so forth. These statements are only 
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confusing to an otherwise abused public. If the neo-Bayesian would 
advocate certain specific methods, one could presumably investigate 
what the consequences of these methods would be in classical terms, but 
this is an evaluation they refuse. It must then be very confusing to the 
layman to be ~old that the neo-Bayesian theory is vastly superior, but that 
its claims must be taken on faith. 

In view of this, we can only conclude that the neo-Bayesian theory is a 
premature and confusing return to 1763. 

Department of Statistics, 
University of California, Berkeley 
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